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RELATIVE NULLITY FOLIATIONS
AND INDEFINITE ISOMETRIC IMMERSIONS

KINETSU ABE AND MARTIN MAGID

This paper investigates the relative nullity distribution of an indefi-
pnite Riemannian manifold isometrically immersed into an indefinite
space form.

Introduction. In this paper we investigate the relative nullity distribu-
tion of an indefinite Riemannian manifold isometrically immersed into an
indefinite space form. This distribution is totally geodesic and gives rise to
a Ricatti-type differential equation along a geodesic in a leaf of the
distribution.

This differential equation is applied in several ways to estimate the
index of relative nullity » for geodesically complete, connected, Lorentzian
submanifolds M} of M*!(c), the Lorentzian sphere. These applications
extend the work of Abe [1], [2], [3], Ferus [7], {8], and others to the setting
of indefinite manifolds. Some of the work in §2 was obtained previously
by Graves [10] in the codimension one case and by M. Dajczer. In
particular Theorem 2 was conjectured by Dajczer [5].

Sections 1 and 2 lay the groundwork and derive the Ricatti-type
differential equation. In §3 an integer », is defined and it is shown that if
M) is as above and if » > », then M7 is totally geodesic. This integer is
used to formulate a geometric condition which guarantees that a complete
connected hypersurface of S{(c) is totally geodesic. We also estimate »
given a natural condition on the space-like Ricci curvature of the sub-
manifold. In [6] other conditions on Ricci curvature are given.

The general scheme of our investigation is very similar to that of the
Riemannian case as formulated in the papers mentioned above. However,
there are a few basic and non-trivial differences from the Riemannian
case. These differences are due to the indefinite metric and are to be
overcome. Therefore, we think it worthwhile to include the details of the
proofs for most of our results.

1. Preliminaries. An indefinite Riemannian manifold M of dimen-
sion n is a connected manifold with a non-degenerate metric in each
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tangent space. The metric can be written
ds?> = —(dx')’ = -+ —(dx*) +(d’ ) + - +(dx")’

at every point of M". In this case, we say the signature of M” is (s, n — s)
and write M.

If f: M" — M"** is an immersion and the metric induced on M" is
non-degenerate, f is an isometric immersion of M with this metric into
M"*k_ Denote by D the torsion-free metric connection on M/**. D
induces a torsion-free, metric connection v on M as follows:

(1.1) DY = fo(V,Y) + a( X,Y),

where X and Y are tangent vectors on M, f,(Vv,Y) is the tangential
component and a( X, Y) is the normal component. a is called the second
fundamental form of f.

Given a field of unit normal vectors £ on f( M) we can define a field
of endomorphisms 4, on M by

(1-2) Dy = _f*(AgX)'*‘V;g,

where —fx(A,X) is the tangential component. A, is called the shape
operator associated to .

We denote by N(x) the set of all normal vectors to f(M) at f(x).
The metric on M”** and M” is denoted by ( , ). As usual, R( , ) denotes
the curvature tensor of M. For the sake of future use, we list the
following:

k
(13) R(X,Y)Z=R(X,Y)Z+ ¥ (&,.¢)|(4,X) A(4,Y)]Z
p=1
=R(X,Y)Z + Ayy. X — Ayx. Y

(Gauss equation);
(1.4) S(X,Y)= Y (X, X)(R(X,X)Y, X)) (Riccitensor);
=1

R(,) is the curvature tensor of M,”“‘; §¢,’s form an orthonormal base
for N(x); and X,’s form an orthonormal base for 7, M, the tangent space
of M at x.

2. Relative nullity. If f: M" - M"** is an isometric immersion
between indefinite Riemannian manifolds we define the relative nullity
space at x, T%(x), to be

(2.1) T°(x)={XeT(M): A, X=0 Vie N(x)}.
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The orthogonal complement [T%(x)}]* of T°x) in T, M is denoted
by T!(x).

ProOPOSITION 1. T(x) = { X € T(M): a(X,Y) =0VY € T(M)}.
Proof. It is obvious.
PROPOSITION 2. T'(x) = span{ 4,Y} for § € N(x), Y € T.(M).

Proof. Given any £ € N(x), Y € T(M) and X € T%(x), (X, A.Y)
=0, 50A4,Y € T'(x).

On the other hand, suppose Z € T,(M) satisfies (Z, 4,Y) = 0 for
all £, Y as above. Then a(Y, Z) = O for all Y and Z € T°%(x). This means
that [span{ 4,Y }]* ¢ T°(x) so that [span{ 4,Y}] D> T"(x).

The dimension »(x) of T%x) is called the relative nullity of the
immersion at x. The minimum value of »(x) on M is called the index of
relative nullity and is denoted by »,,.

THEOREM 1. Assume that M is a space form and let G denote the set of
points in M where v(x) = v,. Then

(1) G is an open subset of M,

(2) x » T%x), x € G is a differentiable and involutive distribution
in G;

(3) the foliation T is totally geodesic in M; and

(4) each leaf of T° is immersed as a totally geodesic submanifold of M.

Proof. (1) Pick a point x, € G and a basis 7T, (M), {Y,....Y,,
Y,OH,... . }» such that, for some §,(x,), {4,7, +J} forms a basis of
T'(x,). Extend Yl,.. Y, and §,....¢, smoothly in a neighborhood
of x,. Theset { 4,7, o ;} remains linearly independent in a neighborhood
of x,. Therefore in a neighborhood of x, the dimension of 7°(x,) must
be less than or equal to »,, and so equals »,.

(2) It can be shown that T° is a smooth distribution on G by noting
that 7% = N%_, ker 4, and that this intersection has constant rank on G.

(3) We use Coda221 s equation to see that T is totally geodesic. Let
Y, Z be vector fields in T° For all X in TM and normal vectors £ we
have
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This reduces to
_Ag(VXY) = VY(AgX) - Ag(VYX) —AgpeX.

Taking the inner product of both sides with Z yields 0 = (V(4.X), Z).
(A X, Z) = 0 can be differentiated in the direction of Y.

0=Y(A4,X,Z) = (Vy(4,X),Z) + (A X,VZ).
This gives (A,X,VyZ) =0, ie., VyZ € T° This shows T? is totally
geodesic. Examining Codazzi’s equation with Y in T° and £, X as above
gives
so that

VY(A§X) =A(VyX) + AgypeX ~ A(VyY).

This shows that T is also parallel along 7°°.
For (4), notice that

DYf*(Z)=f*(vYZ)+a(Y’Z)=f*(vYZ)' O

Next we define a complementary distribution 7¢(x) in a neighbor-
hood of y(t), t € [a, b) where y(2) is a geodesic in a leaf of T°. The
distribution is complementary in the sense that 7¢(x) @ T%(x) = T.(M).

If, at a fixed point y(0), T°(y(0)) is non-degenerate then T°(x) is
non-degenerate for all points x near y(0). Along a geodesic y(¢) in a leaf
of T T°(y(t)) remains non-degenerate since T°( y(¢)) is parallel along
the geodesic. Therefore, T°(x) is non-degenerate in a neighborhood of the
geodesic. In this case set T(x) = T(x).

If T°(y(0)) is degenerate we use the following procedure. At y(0)
choose a pseudo-orthonormal basis

{L,(0),..., L(0), E,(0),..., E, _(0)} of T°(»(0))
and
{L,(0),...,L,(0), F,(0),...,F,_, ,(0)} of T*(»(0)),
so that
(L;(0), L;(0)) =0 = (L;(0), E,(0)) = (L;(0), F,(0))

and the E,(0) and F,(0) form an orthonormal set. Add { L,(0),..., L,(0)}
so that each L (0) is perpendicular to E,(0) and F,(0), ( L,(0), i,(O)) =0
and (L,(0), L,(0)) = =8,
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Denote the parallel extension of this basis
{L,(0),...,L,(0), E(0),..., E,_,(0),
Fl(O)’ sty Fn—uofr(O)’ IAJI(O)’ D] z’r(())}

along y(¢) by { L,(¢),..., L(1)}.
Assume, without loss of generality, that y(0) is one of

{£,00),....L,(0), E(0),.... E, (0)},

say E, _,(0). Generalizing an argument in {10}, define #: R" — M" by

h(t, Xiseoos Xps Visewos Vyyormlo Ui oos Uy s Uiy ey V,)
= exPy(z)(zijj(t) + Zy (1) + Zu Fi(r) + ZU/L,(t))-

Since

(ha)er0)(3/9) = j(2)

(ha)ofd/8x,) = L, (1)

(he)0(0/3y,) = E (1)

(h*)(,,o)(a/au,) = F/(t)

(h*)(t.O)(a/an) = L_;(’)
for each ¢, there is a neighborhood U of (1,5) such that 4 is an imbedding
on U. By shrinking, if necessary, we can find a neighborhood V of
{(2,0)|1 € R} such that h,(d/9u,) and h«(3/00,) are extensions of F(1)
and L (¢) respectively to A(V'). By making V" smaller and restricting ¢ to
[a, b) we can assume h,(3/du,) and h,(d/dv) span a complement in a
neighborhood of y(¢), ¢t € [a, b).

In this neighborhood we let Q be the projection defined by the
decomposition T (M) = T°(x) & T¢(x)

(22) 0: T,(M) ~ T(x).
Forany Y € T? and X € TM we can define
(2.3) CyX=—-0(vyY).

C is called the conullity operator.
We need the following simple, technical lemma.

LEMMA 1. Let C and Q be defined by (2.2) and (2.3). If Y is in T° and
Uand V are in TM then

(1) 9(vyU) = Q(v,(QU))

(2) Q(Vy oY) =0

(3) «(U,V) = a(QU,V)

(4) Cis a tensor.
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Proof (1) Suppose U = U, + U,, where U, € T and U, € T¢. Then
O(v,yU) = Q(vy(Uy + U)) = Q(vyU.), since vy U, is in T° This
means that Q(V,U) = Q(V(QU)).

() If U= U, + U, then QU = U.. This says that U — QU € T?, so
that Q(V_ oY) = 0.

(3) Again (U, V) = a(U, + QU,V) = a(QU, V).

(4) It is sufficient to show that C ,, = ¢CU for ¢: M — R.

CoyU= —0Q(vyoY) = —Q[(Up)Y + ¢(v,Y)]
= (P[_Q(VUY)] = ¢oC,U. d

We now define a connection V' in the complementary local bundle
T<.MfUe TM,V € T¢ then

(2.4) vV =0(v,V).
Using this connection we can differentiate C.
(2.5) (V;’CY)Xz vi(CyX) — CY(V)I’X)'

Another expression can be found for (v Cy) X. The first term is

VH(CyX) = 0(vy(CyX)) = =0(vy(Q(VyY))) = —Q(V,V,Y).

The second term is, by Lemma (1.2),
=Cyr(v7X) = 2(Voix¥) = QoY) = Q(Vo,xY)-
Combining both terms gives
Vi(CyX) = Cyp(VyX) = —Q(R(Y, X)Y + Vv, ¥ — v Y ).

If WeT'then(v,Y,W)=0andso0 = X{V,Y,W) =(Vv,v,Y,W)
+({v,Y, v W). Along a geodesic y, in T° let Y =¥,. Then v,Y = 0,
and along y, we have (V,V,Y, W) = 0and Q(V,V,Y) = 0.

Next we claim that Q(Vy yY) = Cy(CyX). In fact Cy(CyX) =
—0(Ve,xY) = O(Vy,nY) = O(Vg yY) by Lemma 1.

Finally then, if Y is an extension of the tangent vectors y, along a
geodesic in T° then

(2.6) (vyCy) X = Q(R(X,Y)Y) + CiX.

THEOREM 2. If f: M — M**(c) is an isometric immersion and M" is
complete, then the relative nullity foliation is geodesically complete.

We first sketch a proof of Theorem 2.
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Let y, be a geodesic in a leaf L of T°. It must be shown that y, can
be extended indefinitely in L. Since L is totally geodesic in M we know
that y, is a geodesic in M which can be extended indefinitely in M
because M is geodesically complete. It must be proven to lie entirely in L.
Assume that y, isin L for ¢ in [a, b). If we can show that y, is in G, then
we can take a coordinate system { y',..., y"} adapted to the foliation
with origin y,, that is, with the property that the integral manifolds of T°
are given by y’*/ = ¢, Now all points y,, for ¢ less than and close to b,
belong to one slice. As ¢ approaches b, y, approaches y, with coordinates
©,...,0), so that ¢, ..., Cyey, are all zero. Thus, y, € L and we are done.

To show that y, € G we need the following lemma, which will be
proved after the proof of the theorem.

LEMMA 2. For any Z in T,(M) there exist Z, € T (M), a <t <0,
such that Z, = Z and

(2.7) v/(QZ)+ C,(QZ,)=0 fora<t<b.
Moreover, Z, can be extended differentiably to t = b. Here <7, stands for
Vi

The extension part of Lemma 2 will be proved using 2.6. Let X, be a
parallel vector field along y,, a < t < b, such that X, € T%(y,). We will
prove that X, € T%y,) so »(y,) = v(y,) = v, and »(y,) = »,. Take Z,
as in Lemma 2. For each point y,, ¢t < b, extend Y,=j,, X, and Z, to

vector fields Y, X and Z with Y in T°.
Examine Codazzi’s equation with Y, X and Z.

Via(Z, X)—a(vyZ, X) - a(Z,vyX)
=v (Y, X)—a(v,Y, X)—-a(Y,v,X)

Along y, Vv, X =0 and a(Y, X) = 0 and a(Y,Vv,X) = 0. The equation
reduces to

vVia(Z, X)—a(vyZ,X)= —a(v,Y, X)=a(CyZ, X)
by Lemma (1.3). This gives
vy e(Z, X)

a(VyZ,X)+a(CyZ, X)

a(Q(vy(0Z)), X) + a(CyZ, X)
a(v/0Z,X) + a(C,Z, X)

along y,.
This is true for ¢t < b, so by continuity it holds for 1 = b. That is to

say that a(Z, X) is parallel along y,, a <t <b. «(Z,X)=0att=0>
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which means a(Z, X) = 0 at y,. Since Z, is arbitrary, X, € T%y,), as
desired.

Proof of Lemma 2. In what follows we use the same notation that was
introduced in the definition of T¢(x). Along y, write

QZ, = Yo;(1)L;(1) + Ty, (1) F,(1).
We want to solve Q(v,0Z,) + C,(QZ,) = 0. Rewriting, this is
O(v,(So, (1)L, (1) + T, (1) E, (1)) + C;(0Z,) = 0;
or
QL@ (1)L, (1) + Ty, (t) F, (1)) + C;(0Z,) = 0;
or
@i (t)L, (1) + ¥, (1) F, (1) + C,(QZ,) = 0.

Since C;(QZ,) can be written in terms of L (1) and F (1) this is a system
of ordinary differential equations which can be solved for ¢ < ¢ < b. To
see that the solution can be extended: By (2.6)

(viCy)X=CiX+ Q(R(X,Y)Y) forall Xin TM.
Q(R(X,Y)Y)=1c{Y,Y)QX, so that along y,, a < ¢ < b,
(2.8) (viCy) = Ch+ (7, 7)Q.
If Z, satisfies (2.7), then by differentiating once more we have:
vAH(QZ) + v/ (0Z) = 0
or
72 ’ ’
v/A(02,) +(v/C,)0Z, + C,(v/(0Z)) = 0.
This yields, using (2.8),
v/(QZ,) + CHOZ) + «(Y,Y)QZ, + Cr(v/(0Z)) = 0.
Plugging in (2.7) gives
v/A(0Z) + CHQZ,) + (Y. Y)0Z, - C3(QZ,) = 0,

ie.,
(2.9) v/(0Z,) - (Y, Y)QZ, =0 fora<t<b.
In terms of the parallel basis for T¢ along y, (2.9) can be written

d%,(1) d*,(1)
dr? dr?
Solutions to these equations can be extended differentiably beyond b. O

+«(Y,Y)p =0, + (Y, Y)y,=0.
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To see that (2.6) is an equation of Ricattti-type write
n—vy—r

Cyl(t) = L Ci(L()+ X GiOE()

Then
(V;’CY)z‘j(t) = V}I'(Cyzfj(t)) - CY(V;’i‘j(t))
= vi| LCHOL() + KD E(1)

dck(t) , dc’
=T L k() + S EE (1),
i p

Similarly,

(vic) B = £ 280 () p Lol g,

1]

O(R(L;(1),Y)Y) = (Y, Y)L (1),

Q(R(F,(1),Y)Y) = (Y, Y)F,(1).
Let

Ci(1)  Dilt)

C(t) = [ Y ] and K(t)=c(Y,Y)I,.
Ci() Do)
Then, (2.6) can be written as

dcC(t)
dt

(2.10) = C*(t) + K(2).

3. Applications of the Ricatti-type differential equation. Let M be a
geodesically complete Lorentzian submanifold of M **(c) (¢ > 0), where
M["**(c) is the Lorentzian space form of constant curvature c. Let », be
the index of relative nullity of M in M} **(c).

It is well-known that for K(¢) > 0, the equation (2.10) has no global
solution with an initial condition C(0) which has a real eigenvalue. This
implies, in our case, that there is no global solution of (2.10) if (Y, Y) > 0.
If {(Y,Y) = 0, 0 is the only global solution under an initial condition C(0)
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with a real eigenvalue. In particular, if C(¢) has a real eigenvalue for some
¢, Y must be 0, provided that Y is space-like.
Here let us state an elementary fact on a Lorentzian vector space.

PROPOSITION 3. Let L" be a Lorentzian inner product space with the
inner product { , ). Let V" be a linear subspace of dimension v. Then,
(1) V" = L" and { )|, is non-degenerate, or
(i) V* = E” and { )|+ is positive definite, or
(i) { , ) | v is degenerate and V¥ = E’~' + span{ £}, where (£,£) =0
and { L E" L.

( Proof). See Graves [9].

Now let Y,,...,Y, | be a set of (¥, — 1), linearly independent
space-like vectors in T°(x) such that span{Y,,..., Y, _1} is a positive
definite subspace of T°(x). Proposition 1 tells us the choice of
Y,...,Y, , is possible. Denote C, = Cy (i =1,...,», — 1) for simplic-
ity.

LEMMA 3. The set of vectors { X,C(( X),...,C, (X))} forms a vy-frame
in T“(x) for X # 0 € Tx).

Proof. Let aX + eCy(X) + -+ - +a, |G, _1(X) = 0. Then
aICI(X) + .- +au0Ale041(X) = Calypc +a,,0¥1Y,,0*1(X) = (“‘X) X.

Hence, —a is a real eigenvalue of C, .y, . oy Yyt Since «,Y,

+ .-+ +a, Y, | 1s a space-like vector, oY, + - ta =0
0 0

from the above remark. This implies ¢y = --- =a, ;, =0and a = 0.

vo— 1Y;071

As was done in [7], denote by V, , the Stiefel manifold -of ordered

n,r

r-frames in E”. It is well known that V, , — V, , is a principal fiber
bundle in a natural way. Denote by p(n) the largest integer such that the
fibration V, ,,, = ¥, has a global cross-section. Define by v, the largest

integer such that p(n —»,) > »,.

THEOREM 3. Let M[" be a geodesically complete, connected submanifold
of MI"**(¢), ¢ > 0. If the index of relative nullity v, > v,, then M is
totally geodesic in M *(c) and v, = n.

n?

Proof. For any x € G, T%x) always contains a copy of E* ! By
Lemma 3, V,_, , = V,_, | has a global cross-section ¢ defined by

e(X) =(X,C,X,...,C, 1 X) for VX # 0 € T(x). Hence, p(n — vy) >
vy; therefore, v, < v,.
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REMARK. If one of the relative nullity leaves is a Riemannian mani-
fold relative to the induced metric, the above », can be improved by
defining 7, to be the largest integer such that p(n — #,) > », + 1. Clearly
v <v.

n — "n

Some of the numerical values for », are as follows: v, =0, v, = 1,
vy=1Lv,=2,vs=1p,=2,v,=3,v;=4 v,=1.

The argument used here can be applied to obtain a similar result for
more general indefinite metrics. Unlike the Riemannian case, it is known
that the above »,’s are often the best possible value. For example, Graves
and Nomizu [11] constructed an isometric immersion of S} into S} with
the index of relative nullity 1.

Our next result states:

THEOREM 4. Let f: M — M['*?(c) be an isometric immersion between
two Lorentzian manifolds, where MI*?(c) is the Lorentzian space form of
positive curvature c. Suppose that the Ricci curvature S of M) satisfies
S(X, X) = (n— 1)ce{X, X) for all space-like vectors X.

(1) If T%(x) is Lorenizian for some x € G, then the index of relative
nullity is either 0 or n.

(2) If T°(x) is degenerate for some x € G, then the index of relative
nullity is 0,1, n — 1 or n.

(3) If T°(x) is Riemannian for all x € G and if p = 1, then the index
of relative nullity is 0, n — 2, n — 1, or n.

We will prove Theorem 4 after a sequence of propositions and
lemmas.

PROPOSITION 4. Let (, ) be a symmetric bilinear form on an n — v,
dimensional vector space V over R with signature (m,, m,, ms). If m; + m,
and T V — V is a symmetric linear operator with respect to (, ), then T has
a real eigenvalue. Note a symmetric bilinear form of signature (m,, m,, ms)
has m; (~1)’s, m, (+1)’s and m Q’s in the canonical form.

Proof. Choose a canonical basis {e,...,e,, fi, .- [, 80005 8m,}
of V for the symmetric bilinear form, so that (e,, e,) = —0,,, (fp, fpr) =
845> (8, 8,) =0 and all other products are zero. The matrix of the
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symmetric operator T with respect to this basis has the form:

m, m, ms;
m, A 1 -B" . 0
_______ J D I
m B | C | 0
2 T S |
my D : E | F
| t

Here A’ = 4 and C' = C. Denote this matrix by M. The matrix M, =
4 -F'] represents a symmetric linear transformation on the span of
{er---se,, f1s---5 [, }- By a change of basis, M, can be put into a

standard form [15]. If m, # m,, there is one block of the form:

: L
0 A

Thus, M, has an eigenvalue A. Noting that
det|A] — M| = det[AI — M, ]det[A ] — F] = 0,

we see that T has a real eigenvalue A. a

Now let n =X/ (X, X,)a(X,, X,), where { X|,..., X,,} is an or-
thonormal basis of T.(M). Define a bilinear form (, ): T¢(x) X T(x) —
R by, forany X and Y € T¢(x),

(X,Y) = (a(X,Y),n).

It is clear that ( , ) is symmetric, since « is symmetric. We may find an
alternative expression for ( , ) using the Gauss equation and the Ricci
curvature of M.

(X,Y) = (a(X,Y),n)
'_En:(X,,X)(a X, ¥).a(X,, X))
=8(X,Y) —nc({X,Y) + c(X,Y)

+ Z( X (a(X,, X),a(X,,Y)).

Clearly, the definition of ( , ) and the above expression for (X, Y) do not
depend on the choice of the orthonormal basis { X,..., X, }.
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If {&,...,¢ ,) is an orthonormal basis for N(x), then the last term of
the above expression can be rewritten
Z(Xi’ Xi><§j> £j><a(‘Xi’ X)’ §j><a(Xi: Y)> §j>
i,j

= Y X, X)(E 60( A X, X)( A Y, X))
)
= 2,60 (4 X, A, Y).
J
Since the normal space is positive definite,

P
(X.Y)=S(X,Y) —c(n - 1IKX,Y) + Y. (4; X, Y).
j=1
For convenience, let 7 = ¢(n — 1), and A by A;. We examine ( , ) by
looking at

R(X,Y)= S(X,Y) = (X, ¥) and Kk(X,Y)i= fujx,m.

LEMMA 4. If the Ricci curvature satisfies the hypothesis in the theorem,
then h( X, Y) is positive semi-definite or Lorentzian.

Proof. We show that h cannot have two (-1)’s in its signature. If it
did, we could find a pair of linearly independent vectors ¢ and f in 7. M
such that h(e,e) = -1, h(f,f) = -1 and h(e,f) =0 ie., S(e,e) = -1
+ 1(e,e)y, S(f,f)=-1+(f,f) andS(e,f) = 1(e,f). By the hy-
pothesis, it would then be the case that (e,e) < 0and (f, f) < 0.

We now examine the various possibilities for the lengths of ¢ and f.
In each case, we will find a space-like vector which violates the condition
on the Ricci curvature. We will use the reverse Cauchy-Schwarz inequal-
ity, i.e,0 < (e,e)(f,f) < (e, f)? in this case. In the following argument,
denote (e, f) by a for brevity. (e, f) = a can be positive.

If both e and f were light-like, e + f would be space-like and
(e+ fe+f)=2a.

S(e+ f,e+f)=S(e,e) +2S(e, f)+ S(f,f)
=(-1) +2(e, f) +(-1) < 27{e, f) = 27a
=7e+f,e+f).

This contradicts the hypothesis.
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If e were light-like and f were time-like, we could also assume that
(f,f) = ~1. Then e + af would be space-like, for (e + af,e + af ) = a*.
But

S(e,e) +2aS(e, f) +a*S{f,f)

= -1+ 2ara + a*(-1 — 1) < 7a?,

S(e + af,e + af)

a contradiction.

If e and f are both time-like, we could assume that (e,e) = -1 =
{f,f). Then, e + af is space-like with (e + af,e + af) = -1+ a*> 0
by the reverse Cauchy-Schwarz inequality.

S(e + af,e + af) = -1 — 7+ 2a’r — a* — a*r < (-1 + a?*)r,

a contradiction.

Next we show that if there are any vectors which are time-like with
respect to h, then A is non-degenerate and therefore Lorentzian. If this is
not the case, there are linearly independent ¢ and g such that (e, e) = -1,
h(g,g)=0 and h(e,g)=0, ie, S(e,e)=-1+ (e, e), S(g,8) =
7({g, gy and S(e, g) = 7(e, g). We know that (e,e) < 0 and can assume
that (e, g) > 0. If (g, g) >0, then (g+e,g+e) = (g, 8) + 2{e, g)
> 0, so that g + e is space-like. However,

S(g+egte)=1(g g +27(e,g) — 1

+7(e,e) <t[(g,8) +2e, g)l,
a contradiction. The only remaining possibility is that (e,e) < 0 and
(g, g) < 0. The span of e and g is non-degenerate, so for some k € R,
e + kg is space-like.
S(e + kg,e + kg) = S(e,e) + 2kS(e, g) + k°S(g. g)
=-1+ (e e) +2kt(e,g) + k(g g
<rt[(e,e) — 2k(e, g) + k5. 8)],

a contradiction.
This completes the proof of Lemma 4.

We now turn to k(X,Y) = X2_,(A47X,Y) on T(x).

LEMMA 5. If T(x) is positive definite, then k restricted to T(x) is
positive definite.

Proof.
P 4
K(X,X)= Y (43X, X) = ) (4,X,4X).
j=1

j=1
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If k(X,X)=0, then 4, X=0for j=1,...,p, since T9(x) = T'(x) =
span{ 4,Y} is positive definite. This means that X € T(x) N TY(x);
therefore, X = 0. Hence, & is positive definite.

PROPOSITION 5. If T¢(x) is positive definite, then ( , ) is positive
definite on T(x).

Proof. For no non-zero e € T(x) is h(e,e) = -1, since this implies
(e,e) < 0. Thus, the form ( , ) is the sum of a positive semi-definite form
and a positive definite form.

LEMMA 6. If T(x) is a degenerate subspace with respect to { , ), then h
is positive semi-definite on T*(x) for dimT<(x) > 1.

Proof. T¢(x) is a positive semi-definite subspace with respect to ( , )
by hypothesis. If there were an e € T“(x) with h(e,e) = -1, then (e, e)
= 0. By Lemma 4, there would be g € T“(x) such that (g, g) = 1 and
h(e, g) = 0. By hypothesis we would have (g, g) > O and (e, g) = 0. For
allre R (g +te,g+te) =(g gy >0,but

S(g+te,g+te)=1+1(g,g) —t?<7(g8).

This is a contradiction.

LeMMA 7. If T¢(x) is a degenerate subspace with respect to { , ) and if
dimT(x) > 1, then k is positive semi-definite on T“(x) and for some
Y € T(x) k(Y,Y)>0.

Proof. If T°(x) is degenerate, so is T'(x) = span[4,Y]. Thus, there is
a light-like vector L such that, for any normal vector £ Im 4, C [L]*.
The metric on [L]* is positive semi-definite, so (A4,Y,4,Y) > O for all £,
Y. This implies that k is positive semi-definite. If k(Y,Y) = 0 for all Y,
then each A4,Y is light-like. We also have (4,Y, L) = 0 for §, Y. Recal-
ling that perpendicular light-like vectors are linearly dependent, we see
that T'(x) would be one-dimensional, which is not the case.

PROPOSITION 6. If T°(x) is a degenerate subspace, then ( , ) is positive
semi-definite on T(x) and for some Y € T(x), (Y,Y) > 0.

Finally, we assume M is a hypersurface in M7*! and that T¢ = T
is Lorentzian. Here k(X,Y) = (AX, AY) where 4 is a transformation of
T! which is one-to-one.
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PROPOSITION 7. If M is a hypersurface in M7**(c), T' is Lorentzian
and n — vy > 2, then the signature (m;, m,, m;) of (,) has m, > m;.

Proof. We know that h is positive semi-definite or Lorentzian. The
shape operator 4 can be put into one of four canonical forms [15] and &
can be explicitly calculated using these forms.
R 1

1 A
(1) 4= Al . s

A

n—yy—2

where A4 is given with respect to a pseudo-orthonormal basis
{L,L,f1,---s fus_s,—2}. k then has the following matrix with respect to
this basis:

Py
A0
x

}\2

n—~ vo—-2

L

Note that AA; --- A,_, _, # 0 and the signature of k is (1,n —
v, — 1). We can find a space-like vector U in span{ L, L} such that
k(U,U) > 0. In fact, there are choices for b € R such that (L + bL,
L+ bL) = —2b and k(L + bL, L + bL) = -2X\(1 + b)) are both posi-
tive. Set U= L + bL. We claim that ( , ) is positive definite on
Span{ U7 fl’ o n—vo-—2}'
h(cU + Zc,f;, cU + Tc,f;) 2 0

since
(cU+ Z¢;f;,cU+ Ecjf;y = XU U) + X} 20,

It is also clear that k(cU + Xc¢,f;,cU + ¢;f;) =2 0 and is equal to 0 if and

only if c=0=¢; for j=1,...,n — v, — 2. Hence, if n — v, > 2, the
signature of ( , ) w111 have more plus signs than minus 51gns
A 0 0
0 A 1
-1 0 A
(ii) 4= A
.An—v0—3
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with respect to a pseudo-orthonormal basis { L, L, f, f, ..., Juevy—3}- K
has the following form with respect to the above basis:

1 A2 -2A
-2 0 0
-2\ 0 A?
A
| Azn —-py—3 i

In this case, we construct a space-like vector U = L + bL such that
k(U,U) > 4. That is, we want (L + bL,L + bL) = ~2b > 0 and
k(L +bL,L +bL)=1—2b\ > 4.

Here, too, ( , ) is positive definite on span {U, f, f,..., f,_, -3} For
any vector V' in this span, (V,V) > 0. Therefore, A(V,V) > 0 and the
fact that k(U,U) > 4 guarantees that k(V,V) > 0 with k(V,V) =0 if
and only if V' = 0.

a -b
b a
(iii) A= M
| n—yy—2 ]
with respect to orthonormal basis {e, f, f1,..., f,_, —»}. We can find a

space-like vector U in span {e, f} with k(U,U) > 0. As above, the
signature of (, ) has more plus signs than minus signs.

(iv) A is diagonalizable with respect to an orthonormal basis. Then, it
is easy to see that the conclusion of the proposition is satisfied. This
completes the proof.

We are now in the position of proving Theorem 4. We follow the
argument in [7]. If n > », > 0, choose any non-zero Z € T%(x). Then,
C,: T¢(x) — T¢(x)1s a symmetric operator with respect to ( , ). In (1), by
Propositions 4 and 5, C, would have a real eigenvalue. Also Z can be
chosen as a space-like vector. But the equation (2.10) has no global
solution in which k(r) >0 and C, has a real eigenvalue. This is a
contradiction. In case (2), if n — », > 1, by Propositions 4 and 6, C,
would have a real eigenvalue. Clearly, Z can be chosen to be a space-like
vector; hence, a contradiction as before. Finally, in case (3), Propositions
4 and 7 assure us a real eigenvalue of C,. Since n — v, > 2 and since T*
is Lorentzian, Z can be chosen to be space-like. The same argument as
above completes the proof.
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The following result concerns the over simplified “The axiom of
sphere” for the hypersurfaces in the Lorentzian space form of positive
constant curvature c.

Let f: M7 — M!*!(c) be a geodesically complete Lorentzian hyper-
surface, where M !(c) is the Lorentzian space form of positive curvature
c. Let us assume:

(*) Through each point x of M exists a k(x)-dimensional local
submanifold S, of M which is mapped under f isometrically into a
k( x)-dimensional totally geodesic submanifold of M *!(c).

THEOREM 5. If 2k(x) —n > w»,, M} is totally geodesic in MJ'*Y(c).
Here v, is the numerical value determined in Theorem 3.

LeMMA 8. If 2k(x) — n > 0, the relative nullity v(x) at x > 2k(x) —
n. In particular, the index of relative nullity vy > 2k — n, where k =
min, ¢ k().

Proof. 1f S, is non-degenerate, the result of Lemma 8 will be obtained
in the same manner as in [3]. Now let us assume that S, is degenerate. Let
é,(x),...,é,_,_,(x), L form a pseudo-orthonormal basis for (7'S,)"*,
which is the orthogonal complement of 7S, in 7. M. Extend it to a basis
of T.M by adding {e,(x),...,e,_1(x), I:(x)}, which is also pseudo-
orthonormal. Then, e,(x),...,e,_,(x), L(x) form a basis for TS,. Since
S, is totally geodesic, a(e,(x),e;(x)) = a(e(x), L) = 0, where a is the

second fundamental form. Set
A.(e;) = Ya;e, + b,L + alinear combination of &, and L
J
and
A (L) = Y c;e, + bL + alinear combination of ¢, and L.
J

Similarly, A4,(é,) and A,(L) can be given as a linear combination of
the basis elements e,,...,e, , L, L,é,,...,&, , .. With respect to this
basis, A, is represented by an n X n-matrix, which we also denote by the
same symbol. In fact, we have

Ag(e;) = —(A.(e;), L)L + alinear combination of é,’s
and
A (L) = —(A,(L), L)L + alinear combination of &,’s.
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Thus,
i k n-—k )

k . .

0 0
A£= * * * *
0 0 * *

* %

n—k : : :

* * *. *

Thus, by interchanging the kth and (k + 1)st rows, 4, has the form:

k n—k
k (0] B

A=
n—k C D.

Here, O is the k X k-zero matrix and B,C and D are k X (n — k),
(n — k) X k and (n — k) X (n — k)-matrix, respectively. Let RB be the
row-reduced echelon matrix of B. Then, at least k — (n — k) =2k — n
rows from the bottom of RB must be the zero rows. Similarly, the
column-reduced echelon matrix CC of C must have at least 2k — n zero
columns on the right side C. Denote by r(x) the smaller between the
number of the zero rows of RB and the number of the zero columns of
CC. Applying an appropriate sequence of row operations and column
operations, we finally get an n X n-matrix of the following form:

Orxr 0r><(n—r)
0(n~r)><r *
Here O

)% q 18 the p X g-zero matrix.
Since »(x) is the multiplicity of zero as an eigenvalue of 4, and since
the multiplicity of zero is invariant under row and column operations, 4,
must have at least r(x) as its nullity, i.e., ¥(x) = r(x) = 2k — n.
Theorem 5 is then obtained immediately from Theorem 3. This result
may be regarded as an oversimplified version of “the axiom of sphere” for
hypersurfaces.
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