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Relative nullity foliations and lightlike hypersurfaces in indefinite
Kenmotsu manifolds
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Abstract

This paper deals with the relative nullity distributions of lightlike hypersurfaces of indefinite Kenmotsu

space forms, tangent to the structure vector field. Theorems on parallel vector fields are obtained. We give

characterization theorems for the relative nullity distributions as well as for Einstein, totally contact umbilical

and flat lightlike hypersurfaces. We show that, under a certain condition, Einstein lightlike hypersurfaces in

indefinite Kenmotsu space forms have parallel screen distributions. We prove that on a parallel (or totally

umbilical) lightlike hypersurface, the relative nullity space coincides with the tangent vector space.

Key Words: η -Einstein lightlike hypersurfaces; Indefinite Kenmotsu manifold; Relative nullity foliation;

Screen distribution.

1. Introduction

Nullity spaces in Riemannian geometry have been studied by many authors, see references [1], [5]

and references therein. Abe and Magid in [1], for instance, extended the study of the relative nullity to
isometric immersion between manifolds with indefinite metric. The present paper aims to investigate a similar
concept, namely, relative nullity foliations of lightlike hypersurfaces of indefinite Kenmotsu manifolds. Many
differences from the Riemannian case are due to the fact that the metric in consideration is degenerate. Further
advancements in this topic are recent (see [3], for instance).

As is well known, contrary to timelike and spacelike hypersurfaces, the geometry of a lightlike hypersurface
is different and rather difficult since the normal bundle and the tangent bundle have non-zero intersection. To
overcome this difficulty, a theory on the differential geometry of lightlike hypersurfaces developed by Duggal
and Bejancu [6] introduces a non-degenerate screen distribution and constructs the corresponding lightlike

transversal vector bundle. This one enables to define an induced linear connection (depending on the screen

distribution, and hence is not unique in general).

The paper is organized as follows. In Section 2, we recall some basic definitions and formulas for indefinite
Kenmotsu manifolds and lightlike hypersurfaces of semi-Riemannian manifolds. In Section 3, for those lightlike
hypersurfaces of indefinite Kenmotsu manifolds which are tangential to the structure vector field, we give
the decomposition of almost contact metric, supported by an example. Theorems on parallel vector field are
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obtained. In Section 4, we study relative nullity distributions of lightlike hypersurfaces of indefinite Kenmotsu
space forms. By Theorems 4.4, 4.5 and 4.9, we establish the characterization of the relative nullity distributions
of an η -Einstein lightlike hypersurface and a parallel (or totally umbilical) lightlike hypersurface, tangent to
the structure vector field, in an indefinite Kenmotsu space form. By Theorem 4.8, we show that lightlike
hypersurfaces in indefinite Kenmotsu space forms are Einstein in the direction of a relative nullity space and
the latter is an isotropic distribution under a certain condition. In the same theorem, we also show that, under
a certain condition, an Einstein lightlike hypersurfaces have parallel screen distributions. We prove, under some
conditions, that the geometry of the relative nullity distributions of lightlike hypersurfaces M is closely related

with the geometry of M , the distributions TM⊥ and φ(TM⊥).

2. Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact structure (φ, ξ, η), i.e. φ is

a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (2.1)

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η) is an almost contact structure

on M and g is a semi-Riemannian metric on M such that, for any vector field X , Y on M [4]

η(X) = g(ξ, X), g(φX, φY ) = g(X, Y ) − η(X) η(Y ). (2.2)

If, moreover, (∇Xφ)Y = g(φ X, Y )ξ−η(Y )φ X and ∇Xξ = X−η(X)ξ , where ∇ is the Levi-Civita connection

for the semi-Riemannian metric g , we call M an indefinite Kenmotsu manifold [9].

A plane section σ in TpM is called a φ -section if it is spanned by X and φ X , where X is a unit tangent

vector field orthogonal to ξ . The sectional curvature of a φ -section σ is called a φ -sectional curvature. If a

Kenmotsu manifold M has constant φ -sectional curvature c , then, by virtue of the Proposition 12 in [9], the

curvature tensor R of M is given by

R(X, Y )Z =
c − 3

4
{
g(Y , Z)X − g(X, Z)Y

}
+

c + 1
4

{
η(X)η(Z)Y

−η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y , Z)η(X)ξ + g(φ Y , Z)φ X

− g(φ X, Z)φ Y − 2g(φ X, Y )φ Z
}

, X, Y , Z ∈ Γ(TM). (2.3)

A Kenmotsu manifold M of constant φ -sectional curvature c will be called Kenmotsu space form and denoted

by M(c).

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with index s , 0 < s < 2n + 1 and

let (M, g) be a hypersurface of M , with g = g|M . M is a lightlike hypersurface of M if g is of constant

rank 2n − 1 and the normal bundle TM⊥ is a distribution of rank 1 on M [6]. A complementary bundle of

TM⊥ in TM is a rank 2n − 1 non-degenerate distribution over M . It is called a screen distribution and is
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often denoted by S(TM). A lightlike hypersurface endowed with a specific screen distribution is denoted by

the triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the following result has an important role in
studying the geometry of a lightlike hypersurface.

Theorem 2.1 [6] Let (M, g, S(TM)) be a lightlike hypersurface of (M, g) . Then, there exists a unique vector

bundle N(TM) of rank 1 over M such that for any non-zero section E of TM⊥ on a coordinate neighborhood

U ⊂ M , there exist a unique section N of N(TM) on U satisfying

g(N, E) = 1 and g(N, N) = g(N, W ) = 0, ∀W ∈ Γ(S(TM)|U ). (2.4)

Throughout the paper, all manifolds are supposed to be paracompact and smooth. We denote by Γ(E)
the smooth sections of the vector bundle E. Also by ⊥ and ⊕ we denote the orthogonal and nonorthogonal
direct sum of two vector bundles. By Theorem 2.1 we may write down the following decompositions:

TM = S(TM) ⊥ TM⊥,

TM = TM ⊕ N(TM) = S(TM) ⊥ (TM⊥ ⊕ N(TM)). (2.5)

Let ∇ be the Levi-Civita connection on (M, g). Then by using the second decomposition of (2.5), we
have Gauss and Weingarten formulae in the form

∇XY = ∇XY + h(X, Y ) and ∇XV = −AV X + ∇⊥
XV,∇X, Y ∈ Γ(TM|U ), V ∈ Γ(N(TM)), (2.6)

where ∇XY , AV X ∈ Γ(TM). and h(X, Y ),∇⊥
XV ∈ Γ(N(TM)).∇ is an induced a symmetric linear connection

on M , ∇⊥ is a linear connection on the vector bundle N(TM), h is a Γ(N(TM))-valued symmetric bilinear
form and AV is the shape operator of M concerning V .

Equivalently, consider a normalizing pair {E, N} as in Theorem 2.1. Then (2.6) takes the form, for any

X , Y ∈ Γ(TM |U),

∇XY = ∇XY + B(X, Y )N and ∇XN = −ANX + τ (X)N, (2.7)

where B , AN , τ and ∇ are called the local second fundamental form, the local shape operator, the transversal
differential 1-form and the induced linear torsion free connection, respectively, on TM|U .

It is important to mention that the second fundamental form B is independent of the choice of screen
distribution. From (2.7), we obtain

B(X, Y ) = g(∇XY, E), ∀X, Y ∈ Γ(TM |U), (2.8)

τ (X) = g(∇⊥
XN, E), ∀X ∈ Γ(TM |U). (2.9)

Let P be the projection morphism of TM on S(TM) with respect to the orthogonal decomposition of

TM . We have, for any X, Y ∈ Γ(TM |U),

∇XPY = ∇∗
XPY + C(X, PY )E and ∇XE = −A∗

EX − τ (X)E, (2.10)
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where ∇∗
XPY and A∗

EX belong to Γ(S(TM)). C , A∗
E and ∇∗ are called the local second fundamental form,

the local shape operator and the induced connection on S(TM). The induced linear connection ∇ is not a
metric connection and we have

(∇Xg)(Y, Z) = B(X, Y )θ(Z) + B(X, Z)θ(Y ), ∀X, Y ∈ Γ(TM |U), (2.11)

where θ is a differential 1-form locally defined on M by θ(·) := g(N, ·).
Also, we have, g(A∗

EX, PY ) = B(X, PY ), g(A∗
EX, N) = 0, B(X, E) = 0.

Finally, using (2.7), the curvature tensor fields R and R of M and M are related as

R(X, Y )Z = R(X, Y )Z + B(X, Z)ANY − B(Y, Z)AN X

+ {(∇XB)(Y, Z) − (∇Y B)(X, Z) + τ (X)B(Y, Z) − τ (Y )B(X, Z)}N,

where (∇XB)(Y, Z) = X.B(Y, Z) − B(∇XY, Z) − B(Y,∇XZ). (2.12)

3. Lightlike hypersurfaces of indefinite Kenmotsu manifolds

Let (M, φ, ξ, η, g) be an indefinite Kenmotsu manifold and (M, g) be a lightlike hypersurface of (M, g),

tangent to the structure vector field ξ (ξ ∈ TM ). If E is a local section of TM⊥ , then g(φE, E) = 0, and

φE is tangent to M . Thus φ(TM⊥) is a distribution on M of rank 1 such that φ(TM⊥) ∩ TM⊥ = {0} .

This enables us to choose a screen distribution S(TM) such that it contains φ(TM⊥) as a vector subbundle.

If we consider a local section N of N(TM), since g(φ N, E) = −g(N, φ E) = 0, we deduce that φE is also

tangent to M and belongs to S(TM). On the other hand, since g(φ N, N) = 0, we see that the component

of φN with respect to E vanishes. Thus φ N ∈ Γ(S(TM)). From (2.1), we have g(φ N, φE) = 1. Therefore,

φ(TM⊥)⊕φ(N(TM)) (direct sum but not orthogonal) is a nondegenerate vector subbundle of S(TM) of rank

2. If M is tangent to the structure vector field ξ , then, we may choose S(TM) so that ξ belongs to S(TM).

Using this, and since g(φE, ξ) = g(φN, ξ) = 0, there exists a nondegenerate distribution D0 of rank 2n− 4 on
M such that

S(TM) =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >, (3.1)

where 〈ξ〉 is the distribution spanned by ξ , that is, 〈ξ〉 = Span{ξ} . It is easy to check that the distribution

D0 is invariant under φ , i.e. φ(D0) = D0 .

Example 3.1 We consider the 7-dimensional manifold M
7

=
{
(x1, ..., x7) ∈ R

7 : x7 > 0
}

, where x = (x1, x2, ..., x7

are the standard coordinates in R
7 . The vector fields

e1 = x7
∂

∂x1
, e2 = x7

∂

∂x2
, e3 = x7

∂

∂x3
, e4 = x7

∂

∂x4
, e5 = −x7

∂

∂x5
,

e6 = −x7
∂

∂x6
, e7 = −x7

∂

∂x7
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are linearly independent at each point of M . Let g be the semi-Riemannian metric defined by g(ei, ej) =

0, ∀ i = j, i, j = 1, 2, ..., 7 and g(ek, ek) = 1, ∀ k = 1, 2, 3, 4, 7, g(em, em) = −1, ∀m = 5, 6. Let η be the

1-form defined by η(X) = g(X, e7), for any X ∈ Γ(TM).

Let φ be the (1, 1) tensor field defined by φe1 = −e2, φe2 = e1, φe3 = −e4 , φe4 = e3, φe5 =

−e6 , φe6 = e5, φe7 = 0. Then using the linearity of φ and g , we have η(e7) = 1, φ
2
X = −X + η(X)e7,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), for any X , Y ∈ Γ(TM). Thus, for e7 = ξ , (φ, ξ, η, g) defines an almost

contact metric structure on M . Let ∇ be the Levi-Civita connection with respect to the metric g . Then, we

have [ei, e7] = ei, ∀ i = 1, 2, ..., 6 and [ei, ej ] = 0, ∀ i = j, i, j = 1, 2, ..., 6. The metric connection ∇ of the

metric g is given by

2g(∇XY , Z) = X.g(Y , Z) + Y .g(Z, X) − Z.g(X, Y ) − g(X, [Y , Z])

−g(Y , [X, Z]) + g(Z, [X, Y ]),

which is known as Koszul’s formula. Using this formula, the non-vanishing covariant derivatives are given by

∇e1e1 = −e7, ∇e2e2 = −e7, ∇e3e3 = −e7, ∇e4e4 = −e7, ∇e5e5 = e7,∇e6e6 = e7, ∇e1e7 = e1, ∇e2e7 =

e2, ∇e3e7 = e3, ∇e4e7 = e4, ∇e5e7 = e5,∇e6e7 = e6. From these relations, it follows that the manifold M

satisfies ∇Xξ = X − η(X)ξ . Hence, M
7

is indefinite Kenmotsu manifold. We now define a hypersurface M

of (M
7
, φ, ξ, η, g) as M =

{
x ∈ M

7
: x5 = x2

}
. Thus, the tangent space TM is spanned by {Ui}1≤i≤6 , where

U1 = e1, U2 = e2 − e5, U3 = e3, U4 = e4, U5 = e6, U6 = ξ and the 1-dimensional distribution TM⊥ of rank

1 is spanned by E , where E = e2 − e5. It follows that TM⊥ ⊂ TM . Then M is a 6-dimensional lightlike

hypersurface of M
7
. Also, the transversal bundle N(TM) is spanned by N = 1

2
(e2 + e5) . On the other hand,

by using the almost contact structure of M
7

and also by taking into account the decomposition (3.1), the

distribution D0 is spanned by
{
F, φF

}
, where F = U3, φF = −U4 and the distributions 〈ξ〉 , φ(TM⊥) and

φ(N(TM)) are spanned, respectively, by ξ, φE = U1 + U5 and φN = 1
2(U1 − U5). Hence, M is a lightlike

hypersurface of M
7
.

Moreover, from (2.5) and (3.1) we obtain the decompositions

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ TM⊥, (3.2)

TM =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ N(TM)). (3.3)

Now, we consider the distributions on M , D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D′ := φ(N(TM)). Then D is

invariant under φ and

TM = D ⊕ D′ ⊥ 〈ξ〉. (3.4)

Let us consider the local lightlike vector fields U := −φ N, V := −φ E. Then, from (3.4), any X ∈ Γ(TM)

is written as X = RX + QX + η(X)ξ, QX = u(X)U, where R and Q are the projection morphisms of TM

into D and D′ , respectively, and u is a differential 1-form locally defined on M by u(·) := g(V, ·). Applying
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φ to X and (2.1), one obtains φX = φ X + u(X)N, where φ is a tensor field of type (1, 1) defined on M by

φ X := φRX . Also, we obtain, for any X ∈ Γ(TM),

B(X, ξ) = 0, (3.5)

φ2 X = −X + η(X)ξ + u(X)U, (3.6)

and ∇Xξ = X − η(X)ξ. (3.7)

For the sake of future use, we have the following identities: for any X , Y ∈ Γ(TM),

C(X, ξ) = θ(X), (3.8)

B(X, U) = C(X, V ) (3.9)

(∇Xu)Y = −B(X, φ Y ) − u(Y )τ (X) − η(Y )u(X), (3.10)

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX − B(X, Y )U + u(Y )ANX. (3.11)

Proposition 3.2 Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M with ξ ∈ TM . The
Lie derivative of g with respect to the vector field V is given by, for any X , Y ∈ Γ(TM) ,

(LV g)(X, Y ) = X.u(Y ) + Y.u(X) + u([X, Y ]) − 2u(∇XY ). (3.12)

Proof. The proof follows by direct calculation. �

The relation (3.12) can be written in terms of B using the following relation

u(∇XY ) = B(X, φY ) + u(X)η(Y ), ∀X, Y ∈ Γ(TM). (3.13)

As the geometry of a lightlike hypersurface depends on the chosen screen distribution, it is important to
investigate the relationship between geometrical objects induced by two screen distributions.

We ask the following question: Is the Lie derivative LV (3.12) independent of the choice of a screen

distribution S(TM)? The answer is negative. Indeed, we prove the following with respect to a change in

S(TM). Suppose a screen S(TM) changes to another screen S(TM)′ . Following are the local transformation

equations due to this change (see details in [6], p. 87).

W ′
i =

2n−1∑
j=1

W j
i (Wj − εjcjE),

N ′ = N − 1
2
{
2n−1∑
i=1

εi(ci)2}E + W,

τ ′(X) = τ (X) + B(X, W ),

∇′
XY = ∇XY + B(X, Y ){1

2
(
2n−1∑
i=1

εi(ci)2)E − W}, (3.14)

where W =
∑2n−1

i=1 ciWi , {Wi} and {W ′
i} are the local orthonormal bases of S(TM) and S(TM)′ with

respective transversal sections N and N ′ for the same null section E . Here ci and W j
i are smooth functions
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on U and {ε1, ..., ε2n−1} is the signature of the basis {W1, ..., W2n−1} . The Lie derivatives LV and L′
V of the

screen distributions S(TM) and S(TM)′ , respectively, are related through the relation (see [10]):

(L′
V g)(X, Y ) = (LV g)(X, Y ) − u(X)B(Y, W ) − u(Y )B(X, W ).

The Lie derivative LV is unique, that is, LV is independent of S(TM), if and only if, the second fundamental

form h (or equivalently B) of M vanishes identically on M .

If a (2n + 1)-dimensional Kenmotsu manifold M has a constant φ -sectional curvature c , then the Ricci

tensor Ric and the scalar curvature r are given by [9]

Ric =
1
2

(n(c − 3) + c + 1) g − 1
2
(n + 1)(c + 1)η ⊗ η, (3.15)

r =
1
2

(n(2n + 1)(c − 3) − n(c + 1)) . (3.16)

This means that M is η -Einstein. Since M is Kenmotsu space form and Einstein, by Corollary 9 in [9], M is

an Einstein one and consequently, c + 1 = 0, that is, c = −1. So, the Ricci tensor (3.15) becomes Ric = −2ng

and the scalar curvature is given by r = −2n(2n + 1).

Thus, if a Kenmotsu manifold M is a space form, then it is Einstein and c = −1 .

Let M(c) be an indefinite Kenmotsu space form and M be a lightlike hypersurface of M(c). Let us

consider the pair {E, N} on U ⊂ M (see Theorem 2.1) and by using (2.12), we obtain

(∇XB)(Y, Z) − (∇Y B)(X, Z) = τ (Y )B(X, Z) − τ (X)B(Y, Z). (3.17)

Theorem 3.3 Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M , with ξ ∈ TM .
Then, the Lie derivative of the local second fundamental form B with respect to ξ is given by

(LξB)(X, Y ) = (1 − τ (ξ))B(X, Y ), ∀X, Y ∈ Γ(TM). (3.18)

Proof. Using (2.12), we obtain

(∇ξB)(X, Y ) = (LξB)(X, Y ) − 2B(X, Y ). (3.19)

Likewise, using again (2.12), we have

(∇XB)(ξ, Y ) = −B(X, Y ). (3.20)

Subtracting (3.19) and (3.20), we obtain

(∇ξB)(X, Y ) − (∇XB)(ξ, Y ) = (LξB)(X, Y ) − B(X, Y ). (3.21)

From (3.17) and after calculations, the left hand side of (3.21) becomes

(∇ξB)(X, Y ) − (∇XB)(ξ, Y ) = −τ (ξ)B(X, Y ). (3.22)

The expressions (3.21) and (3.22) implies (LξB)(X, Y ) = (1 − τ (ξ))B(X, Y ). �
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Next, we give characterization on parallel lightlike hypersuface of an indefinite Kenmotsu manifold. In
fact, it shows that there do not exist non-totally geodesic totally umbilical lightlike hypersurfaces of indefinite
Kenmotsu manifolds, tangent to the structure vector field ξ .

The second fundamental form h of M is said to be parallel if (∇Xh)(Y, Z) = 0, ∀X, Y, Z ∈ Γ(TM).
That is,

(∇XB)(Y, Z) = −τ (X)B(Y, Z). (3.23)

In [13], Sahin characterizes lightlike hypersurfaces with parallel second fundamental form in Lorentzian manifold.
He showed that there do not exist non-totally geodesic parallel lightlike hypersurfaces in a Lorentzian manifold.

Theorem 3.4 Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) , with ξ ∈ TM .
If the second fundamental form h of M is parallel, then M is totally geodesic.

Proof. Suppose that the second fundamental form h of M is parallel. Then (3.23) is satisfied. Using (3.23),
we obtain

(∇ξB)(X, Y ) = −τ (ξ)B(X, Y ). (3.24)

From (2.12) and using (3.18), the left hand side of (3.24) becomes

(∇ξB)(X, Y ) = (LξB)(X, Y ) − 2B(X, Y ) = −(1 + τ (ξ))B(X, Y ). (3.25)

From expressions (3.24) and (3.25) we complete the proof. �

The covariant derivative of the second fundamental form h depends on ∇ , N and τ which depend on
the choice of the screen vector bundle. The covariant derivatives ∇ of h = B ⊗ N and ∇′ of h′ = B ⊗ N ′ in
the screen distributions S(TM) and S(TM)′ , respectively, are related as follows: for any X , Y , Z ∈ Γ(TM),

g((∇′
Xh′)(Y, Z), E) = g((∇Xh)(Y, Z), E) + L(X,Y )Z,

with L(X,Y )Z = B(X, Y )B(Z, W ) + B(X, Z)B(Y, W ) + B(Y, Z)B(X, W ).

It is easy to check that the parallelism of h is independent of the screen distribution S(TM) (∇′h′ ≡ ∇h)
if and only the second fundamental form B of M vanishes identically on M .

We note that the Theorem 3.4 arises when the local second fundamental form B of M is also parallel.
So, the Theorem 3.4 generates some lightlike geometric aspects on any parallel lightlike hypersurface of an
indefinite Kenmotsu manifold by using the Theorem 2.2 in ([6], p. 88).

Note that the 1-form τ in (2.9) depends on the vector field E and it is easy to see that if E = λE with
λ a positive smooth function on M , the associated 1-form τ is related to τ by

τ (X) = τ (X) + X(ln λ), ∀X ∈ Γ(TM |U ). (3.26)

The induced connection ∇ on the lightlike hypersurface M is not metric in general and the Ricci tensor
associated is not symmetric, contrary to the case of semi-Riemannian manifolds. However, for η -Einstein
lightlike hypersurfaces, that is, the Ricci tensor Ric tensor satisfies Ric(X, Y ) = k1g(X, Y )+ k2η(X)η(Y ), due
to the symmetry of the induced degenerate metric g and η ⊗ η , the Ricci tensor is symmetric, and the notion
of η -Einstein manifold does not depend on the choice of the screen distribution S(TM). Consequently
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Proposition 3.5 On a lightlike η -Einstein hypersurface of an indefinite Kenmotsu manifold, tangent to the
structure vector field, the 1-form τ in (2.9) is closed.

Proof. Define the Ricci tensor Ric as Ric(X, Y ) = trace(Z −→ R(Z, X)Y ), for any X, Y ∈ Γ(TM) where
R is the curvature tensor of the induced connection ∇ .

Consider a local quasi-orthogonal frame field {X0, N, Xi}i=1,...,2n−1 on M where {X0, Xi} is a local

frame field on M with respect to the decomposition (3.3) with N , the unique section of transversal bundle

N(TM) satisfying (2.4), and E = X0 . Put Rls := Ric(Xs, Xl) and R0k := Ric(Xk, X0). Using the frame field

{X0, N, Xi} , a direct calculation gives locally Rls − Rsl = 2dτ (Xl, Xs) and R0k − Rk0 = 2dτ (X0, Xk). Since
the Ricci tensor is symmetric on M which is η -Einstein, we have dτ = 0. �

From Proposition 3.5, τ is closed. Poincaré Lemma implies locally on U , τ = df for some function
f ∈ F(U), that is

τ (X) = X.f. (3.27)

Using (3.26), the relation (3.27), for λ = exp(f), yields τ (X) = τ (X) + X(ln λ) = τ (X) + X.f = τ (X) + τ (X),

therefore τ (X) = 0, for any X ∈ Γ(TM |U). Then, by taking E = exp(f)E , one obtains τ = 0 on U . The

corresponding N is N = (1/ exp(f))N . Therefore, we have the following proposition.

Proposition 3.6 Let (M, g, S(TM)) be a lightlike η -Einstein hypersurface of an indefinite Kenmotsu manifold,

with ξ ∈ TM . There exists on all coordinate neighbourhood U , a pair {E, N} such that the 1-form τ in (2.9)
vanishes identically.

This result is also true in case of any Einstein lightlike hypersurface of a semi-Riemannian manifold [3].

Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) with ξ ∈ TM . By

definition Ric(X, Y ) = trace(Z −→ R(Z, X)Y ), for any X , Y ∈ Γ(TM) and we have

Ric(X, Y ) =
2n−4∑
i=1

εig(R(Fi, X)Y, Fi) + g(R(ξ, X)Y, ξ) + g(R(E, X)Y, N)

+ g(R(φE, X)Y, φN) + g(R(φN, X)Y, φE), (3.28)
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where {Fi}1≤i≤2n−4 is an orthogonal basis of D0 and εi = g(Fi, Fi) = 0, since the distribution D0 is non-

degenerate. Since c = −1, so from Gauss and Codazzi equations, we obtain

g(R(Fi, X)Y, Fi) = g(X, Fi)g(Y, Fi) − εig(X, Y ) + B(X, Y )C(Fi, Fi)

−B(Fi, Y )C(X, Fi), (3.29)

g(R(ξ, X)Y, ξ) = η(Y )η(X) − g(X, Y ) − B(ξ, Y )C(X, ξ), (3.30)

g(R(E, X)Y, N) = − g(X, Y ), (3.31)

g(R(φE, X)Y, φN) = u(Y )v(X) − g(X, Y ) + B(X, Y )C(φE, φN)

−B(φE, Y )C(X, φN), (3.32)

g(R(φN, X)Y, φE) = u(X)v(Y ) − g(X, Y ) + B(X, Y )C(φN, φE)

−B(φN, Y )C(X, φE). (3.33)

So substituting (3.29), (3.30), (3.31), (3.32) and (3.33) in (3.28) and by regrouping like terms, we have
the result.

Proposition 3.7 Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) , with ξ ∈ TM .

Then the Ricci tensor Ric is given by, for any X , Y ∈ Γ(TM) ,

Ric(X, Y ) = ag(X, Y ) + B(X, Y )trAN − B(ANX, Y ), (3.34)

where a = −(2n − 1) and trace, tr , is written with respect to g restricted to S(TM) .

Note that the Ricci tensor does not depend on the choice of the vector field E of the distribution TM⊥ .
From (3.34), we have

Ric(X, Y ) − Ric(Y, X) = B(ANX, Y ) − B(ANY, X). (3.35)

This means that the Ricci tensor of a lightlike hypersurface M of an indefinite Kenmotsu space form M(c) is
not symmetric in general. So, only some privileged conditions on the local second fundamental form of M may
enable the Ricci tensor to be symmetric. It is easy to check that the Ricci tensor (3.34) of M is symmetric if

and only if the shape operator of M is symmetric with respect to the second fundamental form B of M (see

[7] for details). Also by Theorem 3.4, the Ricci tensor of the induced connection ∇ of any parallel lightlike
hypersurface, which becomes totally geodesic and consequently Einstein lightlike hypersurface, is symmetric.

Are there any others, with symmetric induced Ricci tensors, but not necessarily totally geodesic or shape
operator symmetric with respect to the second fundamental form? Here is one such class.

First, we recall the definition of screen conformal lightlike hypersurfaces of a semi-Riemannian manifold

M . A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold is screen locally conformal if the

shape operator AN and A∗
E of M and its screen distribution S(TM), respectively, are related by [2]

AN = ϕA∗
E , (3.36)
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where ϕ is a non-vanishing smooth function on U in M . In case U = M the screen conformality is said to be
global. Such a submanifold has some important and desirable properties, for instance, the integrability of its
screen distribution (see [2] for details).

We have the following result proved in [2].

Theorem 3.8 Let (M, g, S(TM)) be a locally (or globally) screen conformal lightlike hypersurface of an in-

definite Kenmotsu space form M(c) , with ξ ∈ TM . Then the Ricci tensor of the induced connection ∇ is
symmetric.

A submanifold M is said to be totally contact umbilical lightlike hypersurface of a semi-Riemannian manifold

M if the second fundamental form h of M satisfies [12]:

h(X, Y ) = {g(X, Y ) − η(X)η(Y )}H + η(X)h(Y, ξ) + η(Y )h(X, ξ), (3.37)

for any X , Y ∈ Γ(TM), where H is a normal vector field on M (that is H = λN , λ is a smooth function

on U ⊂ M ). In case when M is a lightlike hypersurface of a Kenmotsu manifold M , it becomes η -totally

umbilical, that is, h(X, Y ) = λ {g(X, Y ) − η(X)η(Y )}N , since h(·, ξ) = B(·, ξ)N = 0. We have

Theorem 3.9 Let (M, g, S(TM)) be a locally (or globally) screen conformal lightlike hypersurface of an in-

definite Kenmotsu space form M(c) , with ξ ∈ TM . If M is totally contact umbilical lightlike, then M is
η -Einstein.

Proof. The proof follows directly from (3.34), (3.36) and (3.37). �

Theorem 3.9 gives the existence of an η -Einstein lightlike hypersurface in indefinite Kenmotsu space
form, tangent to the structure vector field ξ .

4. Relative nullity distributions of lightlike hypersurfaces of indefinite Kenmotsu space forms

Let M be a lightlike hypersurface of indefinite Kenmotsu space form M(c) with ξ ∈ TM . The relative
nullity space at a point x is defined by

T ∗0(x) = {X ∈ TxM : A∗
EX = 0, ∀ E ∈ TxM⊥}. (4.1)

The relative nullity space is characterized as

T ∗0(x) = {X ∈ TxM : h(X, PY ) = 0, ∀ Y ∈ TxM}. (4.2)

The dimension ν(x) of T ∗0(x) is called the index of relative nullity at x . The value ν0 = minx∈M ν(x) is called

the index of minimum relative nullity [5].

Writing A∗
E as, for any X ∈ Γ(TM),

A∗
EX =

2n−4∑
i=1

B(X, Fi)
g(Fi, Fi)

Fi + B(X, V )U + B(X, U)V, (4.3)
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with g(Fi, Fi) = 0 and using B(., ξ) = 0, it is easy to check that A∗
Eξ = A∗

EE = 0. Therefore, dimT ∗0(x) ≥
2, ∀x ∈ M. Moreover

TxM⊥ ⊥ 〈ξ〉x ⊂ T ∗0(x). (4.4)

Hence, T ∗0(x) is a degenerate distribution along M and ν0 = 2.

Now, say that the screen distribution S(TM) is totally umbilical if on any coordinates neighborhood

U ⊂ M , there exists a smooth function ϕ such that [6]

C(X, PY ) = ϕg(X, PY ), ∀X, Y ∈ Γ(TM|U ). (4.5)

If we assume that the screen distribution S(TM) of the lightlike hypersurface M with ξ ∈ TM is totally

umbilical, then it follows that C is symmetric on Γ(S(TM)|U ) and hence according to Theorem 2.3 in [6], the

distribution S(TM) is integrable. Also, we have ANX = ϕPX and C(E, PX) = 0. Since φξ = 0 and by

using η(ANX) = −θ(X), we have η(AN ξ) = ϕg(ξ, ξ) = −θ(ξ) = 0 which implies that ϕ = 0, so the screen

distribution S(TM) is totally geodesic. This is equivalent, by using the Proposition 2.7 in [6] page 89, to the

parallelism of S(TM) and the vanishing of the shape operator AN . Therefore, we have the following result.

Lemma 4.1 Let (M, g, S(TM) be a lightlike hypersurface of an indefinite Kenmotsu manifold M , with ξ ∈ TM

such that S(TM) is totally umbilical. Then

dimT ∗0(x) ≥ 3, ∀x ∈ M.

Proof. Taking X = U in (4.3), using B(., ξ) = 0 and (3.9), one obtains

A∗
EU =

2n−4∑
i=1

C(Fi, V )
g(Fi, Fi)

Fi + C(V, V )U + C(U, V )V. (4.6)

If S(TM) is totally umbilical, then A∗
EU = 0, so U ∈ T ∗0(x). With the aid of (4.4), one obtains

TxM⊥ ⊥ 〈ξ〉x ⊥ D′
x ⊂ T ∗0(x), (4.7)

which completes the proof. �

The orthogonal complement (T ∗0(x))⊥ of T ∗0(x) in TxM is denoted by T ∗1(x).

Proposition 4.2

T ∗1(x) = span{A∗
EY, Y ∈ TxM, E ∈ TxM⊥} ⊥ TxM⊥.

Proof. It is obvious to check that TxM⊥ ⊂ T ∗1(x). Then, there exists a set Δ(x) such that T ∗1(x) =

Δ(x) ⊥ TxM⊥ . Now we want to show that Δ(x) = span{A∗
EY } . Given any E ∈ TxM⊥ , Y ∈ TxM and

X ∈ T ∗0(x),

g(X, A∗
EY ) = g(A∗

EX, Y ) = 0,
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so, A∗
EY ∈ Δ(x). On the other hand, let Z ∈ span{A∗

EY }⊥S and Y ∈ TxM , where ⊥S denotes the

orthogonality symbol in the screen distribution S(TM). We have

0 = g(Z, A∗
EY ) = g(A∗

EZ, Y ), ∀ Y ∈ TxM.

Then, A∗
EZ ∈ S(TM) ∩ TxM⊥ = {0} , that is, A∗

EZ = 0 and Z ∈ T ∗0(x).

Thus span{A∗
EY }⊥S ⊂ T ∗0(x) and T ∗1(x) ⊂ span{A∗

EY }. Since A∗
EY /∈ TxM⊥ , then Δ(x) ⊂

span{A∗
EY } which completes the proof. �

A submanifold M is said to be η -Einstein if its induced Ricci tensor Ric tensor satisfies

Ric(X, Y ) = k1g(X, Y ) + k2η(X)η(Y ), (4.8)

where the nonzero functions k1 and k2 are not necessarily constant on M . If M is an η -Einstein lightlike

hypersurface of an indefinite Kenmotsu manifold M
2n+1

(n > 1) with ξ ∈ TM , the functions k1 and k2 satisfy

k1 + k2 = −(2n − 1). (4.9)

Lemma 4.3 Let M be an η -Einstein lightlike hypersurface of an indefinite Kenmotsu manifold M with
ξ ∈ TM such that the Ricci tensor Ric of M is parallel. The nonzero functions k1 and k2 satisfy

dki = 0, ∀ i = 1, 2. (4.10)

Moreover, if we choose, at each point p ∈ M , a connected open set G such that TpG = TpM , then, the nonzero

functions k1 and k2 are constants on M .

Proof. Let M be lightlike η -Einstein hypersurface. Then, the induced Ricci tensor Ric tensor satisfies
Ric(X, Y ) = k1g(X, Y ) + k2η(X)η(Y ). Using (2.11), the covariant derivative of the induced Ricci tensor Ric

gives

(∇XRic)(Y, Z) = (X.k1)g(Y, Z) + k1(∇Xg)(Y, Z) + (X.k2)η(Y )η(Z)

+k2η(Z)(∇Xη)Y + k2η(Y )(∇Xη)Z

= (X.k1) {g(Y, Z) − η(Y )η(Z)} + k1 {B(X, Y )θ(Z) + B(X, Z)θ(Y )}

+k2η(Z) {g(X, Y ) − η(X)η(Y )} + k2η(Y ) {g(X, Z − η(X)η(Z)} . (4.11)

Taking Y = V and Z = U into (4.11), one obtains

(∇XRic)(V, U) = X.k1 = dk1(X). (4.12)

On the other hand, the Ricci tensor is parallel, that is, (∇XRic)(V, U) = 0 which completes (4.10). The last
assertion is obvious. �

Note that a hypersurface of a 3-dimensional indefinite Kenmotsu manifold, tangent to the structure
vector field ξ is of dimension 1 and its tangent space is reduced to the distribution spanned by ξ which is
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nondegenerate. This means that the dimension 3 is too low to develop the theory and this agrees with the
decomposition (3.3) which requires 2n − 4 ≥ 0, that is n ≥ 2.

By virtue of Theorem 3.4, a parallel lightlike hypersurface M of an indefinite Kenmotsu space form

M
2n+1

(c) (n > 1) with ξ ∈ TM is also an Einstein one.

Theorem 4.4 Let (M, g, S(TM)) be an η -Einstein lightlike hypersurface of an indefinite Kenmotsu space form

M
2n+1

(c) (n > 1) , with ξ ∈ TM . Let G be the set of points in M where ν(x) = ν0 . Then,

(1) The relative nullity distribution T ∗0 of the screen is smooth on G ,

(2) G is an open set in M ,

(3) If k1 = a , then, on G , we have

(a) The foliation T ∗0 contains an isotropic subspace along M which does not contain the distribution

〈ξ〉 ,

(b) T ∗0 = TM⊥ ⊥ 〈ξ〉 ,

(c) The relative nullity distribution T ∗0 is integrable and the leaves are totally geodesic in M and M ,

(d) Moreover, if S(TM)) is totally umbilical, then T ∗0 = TM⊥ ⊥ 〈ξ〉 ⊥ D′ .

Proof. (1) Let x0 be an element of G . From (4.4), we have

T ∗0(x0) = P (T ∗0(x0)) ⊥ Tx0M
⊥ ⊥ 〈ξ〉x0 . (4.13)

Let ⊥S denotes the orthogonality symbol in the screen distribution S(TM). For Y ∈ Tx0M , E ∈ Tx0M
⊥ and

X ∈ P (T ∗0(x0)), we have g(A∗
EY, X) = g(Y, A∗

EX) = 0, so,

span{A∗
EY } ⊂ P (T ∗0(x0))⊥S .

Let Z ∈ span{A∗
EY }⊥S and Y ∈ Tx0M . We have 0 = g(Z, A∗

EY ) = g(A∗
EZ, Y ), ∀ Y ∈ TxM. Then

A∗
EZ ∈ S(TM) ∩ Tx0M

⊥ = {0} , that is, A∗
EZ = 0 and Z ∈ P (T ∗0(x0)). Thus

span{A∗
EY }⊥S ⊂ P (T ∗0(x0)) and P (T ∗0(x0))⊥S ⊂ span{A∗

EY }.

Consequently P (T ∗0(x0))⊥S = span{A∗
EY } and T ∗1(x0) = span{A∗

EY } ⊥ Tx0M
⊥. There exist vector fields

Y1, ..., Y2n−ν+1 ∈ Tx0M such that {E(x0), A∗
E(x0)

Y1, ..., A
∗
E(x0)

Y2n−ν+1}, represent a basis of T ∗1(x).

Take smooth local extensions of E(x0) and Y1, ..., Y2n−ν+1 ∈ Tx0M in TM⊥ and TM respectively. By

continuity, the vector fields {E(x0), Y1, ..., Y2n−ν+1} remain linearly independent in a neighborhood V ⊂ G of

x0 and then T ∗1 is a smooth distribution. Consequently, T ∗0 is smooth distribution.

(2) follows immediately from the arguments developed in (1).

(3) Suppose that k1 = a . (a) From (3.34) and the fact that M is η -Einstein (4.8), we have, for any X ,

Y ∈ Γ(TM),

(a − k1)g(X, Y ) − k2η(X)η(Y ) + g(A∗
EX, Y )trAN − g(ANX, A∗

EY ) = 0, (4.14)
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But X, Y ∈ T ∗0(x) − 〈ξ〉x implies A∗
EX = A∗

EY = 0 and since a − k1 = 0, (4.14) is reduced to g(X, Y ) =

0, ∀ X, Y ∈ T ∗0(x) − 〈ξ〉x. That is, the distribution T ∗0 − 〈ξ〉 ⊂ T ∗0 is isotropic along M .

(b) Take X ∈ T ∗0(x)−〈ξ〉x and Y ∈ Γ(TxM) with x ∈ G , using (3.34) and the fact that M is η -Einstein,
again we have

(a − k1)g(X, Y ) − k2η(X)η(Y ) + B(X, Y )trAN − B(AN X, Y ) = 0, (4.15)

Since M is η -Einstein, so the induced Ricci tensor is symmetric and from the relation (3.34) the shape operator

of M is symmetric with respect to the second fundamental form B of M . That is B(ANX, Y ) = B(X, ANY ).

Therefore, relation (4.15) becomes

(a − k1)g(X, Y ) − k2η(X)η(Y ) + g(A∗
EX, Y )trAN − g(A∗

EX, ANY ) = 0.

Since X ∈ T ∗0(x) − 〈ξ〉x , we have

(a − k1)g(X, Y ) = 0, that is g(X, Y ) = 0, for A∗
EX = 0 and k1 = a.

So X ∈ T ∗0(x) − 〈ξ〉x implies g(X, Y ) = 0, ∀ Y ∈ TxM , so X ∈ TxM⊥ and we deduce that T ∗0(x) − 〈ξ〉x ⊂
TxM⊥ . Therefore T ∗0(x) ⊂ TxM⊥ ⊥ 〈ξ〉x . From (4.4), we conclude that

T ∗0(x) = TxM⊥ ⊥ 〈ξ〉x.

(c) From Gauss and Codazzi equations, for all E ∈ Γ(TM⊥) and X , Y , Z ∈ Γ(TM), we have

g(R(X, Y )Z, E) = g((∇Xh)(Y, Z) − (∇Y h)(X, Z), E). (4.16)

Take X ∈ Γ(TM) and Y , Z ∈ T ∗0(x), x ∈ G . Since (∇Xh)(Y, Z) = ∇⊥
Xh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ),

Then

g((∇Xh)(Y, Z) − (∇Y h)(X, Z), E) = X.B(Y, Z) − Y.B(X, Z) − τ (X)B(Y, Z)

+τ (Y )B(X, Z) − B(∇XY, Z) − B(Y,∇XZ) + B(∇Y X, Z) + B(X,∇Y Z) (4.17)

Using (2.3) and the fact that the indefinite Kenmotsu space form is of constant curvature c = −1, the left hand

side of (4.16) vanishes and by Proposition 3.6, the relation (4.17) becomes

0 = X.B(Y, Z) − Y.B(X, Z) − B(∇XY, Z) − B(Y,∇XZ) + B(∇Y X, Z)

+ B(X,∇Y Z). (4.18)

From Proposition 4.2, we have B(Y, Z) = g(h(Z, PY ), E) + θ(Y )B(Z, E) = 0, for Y , Z ∈ T ∗0(x).

Similarly, B(X, Z) = 0.

On the other hand, we have

B(∇XY, Z) = B(∇XPY, Z) + X.θ(Y )B(Z, E) + θ(Y )B(∇XE, Z)

= B(∇∗
XPY, Z) = 0, for Z ∈ T ∗0(x) and ∇∗

XPY ∈ Γ(S(TM)).
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Also B(∇Y X, Z) = 0.

Relation (4.18) becomes B(X,∇Y Z) − B(Y,∇XZ) = 0. But

B(Y,∇XZ) = B(Y,∇XPZ) + θ(X)B(Y,∇X E)

= B(Y,∇∗
XPZ) + θ(X)B(Y,−A∗

E X − τ (X)E) = 0.

Consequently h(∇Y Z, PX) = 0, for any X ∈ Γ(TM). From (4.2), we deduce that ∇Y X ∈ T ∗0(x). This

implies that T ∗0(x) is involutive with totally geodesic leaves in both M and M .

(d) Take X ∈ T ∗0(x) − (〈ξ〉x ⊥ D′
x)) with x ∈ G , using (3.34) and the fact that M is η -Einstein and if

S(TM) is totally umbilical, the relation (4.14) is reduced to

(a − k1)g(X, Y ) − k2η(X)η(Y ) = 0.

Since X ∈ T ∗0(x) − (〈ξ〉x ⊥ D′
x), that is A∗

EX = 0, we have (a − k1)g(X, Y ) = 0 which gives g(X, Y ) = 0,

for k1 = a . So X ∈ T ∗0(x) − (〈ξ〉x ⊥ D′
x) implies g(X, Y ) = 0, ∀ Y ∈ TxM and we deduce that

T ∗0(x) − (〈ξ〉x ⊥ D′
x) ⊂ TxM⊥ . Therefore T ∗0(x) ⊂ TxM⊥ ⊥ 〈ξ〉x ⊥ D′

x . From (4.7), we conclude that

T ∗0(x) = TxM⊥ ⊥ 〈ξ〉x ⊥ D′
x which completes the proof. �

Note that items (1) and (2) of Theorem 4.4 do not depend on the η -Einstein condition on the lightlike

hypersurface M . Item (c) coincides with the one given in the main Theorem of Atindogbe et al in [3]. This is

due to the fact that, in both cases, Einstein lightlike hypersurface of Lorentzian space R
n+2
1 (n ≥ 3, c = 0) [3]

and η -Einstein lightlike hypersurface of an indefinite Kenmotsu space form (c = −1), the differential 1-form τ

vanishes. This leads, in both cases, to the same equation (4.18).

Theorem 4.5 Let (M, g, S(TM)) be an η -Einstein lightlike hypersurface of an indefinite Kenmotsu space form

M
2n+1

(c) (n > 1) , with ξ ∈ TM such that the Ricci tensor Ric of M is parallel. Let G be a connected open set

where the index of relative nullity ν(x) = ν0 . Then, on G we have:

(a) The foliation T ∗0 contains an isotropic subspace along M which does not contain the distribution 〈ξ〉 ,

(b) T ∗0 = TM⊥ ⊥ 〈ξ〉 ,

(c) The relative nullity distribution T ∗0 is integrable and the leaves are totally geodesic in M and M ,

(d) If S(TM)) is totally umbilical, then on G , T ∗0 = TM⊥ ⊥ 〈ξ〉 ⊥ D′ .

Proof. Since the open set G is connected, then by Lemma 4.3, the nonzero functions k1 and k2 are

constants. As an indefinite Kenmotsu space form M
2n+1

(c) (n > 1) is of constant curvature c = −1, then

k1 + k2 = a = −(2n − 1), that is, a − k1 = k2 = 0 by (4.8) and the rest follows from Theorem 4.4. �

Next, we prove, under some conditions, that the geometry of the relative nullity distributions of lightlike

hypersurfaces M is closely related with the geometry of M , the distributions TM⊥ and φ(TM⊥).
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Lemma 4.6 Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold M with ξ ∈ TM . Then,
M is D ⊥ 〈ξ〉-totally geodesic if and only if, for any X ∈ Γ(D ⊥ 〈ξ〉) ,

A∗
EX = u(ANX)V. (4.19)

Proof. The proof follows by direct calculation using (4.3). �

It is well known that if the lightlike hypersurface (M, g) is totally geodesic, the induced connection ∇
on M is torsion-free and g -metric. Also, the shape operator A∗

E vanishes identically on M (see Theorem 2.2.

[6] p. 88). This vanishing property failed when the lightlike hypersurface M , with ξ ∈ TM , is D ⊥ 〈ξ〉-totally
geodesic. That is, only some privileged conditions on the screen distribution of M may enable to get the
D ⊥ 〈ξ〉-version of the Theorem 2.2 in [6].

Also, it is known that lightlike submanifolds whose screen distribution is integrable have interesting
properties. Therefore, we investigate the effect of integrability of the screen distributions. It is now easy to see
that the distribution D ⊥ 〈ξ〉 is integrable if and only if B(X, φY ) = B(φX, Y ), ∀X, Y ∈ Γ(D ⊥ 〈ξ〉).

Theorem 4.7 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space form M
2n+1

(c) ,
with ξ ∈ TM . Let Ω be an open set where the index of relative nullity ν is equal to some constant. Suppose
the distribution D ⊥ 〈ξ〉 is integrable. Then, on Ω , the following assertions are equivalent:

(i) M is D ⊥ 〈ξ〉-totally geodesic,

(ii) TM⊥ is a D ⊥ 〈ξ〉-parallel on M ,

(iii) φ(TM⊥) is a D ⊥ 〈ξ〉-Killing distribution on M ,

(iv) T ∗0 = D ⊥ 〈ξ〉 .

Proof. The equivalence of (i) and (iv) follows from Proposition 4.2. By using the second equation of (2.10),

we obtain the equivalence of (i) and (ii). Next, we prove the equivalence of (i) and (iii). Using the fact D ⊥ 〈ξ〉
is integrable, we have, for any X , Y ∈ Γ(Dx ⊥ 〈ξ〉x) with x ∈ Ω, (LV g)(X, Y ) = −B(X, φY ) − B(Y, φX) =

−2B(X, φY ). The equivalence follows from this equation, since B(., ξ) = 0. �

Theorem 4.8 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite Kenmotsu space form M
2n+1

(c) (n >

1) , with ξ ∈ TM . Let Ω be an open set where the index of relative nullity ν is equal to some constant. Then,
on Ω , the following assertions hold

(i) M is Einstein on the direction of T ∗0 ,

(ii) If M is flat, then T ∗0 is an isotropic distribution along M ,

(iii) If M is Einstein and (trAN )X − ANX /∈ 〈ξ〉 , for any X ∈ Γ(TM) , then the screen distribution S(TM)
is parallel.
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Proof. (i) For any X , Y ∈ TxM with x ∈ Ω,

Ric(X, Y ) = −(2n − 1)g(X, Y ) + g(A∗
EX, Y )trAN − g(ANX, A∗

EY ). (4.20)

So, if X , Y ∈ T ∗0(x), then A∗
EX = A∗

EY = 0 and the induced Ricci tensor above becomes Ric(X, Y ) =

−(2n − 1)g(X, Y ), that is, M is Einstein in T ∗0 .

(ii) If M is flat, then the induced Ricci tensor Ric on M vanishes and (4.20) becomes 0 = −(2n −
1)g(X, Y ) + g(A∗

EX, Y )trAN − g(ANX, A∗
EY ). Taking X , Y ∈ T ∗0(x), we get g(X, Y ) = 0, for n > 1, that is

the distribution is isotropic along M .

(iii) Suppose that M is Einstein. Since B(., ξ) = 0, the induced Ricci tensor on M satisfies Ric(X, Y ) =

−(2n−1)g(X, Y ), for any X , Y ∈ TxM , with x ∈ Ω. Using (4.20), we obtain B(X, Y )trAN −B(AN X, Y ) = 0

which implies that B((trAN )X − ANX, Y ) = 0, that is, g((trAN )X − ANX, A∗
EY ) = 0. Since (trAN)X −

ANX /∈ 〈ξ〉x , we have (trAN )X − ANX = θ(X)(trAN )E . So, ANX = (X − θ(X)E) trAN = (trAN )PX and

the screen distribution S(TM) is totally umbilical. Consequently, trAN = g(AN ξ, ξ) = 0, that is, the shape

operator AN is trace-free. Using this, we get ANX = 0, ∀X ∈ TxM . By Proposition 2.7 in [6] page 89, the

screen distribution S(TM) is parallel. �

Let M be a lightlike hypersurface of an indefinite Kenmotsu manifolds M with ξ ∈ TM . It is easy to

check that M is (D, D′)-mixed totally geodesic if and only if, ANX ∈ Γ(φ(TM⊥) ⊥ D0), ∀X ∈ Γ(D) [11].

Using this, we have η((trAN )X − ANX) = 0, ∀X ∈ Γ(D). That is, (trAN )X − ANX /∈ 〈ξ〉 , ∀X ∈ Γ(D).
Therefore, there exist vector fields on M which satisfy the extra condition of the third assertion of the Theorem
4.8.

A submanifold M is said to be totally umbilical lightlike hypersurface of a semi-Riemannian manifold

M if the local second fundamental form B of M satisfies B(X, Y ) = ρg(X, Y ), for any X, Y ∈ Γ(TM), where

ρ is a smooth function on U ⊂ M [6].

If M is a totally umbilical lightlike hypersurface of an indefinite Kenmotsu manifold M with ξ ∈ TM ,
then we have B(X, Y ) = ρg(X, Y ), for any X , Y ∈ Γ(TM), which implies that 0 = B(ξ, ξ) = ρ . Hence M is
totally geodesic. Therefore we have the following theorem.

Theorem 4.9 Let (M, g, S(TM)) be a parallel (or totally umbilical) lightlike hypersurface of an indefinite

Kenmotsu space form M(c) , with ξ ∈ TM . Let Ω be an open set where the index of relative nullity ν is equal
to some constant. Then, on Ω ,

T ∗0 = TM. (4.21)

Proof. The proof follows from Theorem 3.4 and (4.2). �

The Theorems 4.7 and 4.9 can be extended by using Theorem 4.10 in [10] and Theorem 2.2 in [6] page
88 in order to know more about the geometry of parallel lightlike hypersurface M .

Example 4.10 Let M be a lightlike hypersurface of M
7

defined in Example 3.1. The tangent space TM

is spanned by {Ui}1≤i≤6 , where U1 = e1, U2 = e2 − e5, U3 = e3, U4 = e4, U5 = e6, U6 = ξ and the 1-

dimensional distribution TM⊥ of rank 1 is spanned by E , where E = e2 − e5. Also, the transversal bundle
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N(TM) is spanned by N = 1
2 (e2 + e5) . It follows that TM⊥ ⊂ TM . Then M is a 6-dimensional lightlike

hypersurface of M
7

having a local quasi-orthogonal field of frames {U1, U2 = E, U3, U4, U5, U6 = ξ, N}

along M . Denote by ∇ the Levi-Civita connection on M
7
. Then, by straightforward calculations, we obtain

∇XN = 0, ∀X ∈ Γ(TM). Using these equations above, the differential 1-form τ vanishes i.e. τ (X) = 0, for

any X ∈ Γ(TM). So, from the Gauss and Weingarten formulae, we have ANX = 0, A∗
EX = 0 and ∇XE = 0,

∀X ∈ Γ(TM). Therefore, by Duggal-Bejancu theorems (Theorem 2.2 and Proposition 2.7) in [6] the lightlike

hypersurface M of M
7

is totally geodesic and its distribution is parallel. Using (3.34), M is Einstein and the

foliation T ∗0 is given by T ∗0 = TM on an open set where the index of relative nullity ν is equal to some
constant.

Theorem 4.11 Let (M, g, S(TM)) be a totally contact umbilical lightlike hypersurface of an indefinite Ken-

motsu manifold (M, g) , with ξ ∈ TM , such that S(TM) is totally umbilical. Let Ω be an open set where the
index of relative nullity ν is equal to some constant. Then, on Ω , the following assertions are equivalent:

(i) M is D ⊥ 〈ξ〉-totally geodesic,

(ii) TM⊥ is a D ⊥ 〈ξ〉-parallel on M ,

(iii) The distribution φ(TM⊥) is D ⊥ 〈ξ〉-parallel on M ,

(iv) T ∗0 = D ⊥ 〈ξ〉 .

Proof. The equivalence of (i) and (iv) follows from (4.2). Now, we prove the equivalence of (i) and (ii).

Since the screen distribution S(TM) is totally umbilical, S(TM) is totally geodesic, that is, C(X, Y ) = 0,

for any X, Y ∈ Γ(S(TxM)) with x ∈ Ω. In particular, for any X ∈ Γ(φ(TxM⊥) ⊥ D0x ⊥ 〈ξ〉x), C(X, V ) =

u(ANX) = 0. Since C(E, V ) = 0, we have, for any X0 ∈ Γ(Dx ⊥ 〈ξ〉x), u(ANX0) = 0. From the Lemma 4.6,

M is D ⊥ 〈ξ〉-totally geodesic if and only if, for any X0 ∈ Γ(Dx ⊥ 〈ξ〉x), A∗
EX0 = 0 and using the second

equation of (2.10), we obtain the required equivalence. Next, we prove the equivalence of (ii) and (iii). Suppose

TM⊥ is a D ⊥ 〈ξ〉-parallel on M . Then, for any X0 ∈ Γ(Dx ⊥ 〈ξ〉x), A∗
EX0 = 0. Since the normal bundle

φ(TM⊥) is a distribution on M of rank 1 and spanned by φE , then, for any Y0 ∈ Γ(φ(TM⊥)),

∇X0Y0 = (X0.v(Y0) − v(Y0)τ (X0))φE ∈ Γ(φ(TM⊥)),

since Y0 = v(Y0)φE . So, the distribution φ(TM⊥) is D ⊥ 〈ξ〉-parallel. Conversely, suppose the distribution

φ(TM⊥) is D ⊥ 〈ξ〉-parallel. Then, for any X0 ∈ Γ(Dx ⊥ 〈ξ〉x) and Y0 = v(Y0)φE ∈ Γ(φ(TxM⊥)),

∇X0Y0 ∈ Γ(φ(TxM⊥)). Since φ(TM⊥) is spanned by φE , there exist a smooth function λ = 0 on M

such that ∇X0Y0 = λφE . We have

λ = g(X0.v(Y0)φE + v(Y0)∇X0φE, φN) = X0.v(Y0) − v(Y0)τ (X0).

On the other hand, ∇X0Y0 = (X0.v(Y0) − v(Y0)τ (X0))φE − v(Y0)φ(A∗
EX0). So, we have

∇X0Y0 = (X0.v(Y0) − v(Y0)τ (X0))φE − v(Y0)φ(A∗
EX0)

= (X0.v(Y0) − v(Y0)τ (X0))φE,
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that is, v(Y0)φ(A∗
EX0) = 0. Taking Y0 = V , we have φ(A∗

EX0) = 0. Applying φ to this and using (3.6),

A∗
EX0 = η(A∗

EX0)ξ + u(A∗
EX0)U = −u(X0)ξ + B(X0, V )U = λu(X0)U = 0, since M is totally contact umbil-

ical and u(X0) = 0, ∀ X0 ∈ Γ(Dx ⊥ 〈ξ〉x). This completes the proof. �

It is known that the local second fundamental form B of a lightlike hypersurface M on U is independent
of the choice of the screen distribution [6]. Thus, the Theorems above which depend exclusively on B are stable
with respect to any change of the screen distribution.

Let P and P ′ be projections of TM on S(TM) and S(TM)′ , respectively with respect to the orthogonal

decomposition of TM . So, any vector field X on M can be written as X = PX + θ(X)E = P ′X + θ′(X)E,

where θ(X) = g(X, N) and θ′(X) = g(X, N ′). Then, using equations (3.14) we have

P ′X = PX − ω(X)E and C ′(X, P ′Y ) = C ′(X, PY ), ∀X, Y ∈ Γ(TM). (4.22)

Here ω is the dual 1-form of W =
∑2n−1

i=1 ciWi , characteristic vector field of the screen change, with respect to

the induced metric g of M defined by ω(·) = g(·, W ).

The relationship between the local second fundamental forms C and C ′ of the screen distribution S(TM)

and S(TM)′ , respectively, is given by (using equations (3.14) )

C ′(X, PY ) = C(X, PY ) − 1
2
ω(∇XPY + B(X, Y )W ). (4.23)

All equations or conditions above depending only on the local fundamental form C (making equations non

unique) are independent of the screen distribution S(TM) if and only if ω(∇XPY + B(X, Y )W ) = 0, for any

X, Y ∈ Γ(TM).
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