Int. Journal of Math. Analysis, Vol. 5, 2011, no. 43, 2119-2126

Relative Order of Entire Functions in Terms of Their Maximum Terms

Sanjib Kumar Datta
Department of Mathematics, University of Kalyani
Kalyani, Nadia, Pin-741235, West Bengal, India
(Former Address: Department of Mathematics
University of North Bengal, P.O.- North Bengal University
Raja Rammohunpur, Dist.- Darjeeling, PIN- 734013
West Bengal, India)
sanjib_kr_datta@yahoo.co.in

Asis Ranjan Maji
Jatia High School, P.O. - Jatia
Dist. - 24 Parganas(North), PIN-743135, West Bengal, India asisrmaji@gmail.com

Abstract

In the paper we study different properties of relative order of entire functions defined on the basis of their maximum terms.

Mathematics Subject Classification: 30D30, 30D35
Keywords: Entire function, maximum term, relative order and asymptotically equivalent

1 Introduction, Definitions and Notations.

Let f and g be two entire functions and $F(r)=\max \{|f(z)|:|z|=r\}, G(r)=$ $\max \{|g(z)|:|z|=r\}$. If f in non-constant then $F(r)$ is strictly increasing and continuous and its inverse

$$
F^{-1}:(|f(0)|, \infty) \rightarrow(0, \infty)
$$

exists and is such that

$$
\lim _{s \rightarrow \infty} F^{-1}(s)=\infty
$$

Bernal([1]) introduced the definition of relative order of f with respect to g, denoted by $\rho_{g}(f)$ as follows :

$$
\begin{aligned}
\rho_{g}(f) & =\inf \left\{\mu>0: F(r)<G\left(r^{\mu}\right) \text { for all } r>r_{0}(\mu)>0\right\} \\
& =\limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log r} .
\end{aligned}
$$

The definition coincides with the classical one if $g(z)=\exp z$.
For an entire function f defined in the open complex plane \mathbb{C} the maximum term $\mu(r, f)$ of $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ on $|z|=r$ is defined by $\mu(r, f)=\max _{n \geq 0}\left(\left|a_{n}\right| r^{n}\right)$. For sake of definiteness we denote $\mu(r, f)$ by $\mu_{1}(r)$. Similarly for entire $g, \mu_{2}(r)$ stands for $\mu(r, g)$.

In the paper we give an alternative definition of $\rho_{g}(f)$ i.e. the relative order of f with respect to g in terms of their maximum terms and find some applications of it. We do not explain the standard definitions and notations in the theory of entire functions as those are available in ([3]).

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.
Lemma 1. If f be entire and $\alpha>1,0<\beta<\alpha$, then for all large r,

$$
\mu_{1}(\alpha r) \geq \beta \mu_{1}(r)
$$

Proof. Since $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\mu_{1}(r)=\max _{n \geq 0}\left(\left|a_{n}\right| r^{n}\right)$
then

$$
\begin{aligned}
\mu_{1}(\alpha r) & =\max _{n \geq 0}\left|a_{n}\right|(\alpha r)^{n} \\
& =\max _{n \geq 0}\left|a_{n}\right|(\alpha)^{n}(r)^{n}
\end{aligned}
$$

and

$$
\beta \mu_{1}(r)=\beta \max _{n \geq 0}\left|a_{n}\right| r^{n}
$$

As $\alpha>1$ therefore $\alpha^{n} \geq 1$ for $n \geq 0$.
As we take maximum value for large r therefore $n=0$, the maximum value does not occur and as $0<\beta<\alpha$ so

$$
0<\beta<\alpha^{n}
$$

holds.
Hence $\mu_{1}(\alpha r) \geq \beta \mu_{1}(r)$.
This proves the lemma.

Lemma 2.

$$
\rho_{g}(f)=\limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}(r)}{\log r}
$$

Proof. For $0 \leq r<R$, the following inequality for entire f and g is well known

$$
\mu_{1}(r, f) \leq M(r, f)=F(r) \leq \frac{R}{R-r} \mu_{1}(R ; f)
$$

and

$$
\mu_{2}(r, g) \leq M(r, g)=G(r) \leq \frac{R}{R-r} \mu_{2}(R ; g)
$$

Putting $R=2 r$ in above we get that

$$
\mu_{1}(r, f) \leq F(r) \leq \frac{2 r}{2 r-r} \mu_{1}(2 r, f)
$$

and

$$
\mu_{2}(r, g) \leq G(r) \leq \frac{2 r}{2 r-r} \mu_{2}(2 r, g)
$$

i.e.,

$$
\begin{align*}
\mu_{1}(r) & \leq F(r) \leq 2 \mu_{1}(2 r) \\
\text { and } \mu_{2}(r) & \leq G(r) \leq 2 \mu_{2}(2 r) \tag{1}
\end{align*}
$$

Now applying Lemma 1 by considering $2 r$ in place of r we obtain that on taking $\alpha=3, \beta=2(0<2=\beta<\alpha=3)$,

$$
\begin{aligned}
& \mu_{1}(3.2 r)>2 \mu_{1}(2 r) \\
& \text { and } \quad \mu_{2}(3.2 r)>2 \mu_{2}(2 r) \text {. }
\end{aligned}
$$

Thus from (1) we get that

$$
\begin{aligned}
\mu_{1}(r) & \leq F(r) \leq 2 \mu_{1}(2 r)<\mu_{1}(6 r) \\
\text { and } \mu_{2}(r) & \leq G(r) \leq 2 \mu_{2}(2 r)<\mu_{2}(6 r)
\end{aligned}
$$

We consider from above only the following:

$$
\begin{aligned}
\mu_{1} & \leq F(r)<\mu_{1}(6 r) \\
\text { and } \mu_{2} & \leq G(r)<\mu_{2}(6 r) .
\end{aligned}
$$

Now

$$
G^{-1}\left(\mu_{2}(r)\right) \leq r .
$$

Let us take $\mu_{2}(r)=k$ i.e., $r=\mu_{2}^{-1}(k)$.
So

$$
G^{-1}(k) \leq \mu_{2}^{-1}(k)
$$

For large $r, \quad \mu_{2}(r)$ is also large.
Hence k is large.
Using $F(r)$ in place of k we get that

$$
\begin{aligned}
G^{-1}(F(r)) & \leq \mu_{2}^{-1}(F(r)) \\
\text { i.e., } G^{-1} F(r) & \leq \mu_{2}^{-1} F(r)
\end{aligned}
$$

But $F(r)<\mu_{1}(6 r)$.
So we get from above that

$$
\begin{equation*}
G^{-1} F(r)<\mu_{2}^{-1}\left(\mu_{1}(6 r)\right)=\left(\mu_{2}^{-1} \mu_{1}\right)(6 r) \tag{2}
\end{equation*}
$$

Now as $G(r)<\mu_{2}(6 r)$ therefore

$$
r<G^{-1}\left(\mu_{2}(6 r)\right)
$$

Let

$$
\mu_{2}(6 r)=k_{0}
$$

So $\quad 6 r=\mu_{2}^{-1}\left(k_{0}\right)$
i.e., $\quad r=\frac{1}{6} \mu_{2}^{-1}\left(k_{0}\right)$.

Therefore we obtain that

$$
\frac{1}{6} \mu_{2}^{-1}\left(k_{0}\right)<G^{-1}\left(k_{0}\right)
$$

Now for large r, k_{0} is large and we put $k_{0}=F(r)$.
So from above it follows that

$$
\frac{1}{6} \mu_{2}^{-1}(F(r))<G^{-1}(F(r))
$$

But as $\mu_{1}(r) \leq F(r)$, therefore

$$
\begin{align*}
\frac{1}{6} \mu_{2}^{-1}\left(\mu_{1}(r)\right) & \leq \frac{1}{6} \mu_{2}^{-1}(F(r))<G^{-1}(F(r)) \\
\text { i.e., } \frac{1}{6} \mu_{2}^{-1}\left(\mu_{1}(r)\right) & <G^{-1} F(r) \tag{3}
\end{align*}
$$

Now from (2) and (3)we obtain that

$$
\begin{aligned}
& \frac{1}{6} \mu_{2}^{-1} \mu_{1}(r)<G^{-1} F(r)<\mu_{2}^{-1} \mu_{1}(6 r) \\
& i . e ., \frac{\log \mu_{2}^{-1} \mu_{1}(r)+O(1)}{\log r}<\frac{\log G^{-1} F(r)}{\log r}<\frac{\log \mu_{2}^{-1} \mu_{1}(6 r)}{\log (6 r)+O(1)} \\
& \text { i.e., } \limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}(r)+O(1)}{\log r} \leq \limsup _{r \rightarrow \infty} \frac{\log G^{-1} F(r)}{\log r} \leq \frac{\log \mu_{2}^{-1} \mu_{1}(6 r)}{\log (6 r)+O(1)} \\
& \text { i.e., } \rho_{g}(f)=\limsup _{r \rightarrow \infty}^{\log \mu_{2}^{-1} \mu_{1}(r)} \\
& \log r
\end{aligned} .
$$

This proves the lemma.

3 Theorems.

In this section we present the main results of our paper.
Definition 1. Two entire functions g_{1} and g_{2} are said to be asymptotically equivalent if there exists $l, 0<l<\infty$ such that

$$
\frac{G_{1}(r)}{G_{2}(r)} \rightarrow l \text { as } r \rightarrow \infty
$$

and in this case we write $g_{1} \sim g_{2}$.
If $g_{1} \sim g_{2}$ then clearly $g_{2} \sim g_{1}$.
Theorem 1. If $g_{1} \sim g_{2}$ and f is entire, then $\rho_{g_{1}}(f)=\rho_{g_{2}}(f)$.
Proof. Let $\epsilon>0$. By Lemma 1 for all large r

$$
\begin{equation*}
\mu_{2}(r)<(1+\epsilon) \mu_{2}^{\prime}(r)<\mu_{2}^{\prime}(\alpha r) \tag{4}
\end{equation*}
$$

where $\alpha>1$ is such that $1+\epsilon<\alpha$ and also $\mu_{2}(r), \mu_{2}^{\prime}(r)$ respectively denote the maximum terms of g_{1} and g_{2}.
From (4),

$$
\begin{align*}
r & <\mu_{2}^{-1}\left(\mu_{2}^{\prime}(\alpha r)\right) \\
\text { i.e., } \frac{1}{\alpha} \mu_{2}^{\prime-1}(t) & <\mu_{2}^{-1}(t), t=\mu_{2}^{\prime}(\alpha r) \\
\text { i.e., } \mu_{2}^{\prime-1}(r) & <\alpha \mu_{2}^{-1}(r) \text { for all large } r . \tag{5}
\end{align*}
$$

Now by Lemma 2 we get that in view of (5)

$$
\begin{aligned}
\rho_{g_{2}}(f) & =\limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{\prime-1} \mu_{1}(r)}{\log r} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log \alpha \mu_{2}^{-1} \mu_{1}(r)}{\log r} \\
& =\limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}(r)}{\log r}=\rho_{g_{1}}(f) .
\end{aligned}
$$

The reverse inequality is clear because $g_{2} \sim g_{1}$ and so $\rho_{g_{1}}(f)=\rho_{g_{2}}(f)$. This proves the theorem.

Remark 1. Theorem 1 has also been proved by Lahiri and Banerjee ([2]) using maximum modulus functions.

Remark 2. Under the same assumption, Theorem 1 can also be deduced for relative lower order.

Remark 3. The converse of Theorem 1 is not true as we see in the following example.

Example 1. Let us consider the functions $g_{1}(z)=e^{z}$ and $g_{2}(z)=e^{3 z}$. Then

$$
G_{1}(r)=e^{r} \text { and } G_{2}(r)=e^{3 r}
$$

Now $\mu_{2}(r) \leq G_{1}(r) \leq \frac{R}{R-r} \mu_{2}(R)$ gives that for $R=2 r$,

$$
\mu_{2}(r) \leq G_{1}(r) \leq 2 \mu_{2}(2 r)
$$

Also for $R=2 r$, the inequality

$$
\mu_{2}^{\prime}(r) \leq G_{2}(r) \leq \frac{R}{R-r} \mu_{2}^{\prime}(R)
$$

gives that

$$
\mu_{2}^{\prime}(r) \leq G_{2}(r) \leq 2 \mu_{2}^{\prime}(2 r)
$$

so that

$$
\begin{aligned}
& \frac{\mu_{2}(r)}{\mu_{2}^{\prime}(r)} \leq \frac{G_{1}(r)}{\frac{1}{2} G_{2}\left(\frac{r}{2}\right)}=\frac{2 G_{1}(r)}{G_{2}\left(\frac{r}{2}\right)} \\
& \text { i.e., } \frac{\mu_{2}(r)}{\mu_{2}^{\prime}(r)} \leq \frac{2 e^{r}}{e^{\frac{3 r}{2}}} \\
& \text { i.e., } \frac{\mu_{2}(r)}{\mu_{2}^{\prime}(r)} \rightarrow 0 \text { as } r \rightarrow \infty .
\end{aligned}
$$

Hence g_{1} not $\sim g_{2}$.
But

$$
\begin{aligned}
& \rho_{g_{2}}(f)=\limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}(r)}{\log r} \\
&= \limsup _{r \rightarrow \infty} \frac{\log G_{2}^{-1} F(r)}{\log r}=\limsup _{r \rightarrow \infty} \frac{\log \left(\frac{1}{3} \log F(r)\right)}{\log r} \\
&= \limsup _{r \rightarrow \infty} \frac{\log (\log F(r))}{\log r}=\limsup _{r \rightarrow \infty}^{\log G_{1}^{-1} F(r)} \\
& \log r \\
&= \limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}(r)}{\log r}=\rho_{g_{1}}(f) .
\end{aligned}
$$

Theorem 2. Let f_{1}, f_{2}, g be three entire functions and $f_{1} \sim f_{2}$. Then $\rho_{g}\left(f_{1}\right)=\rho_{g}\left(f_{2}\right)$.
Proof. Since $f_{1} \sim f_{2}$, for $\epsilon_{1}>0, \exists R_{1}>0$ such that

$$
\begin{align*}
\mu_{1}(r) & <\left(l+\epsilon_{1}\right) \mu_{1}^{\prime}(r), 0<l<\infty, r \geq R_{1} \\
& <\mu_{1}^{\prime}(\beta r) \tag{6}
\end{align*}
$$

by Lemma 1 , where $\beta>1$ is such that $1+\epsilon_{1}<\beta$. Now

$$
\begin{aligned}
& \rho_{g}\left(f_{1}\right)=\limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}(r)}{\log r} \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}^{\prime}(\beta r)}{\log r}, \text { from(6). }
\end{aligned}
$$

For $0<\epsilon_{2}<1$, there exists $R_{2}>0$ such that for $r \geq R_{2}$,

$$
\log r>\left(1-\epsilon_{2}\right) \log \beta r .
$$

So

$$
\begin{aligned}
\rho_{g}\left(f_{1}\right) & \leq \limsup _{r \rightarrow \infty} \frac{\log \mu_{2}^{-1} \mu_{1}^{\prime}(\beta r)}{\left(1-\epsilon_{2}\right) \log \beta r} \\
& =\frac{1}{1-\epsilon_{2}} \rho_{g}\left(f_{2}\right) .
\end{aligned}
$$

Since $0<\epsilon_{2}<1$ is arbitrary, $\rho_{g}\left(f_{1}\right) \leq \rho_{g}\left(f_{2}\right)$.
Since also $f_{2} \sim f_{1}$, we obtain $\rho_{g}\left(f_{2}\right) \leq \rho_{g}\left(f_{1}\right)$.
This proves the theorem.
Remark 4. Theorem 2 has also been proved by Lahiri and Banerjee [2]using maximum modulus functions.

Theorem 3. Let $f_{1}, f_{2}, g_{1}, g_{2}$ be four entire functions. If $f_{1} \sim f_{2}$ and $g_{1} \sim g_{2}$, then

$$
\rho_{g_{1}}\left(f_{1}\right)=\rho_{g_{2}}\left(f_{1}\right)=\rho_{g_{1}}\left(f_{2}\right)=\rho_{g_{2}}\left(f_{2}\right)
$$

Theorem 3 follows from Theorem 1 and Theorem 2.

References

[1] L. Bernal : Orden relativo de Crecimiento de functiones enteras, Collectanea Mathematica, Vol. 39 (1988), pp. 209-229.
[2] B.K.Lahiri and D.Banerjee : Relative order of entire and meromorphic functions, Proc. Nat. Acad. Sci. India, Vol. 69 (A), No. III (1999), pp. 339 - 354.
[3] G. Valiron (1949) : Lectures on the general theory of integral functions, Chelsea Publishing Company.

Received: April, 2011

