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1 Introduction, Definitions and Notations.

Let f and g be two entire functions and F (r) = max{|f(z)| : |z| = r}, G(r) =
max{|g(z)| : |z| = r}. If f in non-constant then F (r) is strictly increasing and
continuous and its inverse

F−1 : (|f(0)|,∞) → (0,∞)

exists and is such that

lim
s→∞

F−1(s) = ∞.
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Bernal([1]) introduced the definition of relative order of f with respect to g,
denoted by ρg(f) as follows :

ρg(f) = inf {μ > 0 : F (r) < G(rµ) for all r > r0(μ) > 0}
= lim sup

r→∞

log G−1F (r)

log r
.

The definition coincides with the classical one if g(z) = exp z.

For an entire function f defined in the open complex plane C the maximum

term μ(r, f) of f =
∞∑

n=0

anzn on |z| = r is defined by μ(r, f) = max
n≥0

(|an|rn).

For sake of definiteness we denote μ(r, f) by μ1(r). Similarly for entire g, μ2(r)
stands for μ(r, g).

In the paper we give an alternative definition of ρg(f) i.e. the relative
order of f with respect to g in terms of their maximum terms and find some
applications of it. We do not explain the standard definitions and notations
in the theory of entire functions as those are available in ([3]).

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. If f be entire and α > 1, 0 < β < α, then for all large r,

μ1(αr) ≥ βμ1(r).

Proof. Since f =
∞∑

n=0

anzn and μ1(r) = max
n≥0

(|an|rn)

then

μ1(αr) = max
n≥0

|an|(αr)n

= max
n≥0

|an|(α)n(r)n

and

βμ1(r) = βmax
n≥0

|an|rn.

As α > 1 therefore αn ≥ 1 for n ≥ 0.
As we take maximum value for large r therefore n = 0, the maximum value
does not occur and as 0 < β < α so

0 < β < αn
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holds.
Hence μ1(αr) ≥ βμ1(r).
This proves the lemma.

Lemma 2.

ρg(f) = lim sup
r→∞

log μ−1
2 μ1(r)

log r
.

Proof. For 0 ≤ r < R, the following inequality for entire f and g is well
known

μ1(r, f) ≤ M(r, f) = F (r) ≤ R

R − r
μ1(R; f)

and

μ2(r, g) ≤ M(r, g) = G(r) ≤ R

R − r
μ2(R; g).

Putting R = 2r in above we get that

μ1(r, f) ≤ F (r) ≤ 2r

2r − r
μ1(2r, f)

and

μ2(r, g) ≤ G(r) ≤ 2r

2r − r
μ2(2r, g).

i.e.,

μ1(r) ≤ F (r) ≤ 2μ1(2r)

and μ2(r) ≤ G(r) ≤ 2μ2(2r). (1)

Now applying Lemma 1 by considering 2r in place of r we obtain that on
taking α = 3, β = 2 (0 < 2 = β < α = 3),

μ1(3.2r) > 2μ1(2r)

and μ2(3.2r) > 2μ2(2r).

Thus from (1) we get that

μ1(r) ≤ F (r) ≤ 2μ1(2r) < μ1(6r)

and μ2(r) ≤ G(r) ≤ 2μ2(2r) < μ2(6r).

We consider from above only the following:

μ1 ≤ F (r) < μ1(6r)

and μ2 ≤ G(r) < μ2(6r).



2122 S. K. Datta and A. R. Maji

Now

G−1(μ2(r)) ≤ r.

Let us take μ2(r) = k i.e., r = μ−1
2 (k).

So

G−1(k) ≤ μ−1
2 (k).

For large r, μ2(r) is also large.
Hence k is large.
Using F (r) in place of k we get that

G−1(F (r)) ≤ μ−1
2 (F (r))

i.e., G−1F (r) ≤ μ−1
2 F (r).

But F (r) < μ1(6r).
So we get from above that

G−1F (r) < μ−1
2 (μ1(6r)) = (μ−1

2 μ1)(6r). (2)

Now as G(r) < μ2(6r) therefore

r < G−1(μ2(6r)).

Let μ2(6r) = k0.
So 6r = μ−1

2 (k0)
i.e., r = 1

6
μ−1

2 (k0).
Therefore we obtain that

1

6
μ−1

2 (k0) < G−1(k0).

Now for large r, k0 is large and we put k0 = F (r).
So from above it follows that

1

6
μ−1

2 (F (r)) < G−1(F (r)).

But as μ1(r) ≤ F (r), therefore

1

6
μ−1

2 (μ1(r)) ≤ 1

6
μ−1

2 (F (r)) < G−1(F (r))

i.e.,
1

6
μ−1

2 (μ1(r)) < G−1F (r). (3)
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Now from (2) and (3)we obtain that

1

6
μ−1

2 μ1(r) < G−1F (r) < μ−1
2 μ1(6r)

i.e.,
log μ−1

2 μ1(r) + O(1)

log r
<

log G−1F (r)

log r
<

log μ−1
2 μ1(6r)

log (6r) + O(1)

i.e., lim sup
r→∞

log μ−1
2 μ1(r) + O(1)

log r
≤ lim sup

r→∞

log G−1F (r)

log r
≤ log μ−1

2 μ1(6r)

log (6r) + O(1)

i.e., ρg(f) = lim sup
r→∞

log μ−1
2 μ1(r)

log r
.

This proves the lemma.

3 Theorems.

In this section we present the main results of our paper.

Definition 1. Two entire functions g1 and g2 are said to be asymptotically
equivalent if there exists l, 0 < l < ∞ such that

G1(r)

G2(r)
→ l as r → ∞

and in this case we write g1 ∼ g2.
If g1 ∼ g2 then clearly g2 ∼ g1.

Theorem 1. If g1 ∼ g2 and f is entire, then ρg1
(f) = ρg2

(f).

Proof. Let ε > 0. By Lemma 1 for all large r

μ2(r) < (1 + ε)μ
′
2(r) < μ

′
2(αr) (4)

where α > 1 is such that 1 + ε < α and also μ2(r), μ
′
2(r) respectively denote

the maximum terms of g1 and g2.
From (4),

r < μ−1
2 (μ

′
2(αr))

i.e.,
1

α
μ

′
2

−1
(t) < μ−1

2 (t), t = μ
′
2(αr)

i.e.,μ
′
2

−1
(r) < αμ−1

2 (r) for all large r. (5)
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Now by Lemma 2 we get that in view of (5)

ρg2
(f) = lim sup

r→∞

log μ
′
2

−1
μ1(r)

log r

≤ lim sup
r→∞

log αμ−1
2 μ1(r)

log r

= lim sup
r→∞

log μ−1
2 μ1(r)

log r
= ρg1

(f).

The reverse inequality is clear because g2 ∼ g1 and so ρg1
(f) = ρg2

(f).
This proves the theorem.

Remark 1. Theorem 1 has also been proved by Lahiri and Banerjee ([2]) using
maximum modulus functions.

Remark 2. Under the same assumption, Theorem 1 can also be deduced for
relative lower order.

Remark 3. The converse of Theorem 1 is not true as we see in the following
example.

Example 1. Let us consider the functions g1(z) = ez and g2(z) = e3z. Then

G1(r) = er and G2(r) = e3r.

Now μ2(r) ≤ G1(r) ≤ R
R−r

μ2(R) gives that for R = 2r,

μ2(r) ≤ G1(r) ≤ 2μ2(2r).

Also for R = 2r, the inequality

μ
′
2(r) ≤ G2(r) ≤ R

R − r
μ

′
2(R)

gives that

μ
′
2(r) ≤ G2(r) ≤ 2μ

′
2(2r),

so that

μ2(r)

μ
′
2(r)

≤ G1(r)
1
2
G2(

r
2
)

=
2G1(r)

G2(
r
2
)

i.e.,
μ2(r)

μ
′
2(r)

≤ 2er

e
3r
2

i.e.,
μ2(r)

μ
′
2(r)

→ 0 as r → ∞.
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Hence g1 not ∼ g2.
But

ρg2
(f) = lim sup

r→∞

log μ−1
2 μ1(r)

log r

= lim sup
r→∞

log G−1
2 F (r)

log r
= lim sup

r→∞

log
(

1
3
log F (r)

)

log r

= lim sup
r→∞

log (log F (r))

log r
= lim sup

r→∞

log G−1
1 F (r)

log r

= lim sup
r→∞

log μ−1
2 μ1(r)

log r
= ρg1

(f).

Theorem 2. Let f1, f2, g be three entire functions and f1 ∼ f2. Then
ρg(f1) = ρg(f2).

Proof. Since f1 ∼ f2, for ε1 > 0, ∃ R1 > 0 such that

μ1(r) < (l + ε1)μ
′
1(r), 0 < l < ∞, r ≥ R1

< μ
′
1(βr) (6)

by Lemma 1, where β > 1 is such that 1 + ε1 < β. Now

ρg(f1) = lim sup
r→∞

log μ−1
2 μ1(r)

log r

≤ lim sup
r→∞

log μ−1
2 μ

′
1(βr)

log r
, from(6).

For 0 < ε2 < 1, there exists R2 > 0 such that for r ≥ R2,

log r > (1 − ε2) log βr.

So

ρg(f1) ≤ lim sup
r→∞

log μ−1
2 μ

′
1(βr)

(1 − ε2) log βr

=
1

1 − ε2

ρg(f2).

Since 0 < ε2 < 1 is arbitrary, ρg(f1) ≤ ρg(f2).
Since also f2 ∼ f1, we obtain ρg(f2) ≤ ρg(f1).
This proves the theorem.

Remark 4. Theorem 2 has also been proved by Lahiri and Banerjee [2]using
maximum modulus functions.

Theorem 3. Let f1, f2, g1, g2 be four entire functions. If f1 ∼ f2 and g1 ∼ g2,
then

ρg1
(f1) = ρg2

(f1) = ρg1
(f2) = ρg2

(f2).

Theorem 3 follows from Theorem 1 and Theorem 2.
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