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Abstract
In both hardware-only and software-only directory protocols

the performance is often limited by memory access stall times. To
increase the performance, several latency tolerating and reduc-
ing techniques have been proposed and shown effective for hard-
ware-only directory protocols. For software-only directory
protocols, the efficiency of a technique depends not only on how
effective it is as seen by the local processor, but also on how it
impacts the software handler execution overhead in the node
where a memory block is allocated.

Based on architectural simulations and case studies of three
techniques, we find that prefetching can degrade the performance
of software-only directory protocols due to useless prefetches. A
relaxed memory consistency model hides all write latency for
software-only directory protocols, but the software handler over-
head is virtually unaffected and now constitutes a larger portion
of the execution time. Overall, latency tolerating techniques for
software-only directory protocols must be chosen with more care
than for hardware-only directory protocols.

1. Introduction

Private caches and a directory-based cache coherence proto-
col implemented in hardware, also called ahardware-only direc-
tory protocol, constitute an important approach to achieve high
performance in shared-memory multiprocessors. During the last
few years, several approaches have been proposed in order to
reduce the hardware complexity and/or increase the protocol
flexibility by migrating parts of the coherence protocol to soft-
ware [1, 4, 7, 12, 13, 15]. Insoftware-only directory protocols
[4], the directory management is migrated from a hard-wired
memory controller to software handlers executed on the compute
processor. As a result, the hardware complexity can be reduced at
the expense of lower performance; between 60% and 86% of the
hardware-only protocol performance is reported in [7].

In both hardware-only and software-only directory protocols,
performance is often limited by processor stall times resulting
from memory access latencies. To reduce these stall times, and
thus increase the performance, severallatency tolerating and
reducing techniques have been proposed and evaluated in the
context of hardware-only directory protocols [6, 11, 14, 17]. In
software-only directory protocols, the invocation of software
handlers in can also prolong the execution time in two ways.
First, the handler latency may end up on the memory access path
and thus increase the memory latency seen by the requesting pro-

cessor. In [7], we proposed strategies to remove or hide the han-
dler latency from the memory access path for read misses.
Second, the handler latency also burdens the compute processor
in the node where a memory block is allocated. The latter proto-
col execution overhead, referred to asp-time, was found to have
very limited possibilities to be overlapped by other stall times
[7]. Therefore, p-time has a fundamental, and possibly large,
impact on the effectiveness of latency tolerating and reducing
techniques in software-only directory protocols. Such techniques
can be divided into three classes depending on whether p-time
increases, decreases, or isinvariant when the technique is used.

In this paper we consider three latency tolerating and reduc-
ing techniques and compare the performance of hardware-only
and software-only directory protocols under each of these tech-
niques. We have chosenprefetching [5, 14],migratory optimiza-
tion [17], a technique that dynamically detects migratory data
blocks and optimizes their coherence protocol actions, and
release consistency [6] as example techniques that increase,
reduce, and do not affect p-time, respectively.

To evaluate the performance between hardware-only and soft-
ware-only directory protocols we use architectural simulations
and four applications from the SPLASH benchmarks [16]. We
find that prefetching oftendegrades the performance of software-
only directory protocols due to a large p-time overhead. By con-
trast, prefetching increases the performance for hardware-only
directory protocols. Further, we find that migratory optimization
has a potential to narrow the performance gap between software-
only and hardware-only directory protocols. Finally, release con-
sistency successfully hides the write latency and increases the
performance of software-only directory protocols for all our
applications, but the performance gap between software-only and
hardware-only directory protocols usually increases.

We begin in Section 2 to describe the simulated hardware-
only and software-only architecture organizations and their
expected performance followed by our experimental assumptions
in Section 3. In Sections 4 to 6 we present the experimental
results regarding the performance of the three techniques
described earlier. Finally, we conclude the study in Section 8.

2. Simulated protocols and their performance

2.1. HW-only and SW-only directory protocols
The architectural framework is a sequentially consistent

cache-coherent NUMA architecture where a number of proces-
sor nodes are connected by a network. Each node consists of a



processor with its cache hierarchy, a memory module, a local
bus, and a network interface connecting the processor node to the
network as shown in Figure 1.

Both the hardware-only and the software-only directory sys-
tems employ a write-invalidate protocol with a full-map direc-
tory [3]. A processor read that misses in the second-level cache
(SLC) initiates a read miss request to thehome node, i.e, the node
where the memory block is mapped. If the memory copy is clean,
home responds with a block copy to thelocal requesting node
and updates the directory. Otherwise, if another cache, denoted
remote, has an exclusive copy, home issues a write-back request
to remote; remote updates home; and, home forwards a copy to
local, updates the directory, and the block ends up clean in home.

A processor write to a non-exclusive block in the cache,
results in an ownership request sent to home. Home inspects the
directory and sends explicit invalidations to the other caches with
a block copy. Each cache receiving an invalidation, sends an
acknowledgment to home. When home has collected all
acknowledgments, it grants ownership to local and the block
ends up as dirty in home. During the time write-back requests
and invalidations are pending, the block is in a transient state
‘busy’ and read and write requests to the block have to be retried.

In the hardware-only directory architecture, the memory pro-
tocol engine consists of three parts implemented in hardware: a
memory controller, a directory, and a state memory. The control-
ler processes incoming coherence requests, takes correct actions
depending on the state of the memory block, and also manages
the directory. By contrast, in a software-only directory protocol,
the directory management is migrated to software handlers exe-
cuted on the compute processor. These handlers process coher-
ence requests and manage the directory which now is stored in
main memory. To trigger the execution of a handler, the soft-
ware-only directory architecture has an interrupt buffer in which
coherence requests from the network are posted. If a handler trig-
gers new coherence requests, e.g., write-back requests, it posts
them in a send buffer.

The lower implementation cost of the software-only directory
system has a performance cost. Upon each coherence request, the
processor is interrupted and executes a software handler, thus
interfering with the application execution which can prolong the
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total execution time. We showed in [7] that the handler latency
can be removed from the critical memory access path of read
requests by supporting request forwarding from home to remote
for read miss requests to dirty blocks and also supporting data
block transfers to local in parallel with the processor interrupt for
directory updates. Finally, read misses to clean blocks allocated
in the local node do not interrupt the processor.

2.2. A model for the relative execution time
To build intuition into the relative performance between hard-

ware-only and software-only directory systems, we use a simple
model of where the execution time is spent in a parallel applica-
tion. In the left bar of Figure 2, the execution time of an applica-
tion on a hardware-only system is broken down into the fraction
of busy cycles,Bhw, and three stall time components: read (Rhw),
write (Whw), and synchronization stall (Shw). Rhw is the time the
processors are stalled due to read cache misses, andWhw is the
time the processors are waiting for ownership requests to com-
plete. Finally,Shw is the time the processors wait for, e.g., locks
and barriers. The total execution time under a hardware-only
directory protocol isEhw = Bhw+Rhw+Whw+Shw.

For the software-only directory protocol, the execution time
consists of the same components. In addition, the protocol execu-
tion overhead (Psw) is present as shown in the right bar of Figure
2. Psw arises when coherence requests to home interrupt the com-
pute processor in home. When a software handler is invoked, the
execution of it may only be partly, or in the worst case not at all,
overlapped with other stall times. In this case, the handler execu-
tion prolongs the total execution time of the application. The sum
of handler execution times that are not overlapped with other
stall times is referred to asp-time and denotedPsw. In [7], we
found limited opportunities to overlap protocol execution with
other stall times. The total execution time under a software-only
directory protocol isEsw = Bsw+Rsw+Wsw+Ssw+Psw.

Throughout this paper, we use theexecution time ratio, ETR,
between hardware-only and software-only directory protocols as
our primary measure of the relative performance to judge
whether a certain latency tolerating and reducing technique will
increase or reduce this ratio. We defineETR asEsw / Ehw.

Comparing the components in the two systems, we first note
thatBhw = Bsw for all applications (all our benchmarks use static
work distribution). Second, because the software-only architec-
ture we use in this study employs the strategies proposed in [7],
the read stall times are the same, i.e.,Rhw = Rsw.The write and
synchronization stall times, however, can be significantly higher
in a software-only than in a hardware-only directory protocol [7],
i.e., Whw < Wsw andShw < Ssw. Their impact together withPsw

Figure 2. Execution time breakdown for HW-only
(left) and SW-only (right) directory protocols.
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results in anETR>1 for the baseline systems.ETRs between 1.16
and 1.68 were reported in [7]. The central question explored in
this paper is whether theETR can be reduced for three classes of
latency tolerating and reducing techniques.

3. Simulation methodology

The simulation models are built on top of the CacheMire Test
Bench [2], a simulation framework and programming environ-
ment. The framework consists of multiple SPARC processors
simulated at the instruction level and an architectural simulator
of the multiprocessor model. The processors issue memory refer-
ences to the architectural simulator which delays the processors
according to its timing model. Thus, the same interleaving as in
the target system is obtained. Instruction and private data refer-
ences are not fed into the architectural simulator since we assume
they hit in cache and are carried out in a single cycle.

We simulate a multiprocessor with 16 nodes and the proces-
sor node organization is shown in Figure 1. If not stated other-
wise, the same assumptions apply to both the hardware-only and
the software-only directory systems. The two-level cache hierar-
chy consists of a 2 Kbytes on-chip write-through first-level cache
(FLC) and a 64 Kbytes off-chip copy-back second-level cache
(SLC). Both caches are direct-mapped with 64 bytes blocks, full
inclusion is maintained, and the processor manages its own
caches, i.e., theSLC controller is on-chip. A first-level write
buffer (FLWB) with 16 entries connects theFLC and theSLCand
allows processor writes to complete in a single cycle. TheSLC is
lockup-free and supports multiple pending requests which is
essential under, e.g., release consistency and prefetching. A 16
entries large second-level write buffer (SLWB) buffers pending
requests. The page size in the system is 4 Kbytes and the pages
are allocated to the memory modules in a round-robin fashion.
Moreover, synchronization operations, i.e., acquires and releases,
are supported by a queue-based mechanism.

The network interface routes messages between the node and
the network and is connected to the processor and the memory
module through a 128 bits wide split transaction bus. The net-
work interface also collects invalidation acknowledgments and
notifies the memory-protocol engine when the last acknowledg-
ment has arrived. The interrupt and send buffers are interfaced to
theSLC bus, are accessible through memory mapped addresses,
and have the same access time as theSLC. Directory entries are
cached as all other data when the software handlers access them.

We assume that the SPARC processors and their FLCs are
clocked at 100 MHz, i.e., 1 pclock = 10 ns. The SLC interface is
128 bits wide and the block access time is 60 ns. The memory
module also has an 128 bits wide interface but with a 120 ns
access time for a whole block. Both the local bus and the network
interface are assumed to run at 100 MHz. The interconnection
network has an infinite bandwidth and a constant latency of 300
ns, which approximately corresponds to the latency in a 50 MHz
mesh network with 32-bit flits. Contention is correctly modeled
within the processor node and the network interface.

The default software handler execution time is 50 pclocks
excluding memory and buffer access times. To the default execu-
tion time, we add 6 pclocks for each message the handler sends,
13 pclocks for each read or write of the state of a memory block,

and finally, 1 pclock or 16 pclocks for each directory access
depending on whether a directory entry is cached or not. All han-
dler functionality are simulated; only the timing is simplified.

In our experimental evaluation we use three parallel applica-
tions taken from the SPLASH suite [16] (Water, Ocean, and
MP3D) and one that has been provided to us by Stanford Univer-
sity (LU). The applications are written in C using the ANL mac-
ros and compiled withgcc  version 2.1 (optimization level-O2 ).
Statistics are gathered in the parallel section of the applications
to avoid initialization effects.

All applications are from the scientific and engineering
domain. Water and MP3D are two applications with a high
degree of migratory sharing, while producer-consumer sharing
dominates in LU and Ocean. Water was run with 288 molecules
for 4 time steps. LU used a 200x200 matrix and Ocean used a
128x128 grid with the tolerance factor set to 10-7. Finally, MP3D
was run with 10,000 particles for 10 time steps.

4. Performance of prefetching

4.1. Qualitative evaluation
The first latency tolerating technique we will study is

prefetching, which appears in the literature both as software-con-
trolled [14] and hardware-based techniques [5]. In this study we
only consider non-binding, read-shared prefetching, i.e., the
block is fetched in a shared mode.

The goal of prefetching is to bring data into the cache in
advance so the processor encounters a cache hit instead of a miss,
a so calleduseful prefetch. The data is still visible to the coher-
ence protocol, and may be evicted from the cache due to, e.g., an
invalidation, before the processor accesses it. If so, the processor
still encounters a miss and the prefetch wasuseless. In addition,
the prefetch scheme may also fetch blocks that the processor
never accesses. All useless prefetches both cause unnecessary
network traffic and increase the occupancy of the memory proto-
col engine in home. This is usually no problem in a hardware-
only directory protocol since each prefetch occupies the control-
ler only a short amount of time. By contrast, in a software-only
directory protocol this occupancy is directly translated into pro-
tocol execution overhead, i.e.,Psw increases. We will refer to the
ratio between the number of useful prefetches and the total num-
ber of prefetches as theprefetch efficiency, and to the fraction of
read misses that is removed by useful prefetches as thecoverage.

When prefetching is applied to both hardware-only and soft-
ware-only directory protocols, we are interested in whether the
ETR will increase or not. Prefetching reduces the read stall time;
ideally, the read stall time is equally reduced in both protocols,
i.e., R’hw = R’sw < Rhw = Rsw. The write and synchronization
stall times may increase slightly as a result of contention. The big
difference between hardware-only and software-only protocols is
Psw, which increases as a result of useless prefetches. The impor-
tant question is whether the read stall time reduction is large
compared to the increase inPsw or not.

Since useless prefetches are present to various degree in all
prefetching schemes, we do not consider any specific scheme in
this study. Instead we assume a scheme with a fix coverage and a
fix prefetch efficiency. At the time a processor encounters a
potential cache miss, we determine whether it should have been



covered by a useful prefetch or it results in a cache miss. If the
miss is determined to be covered, a number of useless prefetches
is generated depending on the prefetch efficiency. A potential
drawback is as follows. If the prefetch efficiency is very low, i.e.,
below 10%, many useless prefetches are issued simultaneously,
which may result in a clustering effect not present in a real sce-
nario. However, since prefetch studies have reported higher effi-
ciency numbers [5, 14], we believe that our approach is feasible.
By varying the coverage and the prefetch efficiency in our simu-
lations, we cover the behavior of a large portion of the prefetch-
ing schemes proposed in the literature.

4.2. Quantitative evaluation
In our evaluation of the relative performance between a hard-

ware-only and a software-only directory protocol when prefetch-
ing is applied, we start with a default coverage and prefetch
efficiency based on findings in other studies and then do a varia-
tion analysis. In [5], Dahlgrenet al. reported coverage numbers
between 2% and 80%, and prefetch efficiencies between 13%
and 92% for hardware-based stride and sequential prefetching.
For software prefetching, Mowry [14] presented coverage num-
bers between 75% and 98%, while the prefetch efficiency varied
between 11% and 85%. As default numbers in our study, we have
chosen a coverage of 50% and a prefetch efficiency of 25%, rep-
resenting a conservative scheme.

The execution times of the four applications are shown in Fig-
ure 3. For each application, four bars are shown. The two left
bars correspond to the execution time for a hardware-only direc-
tory protocol without (HW) and with (HW-P) prefetching, and
the two right bars correspond to a software-only directory proto-
col without (SW) and with (SW-P) prefetching. Each bar is
decomposed as suggested in Figure 2: the busy (Bx), the read
stall (Rx), the write stall (Wx), and the synchronization stall times
(Sx), wherex is eitherhw or sw. For software-only directory pro-
tocols, the protocol execution overhead (Psw) is shown at the top.

By comparing the relative execution times of SW and HW,
we find that the execution time ratios (ETRs) between SW and
HW are between 1.16 (Water) and 1.76 (MP3D), which is in
accordance with the results presented in [7].

Prefetching aims at reducing the read stall times, thus obtain-
ing a shorter execution time. As we see in Figure 3, the execution
times is lower under HW-P than under HW for all applications.
Simulation results show that prefetching reducesRhw with 44%,
35%, 37%, and 50% for Water, LU, Ocean, and MP3D, respec-
tively. By comparingRsw under SW and SW-P, we find that
prefetching reducesRsw with 42%, 24%, 23%, and 47% for
Water, LU, Ocean, and MP3D, respectively. Unfortunately, we
observe a significant increase ofPsw under SW-P compared to
SW; Psw has increased by between 18% (Water) and 47%
(Ocean). This higher protocol execution overhead is expected
and stems from a higher number of coherence requests to home.
Our simulation results show that SW-P generates between 16%
(Water) and 46% (Ocean) more handler invocations than SW.

An examination ofWsw andSsw gives that both increase by up
to 15% (Ocean) and 21% (Ocean), respectively, under SW-P
compared to SW. This is a result of longer queuing delays in the
home node. The average number of messages in the interrupt

buffer increases under SW-P, e.g, for LU the average number of
messages increases from three to almost five under SW-P.

By adding all the execution time components under SW and
SW-P, we conclude that the total execution time,Esw, has
increased for two applications (LU, +6% and Ocean, +12%),
decreased for one application (Water, -1%), and is unchanged for
one application (MP3D) when prefetching is applied. In total, the
ETRs between SW-P and HW-P are higher than between SW and
HW for all applications but one. TheETRs are 1.19, 1.54, 1.78,
and 1.76 for Water, LU, Ocean, and MP3D, respectively.

One reason why prefetching incurs so much protocol execu-
tion overhead is the low prefetch efficiency. Therefore, a high
prefetch efficiency is more important in software-only than in
hardware-only directory protocols. An interesting question is
then how high coverage and prefetch efficiency are necessary for
prefetching to be effective, i.e, when does the reduction ofRsw
outweigh the increase ofPsw. We have simulated coverage values
between 25% and 90%, and prefetch efficiencies between 25%
and 90%. All results are presented in [9], but due to space limita-
tions, we only summarize them here.

Our results indicate that prefetching reducesRsw for all cover-
age and prefetch efficiency numbers, although the reduction is
quite small when the coverage is only 25%. Unfortunately, even
though prefetching reducesRsw, the performance gain is many
times outweighed, or at least greatly reduced, by longerWsw and
Ssw times and higher protocol execution overhead. We have also
observed some trends when the coverage and the prefetch effi-
ciency varies. First, we have seen that a prefetch efficiency below
or equal to 25% results in longer or equal execution times for all
applications compared to without prefetching. By contrast, for
hardware-only protocols we have seen execution time reductions
for all application even with only 25% prefetch efficiency and
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25% coverage. Second, we have seen that if the coverage is low,
i.e., less or equal to 25%, a high prefetch efficiency is not that
essential, as long as it is at least 25%. For a prefetch efficiency of
25% the total execution time is only slightly worse than without
prefetching. As the coverage increases, a high prefetch efficiency
becomes more important. For Ocean, which has the worst behav-
ior, the prefetch efficiency needs to be 90% when the coverage is
90% in order to reduce the execution time compared to SW.

In summary, even though a prefetching scheme is efficient
when applied under a hardware-only directory protocol, it might
increase the execution time of a software-only directory protocol.
Since software-only directory protocols are more sensitive to
useless prefetches than hardware-only directory protocol, a low
prefetch efficiency can have a devastating effect on the perfor-
mance, especially if the coverage is high.

5. Performance of migratory optimization

5.1. Qualitative evaluation
In the previous section we studied prefetching and found that

the main obstacle of prefetching in the context of software-only
directory protocols was the increased p-time. Therefore, in this
section we will evaluate a technique thatdecreases p-time.

Migratory sharing [10] is a program behavior not uncommon
in parallel applications, e.g., data accessed in critical sections
exhibits migratory sharing. First, one processor reads a data
block and then modifies the block, i.e., it obtains exclusive own-
ership of the block. Then, another processor reads and modifies
the block in the same way, and thus, the blockmigrates around
among the processors. Migratory blocks are referenced by only
one processor at a time but by many processors in the long run.

In a system with a write-invalidate protocol each ‘migration’
of the block between two processors incurs two global actions;
first a read miss request and then an ownership request. In a
sequential consistent system, both these actions stall the proces-
sor resulting in both read and write stall times. In [17], Stenström
et al. proposed a solution to detect migratory blocks and opti-
mize their coherence actions. Thismigratory optimization tech-
nique dynamically detects migratory blocks at the home node,
which sees all read miss and ownership requests, by recognizing
two subsequent read-write sequences by two different proces-
sors. The coherence protocol then handles migratory blocks with
a single read-exclusive request instead of one read miss and one
ownership request, thus avoiding the write stall.

The performance gain from the migratory optimization tech-
nique is the removal of global ownership requests for migratory
blocks. As a result,Whw andWsw are reduced. Since the number
of ownership requests are reduced,Psw is also reduced, resulting
in an additional gain for software-only protocols. The question is
whether this reduction can actually make software-only directory
protocols perform as well as hardware-only directory protocols.

5.2. Quantitative evaluation
In Figure 4, we present the resulting execution times when

migratory optimization is applied to hardware-only and soft-
ware-only directory protocols, referred to as HW-M and SW-M,
respectively. We first conclude that the migratory optimization

reduces the total execution times for all applications under both
hardware-only and software-only directory protocols.

By looking at the write stall times in Figure 4, we see that
bothWhw andWsw are significantly reduced for Water and MP3D
under HW-M and SW-M, respectively. This is expected and in
accordance with the results presented in [17]. Our results show
that Whw is reduced by 73% and 75% for Water and MP3D,
respectively, while the corresponding numbers forWsw are 78%
for both Water and MP3D.Wsw is reduced relatively more than
Whw as a result of shorter queuing delays in home; the lower
number of coherence requests reduces the average interrupt
buffer size. For LU and Ocean, only small decreases inWhw and
Wsw are observed. This corresponds well to the application
behavior; in Water and MP3D migratory sharing dominates,
while producer-consumer sharing dominates in LU and Ocean.

We find thatShw andSswalso are reduced when the migratory
optimization is applied. This effect stems mainly from more effi-
cient barrier synchronizations. In the barrier, a counter variable
keeps track of the current number of processors waiting at the
barrier. This counter exhibits migratory sharing. For Ocean,Ssw
is reduced relatively less thanShw, 19% and 26%, respectively,
when the migratory optimization is applied. In [7],Ssw was found
to be larger thanShw due to imbalance in the number of coher-
ence interrupts; some processors encounter up to ten times as
many interrupts as other processors. Even though the barrier
itself is more efficient with the migratory optimization, the inher-
ent larger overhead due to the interrupt imbalance in software-
only directory protocols are not affected.

Psw is reduced by 35% and 56% for Water and MP3D, respec-
tively. This reduction stems from significantly fewer coherence
interrupts as we predicted in Section 5.1. For Water, the number
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of interrupts has decreased by 34% and for MP3D by 52%. For
LU and Ocean,Psw is virtually unaffected.

Finally, bothRhw andRsw are virtually unaffected for Water,
LU, and MP3D when the migratory optimization is applied. For
Ocean, however, we observe thatRhw andRsw have increased by
11% and 27%, respectively. Ocean has a non-negligible amount
of false sharing, which causes many blocks to be deemed as
migratory even though they are not. As a result, the miss rate
increases with 12% under HW-M and 29% under SW-M. This
effect was also observed in [8].

The resultingETRs between SW-M and HW-M are 1.11,
1.36, 1.53, and 1.46 for Water, LU, Ocean, and MP3D, respec-
tively. Migratory optimization results in lowerETR for applica-
tions with a high degree of migratory sharing (Water and MP3D).
The lowerETRs result both from a relatively larger reduction of
Wsw than ofWhw and from a reduction ofPsw. For LU, we find
that theETR is virtually the same with and without migratory
optimization. Finally, theETR increases for Ocean, mainly as a
result of a smaller reduction ofSsw thanShw and a larger increase
of Rsw than ofRhw when migratory optimization is applied.

In summary, we have found that migratory optimization
effectively reduces bothWsw andPsw for applications with a high
degree of migratory sharing. Since the write and synchronization
stall times are relatively more reduced for SW-M than for HW-
M, the ETR decreases. Further, migratory optimization can
potentially reduceShw andSsw also for other applications as a
result of more efficient barrier synchronizations. Finally, migra-
tory optimization can increase theETR for applications with a
high degree of false sharing which penalizes SW more than HW.

6. Performance of release consistency

6.1. Qualitative evaluation
The third technique we will study is release consistency, a

technique that not affects the protocol execution time. Under
sequential consistency, SC, which is our default memory consis-
tency model, the processor stalls on each access to shared data in
order to enforce a global access order. By contrast, underrelease
consistency[6], RC, ordering is only enforced on special, hard-
ware-recognizable synchronization primitives. RC distinguishes
betweenacquires andreleases. The most important implication
of RC in our framework is that the processor does not stall on
write and release requests, i.e., all write stall time can be hidden
and the synchronization stall time may decrease.

Relating the expected performance effects of RC to Figure 2,
we note thatWhw < Wsw under SC. SinceW’hw = W’sw = 0 under
RC, we expect the software-only directory protocol to gain rela-
tively more from RC than the hardware-only does. Further, we
expect bothShw andSsw to decrease, but a slight increase inRhw
andRsw may occur as a result of higher contention. Finally, since
RC does not change the number of coherence requests in the sys-
tem, we expectPsw to be unaffected.

6.2. Quantitative evaluation
In Figure 5, we show the simulated execution times of hard-

ware-only and software-only directory protocols under SC (HW
and SW, respectively) and RC (HW-RC and SW-RC, respec-
tively). We start with a comparison between the execution times

of HW and HW-RC, and between SW and SW-RC. The results in
Figure 5 show that RC gives a large and consistent performance
improvement for both hardware-only and software-only direc-
tory protocols, which is consistent with the results in [7].

By comparing the protocol execution overhead for SW and
SW-RC, we see that the intuition from Section 6.1 seems correct;
since the number of coherence requests are virtually the same
under SC and RC,Psw is virtually unaffected for all applications.

As we can see in Figure 5, RC removesWhw andWsw for all
applications. For the hardware-only directory protocol, this is
achieved with virtually no increase inRhw andShw. By contrast,
Rsw has increased for LU and Ocean. For LU, the main reason is
longer delays in theFLWB. Under SC, aFLC read miss gets
served by theSLC almost at once, while under RC it has to wait
in average seven cycles. In a software-only directory protocol,
each global write request takes a longer time than in a hardware-
only directory protocol. Therefore, theSLWB is filled up more
often in a software-only directory protocol which blocks requests
from the FLWB. For Ocean, the longerRsw originates from a
combination of longer delays in theFLWB and higher contention
in the network interfaces.

The resultingETRs between SW-RC and HW-RC are 1.13,
1.50, 1.52, and 1.92 for Water, LU, Ocean, and MP3D, respec-
tively. For LU, Ocean, and MP3D, theETR increases under RC.
The relatively larger contribution fromPsw to the execution time
under RC results in a higherETR for MP3D. For LU and Ocean,
a combination of a relatively largerPsw and longerRsw increases
ETR. TheETR slightly decreases for Water under RC, as a result
of slightly shorterSsw andPsw under RC than under SC.

In summary, RC hides all write latency for both hardware-
only and software-only directory protocols. As expected, the
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Figure 5. Normalized execution times for HW-only
and SW-only protocols under sequential (HW and
SW) and release consistency (HW-RC and SW-RC).



ETR between software-only and hardware-only directory proto-
cols increases for three of the application under RC. For the
fourth application, Water, an application with high computation-
to-communication ratio, theETR slightly decreases under RC.

7. Conclusions

In both hardware-only and software-only directory protocols,
i.e., protocols where the directory management is done by soft-
ware handlers executed on the compute processor, performance
is often limited by processor stall times due to memory accesses
latencies. For software-only directory protocols, the total execu-
tion time may be prolonged by protocol execution overhead
resulting from the handler invocations, referred to as p-time. To
increase the performance, many latency tolerating and reducing
techniques have been proposed and evaluated for hardware-only
protocols. However, the effectiveness of such techniques for soft-
ware-only directory protocols has been unexplored.

In this study we have evaluated the relative performance
between hardware-only and software-only directory protocols
when different latency tolerating and reducing techniques are
applied. Such techniques can be divided into three classes
depending on how they impact p-time; a technique either
increases, decreases, or does not affect p-time. As representatives
for the three classes we have chosen prefetching, a migratory
optimization technique, and release consistency, respectively.

Based on architectural simulations we have found that soft-
ware-only directory protocols are more sensitive to the prefetch
efficiency than hardware-only directory protocols are. Each use-
less prefetch, i.e., a prefetch that fetches a block that is evicted
from cache before the processor accesses it, increases p-time
which potentially prolongs the total execution time. Our results
show that even though prefetching reduces the read stall time in a
software-only directory protocol, the execution time may be pro-
longed by to many useless prefetches. Therefore, the prefetch
efficiency is more important when choosing a prefetch scheme
for a software-only than for a hardware-only directory protocol.

In contrast, software-only directory protocols generally gain
relatively more than hardware-only directory protocols when
techniques that reduce the number of coherence actions are
applied. This was confirmed with the migratory optimization
technique. For three of four applications, the performance gap
between software-only and hardware-only directory protocols
decreases when migratory optimization is used.

Release consistency, a technique that not affects p-time, hides
all write stall time for both software-only and hardware-only
directory protocols. However, since release consistency does not
reduce p-time, it becomes a relatively larger part of the total exe-
cution time. For three of our applications, the relative perfor-
mance between hardware-only and software-only directory
protocols increases when release consistency is applied.

Overall, this study shows that the efficiency of a latency toler-
ating technique not only depends on how well it tolerates the
latency as seen by the local node, but also on how it interacts
with the node where a memory block is allocated. Therefore,
more care has to be taken when choosing an appropriate latency
tolerating and reducing technique for software-only directory
protocols than needed for hardware-only directory protocols.
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