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Abstract

Traditional mathematical models of multiphase flow in porous me-
dia use a straightforward extension of Darcy’s equation, and the key
element of these models is the appropriate formulation of the rela-
tive permeability functions. It is well known that for one-dimensional
flow of three immiscible incompressible fluids, when capillarity is ne-
glected, most relative permeability models used today give rise to
regions in the saturation space with elliptic behavior (the so-called
elliptic regions). We believe that this behavior is not physical, but
rather the result of an incorrect (or incomplete) mathematical model.
In this paper we identify necessary conditions that must be satisfied
by the relative permeability functions, so that the system of equations
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describing three-phase flow is strictly hyperbolic everywhere in the
saturation triangle. These conditions seem to be in good agreement
with pore-scale physics and experimental data.

key words: porous media, three-phase flow, relative permeability, strict hy-

perbolicity, elliptic regions, Oak experiments

1 Introduction

Mathematical modeling of multiphase flow in porous media is, to a large
extent, still an open issue [51]. In our opinion, the main difficulty stems from
the fact that different processes dominate at different scales: capillary forces
dominate at the pore scale, while viscous and/or gravity forces dominate at
the field scale.1 As a result, development of continuum theories of multiphase
flow has proven to be an exceptionally challenging task.

The key ingredients of traditional formulations of multiphase flow are
mass conservation equations, and a multiphase form of Darcy’s equation [6].
Darcy’s equation is an approximate form of the fluid momentum balance in
creeping flow through porous media. This postulate is supported for single-
phase flow by experimental evidence and by volume averaging as a first-order
approximation [25]. On the other hand, the usual multiphase flow extension
of Darcy’s equation due to Muskat [52] does not emanate from averaging of
the microscopic equations of multiphase systems [27]. A number of incon-
sistencies of the standard formulation have been identified, and alternative
approaches have been proposed [5,22,26], which are yet to be fully explored.

However, there is still a great interest in Darcy-like formulations, as they
are almost universally used in hydrogeology and petroleum engineering. In
this framework, success of the formulation depends heavily on the use of
“correct” relative permeabilities. Traditionally, they are taken as functions
of current fluid saturations alone. This is a very strong assumption, which

1The sum of the tiny viscous pressure drops in immiscible flow through each pore will
eventually exceed the magnitude of capillary pressure, given enough pores along the flow
direction. It is capillarity, however, that sets each individual pore’s fluid occupancy and
the resulting hydraulic resistances. Gravity, in turn, sets the capillary pressure level in each
horizontal plane, but capillarity governs the local flow resistances all the same. Although
formally correct, the classical comparison of viscous, gravity and capillary forces at the
vastly different length scales is misleading. We shall return to this issue in a later paper.
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does not account for: (1) hysteretic effects [43, 58], which include the past
saturation history into the formulation; (2) nonequilibrium effects [5, 26],
which introduce the concept of a relaxation time for pore-scale rearrangement
of fluid saturations; and (3) the flow regime, determined by the ratios of
viscous, capillary, and gravity forces [44, 45], which influences the pore-scale
mechanisms of fluid displacement.

In this paper we study one-dimensional horizontal flow through porous
media of three immiscible, incompressible fluids. The mathematical formula-
tion makes use of the commonly-used extension of Darcy’s equation, and the
analysis is restricted to relative permeabilities which are functions of fluid
saturations alone. This model leads to a 2 × 2 system of saturation equa-
tions [9]. It was long believed that, when capillarity is ignored, this system
of equations would be strictly hyperbolic for any relative permeability func-
tions. This is far from being the case and, in fact, most relative permeability
models used today give rise to systems which are not strictly hyperbolic for
the entire range of admissible saturations [7, 19, 31, 36, 65, 66]. Loss of strict
hyperbolicity typically occurs at bounded regions of the saturation triangle
(the so-called elliptic regions), where the system is elliptic in character. We
find this behavior disturbing for many reasons, and are of the opinion that
elliptic regions are the artifacts of an incorrect mathematical model. The
objective of this paper is to show that it is possible to choose relative per-
meability functions that preserve strict hyperbolicity of the three-phase flow
equations, even if the usual extension of Darcy’s equation is employed, and
the relative permeabilities are assumed to be functions of the fluid saturations
alone.

An outline of the paper is as follows. In Section 2 we present the math-
ematical model of three-phase flow, and introduce the classification of the
governing system of equations. In Section 3 we derive necessary conditions
that the relative permeability functions must satisfy for the system of equa-
tions to be strictly hyperbolic for all admissible saturation states. We show,
in Section 4, that the essential condition that needs to be imposed agrees
well with experimental data. In Section 5 we draw the main conclusions,
and anticipate ongoing and future research.
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2 Traditional displacement theory of three-

phase flow

In this section we revisit the traditional mathematical formulation of three-
phase flow of immiscible incompressible fluids. The governing equations are
mass conservation equations, with a particular form of the constitutive equa-
tion for the mass flux, namely, the extension of Darcy’s equation due to
Muskat [52]. As noted below, we do not include gravitational and capillary
forces in the analysis.

2.1 System of governing equations

The explicit assumptions of the mathematical model of three-phase flow we
analyze are the following:

1. One-dimensional flow.

2. Immiscible fluids.

3. Incompressible fluids.

4. Homogeneous rigid porous medium.

5. Multiphase flow extension of Darcy’s equation.

6. Negligible gravitational effects.

7. Negligible capillary pressure effects.

A detailed derivation of the governing equations can be found elsewhere [4,
9, 59].

By assumption 2, there is no mass transfer between phases and, there-
fore, one can identify components with phases. The one-dimensional mass
conservation equation for the α-phase is, in the absence of source terms:

∂t(mα) + ∂x(Fα) = 0, 0 < x < L, t > 0, (1)

where mα is the mass density, Fα is the mass flux of the α-phase, ∂t(·), ∂x(·),
denote partial derivatives with respect to time and space, respectively, and
L is the length of the domain. For three-phase flow the system consists of
aqueous, vapor and liquid phases, corresponding to water (w), gas (g) and
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oil (o) components, respectively. The mass density of each phase is the mass
per unit bulk volume of porous medium:

mα = ραSαφ, (2)

where ρα is the density of the α-phase, Sα is the saturation of the α-phase,
and φ is the porosity. By assumptions 3 and 4, we take the phase densities
and the porosity constant. Using the usual multiphase flow extension of
Darcy’s equation [52] (assumption 5):

Fα = −kkrα
µα

ρα(∂xpα + ραg∂xz), (3)

where k is the absolute permeability, krα is the relative permeability, µα the
dynamic viscosity, and pα the pressure of the α-phase. Relative permeabil-
ities are assumed to be functions of phase saturations. The gravitational
acceleration has absolute value g and points in the negative direction of the
z-axis. We define the relative mobility of the α-phase as

λα :=
krα
µα

. (4)

Neglecting gravitational and capillarity effects (assumptions 6 and 7) the
mass conservation equation for the α-phase is:

∂tSα + ∂x(−
1

φ
kλα∂xp) = 0, (5)

where p is the pressure, now common to all phases. Since the fluids fill up
the pore volume, their saturations add up to one:

Sw + So + Sg ≡ 1. (6)

Adding the conservation equations for all phases and using the saturation
constraint (6), we get the “pressure equation”:

∂x(−
1

φ
kλT∂xp) = 0, (7)

where λT = λw + λo + λg is the total mobility. The pressure equation (7)
dictates that the total velocity, defined as

vT := − 1

φ
kλT∂xp, (8)
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is at most a function of time. We now define the phase velocity,

vα :=
λα
λT

vT , (9)

and the fractional flow of the α-phase,

fα :=
vα
vT

=
λα
λT

. (10)

With the definitions above, the three-phase flow system is governed by a 2×2
system of conservation laws,

∂t

(

Sw
Sg

)

+ vT∂x

(

fw
fg

)

=

(

0
0

)

, (11)

and the algebraic constraint So = 1− Sw − Sg. The solution is restricted to
lie in the saturation triangle:

T := {(Sw, Sg) : Sw ≥ 0, Sg ≥ 0, Sw + Sg ≤ 1}. (12)

The saturation triangle is usually represented as a ternary diagram (Fig-
ure 1), in which the pair (Sw, Sg) corresponds to the triple (Sw, Sg, So),
where So ≡ 1− Sw − Sg.

Equation (11) can be written in vector notation, by defining the vector of
unknowns u = [u, v]t = [Sw, Sg]

t, and the flux vector f = [f, g]t = [fw, fg]
t,

so that one obtains:
∂tu + vT∂xf = 0. (13)

It is convenient to write the equation above in dimensionless form. Defining
the dimensionless space and time coordinates,

xD :=
x

L
, (14)

tD :=
1

L

∫ t

0

vT (τ) dτ, (15)

Equation (13) reads:
∂u

∂tD
+

∂f

∂xD
= 0. (16)

We shall abuse notation, and understand that the symbols x and t refer to
dimensionless space and time coordinates. Therefore, in what follows, we
write the system of equations (16) simply as:

∂tu + ∂xf = 0. (17)
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Figure 1. Saturation triangle (top) and ternary diagram (bottom).

2.2 Flow regions and reduced saturations

Experimental evidence suggests that there is a threshold saturation for each
phase, below which that phase is immobile. This fact has been observed since
the earliest two-phase and three-phase flow experiments [8, 46, 53, 74]. As a
result, three-phase flow takes place only for phase saturations in a region
inside the saturation triangle. The nature of these threshold saturations de-
pends on the wettability of the fluids, and on the displacement process [21].
For the most wetting phase, the term “connate” (or “irreducible”) saturation
would be appropriate both in drainage and imbibition. For the most nonwet-
ting phase, the term “critical” saturation would be applicable in drainage,
and “trapped” (or “residual”) saturation in imbibition. For the purpose of
this paper we lump the terminology above in the term “immobile” satura-
tion, and assume that appropriate values are used for each fluid and for the
particular process (saturation path) of interest.
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In principle, these threshold or endpoint saturations do not have to be
constant, and the immobile saturation of each phase may vary with the
saturations of the other two phases. This is a well-known behavior for the
oil phase [41], and several correlations for the “residual” oil saturation have
been proposed [19, 20]. The relative permeability of a phase is zero if that
phase is immobile, and it is positive otherwise. For each phase, there will
be a line separating the region where the phase is mobile from the region
where it is immobile. These lines define regions of one-phase, two-phase and
three-phase flow in the ternary diagram.

The three-phase flow region in the space of actual saturations u = (Sw, Sg)
t

can be mapped onto the entire ternary diagram of reduced saturations ũ =
(S̃w, S̃g)

t, as shown in Figure 2:

ϕ : R2 → R2, (18)

ũ 7→ u = ϕ(ũ). (19)

We assume that this map is C1 invertible and orientation-preserving, so that
by simple change of variables we can study three-phase flow in terms of
reduced saturations:

∂t[ϕ(ũ)] + ∂x[f(ϕ(ũ))] = 0. (20)

Equation (20) can be reduced to its canonical form (see, e.g., [14]) if the
regions of mobile and immobile phases are separated by straight lines. In
this case the map between actual and reduced saturations is linear,

u = ϕ(ũ) = u0 + ϕ′ũ, (21)

where ϕ′ ≡ Dũϕ is the Jacobian matrix of the mapping, which is constant
for a linear map. The system of conservation laws (20) is expressed as

∂tũ + ∂xf̃ = 0, (22)

where the newly defined flux f̃ is related to the original flux function as
follows:

f̃(ũ) := (ϕ′)−1f(ϕ(ũ)). (23)

Relative permeabilities and, consequently, fractional flows, are expressed in
Equation (22) as functions of reduced saturations. By definition, they take
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(a) Space of actual saturations
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Figure 2. Schematic of the map between (a) the space of actual satura-
tions, and (b) the space of reduced saturations. The lines defining
immobile phases subdivide the ternary diagram into regions of
three-phase (center), two-phase (along the edges) and one-phase
flow (near the vertices). The three-phase flow region (shaded
area) is mapped onto the entire ternary diagram.

a zero value along one of the edges of the ternary diagram, and are pos-
itive everywhere else. To simplify notation we shall drop the tildes from
Equation (22) and write

∂tu + ∂xf = 0. (24)

but still refer to the system in terms of reduced saturations.
Remark. If the lines defining immobile regions are straight lines parallel

to the edges of the ternary diagram, the tree-phase flow region is an equilateral
triangle. In this particular case, reduced saturations take the following simple
expression:

S̃α :=
Sα − Sαi

1− (Swi + Soi + Sgi)
, α = w, o, g, (25)

where Sαi is the immobile saturation (now constant) of the α-phase.
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2.3 Character of the system of equations

For the purpose of the classification of the system (24), we write it in quasi-
linear form:

∂tu + A(u)∂xu = 0, (26)

where

A(u) := f ′(u) ≡ Duf ≡
(

f,u(u) f,v(u)
g,u(u) g,v(u)

)

(27)

is the Jacobian matrix of the system at point u. Subscripts after a comma
denote differentiation (e.g., f,u ≡ ∂uf). The classification of the 2×2 system
of first-order partial differential equations (26) is based on the properties of
the characteristic curves [67,75].

Definition. A characteristic curve of (26) is a curve on the (x, t)-plane,
along which ∂tu and ∂xu cannot be specified (if indeed they can be deter-
mined at all) if the initial data are prescribed along that same curve.

From the definition above, it follows [14, 75] that a characteristic curve
of the system (26) associated with a classical solution u(x, t) is a function
x = x(t), which is an integral curve of the ordinary differential equation

dx

dt
= ν(u(x, t)), (28)

where ν(u) is an eigenvalue of the Jacobian matrix A(u). As a result, the
classification of the system (26) reduces to analyzing the behavior of the
eigenvalue problem

Ar = νr, (29)

where the Jacobian matrix A, the eigenvalue ν, and the right eigenvector r,
are evaluated at a point u.

For the eigenvalue problem (29) with a 2 × 2 real matrix, it is well-
known [11] that there exists a real nonsingular matrix T such that, after the
change of variables z = Tr, the equivalent eigenvalue problem

(

TAT−1
)

z = νz (30)

has a real coefficient matrix J := TAT −1, which has one of the following
canonical forms:

1.

(

λ 0
0 µ

)

, λ 6= µ,
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2.

(

α −β
β α

)

, β 6= 0,

3.

(

λ 0
0 λ

)

,

4.

(

λ 1
0 λ

)

.

These four canonical forms provide the basis for the classification of the
system of first-order partial differential equations. Following the terminology
in [75], we denote the system whose Jacobian matrix has the canonical form
of cases 1 through 4 above, respectively:

1. Strictly hyperbolic. The eigenvalue problem has two real, distinct eigen-
values. The Jacobian matrix is diagonalizable and there are two real
and linearly independent eigenvectors [1]. Therefore, the system has
two distinct families of characteristic curves, which carry waves travel-
ing at different characteristic speeds.

2. Elliptic. The eigenvalues are complex conjugates, and there are no real
characteristic curves that may act as carriers of possible discontinuities
in the solution [14,75].

3. Nonstrictly hyperbolic. In this case, there is a double real eigenvalue,
and the Jacobian matrix is diagonalizable. Every direction is charac-
teristic, so one can pick any two linearly independent vectors as eigen-
vectors. The system is hyperbolic (real eigenvalues and linearly inde-
pendent eigenvectors) but not strictly hyperbolic (which requires that
the eigenvalues be distinct).

4. Parabolic. The system has a real, double eigenvalue, and the Jacobian
matrix is defective (non-diagonalizable). There is only one eigenvector
and, therefore, there is only one real characteristic direction.

This completes the classification of the system at any given state u. It is
important to note that this classification is restricted to 2 × 2 real systems
of first-order equations. As we shall see, the character of the system may be
different in different regions of the phase space (i.e., the saturation triangle).
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Remark. The eigenvalues νp, p = 1, 2 of the original Jacobian ma-
trix (27) are given by

ν1,2 =
1

2

[

f,u + g,v ∓
√

(f,u − g,v)2 + 4f,vg,u

]

. (31)

The physical interpretation of the eigenvalues (when they are real) is the
characteristic speeds at which waves describing changes in saturation prop-
agate through the domain. In the strictly hyperbolic case, there exist two
distinct waves which travel at different characteristic speeds. It is common
to use the terms slow wave and fast wave for the waves associated with the
smaller and larger eigenvalue, respectively.

Remark. The right eigenvectors rp = [rpu, rpv]
t, p = 1, 2, which corre-

spond to eigenvalues νp, p = 1, 2, respectively, are calculated by the following
expressions:

r1v

r1u

=
ν1 − f,u
f,v

=
g,u

ν1 − g,v
, (32)

r2u

r2v

=
f,v

ν2 − f,u
=
ν2 − g,v
g,u

. (33)

When they are real, the right eigenvectors correspond to the directions (in the
phase space) of admissible changes in saturation. In the strictly hyperbolic
case, the changes in saturation associated with the slow (resp. fast) wave
have a direction dictated by r1 (resp. r2) and propagate with velocity ν1

(resp. ν2).

3 Relative permeabilities for strict hyperbol-

icity

In this section we investigate the character of the system of equations (24)
describing one-dimensional three-phase flow of immiscible incompressible flu-
ids. The objectives are to better understand the interplay between relative
permeabilities and the nature of the system, and to derive conditions on
phase mobilities (and ultimately on relative permeabilities) as functions of
saturations so as to preserve strict hyperbolicity.
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3.1 Loss of strict hyperbolicity in traditional models

It was long believed that the system (24) was strictly hyperbolic for any rel-
ative permeability functions. Then, the theory of Lax [42] as extended by
Liu [47, 48] would apply. However, Bell et al. [7] showed that the system is
not necessarily hyperbolic. In particular, they observed that Stone I [68] rela-
tive permeabilities gave rise to elliptic regions inside the saturation triangle.
Elliptic regions are portions of the saturation triangle where the eigenval-
ues are complex, so the system is locally elliptic rather than hyperbolic. In
subsequent publications [19, 31, 36, 65, 66], it was shown that occurrence of
elliptic regions is the rule rather than exception for the most common relative
permeability models.

Loss of strict hyperbolicity of three-phase flow models was analyzed by
Shearer [65] and Holden [31]. They also used reduced saturations, and there-
fore limited their analysis to the three-phase flow region. From the point of
view of studying the character of the system, this assumption is not particu-
larly restrictive, for it can be shown that elliptic regions cannot exist in the
one-phase and two-phase flow regions [18,37].

The analysis of Shearer [65] and Holden [31] starts by assuming the be-
havior of relative permeabilities in two-phase flow. Relative permeabilities
(and, therefore, relative mobilities) of both phases, say water and gas, are
taken as functions of the reduced water saturation:

λw = λw(u), λg = λg(u). (34)

These functions are assumed to have a zero value and a zero derivative at
their endpoint saturations, i.e.,

λw(0) = λ′w(0) = 0, λg(1) = λ′g(1) = 0. (35)

This behavior, which is taken for granted without further discussion, is then
used as a guidance to impose conditions on the edges of the saturation tri-
angle.

In three-phase flow, relative permeabilities are assumed to be functions
of the water and gas reduced saturations:

λw = λw(u, v), λg = λg(u, v), λo = λo(u, v). (36)

Shearer [65] imposes two types of conditions on the edges:
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1. Consistency conditions (termed “(B-L) conditions”), which reduce three-
phase relative mobilities to the assumed behavior for two-phase flow
(Equation (35)), when one of the phases is not mobile. For example,
on the edge of zero reduced gas saturation (v = 0, 0 < u < 1), it is
required:

λw(0, 0) = λw,u(0, 0) = 0,

λg(u, 0) ≡ 0,

λo(1, 0) = λo,u(1, 0) = 0.

(37)

Similar conditions hold on the other two edges.

2. A first interaction condition (termed “(I1) condition”), that limits the
effect of the immobile phase on the flow, compared to that of the other
two phases. For instance, on the edge v = 0, 0 < u < 1:

λg,v <
λoλw,u − λwλo,u

λw + λo
, (38)

and similarly on the other two edges. This condition, together with the
consistency conditions above, effectively imposes that the right eigen-
vector associated with the fast characteristic speed, r2, is parallel to
the edge. It is important to note that condition (38) is immediately
satisfied if λg,v(u, 0) = 0, that is, if the derivative of the gas mobility
along the normal direction to the edge is zero.

An additional condition is imposed near the vertices:

3. A second interaction condition (termed “(I2) condition”), imposes that
the right eigenvector associated with the fast characteristic, r2, points
into the saturation triangle for states u near a vertex. A sufficient
(but not necessary) condition that satisfies this requirement is that
the off-diagonal terms of the Jacobian matrix A(u), are positive. For
example, near the vertex of immobile water and gas (near u = v = 0),
it is sufficient to have

λw,v(λg + λo)− λw(λg,v + λo,v) > 0,

λg,u(λw + λo)− λg(λw,u + λo,u) > 0.
(39)

Holden [31] imposes very similar conditions. The following is required on
the edges:
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1. The value of the relative mobility of a phase is zero along the edge of
zero reduced saturation of that phase, i.e.,

λw = 0 on u = 0, 0 < v < 1,

λg = 0 on v = 0, 0 < u < 1,

λo = 0 on v = 1− u, 0 < u < 1.

(40)

2. The derivative of the relative mobility of a phase along the normal
direction to the edge of zero reduced saturation is also zero:

λw,u = 0 on u = 0, 0 < v < 1,

λg,v = 0 on v = 0, 0 < u < 1,

−λo,u − λo,v = 0 on v = 1− u, 0 < u < 1.

(41)

We note that the conditions above on the normal derivatives imply that
the “(I1) interaction condition” of Shearer is immediately satisfied and,
as a result, the eigenvector of the fast family is parallel to the edges of
the saturation triangle.

The properties near the corners are introduced next:

3. Holden [31] considered three possible types of behavior near the vertices
of the saturation triangle, based on the sign of the off-diagonal terms
of the Jacobian matrix, f,v, g,u:

(A1) Both are positive: f,v > 0, g,u > 0.

(A2) Have different sign: f,vg,u < 0.

(A3) Both are negative: f,v < 0, g,u < 0.

Using a wettability argument, it is suggested that condition (A1) is the
most reasonable in all three corners. This condition implies that the
“(I2) interaction condition” of Shearer is automatically satisfied.

We can summarize the conditions imposed by Shearer [65] and Holden [31]
as follows (Figure 3):

1. The right eigenvector associated with the fast characteristic family, r2,
is parallel to the edges of the triangle of reduced saturations.
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Figure 3. Schematic representation of the direction of fast eigenvectors r2

along the edges of the saturation triangle for the models analyzed
by Shearer [65] and Holden [31]. For models of this type, vertices
are umbilic points, and there must be an elliptic region inside the
saturation triangle, usually very close to the oil-water edge.

2. The fast eigenvector r2 points into the triangle, for saturation states
near the vertices.

The assumed behavior at the edges and corners of the saturation triangle has
a profound impact on the character of the system. The first consequence is
that each vertex of the saturation triangle is an umbilic point, i.e., eigenvalues
are equal and the system is not strictly hyperbolic at those points. The
second consequence is that, in general, an elliptic region must exist inside
the saturation triangle. This general result can be proved using ideas of
projective geometry [31,63,65].

Naturally, the question of whether elliptic regions in the saturation space
are physically-plausible arises. We defer a full discussion on this topic to
a forthcoming publication [39]. However, we briefly point out some of the
reasons why local elliptic behavior seems to be an undesirable artifact of
the mathematical model, rather than a necessary consequence dictated by
physics.
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1. The first remark that one should bear in mind is that Equation (24) is
a system of first-order equations in space-time coordinates. Thus, the
physical meaning of a system with mixed elliptic/hyperbolic behavior is
very different from that when the independent variables are two space
coordinates, such as in steady transonic flow [13, 40]. In the former
case, “initial data” should be imposed in such a way that the principle
of causality2 is not violated [19].

2. Saturation states inside the elliptic region give rise to linearly ill-posed
problems. More precisely, a bounded solution to the linearized Cauchy
problem (initial value problem on an unbounded domain) does not
exist when arbitrarily close —but not equal— asymptotic left and right
states are inside the elliptic region. This fact is in frontal disagreement
with the notion of three-phase flow displacement, where one expects a
bounded and monotonic transition between the right (initial) state and
the left (injected) state. However, the question of whether ill-posedness
remains when nonlinear effects are accounted for is still unclear [2,30].

3. In connection with the loss of well-posedness of the problem, appro-
priate entropy conditions have not yet been found so as to allow both
existence and uniqueness of solutions [2, 3]. Although a few qualita-
tive properties are known [28–30], a complete theory of mixed ellip-
tic/hyperbolic systems does not yet exist.

4. More specifically to models of three-phase flow in porous media, it
has been found [36] that different models matching experimental data
equally well, produce elliptic regions in opposite corners of the satu-
ration triangle. This result suggests a nonphysical arbitrariness to the
location of elliptic behavior in phase space for traditional models of
three-phase flow.

5. If capillarity is introduced in the formulation and a traveling wave so-
lution is sought for the Riemann problem (unbounded domain, and
piecewise constant initial data with a single discontinuity), the critical
points of the associated 2× 2 dynamical system are spiral points [11].

2“The causality of natural processes may be interpreted as implying that the conditions
in a body at time t are determined by the past history of the body, and that no aspect of
its future behavior need to be known in order to determine all of them.” [71]
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If a traveling wave solution exists, it will necessarily present a spiral-
like behavior near the critical points, which translates into oscillatory
(nonmonotonic) saturation profiles. Validity of this type of solution is
questionable on several counts: (1) as the capillarity effects are taken
to zero, oscillations collapse into a singular shock, of dubious physi-
cal interpretation; (2) introducing “sufficient” capillarity will not cure
the problem of oscillatory behavior, as the spiral-like orbit will persist
asymptotically.

6. Numerical simulations seem to corroborate, at least in first instance,
the nonphysical behavior of solutions inside the elliptic region [7, 34].
For arbitrarily close left and right states inside the elliptic region, the
solution develops wildly oscillatory waves, which are never observed in
experiments. Moreover, the wave pattern is unstable with respect to
the initial states [7].

The only relative permeability models which do not produce elliptic re-
gions (under the assumed behavior at the edges and corners) are those where
the relative permeability of a phase depends solely on the saturation of that
phase [49, 70]. This behavior is not supported by experimental results [56]
and pore-scale considerations [72]. For models of this type, the elliptic region
(where eigenvalues are complex conjugates), shrinks to an isolated umbilic
point (a saturation state with a real double eigenvalue), which cannot be
removed by further approximation of the relative permeabilities. As shown
by Holden [31], it may be possible to reduce the elliptic region to an iso-
lated umbilic point for more general relative permeability models. However,
this requires a continuous deformation of the relative permeability functions,
which is physically unappealing. Umbilic points also act as “repellers” for
classical waves [23, 24, 50] and, as a result, solutions to the nonstrictly hy-
perbolic system require nonclassical waves (termed transitional waves [32]).
The most salient features of these solutions are that: (1) they are sensi-
tive to the particular form of the diffusion term due to capillary effects [33];
(2) the saturation path may be the same for wildly different initial and in-
jected states [17, 18, 23, 24]; and (3) in WAG displacement, the intermediate
oil bank may be split in two [50].

From the observations above, it is difficult to justify the physical relevance
of mathematical singularities like elliptic regions and umbilic points [9,10,19,
51,61,66,70]. In fact, the presence of elliptic regions in models of three-phase
flow has not yet been successfully justified on physical grounds. The first
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attempt in this direction we are aware of is the recent paper by Jackson and
Blunt [34], which we review elsewhere [38, 39]. We are of the opinion that
these singularities are mere artifacts of an incorrect mathematical model.
Inappropriateness of the formulation may have several sources, which we
discuss in more detail in a separate publication [39]. For the purpose of this
paper, where the traditional multiphase flow extension of Darcy’s equation
is used, the element of the formulation that first needs to be revisited is
the relative permeability model and, in particular, the assumed behavior at
the edges of the saturation triangle. In fact, it is widely recognized that
the slope of experimental relative permeabilities near the endpoints is often
ill-defined [19].

3.2 Conditions for strict hyperbolicity

The generic approach in the existing literature can be summarized as fol-
lows: a certain behavior of the relative permeabilities is assumed, and loss of
strict hyperbolicity inside the saturation triangle is inferred. We adopt the
opposite viewpoint: we assume that the system is strictly hyperbolic, and in-
vestigate the conditions on relative permeabilities as functions of saturation
such that strict hyperbolicity is preserved. In doing so we keep, however,
the restriction that eigenvectors should not rotate along edges of the ternary
diagram. What is more, we require that one of the eigenvectors is parallel
to any given edge. The reason is to preserve the property that the edges of
the ternary diagram are invariant lines for the system of equations [65], i.e.,
if one phase is immobile everywhere at the initial time, that phase remains
immobile (zero reduced saturation) everywhere at all times. This is a very
simplistic condition, which in fact does not have to hold if curved lines defin-
ing immobile saturations are used, or if hysteretic effects are considered (in
this case, the boundary of the three-phase flow region would change with the
saturation path of interest).

It is easy to see that the requirement above (one eigenvector parallel to
each edge), precludes the possibility of having a strictly hyperbolic system
everywhere along the edges of the ternary diagram. There are two different
ways in which strict hyperbolicity may fail on the boundary of the saturation
triangle:

1. The system is strictly hyperbolic at all three vertices. For vertices to be
strictly hyperbolic, eigenvectors lying on each of the two edges must be
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Figure 4. Schematic representation of the direction of fast (r2) and
slow (r1) eigenvectors along the edges of the saturation trian-
gle models with strictly hyperbolic vertices. An umbilic point
must exist somewhere on the WG edge, where eigenvalues of the
slow and fast characteristic families coincide.

of different family (e.g., at the O corner, r1 is parallel to the OW edge
and r2 is parallel to the OG edge). But then, there must exist at
least one edge that has a parallel eigenvector of the fast family near
one vertex, and of the slow family near the other vertex. Inevitably,
an umbilic point —where characteristic speeds of the slow and fast
characteristic families coincide— must exist somewhere on this edge,
because eigenvectors are not allowed to rotate along the edge (Figure 4).

2. At least one of the vertices is an umbilic point. As we show below, it
is possible to have a model that will be nonstrictly hyperbolic at the
G vertex and strictly hyperbolic everywhere else (Figure 5).

Having the considerations above in mind, the key observation is that,
whenever gas is present as a continuous phase, the mobility of gas is much
higher than that of the other two fluids (water and oil). To honor this
physical behavior, we associate fast characteristic paths with displacements
involving changes in gas saturation, even in the region of small gas saturation.
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Figure 5. Schematic representation of the direction of fast (r2) and
slow (r1) eigenvectors along the edges of the saturation triangle
for the type of models we propose. The systems is strictly hy-
perbolic everywhere inside the saturation triangle, and the only
umbilic point is located at the G vertex, where the fast paths
corresponding to the OG and WG edges coalesce.

The immediate consequence is that the eigenvector associated with the fast
family of characteristics (r2) is transversal —and not parallel— to the oil-
water edge of the ternary diagram (Figure 5). As we shall see, this conceptual
picture permits that the system will be strictly hyperbolic everywhere inside
the saturation triangle. The G vertex, corresponding to 100% reduced gas
saturation, remains an umbilic point because fast paths corresponding to the
OG and WG edges coalesce. This umbilic point could be further removed
if one allows for fast eigenvectors to rotate along the OG and WG edges.
This was not done here to prevent saturation paths from falling outside the
three-phase flow region.

Let us recapitulate the conceptual picture expressed in Figure 5:

1. Along the oil-water (OW) edge, the eigenvector associated with the slow
characteristic family (r1) is parallel to the edge. The system is strictly
hyperbolic everywhere along the edge, including the O and W vertices.
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2. Along the oil-gas (OG) and water-gas (WG) edges, the eigenvector asso-
ciated with the fast characteristic family (r2) is parallel to these edges.
The system is strictly hyperbolic everywhere along the edges except at
the G vertex, which is an umbilic point.

Below we present a systematic study of the general conditions that en-
sure strict hyperbolicity of the system. On each edge we identify two types of
conditions. Condition I enforces that eigenvectors of the appropriate family
are parallel to the edge. Condition II guarantees strict hyperbolicity of the
system along the edge. The latter condition is further specialized to both
vertices of each edge, which provides additional insight into the behavior
of the relative permeabilities. The analytical developments are expressed
most effectively in terms of water and gas fractional flows (f and g, respec-
tively) and their derivatives with respect to water and gas saturations (u
and v, respectively). We then translate these requirements into conditions
that the relative permeabilities must satisfy. We emphasize that relative per-
meabilities and, therefore, relative mobilities, are assumed to be functions of
saturations only:

λw = λw(u, v), λg = λg(u, v), λo = λo(u, v). (42)

3.2.1 Analysis along the OW edge.

This edge corresponds to the line of zero reduced gas saturation, v = 0.
The mathematical condition for the slow eigenvector to be parallel to the
OW edge (r1 = [1, 0]t) is:

g,u = 0. (43)

When expressed in terms of mobilities, Condition I above reads:

λg,u = 0, (44)

that is, the derivative of the gas relative mobility with respect to water
saturation is zero. This condition is immediately satisfied for any model, as
the gas mobility is identically zero along this edge.

For the eigenvector r1 to be parallel to the edge, it is also necessary that
the denominator in Equation (32) is different from zero:

ν1 − g,v 6= 0. (45)
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Moreover, introducing Equation (43) into the expression of the eigenvalues
(Equation (31)), one obtains:

ν1,2 =

{

f,u

g,v
(46)

Condition (45), together with the condition for strict hyperbolicity, ν1 < ν2,
implies that

How := g,v − f,u > 0, (47)

which is equivalent to

λg,v > λw,u − λT,u
λw
λT

. (48)

Condition II above is the fundamental requirement for strict hyperbolicity of
the system of equations of three-phase flow. When this condition is evaluated
at the vertices of the OW edge, one obtains:

λg,v > λw,u at the O vertex, (49)

λg,v > −λo,u at the W vertex, (50)

where the inequalities above are strict. In particular, Equations (49)–(50)
require that the gas relative permeability does not have zero-derivative at its
endpoint saturation. A summary of the conditions at the OW edge is given
in Table 1. We make the following important remarks:

1. The requirement of a nonzero endpoint slope of the gas relative perme-
ability is a necessary condition for strict hyperbolicity, which is violated
by the models of all previous studies on this subject.

2. This behavior of gas relative permeability is in good agreement with
experimental observations of two-phase [8, 21, 53, 57, 60, 74] and three-
phase flow [46, 54–56, 62, 64], both in drainage and imbibition. We
demonstrate this agreement in Section 4.

3. A finite positive slope for the gas relative permeability can also be
justified from the point of view of pore-scale processes. Gas is always
the nonwetting fluid, so gas flow takes place through the middle region
of the pores (bulk flow). In a drainage process, gas flow starts with
the first percolating cluster. Likewise, in an imbibition process, gas
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Table 1. Summary of conditions along the OW edge

Condition Frac. flows Mobilities

I g,u = 0 ⇔ λg,u = 0

II g,v − f,u > 0 ⇔ λg,v > λw,u − λT,u
λw
λT

II at O λg,v > λw,u
II at W λg,v > −λo,u

flow ceases with the last trapped cluster. In both cases, the transition
between zero flow and nonzero flow is rather abrupt, thus justifying the
existence of a positive slope at the endpoint of the relative permeability
curve.

4. In contrast, near their endpoint saturations, the most wetting and inter-
mediate wetting fluids flow through a continuous network of films [15]
(corner flow and/or film flow). The effective cross-sectional area of
this network varies depending on the local level of capillary pressure.
Since the fluid conductance is proportional to the cross-sectional area,
it seems plausible that that the relative permeability will approach zero
as a quadratic or higher-order power function of saturation and, thus,
with zero slope.

3.2.2 Analysis along the OG edge.

This edge corresponds to the line of zero reduced water saturation, u = 0.
A necessary condition for the fast eigenvector to be parallel to the OG edge
(r2 = [0, 1]t) is:

f,v = 0. (51)

In terms of mobilities, Condition I reads:

λw,v = 0, (52)

that is, the derivative of the water relative mobility with respect to gas
saturation is zero. This condition is immediately satisfied because water
mobility is identically zero along this edge.

We also require that the denominator of Equation (33) is nonzero:

ν2 − f,u 6= 0. (53)
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Table 2. Summary of conditions along the OG edge

Condition Frac. flows Mobilities

I f,v = 0 ⇔ λw,v = 0

II g,v − f,u > 0 ⇔ λg,v > λw,u + λT,v
λg
λT

II at O λg,v > λw,u
II at G λw,u + λo,v = 0

Due to Equation (51), the eigenvalues take the following expressions along
the OG edge:

ν1,2 =

{

f,u

g,v
(54)

We impose that the system is strictly hyperbolic everywhere along the OG edge,
excluding the G vertex. The condition of strict hyperbolicity, ν1 < ν2, implies
that (Condition II):

Hog := g,v − f,u > 0, (55)

or, equivalently:

λg,v > λw,u + λT,v
λg
λT

. (56)

When we specialize Condition II at the O vertex, we obtain:

λg,v > λw,u. (57)

Equation (57) requires again that the gas relative permeability has a positive
slope at its endpoint saturation. The G vertex is assumed to be an umbilic
point, where the slow and fast characteristic speeds coincide, that is, ν1 = ν2.
When expressed in terms of relative mobilities, the condition reads:

λw,u + λo,v = 0. (58)

The conditions at the OG edge are summarized in Table 2.

3.2.3 Analysis along the WG edge.

This edge corresponds to the line of zero reduced oil saturation, v = 1 − u.
The analysis at the WG edge is complicated by the fact that it is a tilted
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line in the (u, v)-plane. The fast eigenvector will be parallel to the WG edge
(r2 = [−1, 1]t) if:

ν2 − f,u = −f,v. (59)

Substituting the expression for the eigenvalues (Equation (31)) into the con-
dition above, one arrives at:

f,v + g,v = f,u + g,u. (60)

In terms of mobilities, because the oil mobility is zero along the WG edge,
Condition I reads:

λo,v = λo,u, (61)

that is, the derivatives of the oil relative mobility with respect to gas and
water saturations are equal. As for the other two edges, this condition is
identically satisfied by all models.

Due to Equation (60), the eigenvalues take the following expressions along
the WG edge:

ν1 = g,v + f,v (62)

ν2 = g,v − g,u (63)

The system is strictly hyperbolic everywhere along the WG edge (ν1 < ν2),
excluding the G vertex, if:

Hwg := −g,u − f,v > 0, (64)

or, equivalently:

λw
λT

(λg,v − λg,u) +
λg
λT

(λw,u − λw,v) > −λo,u. (65)

The strict inequality at the W vertex reads:

λg,v − λg,u > −λo,u, (66)

and the equality at the G vertex (umbilic point) imposes that

λw,u − λw,v = −λo,u. (67)
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Table 3. Summary of conditions along the WG edge

Condition Frac. flows Mobilities

I f,v + g,v = f,u + g,u ⇔ λo,v = λo,u

II −g,u − f,v > 0 ⇔ λw
λT

(λg,v − λg,u)

+ λg
λT

(λw,u − λw,v) > −λo,u
II at W λg,v > −λo,u
II at G λw,u + λo,v = 0

Substituting Condition I along all three edges (Equations (44), (52) and (61))
into (66)–(67) above, we obtain the conditions at the vertices in their final
form:

λg,v > −λo,u at the W vertex, (50′)

λw,u + λo,v = 0 at the G vertex. (58′)

In Table 3 we summarize the conditions at the WG edge.
Remark. The conditions expressed in Tables 1–3 are necessary condi-

tions for strict hyperbolicity of the system of equations everywhere in the
saturation triangle (with the exception of the G vertex, which is an umbilic
point). They are not sufficient.

3.3 A simple model

Our interest here reduces to presenting a simple model that satisfies the
conditions above. A common practice in petroleum engineering [68, 69] is
to assume that relative permeabilities of the most and least wetting fluids
(usually water and gas) depend only on their own saturation, whereas the
relative permeability of the intermediate wetting fluid (usually oil) depends
on all saturations. Although we do not defend this assumption in general,
here we show that it is possible to obtain models which are strictly hyperbolic
everywhere in the three-phase flow region. We take, for example:

λw = (1/µw)u
2, (68)

λg = (1/µg)
(

βgv + (1− βg)v
2
)

, βg > 0 (69)

λo = (1/µo)(1− u− v)(1− u)(1− v). (70)
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Figure 6. Oil isoperms for the simple model (70). For this particular case,
oil isoperms are slightly convex towards the O corner.

The most important feature of the model is the positive derivative of the
gas relative permeability function as it approaches zero. For the particular
function used here, oil isoperms are slightly convex (Figure 6).

It is immediate to check that the relative mobilities (68)–(70) satisfy
Condition I on all three edges. Whether Condition II is satisfied will depend,
in general, on the values of the fluid viscosities and the endpoint-slope of the
gas relative permeability.

3.3.1 Analysis along the OW edge

We need to study admissible values of the endpoint slope of the gas relative
permeability, βg, such that Equation (47) is satisfied for any given fluid vis-
cosities. The derivatives of the fractional flow functions along the OW edge
(v = 0) are as follows:

f,u =
1

u2

µw
+ (1−u)2

µo

· 2 u(1− u)

µou2 + µw(1− u)2
, (71)

g,v =
1

u2

µw
+ (1−u)2

µo

· βg
µg
. (72)
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Then, the condition for strict hyperbolicity along the OW edge reads:

How = g,v − f,u =
1

D(u)

[

βg
µg
− F (u)

]

> 0, (73)

where

D(u) :=
1

u2

µw
+ (1−u)2

µo

> 0 ∀u ∈ [0, 1], (74)

and

F (u) := 2
u(1− u)

µou2 + µw(1− u)2
. (75)

Defining M := max 0<u<1 F (u), Condition II on OW will be satisfied if

βg > µgM. (76)

Differentiating F (u) with respect to u and equating to zero, and after some
algebraic manipulations, one obtains that M = 1/µ̄, where µ̄ :=

√
µoµw is

the geometric mean of the water and oil viscosities. Finally, the condition
for strict hyperbolicity on the OW edge is

βg >
µg
µ̄
, µ̄ =

√
µoµw. (77)

Despite the fact that Equation (77) is restricted to the simple model con-
sidered here, it is illuminating with regard to the required behavior for the
relative permeability of the most nonwetting phase. Equation (77) expresses
that there is a lower bound in the endpoint slope of the nonwetting phase
relative permeability, if the three-phase flow model is to be strictly hyper-
bolic. This threshold is proportional to the ratio between the viscosity of the
nonwetting phase and the average viscosity of the other two phases. This is
perfectly consistent with the expected behavior in real displacements:

1. If the viscosity of the most nonwetting phase is very small compared to
that of the other phases, one expects fingering (unstable displacement)
when the nonwetting phase is injected. This results in an early break-
trough with small abrupt changes between having no flow and some
flow at the outlet. This implies a small value of the endpoint slope of
the relative permeability, βg.
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2. On the other hand, if the viscosity of the nonwetting phase is compa-
rable with that of the other phases in the medium, the displacement
of that phase will be stable, and will cause that the transition between
zero flow and nonzero flow at the outlet will be more drastic, resulting
in a larger value of βg.

3.3.2 Analysis along the OG edge

We now study if the relative permeability model satisfies Condition II along
the OG edge of the saturation triangle (u = 0). Along this edge, the deriva-
tives of the fractional flow functions involved in Equation (55) are:

f,u = 0, (78)

g,v =
1

µgµo

1− v
(

βgv+(1−βg)v2

µg
+ (1−v)2

µo

)2 · (βg + (2− βg)v). (79)

For strict hyperbolicity along the OG edge (excluding the G vertex), we re-
quire:

Hog = g,v − f,u =
1

µgµo

1− v
(

βgv+(1−βg)v2

µg
+ (1−v)2

µo

)2 · (βg + (2− βg)v) > 0, (80)

which is always satisfied for all v ∈ [0, 1), as long as the endpoint slope βg > 0.
At the G vertex (u = 0, v = 1), we obtain Hog = 0, so this point is an umbilic
point, as required.

3.3.3 Analysis along the WG edge

We perform now the same analysis on the edge of zero reduced oil saturation,
u = 1−v. The expressions of the fractional flow derivatives in Equation (64)
are:

f,v =
−1

(

βgv+(1−βg)v2

µg
+ (1−v)2

µw

)2 ·
[

βg + 2(1− βg)v

µg
+
v(1− v)

µo

]

· (1− v)2

µw
,

(81)

g,u =
−1

(

βgv+(1−βg)v2

µg
+ (1−v)2

µw

)2 ·
[

2(1− v)

µw
− v(1− v)

µo

]

· βgv + (1− βg)v
2

µg
.

(82)
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The condition for strict hyperbolicity along this edge (not including the G ver-
tex) is

Hwg = −g,u − f,v =
1

E(v)

[

Cwg(v)

µwµg
+
Cog(v)

µoµg
+
Cwo(v)

µwµo

]

> 0, (83)

where

E(v) =

(

βgv + (1− βg)v
2

µg
+

(1− v)2

µw

)2

, (84)

Cwg(v) = (2− (2− βg)(1− v))(1− v), (85)

Cog(v) = −(1− (1− βg)(1− v))v2(1− v), (86)

Cow(v) = −v(1− v)3. (87)

At the G vertex, corresponding to v = 1, it is clear that Hwg = 0. On
the other hand, it is not easy to infer the conditions on the fluid viscosities
and the endpoint slope βg such that the strict inequality (83) is satisfied on
the entire edge. It is possible, however, to identify the conditions for strict
hyperbolicity along this edge near the G vertex.

Let u = ε, v = 1 − ε with ε → 0, that is, a state on the WG edge near
the G corner. The first-order Taylor expansion of Hwg about ε = 0 is

Hwg = µg

[

2

µw
− 1

µo

]

ε+O(ε2). (88)

Therefore, for Hwg > 0 in the neighborhood of the G corner, we obtain the
condition

µw < 2µo. (89)

This imposes an additional restriction (not obvious to anticipate) on the val-
ues of the fluid viscosities, if one wants the relative permeability model (68)–
(70) to yield a strictly hyperbolic system.

3.3.4 Summary of conditions for strict hyperbolicity of the model

We have arrived at the conclusion that the very simple relative permeability
model (68)–(70) may yield strictly hyperbolic behavior everywhere in the
saturation triangle, except at the vertex of 100% reduced gas saturation,
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Figure 7. Strict hyperbolicity on edges of the saturation triangle (Condi-
tion II) requires that all three functions How(u), Hog(v), and
Hwg(u) are positive everywhere.

which is an umbilic point. The only two conditions that the parameters of
the model need to satisfy are:

βg >
µg√
µoµw

, (77′)

µw < 2µo. (89′)

For illustrative purposes, we take reasonable values of the viscosities:

µw = 0.875, µg = 0.03, µo = 2 cp, (90)

and a small value of the endpoint slope: βg = 0.1. These values of the param-
eters satisfy the two conditions above. In Figure 7 we represent graphically
the functions How(u) along OW, Hog(v) along OG, and Hwg(u) along WG. In-
equalities (47), (55), and (64) are satisfied (and the system is strictly hyper-
bolic) if all three curves are positive everywhere. The curves for the OG edge
and the WG edge reach a zero value for v = 1 and u = 0, respectively, so
that the G vertex is an umbilic point.

4 Validation with experimental data

In Section 3 we derived the necessary conditions that must be satisfied by the
relative permeability functions, if the system of equations describing three-
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phase flow is to be strictly hyperbolic everywhere inside the saturation tri-
angle. The essential requirement for strict hyperbolicity turns out to be that
the relative permeability of gas (the most nonwetting phase) must have a pos-
itive derivative with respect to its own saturation, at the edge of zero reduced
gas saturation (Equation (48)). In this section we verify how realistic this
condition is, by means of comparison with experimental data. To this end,
we use Oak’s steady-state experiments [54,56], which are arguably the most
reliable and best-known data set available. The fact that we use steady-state
relative permeability data in a dynamic fluid displacement model ought to
be of little consequence because the relative permeabilities measured with
many different methods are similar [16,35,57,73].

The data set consists of over 1800 two-phase and three-phase relative
permeability measurements, obtained using a fully automated steady-state
method. Three fired Berea sandstone cores were employed, with absolute
permeabilities of 200 md (Sample 6), 800 md (Sample 14), and 1000 md
(Sample 13). Water, oil, and gas viscosities were 1.06, 1.77, and 0.0187 cp,
respectively. The study includes over 30 combinations of rock and fluid
systems and saturation histories. A complete description of the experimental
apparatus and procedure is given in the original references [54,56].

4.1 Description of the “endpoint-slope” analysis

We are interested in the qualitative behavior of the relative permeability
of each phase in the region of low reduced saturation of that phase. More
precisely, we want to determine whether the relative permeability of a phase,
when expressed as a function of its own saturation only, takes off with a
zero or a positive slope. This fundamentally different behavior is shown
schematically in Figure 8.

The steps involved in our “endpoint-slope” analysis of Oak’s relative per-
meability data are described below:

1. Select an experiment. An experiment consists of several (sometimes
dozens) relative permeability measurements.

2. Regardless of the type of experiment (two-phase, or three-phase; drainage
or imbibition), tabulate the relative permeability of a phase against its
own saturation.
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Figure 8. Markedly different qualitative behavior of the slope of the rela-
tive permeability of a phase, in the region near the “immobile”
saturation of that phase: (a) zero-slope, and (b) positive slope.

3. For each phase α, identify a maximum saturation Sα,max that defines
the range of saturations to be used in the analysis, and use only the
data points for saturations Sα < Sα,max. This range should be small
enough to be considered close to the immobile saturation, but should
have a sufficient number of data points to indicate a trend.

4. For each phase α, fit the power-law expression

krα = Cα(Sα − Sαi)
mα , Sα < Sα,max, (91)

using a least squares procedure [12], with the following constraints:

Cα > 0, Sαi ≥ 0, mα ≥ 1. (92)

Out of the three parameters to be optimized, the most relevant for our dis-
cussion is the exponent mα. A value of 1 or close to 1 is indicative of a
linear behavior of the relative permeability and, thus, a positive slope at the
endpoint saturation. On the other hand, an exponent larger than 2 suggests
that the relative permeability will approach a zero value (at the endpoint
saturation) with zero slope.

Here we present the results of the analysis of four representative experi-
ments, to show how well the condition of positive endpoint slope for the gas
relative permeability is satisfied by actual data.
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Figure 9. Relative permeability curves of water and gas for the two-
phase drainage experiment (Sample 13, Experiment 16a of Oak’s
dataset). The solid square mark (¥) indicates the initial satura-
tion state of the core.

4.2 Two-phase flow experiments

The selected data come from two consecutive experiments, performed on a
fired Berea sandstone core of about 1000 md (Sample 13), using water and
gas as the wetting and the nonwetting phase, respectively.

4.2.1 Primary drainage experiment

The first experiment (Experiment 16a) corresponds to a drainage process,
where gas is injected into an initially water-filled core. This is done through
a sequence of steady states: water and gas are injected at constant rates and,
when steady state is achieved, the relative permeabilities and average satu-
rations are measured; then, the ratio of gas/water flow rates is increased, the
system reaches a new steady state, and the process continues. The relative
permeability curves for this experiment are plotted in Figure 9 in semi-log
scale.

The results of the power-law fitting of the data from the two-phase
drainage experiment are presented in Table 4. The most important observa-
tion is the essential difference in the value of the exponent mα for the wetting
phase (mw ≈ 8) and the nonwetting phase (mg ≈ 1.1). The actual fit of the
relative permeability data of water and gas is shown graphically in Figure 10.
From this figure it is apparent that the water relative permeability reaches a
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Table 4. Parameters of the power-law fitting for the two-phase drainage
experiment. Note the major difference in the value of the expo-
nent mα for water and gas.

Water Gas
Sα,max 0.7000 0.2500
Cα 2.6362 0.1902
Sαi 0.0000 0.0404
mα 8.0282 1.1377
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Figure 10. Behavior of the relative permeability as a function of its own
saturation in the neighborhood of the “endpoint saturation”,
for the two-phase drainage experiment: (a) the water relative
permeability curve shows a high-order behavior and, therefore,
a zero slope near the connate water saturation; (b) on the other
hand, the gas relative permeability curve displays an almost-
linear relation against gas saturation, which can be assimilated
to a nonzero slope near the critical gas saturation.

value of zero with a zero value of the slope, whereas the slope of the gas rela-
tive permeability curve is finite and positive. This experimental observation
is in agreement with the key condition (48) proposed in this paper.
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Figure 11. Relative permeability curves of water and gas for the two-phase
imbibition experiment (Sample 13, Experiment 16b of Oak’s
dataset). The solid square mark (¥) indicates the saturation
state of the core after primary drainage.

4.2.2 Secondary imbibition experiment

The data analyzed here (Sample 13, Experiment 16b) correspond to the
imbibition process following the primary drainage experiment described in
the previous paragraph. As before, the experiment involves a sequence of
steady states, except that now, when a steady state is achieved, the ratio of
gas/water flow rates is decreased. The relative permeability curves obtained
in this way are plotted in semi-log scale in Figure 11.

The results of the power-law fitting to the data are presented in Table 5.
Once again, the values of the exponent mα for the wetting phase (mw ≈ 4)
and the nonwetting phase (mg = 1) are fundamentally different. The actual
fit to the relative permeability data of water and gas is shown graphically in
Figure 12, and the same comments as in the drainage experiment follow: a
zero slope of the water relative permeability, and a positive slope of the gas
relative permeability near their respective immobile saturations.

4.3 Three-phase flow experiments

We repeat the same analysis for experiments involving simultaneous flow of
three fluids: water, oil, and gas. Water is the most wetting phase, and gas is
the least wetting. We present the results of two experiments: one simulating
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Table 5. Parameters of the power-law fitting for the two-phase imbibition
experiment.

Water Gas
Sα,max 0.6700 0.4500
Cα 3.9379 1.2051
Sαi 0.2785 0.3212
mα 3.9030 1.0000
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Figure 12. Behavior of the relative permeability as a function of its own
saturation in the neighborhood of the “endpoint saturation”,
for the two-phase imbibition experiment. Remarks in Figure 10
apply.
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Figure 13. Saturation path for the drainage-dominated three-phase rel-
ative permeability experiment (Sample 6, Experiment 15a of
Oak’s dataset). The square mark (¤) indicates the saturation
state of the core at the beginning of the experiment (initially
water-filled).

gas injection, and the other characteristic of waterflooding.

4.3.1 Drainage-dominated experiment

The first of the three-phase flow experiments consists in a sequence of steady
states of increasing average gas saturation. The jump in saturations from
one steady-state to the next is achieved by appropriately modifying the flow
rates at which each fluid is injected into the core. In particular, the ratio of
gas/water flow rates is increased, while the water/oil ratio is held constant.
The resulting saturation path for this experiment is shown on a ternary
diagram in Figure 13.

In Table 6 we present the parameters of the power-law fit for the water
and gas phases. In accordance with the two-phase flow results, we observe
a high value of the exponent (mw ≈ 3) for water, and a value close to one
(mg ≈ 1.2) for gas. The obvious interpretation is that the water relative
permeability curve reaches zero with a zero-value of the slope, whereas the
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Table 6. Parameters of the power-law fitting for the three-phase drainage-
dominated experiment.

Water Gas
Sα,max 0.4840 0.4000
Cα 0.1065 0.7162
Sαi 0.2092 0.0941
mα 2.8623 1.2552
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Figure 14. Behavior of the relative permeability as a function of its own
saturation in the neighborhood of the “endpoint saturation”, for
the three-phase drainage-dominated experiment. Resemblance
of actual data to the conceptual picture of Figure 8 is apparent.

slope is positive for the gas relative permeability (Figure 14).

4.3.2 Imbibition-dominated experiment

Our last example is a three-phase flow experiment, in which fluids are injected
in such a way that steady states of increasing water saturation are obtained.
This sequence is achieved by decreasing the ratio of gas/water flow rates,
while keeping constant the water/oil ratio. In Figure 15 we depict the satu-
ration path for this experiment, whose starting point is the saturation state
obtained at the end of drainage-dominated process analyzed before.

Table 7 has the numeric values of the power-law fit, and Figure 16 shows
the experimental data and the fitted relative permeability curves. The same
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Figure 15. Saturation path for the imbibition-dominated three-phase rel-
ative permeability experiment (Sample 6, Experiment 15b of
Oak’s dataset). The square mark (¤) indicates the saturation
state of the core at the end of the drainage-dominated experi-
ment (gas injection).

Table 7. Parameters of the power-law fitting for the three-phase imbibition-
dominated experiment.

Water Gas
Sα,max 0.5000 0.6000
Cα 0.4737 2.1985
Sαi 0.2569 0.3530
mα 3.2804 1.0000

qualitative behavior as that of the previous examples is observed (mw ≈ 3,
mg = 1).

Remark. The particular examples presented herein are representative
of more than one hundred experiments in Oak’s dataset. Experimental data
seems to corroborate the fundamental requirement for strict hyperbolicity of
the model, that is, a positive slope of the relative permeability of the most
nonwetting phase near its immobile saturation.
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Figure 16. Behavior of the relative permeability as a function of its own
saturation in the neighborhood of the “endpoint saturation”,
for the three-phase imbibition-dominated experiment.

5 Conclusions and future work

Traditional formulations of three-phase flow in porous media employ the
usual extension of Darcy’s equation to model fluid fluxes. Within this frame-
work, it was believed that elliptic regions were unavoidable when generic
relative permeability functions were used in models of one-dimensional im-
miscible incompressible three-phase flow. This conclusion was inferred after
a particular behavior of the relative permeabilities along the edges of the
saturation triangle was assumed.

In this paper we show it is possible to identify conditions which the rel-
ative permeability functions must satisfy for the system of equations to be
strictly hyperbolic everywhere in the saturation triangle. By means of a spe-
cific example, we suggest how strict hyperbolicity may be invoked to impose
constraints on the parameters of the relative permeability model. It turns out
that the fundamental requirement is a finite positive slope of the gas relative
permeability at the saturation where gas becomes mobile. This condition is
consistent with a pore-scale description of multiphase flow and, as shown in
this paper, is also supported by experimental relative permeability data.

This important result is restricted to the case when gravitational effects
are not accounted for, which is sensible only when the gravity number is
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small, or when flow is horizontal. It is possible, however, to extend this
analysis to the case when flow is not horizontal and gravity is included, by
allowing that relative permeabilities may vary with the gravity number [38].
This dependence is physically reasonable, and can be justified in terms of the
stability of the displacement of one fluid by another.

We admit that we still do not have a definite argument in favor or against
the presence of elliptic regions in the saturation space, although we find good
reasons to believe they are nothing else than mathematical artifacts of an
incorrect mathematical model. The implications of having elliptic character
in models of three-phase flow are discussed more fully elsewhere [37, 39].
Our current view is that one should use these hints to develop new relative
permeability models, or an improved description altogether of three-phase
flow in porous media.
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Unit conversion factors

1 centipoise (cp) = 10−3 Pa s
1 milidarcy (md) = 0.9869233× 10−15 m2
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