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2 I.C.F. Ipsensmall magnitude. Our goal is to give some intuition for what the boundsmean and why they hold.Suppose you have to compute an eigenvalue of a complex square matrixA. Numerical software usually produces a number �̂ that is not the desiredeigenvalue. So you ask yourself how far away is �̂ from an eigenvalue of A?If �̂ was produced by a reliable (i.e. backward stable) numerical method,there is a round o� error analysis to assure you that �̂ is an eigenvalue ofa nearby matrix A + E, where E is small in some sense. Then you canuse perturbation theory to estimate the error in �̂. For instance, whenA is diagonalisable the Bauer-Fike theorem bounds the absolute distancebetween �̂ and a closest eigenvalue � of A byj�� �̂j � �(X) kEk; (1.1)where �(X) � kXkkX�1k is the condition number of an eigenvector matrixX of A.The quantity j���̂j represents an absolute error. Traditional perturbationtheory assesses the quality of a perturbed eigenvalue by bounding absoluteerrors. However there are practical situations where small eigenvalues havephysical meaning and should be determined to high relative accuracy. Suchsituations include computing modes of vibration in a �nite element context,and computing energy levels in quantum mechanical systems (Demmel, Gu,Eisenstat, Slapni�car, Veseli�c and Drma�c 1997, x1). Absolute error boundscannot cope with relative accuracy, especially when confronted with smalleigenvalues or singular values. The following section explains why.1.1. Why Absolute Bounds Don't Do the JobIf we want relative accuracy, we need relative error bounds. The simplestway to generate a relative error bound is to divide an absolute error boundby an eigenvalue. For instance, dividing the absolute error bound (1:1) bya non-zero eigenvalue � produces the relative error boundj�� �̂jj�j � kEkj�j :Unlike the absolute bound, though, the relative bound depends on �. Thishas several disadvantages. First, each eigenvalue has a di�erent relativebound. Second, the relative bound is smaller for eigenvalues � that arelarge in magnitude than for those that are small in magnitude. Third, therelative bound can be pessimistic for eigenvalues of small magnitude, as thefollowing example illustrates.



Relative Perturbation Results 3Example 1.1 The mere act of storing a diagonal matrixA = 0B@�1 . . . �n1CAin 
oating point arithmetic produces a perturbed matrixA+E = 0B@�1(1 + �1) . . . �n(1 + �n)1CA ;where j�ij � � and � > 0 re
ects the machine accuracy. According to theabsolute perturbation bound (1:1), the error in an eigenvalue �̂ of A+E isbounded by mini j�i � �̂j � kEk = maxk j�k�kj � � maxk j�kj:This bound is realistic for eigenvalues of largest magnitude: If �̂ is closestto an eigenvalue �max of largest magnitude among all eigenvalues of A, thenj�max � �̂jj�maxj � �:Since the relative error in all eigenvalues does not exceed �, the bound istight in this case.However the bound is too pessimistic for eigenvalues of smallest magni-tude: If �̂ is closest to an eigenvalue �min of smallest magnitude among alleigenvalues of A, then j�min � �̂jj�minj � � j�maxjj�minj :The bound is much larger than � when the magnitude of the eigenvaluesvaries widely. Since the relative error does not exceed �, the bound is nottight. 2There are algorithms whose relative error bounds do not depend on theeigenvalues. These algorithms compute all eigenvalues or singular values tohigh relative accuracy, even those of small magnitude: the dqds algorithm forsingular values of bidiagonal matrices (Fernando and Parlett 1994, Parlett1995), for instance, as well as Jacobi methods for eigenvalues of symmetricpositive-de�nite matrices and for singular values (Demmel 1997, x5.4.3),(Mathias 1995a). Absolute perturbation bounds cannot account for thisphenomenon.Absolute error bounds are well suited for describing the accuracy of �xedpoint arithmetic. But �xed point arithmetic has been replaced by 
oat-ing point arithmetic, especially on general purpose machines where many



4 I.C.F. Ipseneigenvalue and singular value computations are carried out nowadays. Theaccuracy of 
oating point arithmetic is best described by relative errors.In the absence of under
ow and over
ow, a number � is represented as a
oating point number̂� � �(1 + ��); where j��j � �;and � > 0 re
ects the machine accuracy. In IEEE arithmetic, for instance,� � 10�7 in single precision and � � 10�16 in double precision. Thereforethe accuracy of 
oating point arithmetic can be described by relative errorbounds of the formj�̂� �j � j�j � or j�̂� �j � j�̂j �:Absolute error bounds cannot model this situation.And even if you never require high relative accuracy from your smalleigenvalues or singular values, you can still pro�t from it. It turns out thatintermediate quantities computed to high relative accuracy can sometimesspeed up subsequent computations. For instance, computing eigenvalues ofa real, symmetric, tridiagonal matrix to high relative accuracy can accelerateeigenvector computations because the time consuming process of orthogo-nalising eigenvectors can be shortened or even avoided (Dhillon, Fann andParlett 1997).Now that we have established the need for `genuine' relative error boundsbeyond any shadow of a doubt, it's time to �nd out what kind of relativebounds are out there.1.2. OverviewRelative error bounds have been derived in the context of two di�erentperturbation models:� Additive perturbations (xx2, 3, 4) represent the perturbed matrix asA+E.� Multiplicative perturbations (xx5, 6, 7) represent the perturbed matrixas D1AD2, where D1 and D2 are non-singular matrices.The traditional absolute error bounds are derived in the context of addi-tive perturbations.We group the bounds for eigenvalues (x2, x5) and for singular values (x3,x6) according to a loose order of increasing specialisation:� Bauer-Fike-type:Two-norm bounds on the distance between a perturbed eigenvalue anda closest exact eigenvalue.� Ho�man-Wielandt-type:Frobenius norm bounds on the sum (of squares) of all distances between



Relative Perturbation Results 5perturbed eigenvalues and corresponding exact eigenvalues, where per-turbed and exact eigenvalues are paired up in a one-to-one fashion.Similar for singular values.� Weyl-type:Two norm bounds on the largest distance between a perturbed eigen-value and the corresponding exact eigenvalue, where the ith largestperturbed eigenvalue is paired up with the ith largest exact eigenvalue.Similar for singular values.There are several di�erent ways to normalise an absolute error j�� �̂j andturn it into a relative error. We present bounds for the following relativeerror measures j�� �̂jj�j ; j�� �̂jqj�j j�̂j ; j�� �̂jpqj�jp + j�̂jp ;where 1 � p � 1 is an integer. For instance, the traditional relative errorj�� �̂j=j�j can be larger or smaller than the second error measure, while itis never smaller than the third. Detailed relationships among the di�erentmeasures are discussed in (Li 1994a, x2). Since the measures are essentiallyproportional to each other we disregard any di�erences among them.Sections xx4 and 7 discuss applications of additive and multiplicative per-turbations.1.3. NotationWe use two norms: the two-normkAk = maxx6=0 kAxkkxk ; where kxk = px�x;and the superscript � denotes the conjugate transpose; and the Frobeniusnorm kAkF = sXi;j jaij j2;where aij are the elements of the matrix A. The identity matrix of order nis I = 0B@ 1 . . . 11CA = ( e1 : : : en )with columns ei.For a matrix A we denote by range(A) its column space, A�1 its inverseand Ay its Moore-Penrose inverse. The absolute value matrix jAj has ele-ments jaij j. A matrix inequality of the form jAj � jBj is meant element-wise,i.e. jaij j � jbij j for all i and j.



6 I.C.F. Ipsen2. Additive Perturbations for EigenvaluesLet A be a complex square matrix. We want to bound the absolute andrelative errors in the eigenvalues of the perturbed matrix A + E. In theprocess we show that relative error bounds are as natural as absolute errorbounds, and that many relative bounds are implied by absolute bounds.2.1. Bauer-Fike-Type Bounds for Diagonalisable MatricesThe Bauer-Fike theorem bounds the distance between an eigenvalue of A+Eand a closest eigenvalue of A. The matrix A must be diagonalisable, whileA+E does not have to be.Let A = X�X�1 be an eigendecomposition of A, where� = 0B@�1 . . . �n1CA ;and �i are the eigenvalues of A. Let �̂ be an eigenvalue of A+E.The Bauer-Fike Theorem for the two-norm (Bauer and Fike 1960, Theo-rem IIIa) bounds the absolute error,mini j�i � �̂j � �(X) kEk: (2.1)The relative version of the Bauer-Fike Theorem below requires in additionthat A be non-singular.Theorem 2.1 If A is diagonalisable and non-singular thenmini j�i � �̂jj�ij � �(X) kA�1Ek;where �(X) � kXk kX�1k.Proof. (Eisenstat and Ipsen 1997, Corollary 3.2)The idea is to `divide' by the eigenvalues of A and apply the absoluteerror bound (2:1).Write (A+E)x̂ = �̂x̂ as(�̂A�1 �A�1E)x̂ = x̂:This means, 1 is an eigenvalue of �̂A�1 �A�1E. The matrix �̂A�1 has thesame eigenvector matrix as A and its eigenvalues are �̂=�i. Apply the Bauer-Fike Theorem (2:1) to �̂A�1 and to the perturbed matrix �̂A�1 � A�1E.2 If we interpret the ampli�er �(X) as a condition number for the eigenval-ues of A then absolute and relative error bounds have the same condition



Relative Perturbation Results 7number. This means in the eyes of the Bauer-Fike Theorem an eigenvalue isas sensitive in the absolute sense as it is in the relative sense. A comparisonof the absolute bound (2:1) and the relative bound in Theorem 2.1 showsthat the absolute error is bounded in terms of the absolute perturbationE, while the relative error is bounded in terms of the relative perturbationA�1E.But A�1E is not the only way to express a relative perturbation. Whykeep A�1 on the left of E? Why not move it to the right, or distribute iton both sides of E? Splitting A = A1A2 and sandwiching E between thetwo factors, like A�11 EA�12 , results in undreamt-of possibilities for relativeperturbations.Theorem 2.2 Let A be diagonalisable and non-singular. If A = A1A2where A1 and A2 commute thenmini j�i � �̂jj�ij � �(X) kA�11 EA�12 k:Proof. (Eisenstat and Ipsen 1997, Corollary 3.4)The idea is to apply Theorem 2.1 to the similarity transformationsA2AA�12 and A2(A+E)A�12 :Fortunately, similarity transformations preserve eigenvalues. And the com-mutativity of A1 and A2 prevents the similarity from changing A,A2 AA�12 = A2 (A1A2) A�12 = A2A1 = A1A2 = A:Therefore we retain the condition number of the original eigenvector matrixX. 2When A1 = A and A2 = I, Theorem 2.2 reduces to the relative bound inTheorem 2.1. Setting A1 = I and A2 = A gives (Eisenstat and Ipsen 1997,Corollary 3.5) mini j�i � �̂jj�ij � �(X) kEA�1k:This bound includes as a special case (Veseli�c and Slapni�car 1993, Theorem3.17). Another popular choice for A1 and A2 is a square root A1=2 of A. Inthis case Theorem 2.2 gives (Eisenstat and Ipsen 1997, Corollary 3.6)mini j�i � �̂jj�ij � �(X) kA�1=2EA�1=2k:2.2. Bauer-Fike-Type Bounds for Normal MatricesNormal matrices have unitary eigenvector matrices but, in contrast to Her-mitian or real symmetric matrices, their eigenvalues are not necessarily real.



8 I.C.F. IpsenNormal matrices include Hermitian, skew-Hermitian, real symmetric, realskew-symmetric, diagonal, unitary and real orthogonal matrices.Since the condition number of a unitary eigenvector matrix equals one, theBauer-Fike theorem applied to a normal matrix A simpli�es. The absoluteerror bound (2:1) becomes mini j�i � �̂j � kEk;while the corresponding relative bound requires again that A be non-singu-lar.Theorem 2.3 Let A be normal and non-singular. If A = A1A2, where A1and A2 commute, thenmini j�i � �̂jj�ij � kA�11 EA�12 k:Proof. Follows immediately from Theorem 2.2. 2Therefore eigenvalues of normal matrices are well-conditioned, in the ab-solute as well as in many relative senses. The relative bound in Theorem 2.3is tight for diagonal matrices A and component-wise perturbations E, likethose in Example 1.1.For the relative bound to remain in e�ect, A1 and A2 have to commute.Our choices for `commuting factorisations' have been so far:(A1; A2) = (A; I); (A1; A2) = (I;A); (A1; A2) = (A1=2; A1=2):But since A is normal there is another commuting factorisation: the polarfactorisation. Every square matrix A has a polar factorisation A = HU ,where H � (AA�)1=2 is Hermitian positive-semide�nite and U is unitary(Horn and Johnson 1985, Theorem 7.3.2). The matrix H is always unique,while U is only unique when A is non-singular. In particular, when A isHermitian positive-de�nite H = A and U is the identity. We use the factthat polar factors of normal non-singular matrices commute in the followingsense (Eisenstat and Ipsen 1997, Lemma 4.2)HU = UH = H1=2UH1=2:Theorem 2.4 If A is normal and non-singular, with Hermitian positive-de�nite polar factor H thenmini j�i � �̂jj�ij � kH�1=2EH�1=2k:Proof. (Eisenstat and Ipsen 1997, Theorem 4.3)Since A = H1=2UH1=2, we can set A1 = H1=2U and A2 = H1=2 in Theo-



Relative Perturbation Results 9rem 2.3 to getkA�11 EA�12 k = kU�H�1=2EH�1=2k = kH�1=2EH�1=2k:2Therefore the eigenvalues of a normal matrix have the same relative errorbound as the eigenvalues of its positive-de�nite polar factor. This suggeststhat the eigenvalues of a normal matrix are as well conditioned as the eigen-values of its positive-de�nite polar factor. More generally we conclude thateigenvalues of normal matrices are no more sensitive than eigenvalues ofHermitian positive-de�nite matrices.2.3. Ho�man-Wielandt-Type Bounds for Diagonalisable MatricesThe Ho�man-Wielandt theorem establishes a one-to-one pairing between alleigenvalues of A and A + E and bounds the sum of all pairwise distancesin the Frobenius norm. This requires not only A but also A + E to bediagonalisable.Let A and A + E be diagonalisable matrices with eigendecompositionsA = X�X�1 and A+E = X̂�̂X̂�1, respectively. The eigenvalues are� = 0B@�1 . . . �n1CA ; �̂ = 0B@ �̂1 . . . �̂n1CA :The extension of the Ho�man-Wielandt theorem from normal to diag-onalisable matrices (Elsner and Friedland 1995, Theorem 3.1) bounds theabsolute error, vuut nXi=1 j�i � �̂�(i)j2 � �(X̂) �(X) kEkF (2.2)for some permutation � . The condition numbers �(X) and �(X̂) are ex-pressed in the two-norm to make the bound tighter, since the two-normnever exceeds the Frobenius norm.We can obtain a relative Ho�man-Wielandt-type bound from a strongerversion of (2:2) that deals with eigenvalues of matrix products. To thisend write the perturbed matrix as AC + E, where C must have the sameeigenvector matrix as AC + E. The bound (2:2) is the special case whereC = I. The eigendecomposition of C isC = X̂�X̂�1; where � = 0B@ 
1 . . . 
n1CA :



10 I.C.F. IpsenThe eigendecompositions of A and the perturbed matrix remain the same,A = X�X�1; AC +E = X̂�̂X̂�1:The stronger Ho�man-Wielandt-type bound below bounds the sum of squaresof absolute errors in the products of the eigenvalues of A and C.Lemma 2.1 If A, C and AC + E are diagonalisable then there exists apermutation � such thatvuut nXi=1 j�i
�(i) � �̂�(i)j2 � �(X̂) �(X) kEkF :Proof. (Eisenstat and Ipsen 1997, Theorem 6.1) 2Now we are ready for the relative bound. The stronger absolute bound inLemma 2.1 implies a relative version of the original Ho�man-Wielandt-typebound (2:2), provided A is non-singular.Theorem 2.5 Let A and A + E be diagonalisable. If A is non-singularthen there exists a permutation � so thatvuuut nXi=1 j�i � �̂�(i)jj�ij !2 � �(X̂) �(X) kA�1EkF :Proof. (Eisenstat and Ipsen 1997, Corollary 6.2)Since A�1(A+E)�A�1E = I we can set�A � A�1; C � A+E; �E � �A�1E:Then �A is diagonalisable with eigenvector matrix X and eigenvalues ��1i ; Cis diagonalisable with eigenvector matrix X̂ and eigenvalues �̂i; and �AC +�E = X̂IX̂�1 is diagonalisable, where the eigenvalues are 1 and one canchoose X̂ as an eigenvector matrix. Applying Lemma 2.1 to �A, C and �Egives nXi=1 j��1i �̂�(i) � 1j2 � �(X̂)2�(X)2kA�1Ek2F :22.4. Ho�man-Wielandt-Type Bounds for Hermitian MatricesWhen A and A+E are Hermitian the permutation in the Ho�man-WielandtTheorem is the identity, provided exact and perturbed eigenvalues are num-bered as �n � : : : � �1; �̂n � : : : � �̂1:



Relative Perturbation Results 11The Ho�man-Wielandt Theorem for Hermitian matrices (Bhatia 1997, Ex-ercise III.6.15) (L�owner 1934) bounds the absolute error byvuut nXi=1 j�i � �̂ij2 � kEkF : (2.3)The relative bound below requires in addition that A and A+E be positive-de�nite.Theorem 2.6 If A and A+E be Hermitian positive-de�nite thenvuut nXi=1 j�i � �̂ij2�i�̂i � kA�1=2EA�1=2 (I +A�1=2EA�1=2)�1=2kF :Proof. (Li 1994a, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4')2As consequence a small kA�1=2EA�1=2kF guarantees a small eigenvalueerror. If one does not mind dealing with majorisation theory one can de-rive bounds that are stronger than Theorem 2.6 and hold for any unitarilyinvariant norm (Li and Mathias 1997, Proposition 3.4, (3.19)).2.5. Weyl-Type BoundsWeyl's perturbation theorem (Bhatia 1997, Corollary III.2.6) bounds theworst distance between the ith eigenvalues of Hermitian matrices A andA+E in the two-norm, max1�i�n j�i � �̂ij � kEk: (2.4)The absolute bound (2:4) implies a relative bound, provided that A ispositive-de�nite. There is no restriction on E other than being Hermitian.Theorem 2.7 Let A and A+E be Hermitian. If A is also positive-de�nitethen max1�i�n j�i � �̂ijj�ij � kA�1=2EA�1=2k:Proof. (Eisenstat and Ipsen 1997, Corollary 5.2), (Mathias 1994, Theorem2.3)We reproduce the proof from (Eisenstat and Ipsen 1997) because it ex-plains how the absolute bound (2:4) implies the relative bound. Fix an indexi. Let x̂ be an eigenvector of A+E associated with �̂i, i.e.(A+E)x̂ = �̂ix̂:Multiplying (�̂iI �E)x̂ = Ax̂ by A�1=2 on both sides gives( �A+ �E) z = z;



12 I.C.F. Ipsenwhere �A � �̂iA�1; �E � �A�1=2EA�1=2; z � A1=2x̂:Hence 1 is an eigenvalue of �A+ �E.We show that it is actually the (n � i + 1)st eigenvalue and argue as inthe proof of (Eisenstat and Ipsen 1995, Theorem 2.1). Since �̂i is the itheigenvalue of A+E, 0 must be the ith eigenvalue of(A+E)� �̂iI = A1=2 (I � �A� �E) A1=2:But this is a congruence transformation because square-roots of positive-de�nite matrices are Hermitian. Congruence transformations preserve theinertia. Hence 0 is the ith eigenvalue of I � �A� �E, and 1 is the (n� i+1)steigenvalue of �A+ �E.Applying Weyl's Theorem (2:4) to �A and �A+ �E givesmax1�j�n ����� �̂i�n�j+1 � �j����� � k �Ek = kA�1=2EA�1=2k;where �j are the eigenvalues of �A + �E. When j = n � i + 1, then �j = 1and we get the desired bound. 2The following example illustrates what the relative bound in Theorem 2.7looks like when E is a component-wise relative perturbation.Example 2.1 (Mathias 1994, pages 6, 7)Let's �rst subject a single diagonal element of a Hermitian positive-de�nitematrix A to a component-wise relative perturbation. Say, ajj is perturbedto ajj(1 + �). The perturbed matrix is A + E, where E = �ejeTj and ej isthe jth column of the identity matrix. ThenkA�1=2EA�1=2k = j�j kA�1=2ejeTj A�1=2k = j�j jeTj A�1=2A�1=2ej j= j�j (A�1)jj;where (A�1)jj is the jth diagonal element of A�1 (which is positive since Ais positive-de�nite). The relative error bound in Theorem 2.7 ismax1�i�n j�i � �̂ijj�ij � j�j (A�1)jj:This means, a small relative error in a diagonal element of a Hermitianpositive-de�nite matrix causes only a small relative error in the eigenvaluesif the corresponding diagonal element of the inverse is not much larger thanone.Next we'll subject a pair of o�-diagonal elements to a component-wiserelative perturbation. Say, ajk and akj are perturbed to ajk(1 + �) andakj(1+�), respectively. The perturbed matrix is A+E, where E = �(ejeTk +



Relative Perturbation Results 13ejeTk ). In this case we getkA�1=2EA�1=2k � 2j�jq(A�1)jj(A�1)kk:The relative error bound in Theorem 2.7 becomesmax1�i�n j�i � �̂ijj�ij � 2j�jq(A�1)jj(A�1)kk:This means, a small relative error in a pair of o�-diagonal elements of aHermitian positive-de�nite matrix causes only a small relative error in theeigenvalues if the product of the corresponding diagonal elements in theinverse is not much larger than one. 2The bound below, for a di�erent error measure, is similar to the Frobeniusnorm bound in Theorem 2.6.Theorem 2.8 If A and A+E are Hermitian positive-de�nite thenmax1�i�n j�i � �̂ijq�i�̂i � kA�1=2EA�1=2 (I +A�1=2EA�1=2)�1=2k:Proof. (Li 1994a, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4')22.6. Weyl-Type Bounds for More Restrictive PerturbationsIt is possible to get a Weyl-type bound for eigenvalues of Hermitian matri-ces without o�cially asking for positive-de�niteness. The price to be paid,however, is a severe restriction on E to prevent perturbed eigenvalues fromswitching sign.Theorem 2.9 Let A and A+E be Hermitian. If 0 < �l � �u and�l x�Ax � x�Ex � �u x�Ax for all xthen �l �i � �̂i � �i � �u �i; 1 � i � n:Proof. This is a consequence of (Barlow and Demmel 1990, Lemma 1).The Minimax Principle for eigenvalues of Hermitian matrices (Bhatia1997, Corollary III.1.2) implies�i = maxdim(S)=iminx2S x�Axx�x = minx2S0 x�Axx�x ;for some subspace S0 of dimension i. Then�̂i = maxdim(S)=iminx2S x�(A+E)xx�x � minx2S0 x�(A+E)xx�x = x�0(A+E)x0x�0x0



14 I.C.F. Ipsenfor some x0 2 S0. The above expression for �i and the assumption implyx�0(A+E)x0x�0x0 � minx2S0 x�Axx�x + �lx�0Ax0x�0x0 � �i + �l�i;where we have also used the fact �l > 0. Hence �l�i � �̂i � �i. The upperbound is proved similarly using the characterisation�i = mindim(S)=n�i+1maxx2S x�Axx�x :2Therefore the relative error in the eigenvalues lies in the same interval asthe relative perturbation. The relative error bound in Theorem 2.9 implies(1 + �l) �i � �̂i � (1 + �u) �i;where �l and �u are positive. Hence �̂i has the same sign as �i, and j�̂ij > j�ij.Thus the restriction on the perturbation is strong enough that it not onlyforces A and A+E to have the same inertia, but it also pushes the perturbedeigenvalues farther from zero than the exact eigenvalues.The restriction on the perturbation in the following bound is slightlyweaker. It uses the polar factor technology from Theorem 2.4.Theorem 2.10 Let A and A + E be Hermitian. If H is the positive-semide�nite polar factor of A and if for some 0 < � < 1jx�Exj � � x�Hx for all xthen j�i � �̂ij � � j�ij:Proof. This is a consequence of (Veseli�c and Slapni�car 1993, Theorem 2.1).The assumption impliesx�(A� �H)x � x�(A+E)x � x�(A+ �H)x:If A = X�X� is an eigendecomposition of A then, because A is Hermitian,the polar factor is H = Xj�jX�, where j�j is the matrix whose elements arethe absolute values of �. Hence A and H have the same eigenvectors. Amin-max argument as in the proof of Theorem 2.9 establishes�i � �j�ij � �̂i � �i + �j�ij:2Therefore the relative error in the eigenvalues is small if the relative per-turbation with regard to the polar factor is small. Since 0 < � < 1 therelative error bound implies that �̂i has the same sign as �i. Hence theassumptions in Theorem 2.10 ensure that A+E has the same inertia as A.



Relative Perturbation Results 15Theorem 2.10 applies to component-wise relative perturbations. Matrixinequalities below of the form jEj � �jAj are to be interpreted element-wise.Corollary 2.1 Let A and A + E be Hermitian, and jEj � � jAj for some� > 0. If H is the positive-de�nite polar factor of A and for some � > 0� jxj�jAjjxj � � x�Hx for all xthen j�i � �̂ij � � j�ij:Proof. This is a consequence of (Veseli�c and Slapni�car 1993, Theorem 2.11).We merely need to verify that the assumptions of Theorem 2.10 hold,jx�Exj � jxj�jEjjxj � � jxj�jAjjxj � � x�Hx:22.7. Congruence Transformations for Positive-De�nite MatricesAll the bounds we have presented so far for positive-de�nite matrices con-tain the term A�1=2EA�1=2. Since A is Hermitian positive-de�nite, A1=2is Hermitian, which makes A�1=2EA�1=2 Hermitian. This in turn impliesthat the two-norm and Frobenius norm of A�1=2EA�1=2 are invariant undercongruence transformations. We say that two square matrices A and M arecongruent if A = D�MD for some non-singular matrix D. If A is Hermitianpositive-de�nite, so is M because congruence transformations preserve theinertia.We start out by showing that the bound in Theorem 2.7 is invariant undercongruence transformations.Corollary 2.2 Let A and be Hermitian positive-de�nite and A + E Her-mitian. If A = D�MD and A+E = D�(M +F )D, where D is non-singular,then max1�i�n j�i � �̂ijj�ij � kM�1=2FM�1=2k:Proof. (Mathias 1994, Theorem 2.4)Start with the bound in Theorem 2.7,max1�i�n j�i � �̂ijj�ij � kA�1=2EA�1=2k:Positive-de�niteness is essential here. Since A is Hermitian positive-de�nite,it has a Hermitian square-root A1=2. Hence A�1=2EA�1=2 is Hermitian. Thisimplies that the norm is an eigenvalue,kA�1=2EA�1=2k = max1�j�n j�j(A�1=2EA�1=2)j:



16 I.C.F. IpsenNow comes the trick. Since eigenvalues are preserved under similarity trans-formations, we can reorder the matrices in a circular fashion until all gradingmatrices have cancelled each other out,�j(A�1=2EA�1=2) = �j(A�1E) = �j(D�1 M�1F D) = �j(M�1F )= �j(M�1=2FM�1=2):At last recover the norm,max1�j�n j�j(M�1=2FM�1=2)j = kM�1=2FM�1=2k:2Corollary 2.2 extends (Barlow and Demmel 1990, Theorem 2) and (Dem-mel and Veseli�c 1992, Theorem 2.3) to a larger class of matrices. It suggeststhat the eigenvalues of A+E have the same error bound as the eigenvaluesof M + F . We can interpret this to mean that the eigenvalues of a Hermi-tian positive-de�nite matrix behave as well as the eigenvalues of any matrixcongruent to A. The example below illustrates this.Example 2.2 (Demmel and Veseli�c 1992, page 1211)The matrix A = 0@ 1040 1029 10191029 1020 1091019 109 1 1Ais symmetric positive-de�nite with eigenvalues (to six decimal places)1:00000 � 1040; 9:90000 � 1019; 9:81818 � 10�1:If we write A = DMD, whereM = 0@ 1 :1 :1:1 1 :1:1 :1 1 1A ; D = 0@ 1020 1010 11A ;then the eigenvalues of M are (to six decimal places)9:00000 � 10�1; 9:00000 � 10�1; 1:20000:Corollary 2.2 implies that the widely varying eigenvalues of A, and inparticular the very small ones, are as impervious to changes in M as theuniformly sized eigenvalues of M .Already thirty years ago structural engineers considered congruence trans-formations like the one above where D is diagonal and all diagonal elementsof M are equal to one (Rosano�, Glouderman and Levy 1968, pages 1041,1050). They observed that such an equilibration `reduce[s] the ratio of ex-treme eigenvalues' (Rosano� et al. 1968, page 1045), and that `equilibrationis of major importance in measurement of matrix conditioning' (Rosano� etal. 1968, page 1059). 2



Relative Perturbation Results 17From the circular reordering argument in the proof of Corollary 2.2 italso follows that the other bounds for positive-de�nite matrices are invariantunder congruences. One bound is Theorem 2.8.Corollary 2.3 Let A and A + E be Hermitian positive-de�nite. If A =D�MD and A+E = D�(M + F )D, where D is non-singular thenmax1�i�n j�i � �̂ijq�i�̂i � kM�1=2FM�1=2 (I +M�1=2FM�1=2)�1=2k:Proof. (Li 1994a, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4')2The other bound that is also invariant under congruences is the Frobeniusnorm bound Theorem 2.6.Corollary 2.4 Let A and A + E be Hermitian positive-de�nite. If A =D�MD and A+E = D�(M + F )D, where D is non-singular thenvuut nXi=1 j�i � �̂ij2�i�̂i � kM�1=2FM�1=2 (I +M�1=2FM�1=2)�1=2kF :Proof. (Li 1994a, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4')Since the Frobenius norm sums up squares of eigenvalues, the bound fromTheorem 2.8 can be written askA�1=2EA�1=2 (I +A�1=2EA�1=2)�1=2k2F = nXi=1 �2i1 + �iwhere �i are the eigenvalues of the Hermitian matrix A�1=2EA�1=2. Thecircular reordering argument from the proof of Corollary 2.2 implies that �iare also the eigenvalues of M�1=2FM�1=2. 2One may wonder what's so interesting about congruence transformations.One can use congruence transformations to pull the grading out of a matrix(Barlow and Demmel 1990, x2), (Demmel and Veseli�c 1992, x1, x2.1), (Math-ias 1995a). Consider the matrix A in Example 2.2. It has elements of widelyvarying magnitude that decrease from top to bottom. The diagonal matrixD removes the grading and produces a matrix M , where M � D�1AD�1,all of whose elements have about the same order of magnitude and all ofwhose eigenvalues are of about the same size.More generally we say that a Hermitian positive-de�nite matrix A isgraded , or scaled , if A = DMD� and the eigenvalues of M vary much lessin magnitude than the eigenvalues of A (Mathias 1995a, x1).



18 I.C.F. Ipsen2.8. Congruence Transformations for Inde�nite MatricesSince the application of congruence transformations is not restricted to Her-mitian positive-de�nite matrices, we may as well try to �nd out whetherinde�nite matrices are invariant under congruences. It turns out that theresulting error bounds are weaker than the ones for positive-de�nite matricesbecause they require stronger assumptions.If we are a little sneaky (by extracting the congruence from the polarfactor rather than the matrix proper) then the bound for normal matricesin Theorem 2.4 becomes invariant under congruences.Corollary 2.5 Let A be normal and non-singular, with Hermitian posi-tive-de�nite polar factor H. If D is non-singular andE = DE1D�; H = DM1D�then mini j�i � �̂jj�ij � kM�1=21 E1M�1=21 k:Proof. (Eisenstat and Ipsen 1997, Corollary 4.4) 2This means the error bound for eigenvalues of a normal matrix is thesame as the error bound for eigenvalues of the best scaled version of itspositive-de�nite polar factor.Let's return to Weyl-type bounds, but now under the condition that thecongruence transformation is real diagonal. Theorem 2.10 leads to a boundthat is essentially scaling invariant. It is similar to the one above, in thesense that the scaling matrix is extracted from its positive-de�nite polarfactor. However now the perturbations are restricted to be component-wiserelative.Corollary 2.6 Let A = DMD be non-singular Hermitian, where D is di-agonal with positive diagonal elements, and let H = DM1D be the positive-de�nite polar factor of A. If A + E is Hermitian and jEj � � jAj for some� > 0 then max1�i�n j�i � �̂ijj�ij � �k jM j k kM�11 k:Proof. This is a consequence of (Veseli�c and Slapni�car 1993, Theorem 2.13).We use variational inequalities to show that the assumptions of Corollary2.1 are ful�lled. Since D is positive-de�nite,jxj�jAj jxj = jxj�D jM jDjxj � k jM j k x�D2x for all x:Variational inequalities implyx�D2x � kM�11 k x�Hx:



Relative Perturbation Results 19Therefore � jxj�jAj jxj � � x�Hx for all x;where � � � k jM j k kM�11 k. Now apply Corollary 2.1. 2The ampli�er in the bound, k jM j k kM�11 k, is almost like the conditionnumber of the absolute value matrix jM j or almost like the condition numberof the scaled polar factor M1. Therefore the relative error in the eigenvaluesof a Hermitian matrix is small if the polar factor and the absolute value ofthe matrix are well-scaled.The following bound is similar in the sense that it applies to a columnscaling of a Hermitian matrix A = MD. In contrast to Corollary 2.6,however, the scaled matrix M is in general not Hermitian anymore; andthe inverse of the scaled matrix, M�1, now appears in the bound ratherthan the inverse of the scaled polar factor, M�11 .Corollary 2.7 Let A = MD be non-singular Hermitian and D diagonalwith positive diagonal elements. If A+ E is Hermitian, and jEj � � jAj forsome � > 0 then max1�i�n j�i � �̂ijj�ij � �k jM j k kM�1k:Proof. (Veseli�c and Slapni�car 1993, Theorem 3.16)First we take care of the scaling matrix D. The technology of previousproofs requires that D appear on both sides of the matrix. That's why weconsider A2 = A�A = DM�MD. The component-wise perturbation impliesjx�E2xj � �2 jxj�jAj2 jxj:Proceeding as in the proof of Corollary 2.6 givesjxj�jAj2 jxj � k jM j k2 kM�1k2 x�A2x for all x:Hence jx�E2xj � �2 x�A2x;where � � � k jM j k kM�11 k. Now that we got rid of D, we need to undothe squares. In order to take the positive square-root without losing themonotonicity we need positive-de�nite matrices under the squares. Polarfactors do the job.If H and HE are the Hermitian positive-de�nite polar factors of A andE, respectively thenx�E2x = x�H2Ex; x�A2x = x�H2x:Therefore x�H2Ex � �2 x�H2x for all x:



20 I.C.F. IpsenNow comes the trick. Because HE and H are Hermitian positive-de�nite wecan apply the fact that the square-root is operator-monotone (Bhatia 1997,Proposition V.I.8) and concludex�HEx � � x�Hx:Since jx�Exj � x�HEx, Theorem 2.10 applies. 2The next bound, the last one in this section, applies to general pertur-bations. Compared to other bounds it severely constrains the size of theperturbation by forcing it to be smaller than any eigenvalue of any principalsubmatrix.Theorem 2.11 Let A = DMD and A + E = D(M + F )D be real, sym-metric and D a real non-singular diagonal matrix. Among all eigenvalues ofprincipal submatrices ofM , let � be the smallest in magnitude. If kFk < j�jthen �kFk2j�j � kFkj�j2 � �̂i � �i�i � kFk 2j�j � kFk(j�j � kFk)2 ; 1 � i � n:Proof. (Gu and Eisenstat 1993, Corollary 5) 22.9. Ritz ValuesRitz values are `optimal' approximations to eigenvalues of Hermitian matri-ces.Let A be a Hermitian matrix of order n and Q a matrix with m orthonor-mal columns. Then W � Q�AQ is a matrix of order m whose eigenvalues�̂1 � : : : � �̂m;are called Ritz values of A (Parlett 1980, x11.3). The corresponding residualis R � AQ � QW . Ritz values are optimal in the following sense. GivenQ, the norm of R can only increase if we replace W by another matrix, i.e.(Parlett 1980, Theorem 11-4-5),kRk = kAQ�QWk � kAQ�QCkfor all matrices C of order m.Moreover one can always �nd m eigenvalues of A that are within absolutedistance kRk of the Ritz values (Parlett 1980, Theorem 11-5-1),max1�j�m j��(j) � �̂jj � kRkfor some permutation � .Unfortunately the corresponding relative error bounds are not as sim-ple. They are expressed in terms of angles between the relevant subspacesrange(Q), range(AQ), and range(A�1Q). Let 0 � �1 � �=2 be the maximal



Relative Perturbation Results 21principal angle between range(Q) and range(AQ), and 0 � �2 � �=2 be themaximal principal angle between range(AQ) and range(A�1Q).Theorem 2.12 If A is non-singular Hermitian then there exists a permu-tation � so that max1�i�m j��(i) � �̂ijj��(i)j � sin �1 + tan �2:Proof. (Drma�c 1996a, Theorem 3, Proposition 5)In order to exhibit the connection to previous results we sketch the ideafor the proof. First express the Ritz values as an additive perturbation. Tothis end de�ne the Hermitian perturbationE � �(RQ� +QR�):Then Q is an invariant subspace of A+E,(A+E)Q = QW;and the eigenvalues of W are eigenvalues of A+E.Now proceed as in the proof of Corollary 2.7 and look at the squares,x�E2x = x�A� A��E�EA�1 Ax � kEA�1k2x�A2x for all x:Undo the squares using polar factors and the operator-monotonicity of thesquare root, and apply Theorem 2.10. Hence the eigenvalues �1 � : : : � �nof A+E satisfy max1�i�n j�i � �ijj�ij � kEA�1k:Let �̂1 � : : : � �̂m be those �i that are also eigenvalues of W ; and let � bea permutation that numbers the eigenvalues of A corresponding to �i �rst.Then max1�i�m j��(i) � �̂ijj��(i)j � kEA�1k:We still have to worry about kEA�1k. Write�EA�1 = (I �QQ�)AQQ�A�1 +QQ�(I �AQQ�A�1):Here QQ� is the orthogonal projector onto range(Q), while AQQ�A�1 is theoblique projector onto range(AQ) along range(Q�A�1). This expression forEA�1 appears in (Drma�c 1996a, Theorem 3). It can be bounded above bysin �1 + tan �2. 2Therefore the relative error in the Ritz values of W = Q�AQ is smallif both subspace angles �1 and �2 are small. Things simplify when thematrix A is also positive-de�nite because there is only one angle to deal with.



22 I.C.F. IpsenLet A be Hermitian positive-de�nite with Cholesky factorisation A = LL�.Let 0 � � � �=2 be the maximal principal angle between range(L�Q) andrange(L�1Q).Theorem 2.13 If A is Hermitian positive-de�nite and if sin � < 1 thenthere exists a permutation � so thatmax1�i�m j��(i) � �̂ijj��(i)j � sin �1� sin � :Proof. (Drma�c 1996a, Theorem 6) 2Theorem 2.13 can be extended to semi-de�nite matrices (Drma�c and Hari1997).3. Additive Perturbations for Singular ValuesLet B be a complex matrix. We want to estimate the absolute and therelative errors in the singular values of the perturbed matrix B + F . Forde�niteness we assume that B is tall and skinny, i.e. B is m�n with m � n(if this is not the case just consider B�).Perturbation bounds for singular values are usually derived by �rst con-verting the singular value problem to an Hermitian eigenvalue problem.3.1. Converting Singular Values to EigenvaluesThe singular value decomposition of a m� n matrix B, m � n, isB = U ��0 �V �;where the left singular vector matrix U and the right singular vector matrixV are unitary matrices of order m and n, respectively. The non-negativediagonal matrix � of order n contains the singular values �i of B,� = 0B@�1 . . . �n1CA ;where �1 � : : : � �n � 0:There are two popular ways to convert a singular value problem to an eigen-value problem.� The eigenvalues of A � � m nm 0 Bn B� 0 �



Relative Perturbation Results 23are �1; : : : ; �n;��1; : : : ;��n; 0; : : : ; 0| {z }m�n :Therefore the singular values of B are the n largest eigenvalues of A(Horn and Johnson 1985, Theorem 7.3.7).� The eigenvalues of B�B are �21 ; : : : ; �2n:Therefore the singular values of B are the positive square-roots of theeigenvalues of B�B (Horn and Johnson 1985, Lemma 7.3.1).Since singular values are eigenvalues of a Hermitian matrix, they are well-conditioned in the absolute sense.3.2. Ho�man-Wielandt-Type BoundsWe bound the sum of squares of all distances between the ith exact andperturbed singular values in terms of the Frobenius norm.The singular values of B and B + F are, respectively,�1 � : : : � �n � 0; �̂1 � : : : � �̂n � 0:Converting the singular value problem to an eigenvalue problem �a la x3.1and applying the Ho�man-Wielandt Theorem for Hermitian matrices (2:3)leads immediately to the absolute error boundvuut nXi=1 j�i � �̂ij2 � kFkF :The relative bound below requires in addition that both matrices be non-singular.Theorem 3.1 Let B and B + F be non-singular. If kFB�1k < 1 thenvuut nXi=1 j�i � �̂ij2�i�̂i � 12 k(I + FB�1)� � (I + FB�1)�1kF :Therefore the error in the singular values is small if I + FB�1 is close tobeing unitary (or orthogonal). This is case when B + F = (I + FB�1)B ismore or less a unitary transformation away from B.Proof. (Li 1994a, Theorem 4.3). 23.3. Weyl-Type BoundsWe bound the worst-case distance between the ith exact and perturbedsingular values in terms of the two-norm.



24 I.C.F. IpsenThe absolute error bound is an immediate consequence of Weyl's Pertur-bation Theorem (2:4) j�i � �̂ij � kFk; 1 � i � n:The corresponding relative bound below restricts the range of F but not itssize. Here By is the Moore-Penrose inverse of B.Theorem 3.2 If range(B + F ) � range(B) thenj�i � �̂ij � �i kByFk; 1 � i � n:If range((B + F )�) � range(B�) thenj�i � �̂ij � �i kFByk; 1 � i � n:Proof. (Di Lena, Peluso and Piazza 1993, Theorem 1.1)We prove the �rst bound, the proof for the second one is similar.Life would be easy if we could pull B out of F , say if F = BC for somematrix C. Then we could write B + F = B(I + C) and apply the sum andproduct inequalities for singular values (Horn and Johnson 1985, page 423)to get the relative bound j�i � �̂ij � �i kCk:It turns out that the range condition is exactly what is needed to pull Bout of F . This is because range(B + F ) � range(B) implies F = BC1 forsome C1. This allows us to writeF = BC1 = BByB C1 = BByF:Consequently, setting C � ByF gives the desired result. 2When B has full column rank the second range condition in Theorem 3.2is automatically satis�ed.Corollary 3.1 If B has full column rank thenj�i � �̂ij � �i kFByk; 1 � i � n:Proof. (Di Lena et al. 1993, Remark 1.1)If B has full column rank n then its rows span n-space. Hence range((B+F )�) � range(B�) for any F , and the second relative bound in Theorem 3.2holds. 2Therefore singular values of full-rank matrices are well-conditioned in theabsolute as well as relative sense. This may sound implausible at �rst, inparticular when B has full rank while B+F is rank-de�cient. In this case allsingular values of B are non-zero while at least one singular value of B + Fis zero. Hence a zero singular value of B +F must have relative error equalto one. How can the singular values of B be well-conditioned? The answer



Relative Perturbation Results 25is that in this case the relative perturbation kByFk is large. The followingexample illustrates that kByFk is large when B and B + F di�er in rank.Example 3.1 LetB = 0@ 2 00 �0 01A ; F = 0@ 0 00 ��0 0 1A ;where � 6= 0. The rank of B is two, while the rank of B + F is one.The relative error in the singular value �̂ = 0 of B + F is equal to onebecause j� � 0j=j�j = 1. SinceBy =  12 0 00 1� 0! ; ByF = � 0 00 �1� ;we get kByFk = 1. Corollary 3.1 givesmini j�i � �̂j�i � 1:Therefore Corollary 3.1 is tight for the zero singular values of B + F . 2Corollary 3.1 extends (Demmel and Veseli�c 1992, Lemma 2.12) to matricesthat do not necessarily have full rank (Di Lena et al. 1993, Remark 1.2).When B is non-singular Corollary 3.1 implies that both range conditions inTheorem 3.2 hold automatically.Corollary 3.2 If B is non-singular thenmax1�i�n j�i � �̂ij�i � minfkB�1Fk; kFB�1kg:The following bound, for a di�erent error measure, is similar to the Frobe-nius norm bound Theorem 3.1. It requires that both B and B + F benon-singular.Theorem 3.3 Let B and B + F be non-singular. Thenmax1�i�n j�i � �̂ijp�i�̂i � 12 k(I + FB�1)� � (I + FB�1)�1k:Proof. (Li 1994a, Theorem 4.3). 2As in Theorem 3.1, the error in the singular values is small if I + FB�1is close to being unitary (or orthogonal). This is case when B + F = (I +FB�1) B is more or less a unitary transformation away from B.



26 I.C.F. Ipsen3.4. Congruence TransformationsWe start with one-sided grading of matrices B with full-column rank. Thatis, B = CD or B = DC, whereD is non-singular. In the event D is diagonal,CD represents a column scaling while DC represents a row scaling.All relative singular value bounds presented so far are invariant under one-sided grading from the appropriate side. That's because the bounds containterms of the form ByF or FBy. Consider ByF , for instance. Grading fromthe right is sandwiched in the middle, between By and F , and thereforecancels out.Let's �rst look at the Ho�man-Wielandt-type bound for graded matrices,which follows directly from Theorem 3.1.Corollary 3.3 Let B = CD and B + F = (C +G)D be non-singular. IfkGC�1k < 1 thenvuut nXi=1 j�i � �̂ij2�i�̂i � 12 k(I +GC�1)� � (I +GC�1)�1kF :Proof. (Li 1994a, Theorem 4.3)The grading is sandwiched in the middle of the relative perturbationFB�1, and cancels out,FB�1 = (GD) (CD)�1 = GDD�1 C�1 = GC�1:2Moving right along to the two-norm, we see that Corollary 3.1 is invariantunder grading from the right.Corollary 3.4 If B = CD has full column rank, and if B+F = (C+G)Dthen j�i � �̂ij � �i kGCyk; 1 � i � n:Proof. (Di Lena et al. 1993, Remark 1.2)Full column rank is needed to extract the grading matrix from the inverse,By = (CD)y = DyCy = D�1Cy:2Therefore the relative error in the singular values of B+F is small if thereis a grading matrix D that causes the relative perturbation of the gradedmatrices kGCyk to be small. For instance, suppose B = CD has columnswhose norms vary widely while the columns of C are almost orthonormal.If the perturbed matrix is scaled in the same way then the error boundin Corollary 3.4 ignores the scaling and acts as if it saw the well-behaved



Relative Perturbation Results 27matrices C and C + G. Corollary 3.4 extends (Demmel and Veseli�c 1992,Theorem 2.14) to a larger class of matrices.The other two-norm bound, Theorem 3.3, is also invariant under grading.Corollary 3.5 Let B = CD and B + F = (C +G)D be non-singular. IfkGC�1k < 1 thenmax1�i�n j�i � �̂ijp�i�̂i � 12 k(I +GC�1)� � (I +GC�1)�1k:Proof. (Li 1994a, Theorem 4.3) 2Finally we present the only bound that is invariant under grading fromboth sides. It requires that the grading matrices be real diagonal; and itrestricts the size of the perturbation more severely than the other bounds.Theorem 3.4 Let B = DlCDr and B + F = Dl(C + G)Dr be real sym-metric, where Dl and Dr are real non-singular diagonal matrices. Amongthe singular values of all square submatrices of B, let � be the smallest one.If kGk < � then�kGk 2� � kGk�2 � �̂i � �i�i � kGk 2� � kGk(� � kGk)2 1 � i � n:Proof. (Gu and Eisenstat 1993, Corollary 10) 24. Some Applications of Additive PerturbationsWe discuss Jacobi's method for computing singular values and eigenvalues,and de
ation of triangular and bidiagonal matrices.4.1. Jacobi's Method for Singular ValuesJacobi's method is generally viewed as a method that computes eigenvaluesand singular values to optimal accuracy. It was Jacobi's method that �rst at-tracted attention to invariance of eigenvalue and singular values error boundsunder congruence (Demmel and Veseli�c 1992, Mathias 1995a, Rosano� et al.1968). We give a very intuitive plausibility argument, shoving many sub-tleties under the rug, to explain the high accuracy and invariance undergrading of Jacobi's method. Our discussion runs along the lines of (Dem-mel 1997, x5.4.3) and (Mathias 1995a, x2, 3). Other detailed accounts canbe found in (Demmel and Veseli�c 1992), (Drma�c 1996b). An attempt at ageometric interpretion of Jacobi's high accuracy is made in (Rosano� et al.1968, pages 1045-6).A one-sided Jacobi method computes the singular values of a tall andskinny matrix by applying a sequence of orthogonal transformations on theright side of the matrix. The duty of each orthogonal transformation is



28 I.C.F. Ipsento orthogonalise two columns of the matrix. The method stops once allcolumns are su�ciently orthogonal to each other. At this point the singularvalues are approximated by the column norms, i.e. the Euclidian lengths ofthe columns.For simplicity assume that B is a real non-singular matrix of order n. LetD be a row scaling of B, i.e. B = DC, where D is diagonal. We showthat the one-sided Jacobi method ignores the row scaling. When Jacobiapplies an orthogonal transformation Q to B the outcome in 
oating pointarithmetic is BQ + F . Corollary 3.2 implies that the singular values �̂i ofBQ+ F satisfy max1�i�n j�i � �̂ij�i � kC�1Gk � kC�1k kGk;where F = DG.Let's bound the squared error kGk. Round-o� error analysis tells us thatthe error in the ith row iskeTi Fk � ��i keTi Bk+O(�2);where �i depends on the matrix size n and � > 0 re
ects the machineaccuracy. Now the crucial observation is that the orthogonal transformationshappen on one side of the matrix and the scaling on the other side. BecauseQ operates on columns it does not mix up di�erent rows and thereforepreserves the row-scaling. This means we can pull the ith diagonal elementof D out of eTi F ,keTi Fk � ��i keTi Bk = ��i keTi (DC)k = jdiij ��i keTi Ck:This gives a bound for the ith row of G,keTi Gk = jdiij�1 keTi Fk � ��i keTi Ck+O(�2):The total error is therefore bounded bykGk � �� kCk+O(�2);where � depends on n. Therefore the error bound for the singular values ofBQ+ F is independent of the row-scaling,max1�i�n j�i � �̂ij�i � �� �(C) +O(�2):This means Jacobi's method produces singular values of B but acts as ifit saw C instead. That's good, particularly if D manages to pull out all thegrading. Then all singular values of C have about the same magnitude and�(C) is close to one. Therefore the above bound �(C) �� tends to be on theorder of machine accuracy �, implying that the relative error in the singularvalues is on the order of machine accuracy.



Relative Perturbation Results 29The argument is more complicated when the orthogonal transformationsare applied on the same side as the scaling matrix. Fortunately the resultingerror bounds do not tend to be much weaker (Mathias 1995a, x4).4.2. Jacobi's Method for EigenvaluesA two-sided Jacobi method computes eigenvalues of a real symmetric posi-tive-de�nite matrix by applying a sequence of orthogonal similarity transfor-mations to the matrix. An orthogonal similarity transformation operates ontwo rows, i and j, and two columns, i and j, to zero out elements (i; j) and(j; i). The method stops once all o�-diagonal elements are su�ciently small.At this point the eigenvalues are approximated by the diagonal elements.Let A be real symmetric positive-de�nite of order n, and A = DMD,where D is a non-singular diagonal matrix. The Jacobi method computesthe eigenvalues of a matrix A + E. According to Corollary 2.2, the errorbound for the eigenvalues �̂i of A+E ismax1�i�n j�i � �̂ijj�ij � kM�1=2FM�1=2k � kM�1k kFk; (4.1)where E = DFD. One can show that the error is bounded bykFk � �� kMk+O(�2);where � depends on n and � > 0 re
ects the machine accuracy. Thereforemax1�i�n j�i � �̂ijj�ij � �� �(M) +O(�2):This means, the relative error in the eigenvalues is small, provided the am-pli�er �(M) is small.The ampli�er �(M) can be minimised via an appropriate choice of thescaling matrix D. If D = 0B@pa11 . . . pann1CAthen all diagonal elements of M are equal to one. Therefore (van der Sluis1969, Theorem 4.1) �(M) � nminS �(SAS);where the minimum ranges over all non-singular diagonal matrices S. Thismeans, a diagonal scaling that makes all diagonal elements the same givesthe minimal condition number among all diagonal scalings (up to a factorof matrix size n).We claimed above that the error kFk in (4:1) is small. Let's examine in



30 I.C.F. Ipsenmore detail why. The error F comes about because of 
oating point arith-metic and because of the fact that eigenvalues are approximated by diagonalelements when the o�-diagonal elements are small but not necessarily zero.Let's ignore the round-o� error, and let's ask why ignoring small o�-diagonalelements results in a small kFk. The trick here is to be clever about whatit means to be `small enough'.Suppose the Jacobi method has produced a matrix A whose o�-diagonalelements are small compared to the corresponding diagonal elements,jaij j � �paiiajj:This implies jmij j � � wheremij are the elements of the graded matrixM =D�1AD�1 and D is the above grading matrix with paii on the diagonal.Since the diagonal elements of M are equal to one, we can writeM = I+F ,where F contains all the o�-diagonal elements of M andkFk � (n� 1)�:Therefore kFk is small, and (4:1) implies that the error in the eigenvaluesis bounded by max1�i�n j�i � �̂ijj�ij � kM�1k (n� 1)�:Furthermore one can bound kM�1k in terms of �,kM�1k = k(I + F )�1k � 11� kFk � 11� (n� 1)� :Replacing this in the error bound givesmax1�i�n j�i � �̂ijj�ij � (n� 1)�1� (n� 1)� :Therefore ignoring small o�-diagonal elements produces a small relative er-ror.The preceding arguments illustrate that Jacobi's method views a matrixin the best possible light, i.e. in its optimally scaled version. Thereforeeigenvalues produced by Jacobi's method tend to have relative accuracyclose to machine precision. This is as accurate as it gets. In this senseJacobi's method is considered optimally accurate.One way to implement a two-sided Jacobi method is to apply a one-sidedmethod to a Cholesky factor (Barlow and Demmel 1990, Mathias 1996).Let A be a Hermitian positive-de�nite matrix with Cholesky decompositionA = L�L. The squares of the singular values of L are the eigenvaluesof A. The singular values of L can be computed by the one-sided Jacobimethod from x4.1. The preliminary Cholesky factorisation does not harmthe accuracy of the eigenvalues. Here is why. The computed Cholesky factor



Relative Perturbation Results 31is the exact Cholesky factor of a matrix A + E, where (Mathias 1995a,Lemma 2.6) jeij j � 
�paiiajj;and 
 depends on n. These perturbations have the same form as the onesabove, hence lead to a small relative error. A similar argument shows thatthe squares of the diagonal elements of L are often good approximations tothe eigenvalues of A (Mathias 1996).4.3. De
ation of Block Triangular MatricesWhen a matrix is tall and skinny, or short and fat, one can save operationsby �rst converting it to a skinny, short matrix before computing singularvalues. This can be accomplished by applying a QR decomposition andthen computing the singular values of the resulting triangular matrix (Chan1982). If done properly, the relative accuracy of the singular values is pre-served (Mathias 1995a, Theorem 3.2).Suppose we compute the singular values of a triangular matrix by reducingthe matrix to diagonal form, say by a Jacobi or QR method. Partition thetriangular matrix as B = �B11 B12B22 � :If the o�-diagonal block B12 were zero then the problem of �nding the singu-lar values of B could be split into the two smaller, independent subproblemsof �nding the singular values of B11 and of B22. However if the o�-diagonalblock B12 is not zero, we want to know when it can be thrown away withoutcausing too much harm to the singular values of B. The process of dis-carding information in a matrix to reduce the problem complexity is called`de
ation'.The de
ated matrix and the perturbation are, respectively,B + F = �B11 B22 � ; F = � 0 �B120 0 � :Corollary 3.2 implies the following relative bound for the singular values �̂iof the de
ated matrix B + F .Corollary 4.1 If B is non-singular thenmax1�i�n j�i � �̂ij�i � minfkB�111 B12k; kB12B�122 kg:Proof. (Di Lena et al. 1993, Theorem 2.1) 2This means the singular values of the de
ated matrix have small relativeerror when the o�-diagonal block is small compared to one of the diagonalblocks.



32 I.C.F. IpsenNow let's suppose a preliminary ordering of the singular values has alreadytaken place. Say, the large singular values have 
oated to the top of thematrix B while the smaller ones have sunk to the bottom. The boundbelow is useful when the singular values of the top diagonal block are wellseparated from the singular values of the bottom block.Theorem 4.1 If �min(B11) � � > � � �max(B22)then max1�i�n j�i � �̂ij � �i kB12k2�2 � �2 :Proof. (Di Lena et al. 1993, Theorem 2.2) 2This means the singular values of the de
ated matrix have small relativeerror if the o�-diagonal block is small compared to the separation betweenthe singular values of the two diagonal blocks. Theorem 4.1 is an extensionof (Demmel and Kahan 1990, Theorem 5). Other bounds that pro�t from astrong singular value separation appear in (Chandrasekaran and Ipsen 1995,Theorem 5.2.1), (Eisenstat and Ipsen 1995, x5), and (Mathias and Stewart1993, Theorem 3.1).4.4. De
ation of Bidiagonal MatricesTriangular matrices are often further reduced to bidiagonal form before sin-gular values are computed. A bidiagonal matrix is of the formB = 0BBB@�1 �1. . . . . .�n�1 �n�1�n 1CCCA :Bidiagonal matrices can also arise when one computes the vibrational fre-quencies of a linear mass-spring system (Demmel et al. 1997, x12.1).There are several algorithms for computing singular values of a bidiagonalmatrix to high relative accuracy (Demmel and Kahan 1990, Fernando andParlett 1994). Because such algorithms apply a sequence of transformationsto reduce B to diagonal form, they need to decide when an o�-diagonalelement �j is small enough to be neglected without severely harming thesingular values.Suppose we are contemplating the removal of a single o�-diagonal element.Here B + F is equal to B, except for the o�-diagonal element in row j andcolumn j + 1, which is equal to zero. Then F = �jejeTj+1 and kFk = j�j j.Corollary 3.2 implies the following bound.



Relative Perturbation Results 33Corollary 4.2 If B is non-singular bidiagonal thenmax1�i�n j�i � �̂ij�i � j�j j minfkB�1ejk; kB��ej+1kg:Proof. (Di Lena et al. 1993, x3) 2This means if we remove a small element from row j and column j + 1of a bidiagonal matrix then the relative error in the singular values of thede
ated matrix is small if column j or row j + 1 of B�1 are small in norm.Similar bounds, but for a di�erent error measure, appear in (Deift, Demmel,Li and Tomei 1991, Theorem 4.7) and (Demmel and Kahan 1990, Theorem4).Corollary 4.2 justi�es the use of Convergence Criterion 1 (Demmel andKahan 1990, x2), (Deift et al. 1991, x4) in the zero-shift Golub-Kahan algo-rithm for computing singular values of bidiagonal matrices. The practicalusefulness of this bound also derives from the fact that it can be computedvia the simple recursion below.Corollary 4.3 If B is non-singular bidiagonal thenmax1�i�n j�i � �̂ij�i � minfprj;pcjg;where r1 = �21�21 ; rj = �2j�2j (1 + rj�1); 2 � j � n;and cn�1 = �2n�1�2n ; cj = �2j�2j+1 (1 + cj+1); n� 2 � j � 1:Proof. (Di Lena et al. 1993, Theorems 3.1, 3.2) 2When the shift in the Golub-Kahan algorithm or the qd algorithm is non-zero, it can be incorporated into the perturbation bounds (Eisenstat andIpsen 1995, Theorem 5.7), (Fernando and Parlett 1994).5. Multiplicative Perturbations for EigenvaluesWe shift gears and represent the perturbed matrix from now on as D1AD2where D1 and D2 are non-singular. When D2 = D�11 this is just a similaritytransformation, which means that A and D1AD2 have the same eigenval-ues. When D2 = D�1 this is a congruence transformation, which meansthat A and D1AD2 have the same inertia when A is Hermitian. Since thenon-singularity of D1 and D2 forces A and D1AD2 to have the same rank,multiplicative perturbations are less powerful than additive perturbations.Then why are multiplicative perturbations useful? It turns out that it



34 I.C.F. Ipsenis sometimes easier to express a component-wise relative perturbation of asparse matrix as a multiplicative perturbation than as an additive perturba-tion. The following example illustrates how natural multiplicative pertur-bations can be, especially for bidiagonal and tridiagonal matrices.Example 5.1 (Barlow and Demmel 1990, p 770), (Eisenstat and Ipsen1995, Corollary 4.1)Consider the real, symmetric tridiagonal matrixA = 0BBBBBB@ 0 �1�1 0 �2�2 0 �3�3 0 �4�4 0 �5�5 0
1CCCCCCA :Such a matrix occurs, for instance, when one converts the singular valueproblem of a bidiagonal matrix to an eigenvalue problem (see x3.1). Acomponent-wise relative perturbation of a single o�-diagonal pair in A pro-duces the perturbed matrixÂ = 0BBBBBB@ 0 �1�1 0 �2�2 0 ��3��3 0 �4�4 0 �5�5 0
1CCCCCCA ;where � 6= 0. For instance, � could be of the form � = 1+ �, where j�j doesnot exceed machine epsilon. The perturbed matrix Â can be represented asa multiplicative perturbation Â = DTAD, whereD = 0BBBBBBBB@

p� 1p� p� p� 1p� p�
1CCCCCCCCA :In this case a component-wise relative perturbation of an o�-diagonal paircan be represented as a multiplicative perturbation. 2The simple-minded approach of disguising a multiplicative perturbationas an additive perturbation, like soD1AD2 = A+E; where E = D1AD2 �A;produces a perturbation matrix E that may not be small or meaningful.



Relative Perturbation Results 35There are di�erent techniques for deriving multiplicative perturbationbounds, and some of them are compared in (Li and Mathias 1997, x4.2).Here we start from absolute perturbation bounds and show that they implymany of relative bounds.5.1. Bauer-Fike-Type BoundsAgain we start with a diagonalisable matrix, and we bound the distance of aperturbed eigenvalue to a closest exact eigenvalue in terms of the two-norm.Let A = X�X�1 be an eigendecomposition of A, where� = 0B@�1 . . . �n1CA ;and �i are the eigenvalues of A. Let �̂ be an eigenvalue of the perturbedmatrix D1AD2 and x̂ 6= 0 a corresponding unit eigenvector,(D1AD2) x̂ = �̂x̂; kx̂k = 1;with residual r � Ax̂� �̂x̂:This time we use the Bauer-Fike Theorem with residual bound (Bauer andFike 1960, Theorem IIIa),min1�i�n j�i � �̂j � �(X) krk: (5.1)The relative error bound below for the eigenvalue �̂ of the perturbedmatrixD1AD2 measures the error relative to the perturbed eigenvalue ratherthan an exact eigenvalue.Theorem 5.1 If A is diagonalisable thenmin1�i�n j�i � �̂j � j�̂j �(X) kI �D�11 D�12 k:Proof. (Eisenstat and Ipsen 1996, Theorem 6.1)The idea is to concoct a residual that contains the factor �̂ and then touse the absolute bound (5:1).From (D1AD2)x̂ = �̂x̂ followsA z = �̂ D�11 D�12 z; where z � D2x̂=kD2x̂k:The residual for �̂ and z isf � Az � �̂z = �̂ (D�11 D�12 � I) z;and it contains �̂ as a factor. Now apply the absolute bound (5:1) to f . 2



36 I.C.F. IpsenThe perturbed matrix D1AD2 is not required to be diagonalisable. As inthe case of additive perturbations, �(X) can be interpreted as a conditionnumber. The factor kI � D�11 D�12 k represents a relative deviation fromsimilarity, because I �D�11 D�12 = (D2 �D�11 )D�12represents a di�erence relative to D2.There are two cases in which the bound in Theorem 5.1 is guaranteed tobe zero and hence tight. First, when D1 = D�12 , because similar matriceshave the same eigenvalues. Second, when �̂ = 0, because A and D1AD2 aresingular and both have a zero eigenvalue.5.2. Ho�man-Wielandt-Type Bounds for Diagonalisable MatricesBased on a one-to-one correspondence between exact and perturbed eigen-values, we bound the sum (of squares) of all distances between exact andperturbed eigenvalues in terms of the Frobenius norm. In contrast to theprevious section, the perturbed matrix must now also be diagonalisable.Let A and D1AD2 be diagonalisable with respective eigendecompositionsA = X�X�1; D1AD2 = X̂�̂X̂�1:The eigenvalues are� = 0B@�1 . . . �n1CA ; �̂ = 0B@ �̂1 . . . �̂n1CA :Theorem 5.2 If A and D1AD2 are non-singular and diagonalisable thenthere exists a permutation � so thatvuuut nXi=1 j�i � �̂�(i)jj�ij !2 � �(X)�(X̂) kD2kkD1 �D�12 kF :There also exists a permutation � so thatvuuut nXi=1 j�i � �̂�(i)jj�ij !2 � �(X)�(X̂) kD1kkD�11 �D2kF :Proof. The �rst bound is (Li 1997, Theorem 2.1), while the second one is(Li 1997, Theorem 2:10). 2Therefore the relative error bound can only be small ifD1 andD2 are closeto being a similarity transformation. A similar bound in (Li and Mathias1997, Proposition 3.5) applies to a one-sided perturbation and matrices withpositive eigenvalues and holds in any unitarily invariant norm.



Relative Perturbation Results 375.3. Ho�man-Wielandt-Type Bounds for Hermitian MatricesHo�man-Wielandt-type bounds for Hermitian matrices require that the per-turbed matrix also be Hermitian. This means the perturbed matrix betterbe of the form DAD�, where D is non-singular. Since the perturbed matrixis congruent to A, it has the same inertia as A. Number the eigenvalues ofA and DAD� so that�n � : : : � �1; �̂n � : : : � �̂1:Theorem 5.3 If A and DAD� are Hermitian and non-singular thenvuut nXi=1 j�i � �̂ij2j�i�̂ij � kD� �D�1kF :Proof. (Li and Mathias 1997, Corollary 3.2')A proof for the special case of positive-de�nite matrices appears in (Li1994a, Theorem 3.1). 2Therefore, the relative error in the eigenvalues of DAD� is small if D isclose to a unitary (or orthogonal) matrix. The bound (Li 1997, Theorem2.2) is weaker than Theorem 5.3 (Li and Mathias 1997, x4.1). Majorisationtheory can deliver bounds that are stronger than Theorem 5.3 and hold forany unitarily invariant norm (Li and Mathias 1997, Proposition 3.2, (3.8)).5.4. Ostrowski-Type BoundsIn 1959 Ostrowski presented the �rst relative perturbation bounds for eigen-values. He created a multiplicative perturbation DAD� of a Hermitian ma-trix A, where D is non-singular; and he bounded the ratio of exact andperturbed eigenvalues in terms of the smallest and largest eigenvalues ofDD� (Ostrowski 1959), (Horn and Johnson 1985, Theorem 4.5.9),�min(DD�) �i � �̂i � �i �max(DD�): (5.2)Ostrowski's theorem can also be phrased in terms of absolute values ofeigenvalues.Theorem 5.4 If A and DAD� are Hermitian thenj�ijk(D�D)�1k � j�̂ij � j�ij kD�Dk:Proof. (Eisenstat and Ipsen 1995, Theorem 2.1) 2This bound is tight, for instance, when D is a multiple of an orthogonalmatrix. The following example illustrates what the bound looks like in thecase of tridiagonal matrices.



38 I.C.F. IpsenExample 5.2 (Eisenstat and Ipsen 1995, Corollary 4.1)Return to the symmetric tridiagonal matrix with zero diagonal and itssingle-element perturbation in Example 5.1. In this case the bound in The-orem 5.4 amounts to (Kahan 1966, p 49�), (Demmel and Kahan 1990, The-orem 2) 1� j�ij � j�̂ij � � j�ij;where � � maxfj�j; 1=j�jg. Therefore the ratio between perturbed and exacteigenvalues is close to one if the perturbation j�j is close to one.This bound can be extended to the perturbation of any number of o�-diagonal pairs of a real symmetric tridiagonal matrix with zero diagonal(Demmel and Kahan 1990, Corollary 1). 2Ostrowski's Theorem (5:2) can also be extended to products of eigenvalueratios (Li and Mathias 1997, Theorem 2.3).5.5. Weyl-Type BoundsOstrowski's theorem leads to a relative Weyl-type bound for multiplicativeperturbations.Theorem 5.5 If A and DAD� are Hermitian thenj�i � �̂ij � j�ij kDD� � Ik; 1 � i � n:Proof. (Eisenstat and Ipsen 1995, Theorem 2.1)The proof is similar to that of Theorem 2.7 for additive perturbations.Fix an index i. Since 0 is the ith eigenvalue of A� �iI, Sylvester's Law ofInertia (Horn and Johnson 1985, Theorem 4.5.8) implies that 0 is the itheigenvalue of D(A� �iI)D�. WriteD(A� �iI)D� = DAD� � �iDD� = �A+ �E;where �A � DAD� � �iI; �E � �i(I �DD�):Applying Weyl's absolute bound (2:4) to �A and �A+ �E givesmax1�j�n j�j( �A)� �j( �A+ �E)j � k �Ek = j�ij kDD� � Ik:In particular, for j = i,j0� (�̂i � �i)j � j�ij kDD� � Ik:2The bound above holds even for zero eigenvalues. The factor kDD� � Ikrepresents the deviation of the congruence transformation from similarity.



Relative Perturbation Results 39This means, if the perturbed matrix is a congruence transformation of theoriginal matrix, then the relative error in the perturbed eigenvalues is smallif the congruence transformation is close to similarity.Example 5.3 We can apply Theorem 5.5 to the symmetric tridiagonalmatrix with zero diagonal in Example 5.1. If we assume that the multiplica-tive perturbation � is of the form � = 1 + � thenj�i � �̂ij � j�ij j�j:Therefore a small relative error in a pair of o�-diagonal elements causes onlya small relative error in the eigenvalues.The bound below is similar in spirit to Theorem 5.5 but applies to adi�erent error measure.Theorem 5.6 If A and DAD� are non-singular Hermitian thenmax1�i�n j�i � �̂ijq�i�̂i � kD�1 �D�k:Proof. (Li and Mathias 1997, Proposition 3.2') 2This bound was �rst derived for the special case of positive-de�nite ma-trices (Li 1994a, Theorem 3.1).6. Multiplicative Perturbations for Singular ValuesThe perturbed matrix is represented as D1BD2, where D1 and D2 are non-singular diagonal matrices. Such a perturbation can occur, for instance,when a one-sided Jacobi method is applied to B. In this case the computedsingular values are exact singular values of a matrix D1BD2 where D1 andD2 are close to the identity (Demmel 1997, x5.4.3).Again let B be a tall and skinny matrix, i.e. B is m�n with m � n. Thesingular values of B are �1 � : : : � �n � 0:The perturbed matrix is represented as D1BD2, where D1 and D2 are non-singular. The singular values of D1BD2 are�̂1 � : : : � �̂n � 0:When D1 is diagonal it represents a row scaling, while a diagonal D2 repre-sents a column scaling.6.1. Ostrowski-Type BoundsLet's �rst determine by which factor the singular values of B change whenmultiplicative perturbations D1 and D2 are applied.



40 I.C.F. IpsenTheorem 6.1 �ikD�11 k kD�12 k � �̂i � �i kD1k kD2k:Proof. (Eisenstat and Ipsen 1995, Theorem 3.1)Convert the problem to an eigenvalue problem as in x3.1 and apply theeigenvalue result Theorem 5.4. 2This means, if D1 and D2 are almost unitary then the norms in The-orem 6.1 are almost one, and a perturbed singular value di�ers from thecorresponding exact singular value by a factor close to one.Theorem 6.1 can reproduce perturbation bounds for component-wise per-turbations of bidiagonal matrices from (Barlow and Demmel 1990, Theorem1), (Deift et al. 1991, Theorem 2.12) and (Demmel and Kahan 1990, Corol-lary 2). The example below illustrates how.Example 6.1 (Eisenstat and Ipsen 1995, Corollary 4.2)Consider the bidiagonal matrixB = 0BB@�1 �1�2 �2�3 �3�41CCAand its component-wise perturbationB̂ = 0BB@ 
1�1 
2�1
3�2 
4�2
5�3 
6�3
7�41CCA ;where 
j 6= 0. For instance, if 
j = 1+�j for small �j then B̂ is a component-wise relative perturbation of B.Write B̂ = D1BD2, where D1 takes care of the odd-numbered, diago-nal perturbations, while D2 takes care of the even-numbered, o�-diagonalperturbations, like so:D1 = 0BBB@
1 
1
3
2 
1
3
5
4 
1
3
5
7
6 1CCCA ; D2 = 0BBB@ 1 
2
1 
2
4
3 
2
4
6
5 1CCCA :The perturbation D1 operates on rows and D2 operates on columns. Theresulting interference is apparent in the increasing products and the denom-inators, where each Di undoes part of the other's action in its own territory.Application of Theorem 6.1 yields1� �i � �̂i � � �i;



Relative Perturbation Results 41where � � Q7j=1maxfj
j j; 1=j
j jg: This means, if each factor 
j is close toone then the ratio of perturbed to exact singular values is close to one. 2These bounds are actually realistic. There are algorithms that deliversingular values of bidiagonal matrices to high relative accuracy: the dqdsalgorithm (Fernando and Parlett 1994) and, to a large extent, a �ne-tunedzero-shift version of the Golub-Kahan algorithm (Demmel and Kahan 1990,Deift et al. 1991).6.2. Ho�man-Wielandt-Type BoundsNow let's bound the sum of squares of all relative errors.Theorem 6.2 If B and D1BD2 have full column rank thenvuut nXi=1 j�i � �̂ij2�i�̂i � 12 �kD�1 �D�11 kF + kD�2 �D�12 kF� :Proof. (Li and Mathias 1997, Proposition 3.3') 2The terms kD�1 �D�11 kF and kD�2 �D�12 kF indicate how far D1 and D2,respectively, are from being unitary (or orthogonal). The relative error issmall if D1 and D2 are close to unitary. A weaker version of Theorem 6.2appears in (Li 1994a, Theorem 4.1). As with Theorem 5.3, majorisationtheory yields a bound stronger than Theorem 6.2 that holds in any unitarilyinvariant norm (Li and Mathias 1997, Proposition 3.3, (3.12)).The bound below is similar in spirit but applies to a di�erent error mea-sure.Theorem 6.3 If B and D1BD2 have full column rank thenvuuut nXi=10@ j�i � �̂ijpq�pi + �̂pi 1A2 � 121+1=p �kD�1 �D�11 kF + kD�2 �D�12 kF� ;where 1 � p � 1 is an integer.Proof. (Li 1994a, Theorem 4.2)Follows from Theorem 6.2 because 2�pi + �̂pi !1=p � 1�i�̂i :26.3. Weyl-Type BoundsAt last we bound individual relative errors.



42 I.C.F. IpsenTheorem 6.4j�i � �̂ij � �i maxfkI �D�11 D��1 k; kI �D��2 D�12 kg:Proof. (Eisenstat and Ipsen 1995, Theorem 3.3)Convert the singular value problem to a large eigenvalue problem as inx3.1 and apply Theorem 5.5 to the eigenvalue problem. 2The factors kI�D�11 D��1 k and kI�D��2 D�12 k represent relative deviationsof D1 and D2, respectively, from being unitary (or orthogonal). Hence therelative error in the singular values of D1BD2 is small if D1 and D2 are closeto unitary.The following bound is similar to the Frobenius norm bound in Theorem6.2.Theorem 6.5 If B and D1BD2 have full column rank thenmax1�i�n j�i � �̂ijp�i�̂i � 12 �kD�1 �D�11 k+ kD�2 �D�12 k� :Proof. (Li and Mathias 1997, Proposition 3.3') 2A weaker bound appears in (Li 1994a, Theorem 4.1).The following bound is a counterpart of the Frobenius norm bound inTheorem 6.3.Theorem 6.6 If B and D1BD2 have full column rank thenmax1�i�n j�i � �̂ijppj�ijp + j�̂ijp � 121+1=p �kD�1 �D�11 k+ kD�2 �D�12 k� ;where 1 � p � 1 is an integer.Proof. (Li 1994a, Theorem 4.2)Follows from Theorem 6.5 in the same way that Theorem 6.3 follows fromTheorem 6.2. 27. Some Applications of Multiplicative PerturbationsWe discuss component-wise perturbations of generalised bidiagonal matri-ces; de
ation of triangular matrices; and rank-revealing decompositions.7.1. Component-Wise Perturbations of Generalised Bidiagonal MatricesExample 6.1 illustrates that small relative changes in any bidiagonal matrixcause only small relative changes in its singular values, regardless of thevalue of the non-zero matrix elements. Are there other matrices with thispleasant property? The answer is not really. The only other matrices withthis property are those whose sparsity structure is `essentially' bidiagonal



Relative Perturbation Results 43(Demmel and Gragg 1993). At �rst glance this result looks pretty nega-tive. It appears to suggest that we can forget about high relative accuracyfor matrices other than bidiagonals. But then again, not all perturbationsare component-wise relative perturbations. Just think about the perturba-tions caused by the de
ation of triangular matrices in xx4.3 and 4.4. Thereis still plenty of room for singular values of all kinds of matrices to haverelative accuracy, but mostly not with regard to component-wise relativeperturbations�.So, what are `essentially' bidiagonal matrices? We de�ne an undirectedbipartite graph G of a matrix B as follows. Each row of B is representedby a node ri, and each column by a node ci. There is an edge between riand cj if and only if element (i; j) of B is non-zero. The matrix B is calledbiacyclic if its graph G is acyclic (Demmel and Gragg 1993, x1). Examples ofbiacyclic matrices, in addition to bidiagonal matrices, include the following`half arrow' matrices (Demmel and Gragg 1993, x5)0BBBB@ � �� �� �� ��1CCCCA ; 0BBBBBB@ � �� �� �� �� ��
1CCCCCCA :The nice thing about subjecting biacyclic matrices to component-wiserelative perturbations is that we get an Ostrowski-type bound. This means,changing an element of a biacyclic matrix by a factor does not change thesingular values by more than this factor, regardless of the value of the non-zero matrix elements. No other matrices possess this property.Theorem 7.1 Let B be a matrix of order n. The following two conditionsare equivalent:� B is biacyclic.� If B̂ is equal to B except for element (k; l) which is multiplied by
 6= 0, then the singular values �̂i of B̂ satisfyminfj
j; j
�1jg �i � �̂i � �i maxfj
j; j
�1jg; 1 � i � n:Proof. (Demmel and Gragg 1993, Theorem 1)The result also follows directly from Theorem 6.1 (Eisenstat and Ipsen1995, Corollary 4.3). 2� However, if we are willing to restrict the values of the matrix elements and impose signson the non-zero entries of a matrix so as to forestall cancellation in the computationof certain quantities, then one can also obtain high relative accuracy (Demmel et al.1997).



44 I.C.F. IpsenTheorem 7.1 implies that a small relative perturbation in a matrix elementcauses small relative changes in the singular values, regardless of the valuesof the non-zero matrix elements, if and only if the matrix has an acyclicgraph. To see this consider 
 = 1 + � for some � > 0. Theorem 7.1 impliesthe relative error boundj�i � �̂ij � �i�; 1 � i � n:Theorem 7.1 can be extended to the case where all elements of a biacyclicmatrix are multiplied by non-zero factors. This gives a bound similar to theone in Example 6.1 (Demmel and Gragg 1993, page 206), (Eisenstat andIpsen 1995, Corollary 4.3).7.2. De
ation of Block Triangular Matrices, AgainFirst we prove an auxiliary bound for a special multiplicative perturbationwhich is useful for modelling de
ation in triangular matrices. LetB = �B11 B12B22 �be a block triangular matrix of order n; and let the perturbed matrix beDB or BD, where D = � I XI �is partitioned commensurately with B.Theorem 7.2 The singular values �̂i of DB, or BD, satisfyj�i � �̂ij � �i kXk; 1 � i � n:If in addition B is non-singular thenmax1�i�n j�i � �̂ijp�i�̂i � 12kXk:Proof. The �rst inequality (Eisenstat and Ipsen 1995, Lemma 5.1) followsfrom Theorem 6.1, �ikD�1k � �̂i � kDk;and from kDk = kD�1k � 1 + kXk:The second inequality (Li 1994a, Corollary 4.1) follows from Theorem 6.5.2



Relative Perturbation Results 45Now look at a perturbed matrix that is a de
ated version of the blocktriangular matrix B, B̂ = �B11 B22 � :The following bound is the same as the one in Corollary 4.1 which wasderived in the context of additive pertubations.Theorem 7.3 If B11 or B22 are non-singular then the singular values ofB and B̂ satisfy j�i � �̂ij � �i minfkB�111 B12k; kB12B�122 kg:Proof. (Eisenstat and Ipsen 1995, Theorem 5.2)Follows directly from Theorem 7.2. 2Let's see what happens for bidiagonal matrices. We write the bidiagonalmatrix and it's perturbation so as to highlight the action,B = �B11 �jejeT1B22 � ; B̂ = �B11 B22 � :Both matrices are bidiagonal, and B̂ is equal to B, except for the o�-diagonalelement in row j and column j + 1, which is equal to zero. Application ofTheorem 7.3 to B and B̂ produces a bound similar to the one in Corollary4.2.Theorem 7.4 If B and B̂ are non-singular then11 + � � �̂i�i � 1 + �;where � � j�j j minfkB�111 ejk; kB��22 e1kg:Proof. (Eisenstat and Ipsen 1995, Theorem 5.5) 2This bound, like Corollary 4.2 in the context of additive perturbations, canbe used to justify Convergence Criterion 1 in the Golub-Kahan algorithmwith zero shift (Eisenstat and Ipsen 1995, Corollary 5.6).7.3. Rank-Revealing DecompositionsA rank-revealing decomposition is a cheap imitation of a singular value de-composition. It can serve as an intermediate step in the high-accuracy com-putation of a singular value decomposition. Passing through a rank-revealingdecomposition on the way to a singular value decomposition allows one torepresent all errors in terms of multiplicative perturbations (Demmel et al.1997, x3).



46 I.C.F. IpsenConsider a m � n matrix B, m � n, of rank r. Decompose B = XDY �where X is m � r, Y is n � r, and D is diagonal of order r and r � n.This means D is non-singular, and X and Y have full column rank. Thedecomposition B = XDY � is a rank-revealing decomposition of A if X andY are well-conditioned, that is, if�(X) � kXk kXyk and �(Y ) � kY k kY ykare close to one (Demmel et al. 1997, De�nition 2.1).A singular value decomposition quali�es as the luxury edition of a rankrevealing decomposition because X and Y are orthogonal, hence perfectlyconditioned. Gaussian elimination with complete pivoting may be a morea�ordable model. Here X = PlL and Y = UPu, where Pl and Pu are permu-tation matrices, L is unit lower triangular and U is unit upper triangular.Because all entries of L and U are bounded by one in absolute value, X andY tend to be well-conditioned.Suppose the computed version of our rank revealing decomposition is B̂ =X̂D̂Ŷ �. If the elements of the diagonal matrix D̂ have high relative accuracy,and X̂ and Ŷ have high norm-wise accuracy then the singular values �̂i ofB̂ have small relative error.Theorem 7.5 LetD̂ = D +�; X̂ = X +E; Ŷ = Y + F:If for some 0 � � < 1j�iijjDiij � �; kEkkXk � �; kFkkY k � �then j�i � �̂ij � �i (2� + �2);where � � �(2 + �) maxf�(X); �(Y )g:Proof. (Demmel et al. 1997, Theorem 2.1)The idea is to express �, E and F as multiplicative perturbations. SinceX has full column rank, it has a left-inverse Xy and we can writeB̂ = (X +E)D̂Ŷ � = (I +EXy)XD̂Ŷ � = D1 XD̂Ŷ �;where D1 � I +EXy is a multiplicative perturbation andkD1k � 1 + kEk kXyk � 1 + ��(X):Similarly one can show B̂ = D1BD2, wherekD2k � 1 + �(Y ) (2�+ �2):Application of Theorem 6.1 gives the desired bound. 2



Relative Perturbation Results 47Therefore if X and Y are well-conditioned the relative error in the sin-gular values of B̂ is proportional to the accuracy � of the rank-revealingdecomposition. Note that the error bound depends on �(X) and �(Y ) butnot on �(D). That's because of the stricter requirement for the perturbation� of D, which must be a component-wise relative perturbation.8. The EndWe have seen that many absolute perturbation bounds imply relative bounds.Examples include the bounds by Bauer-Fike, Ho�man-Wielandt and Weyl.So there is no question of existence. Relative error bounds always exist, forany matrix and for any perturbation.Like absolute bounds, relative bounds become stronger when the matriceshave structure. A Weyl-type bound for Hermitian positive-de�nite matri-ces, for instance, is stronger than a Bauer-Fike-type bound for diagonalisablematrices. In contrast to absolute bounds, though, relative bounds can im-pose more stringent conditions on the matrices to achieve the correspondingbound. For example, most relative bounds for additive perturbations requirethat the original matrix be non-singular.Therefore relative error bounds are not necessarily stronger than absoluteerror bounds. They just rely for their accuracy on di�erent perturbations.Consider eigenvalues of normal matrices, for instance. A small absoluteperturbation E guarantees a small absolute error, while a small relativeperturbation, such askA�1=2EA�1=2k or kI �D�11 D�12 k;guarantees a small relative error. This means, before requesting high relativeaccuracy you'd better be sure to have a small relative perturbation.Several theses have been written on the subject of relative error bounds inthe context of Jacobi methods for computing singular values (Drma�c 1994),eigendecompositions of Hermitian matrices (Slapni�car 1992), and eigenval-ues of skew-symmetric matrices (Pietzsch 1993), as well as fast algorithmsfor computing eigendecompositions of real symmetric tridiagonal matrices(Dhillon 1997).We have omitted the following issues in our discussion of relative errorbounds:� generalised eigenvalue problems (Barlow and Demmel 1990, Hari andDrma�c 1997, Li 1994a, Veseli�c and Slapni�car 1993),� sensitivity of eigenvalues and singular values to perturbations in thefactors of a matrix (Dhillon 1997, Demmel et al. 1997, Parlett 1997,Veseli�c and Slapni�car 1993),� relative errors in the form of derivatives when the matrix elements
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