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It used to be good enough to bound absolute errors of matrix eigenvalues and
singular values. Not anymore. Now it is fashionable to bound relative errors.
We present a collection of relative perturbation results which have emerged
during the past ten years.

No need to throw away all those absolute error bounds, though. Deep down
the derivation of many relative bounds can be based on absolute bounds.
This means, relative bounds are not always better. They may just be better
sometimes — and exactly when depends on the perturbation.
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1. Introduction

Are you concerned about accuracy of matrix eigenvalues or singular values,
especially the ones close to zero? If so, this paper is for you!

We present error bounds for eigenvalues and singular values that can be
much tighter than the traditional bounds, especially when these values have

* Work supported in part by grant CCR-9400921 from the National Science Foundation.



2 I.C.F. IPSEN

small magnitude. Our goal is to give some intuition for what the bounds
mean and why they hold.

Suppose you have to compute an eigenvalue of a complex square matrix
A. Numerical software usually produces a number A that is not the desired
eigenvalue. So you ask yourself how far away is A from an eigenvalue of A7
If A was produced by a reliable (i.e. backward stable) numerical method,
there is a round off error analysis to assure you that A is an eigenvalue of
a nearby matrix A + E, where E is small in some sense. Then you can
use perturbation theory to estimate the error in A. For instance, when
A is diagonalisable the Bauer-Fike theorem bounds the absolute distance

between A and a closest eigenvalue X of A by
A=A < w(X) [|E], (1.1)

where x(X) = || X|| | X ! is the condition number of an eigenvector matrix
X of A.

The quantity |A— )| represents an absolute error. Traditional perturbation
theory assesses the quality of a perturbed eigenvalue by bounding absolute
errors. However there are practical situations where small eigenvalues have
physical meaning and should be determined to high relative accuracy. Such
situations include computing modes of vibration in a finite element context,
and computing energy levels in quantum mechanical systems (Demmel, Gu,
Eisenstat, Slapnicar, Veselic and Drmac¢ 1997, §1). Absolute error bounds
cannot cope with relative accuracy, especially when confronted with small
eigenvalues or singular values. The following section explains why.

1.1. Why Absolute Bounds Don’t Do the Job

If we want relative accuracy, we need relative error bounds. The simplest
way to generate a relative error bound is to divide an absolute error bound
by an eigenvalue. For instance, dividing the absolute error bound (1.1) by
a non-zero eigenvalue A produces the relative error bound

A=A _ 1Bl
PYRRRPY

Unlike the absolute bound, though, the relative bound depends on A. This
has several disadvantages. First, each eigenvalue has a different relative
bound. Second, the relative bound is smaller for eigenvalues A that are
large in magnitude than for those that are small in magnitude. Third, the
relative bound can be pessimistic for eigenvalues of small magnitude, as the
following example illustrates.
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Example 1.1 The mere act of storing a diagonal matrix

A1
A=
An
in floating point arithmetic produces a perturbed matrix
A(1+ €)
A+ FE = . ;
An(1+€n)

where |¢;| < € and € > 0 reflects the machine accuracy. According to the

absolute perturbation bound (1.1), the error in an eigenvalue Aof A+ Eis
bounded by

min |\, — A < |E|| = max |Aex| < e max Ay,
7

This bound is realistic for eigenvalues of largest magnitude: If X is closest
to an eigenvalue A4, of largest magnitude among all eigenvalues of A, then

|>\maz - >\|

|>\ma:s|

IN

€.

Since the relative error in all eigenvalues does not exceed €, the bound is
tight in this case.

However the bound is too pessimistic for eigenvalues of smallest magni-
tude: If A is closest to an eigenvalue A.,;, of smallest magnitude among all
eigenvalues of A, then

|>\mzn - 5\| S ¢ p\maa}‘.
The bound is much larger than ¢ when the magnitude of the eigenvalues

varies widely. Since the relative error does not exceed €, the bound is not
tight. O

There are algorithms whose relative error bounds do not depend on the
eigenvalues. These algorithms compute all eigenvalues or singular values to
high relative accuracy, even those of small magnitude: the dqds algorithm for
singular values of bidiagonal matrices (Fernando and Parlett 1994, Parlett
1995), for instance, as well as Jacobi methods for eigenvalues of symmetric
positive-definite matrices and for singular values (Demmel 1997, §5.4.3),
(Mathias 1995a). Absolute perturbation bounds cannot account for this
phenomenon.

Absolute error bounds are well suited for describing the accuracy of fixed
point arithmetic. But fixed point arithmetic has been replaced by float-
ing point arithmetic, especially on general purpose machines where many
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eigenvalue and singular value computations are carried out nowadays. The
accuracy of floating point arithmetic is best described by relative errors.
In the absence of underflow and overflow, a number « is represented as a
floating point number

a=a(l+ey), where |eq| <,

and e > 0 reflects the machine accuracy. In IEEE arithmetic, for instance,
€ ~ 1077 in single precision and € ~ 107'% in double precision. Therefore
the accuracy of floating point arithmetic can be described by relative error
bounds of the form

& —a <|a|e or & — o] < |de.

Absolute error bounds cannot model this situation.

And even if you never require high relative accuracy from your small
eigenvalues or singular values, you can still profit from it. It turns out that
intermediate quantities computed to high relative accuracy can sometimes
speed up subsequent computations. For instance, computing eigenvalues of
a real, symmetric, tridiagonal matrix to high relative accuracy can accelerate
eigenvector computations because the time consuming process of orthogo-
nalising eigenvectors can be shortened or even avoided (Dhillon, Fann and
Parlett 1997).

Now that we have established the need for ‘genuine’ relative error bounds
beyond any shadow of a doubt, it’s time to find out what kind of relative
bounds are out there.

1.2. Overview

Relative error bounds have been derived in the context of two different
perturbation models:

e Additive perturbations (§52, 3, 4) represent the perturbed matrix as
A+ E.

° Multiplicative perturbations (§85, 6, 7) represent the perturbed matrix
as D1 ADy, where Dy and Dy are non-singular matrices.

The traditional absolute error bounds are derived in the context of addi-
tive perturbations.

We group the bounds for eigenvalues (§2, §5) and for singular values (§3,
§6) according to a loose order of increasing specialisation:

° Bauer-Fike-type:
Two-norm bounds on the distance between a perturbed eigenvalue and
a closest exact eigenvalue.

e  Hoffman-Wielandt-type:
Frobenius norm bounds on the sum (of squares) of all distances between
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perturbed eigenvalues and corresponding exact eigenvalues, where per-
turbed and exact eigenvalues are paired up in a one-to-one fashion.
Similar for singular values.
° Weyl-type:
Two norm bounds on the largest distance between a perturbed eigen-
value and the corresponding exact eigenvalue, where the ¢th largest
perturbed eigenvalue is paired up with the sth largest exact eigenvalue.
Similar for singular values.

There are several different ways to normalise an absolute error |A — A| and
turn it into a relative error. We present bounds for the following relative
error measures

PE=SY A=Al A=Al

Al VAL e+ AP

where 1 < p < oo is an integer. For instance, the traditional relative error
A — Al/|A| can be larger or smaller than the second error measure, while it
is never smaller than the third. Detailed relationships among the different
measures are discussed in (Li 19944, §2). Since the measures are essentially
proportional to each other we disregard any differences among them.

Sections §84 and 7 discuss applications of additive and multiplicative per-
turbations.

1.3. Notation

We use two norms: the two-norm

[ Az|
1Al =

= max ——, where ||z] = Va*z,
2 Tl

and the superscript * denotes the conjugate transpose; and the Frobenius

norm
1Allp = > lai|?,
i,J

where a;; are the elements of the matrix A. The identity matrix of order n
is
1

I= =(er ... en)

with columns e;.

For a matrix A we denote by range(4) its column space, A~! its inverse
and A" its Moore-Penrose inverse. The absolute value matrix |A| has ele-
ments |a;;|. A matrix inequality of the form |A| < |B| is meant element-wise,
i.e. |ai;| < |bi;| for all i and j.
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2. Additive Perturbations for Eigenvalues

Let A be a complex square matrix. We want to bound the absolute and
relative errors in the eigenvalues of the perturbed matrix A + E. In the
process we show that relative error bounds are as natural as absolute error
bounds, and that many relative bounds are implied by absolute bounds.

2.1. Bauer-Fike-Type Bounds for Diagonalisable Matrices

The Bauer-Fike theorem bounds the distance between an eigenvalue of A+ F
and a closest eigenvalue of A. The matrix A must be diagonalisable, while
A + FE does not have to be.
Let A= XAX ! be an eigendecomposition of A, where
A1
A =

An

and ); are the eigenvalues of A. Let A be an eigenvalue of A + E.

The Bauer-Fike Theorem for the two-norm (Bauer and Fike 1960, Theo-
rem IIla) bounds the absolute error,

min A, — Al < K(X) ||, (2.1)
13
The relative version of the Bauer-Fike Theorem below requires in addition
that A be non-singular.
Theorem 2.1 If A is diagonalisable and non-singular then
A — A
min 2 ) a
i A
where x(X) = || X|| | X 1.

Proof. (Eisenstat and Ipsen 1997, Corollary 3.2)

The idea is to ‘divide’ by the eigenvalues of A and apply the absolute
error bound (2.1).

Write (A + E)& = A& as

AA'—AT'E)d = &
This means, 1 is an eigenvalue of M~' — A'E. The matrix AA~" has the

same eigenvector matrix as A and its eigenvalues are 5\/)\Z Apply the Bauer-

Fike Theorem (2.1) to AA~" and to the perturbed matrix AA~' — A 'E.
O

If we interpret the amplifier (X ) as a condition number for the eigenval-
ues of A then absolute and relative error bounds have the same condition
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number. This means in the eyes of the Bauer-Fike Theorem an eigenvalue is
as sensitive in the absolute sense as it is in the relative sense. A comparison
of the absolute bound (2.1) and the relative bound in Theorem 2.1 shows
that the absolute error is bounded in terms of the absolute perturbation
E, while the relative error is bounded in terms of the relative perturbation
AT'E.

But A~'E is not the only way to express a relative perturbation. Why
keep A~! on the left of E? Why not move it to the right, or distribute it
on both sides of E?7 Splitting A = A;As and sandwiching E between the
two factors, like AflEAgl, results in undreamt-of possibilities for relative
perturbations.

Theorem 2.2 Let A be diagonalisable and non-singular. If A = A; A,
where A; and Ay commute then

Ai — A
min 22 < x) 47 B A
i A
Proof. (Eisenstat and Ipsen 1997, Corollary 3.4)

The idea is to apply Theorem 2.1 to the similarity transformations

AyAA;" and  Ay(A+ E)A;

Fortunately, similarity transformations preserve eigenvalues. And the com-
mutativity of A; and A, prevents the similarity from changing A,

Ay AAS" = Ay (A1 Ag) Ay = AgAy = A1 Ay = A.

Therefore we retain the condition number of the original eigenvector matrix
X. O

When A1 = A and Ay = I, Theorem 2.2 reduces to the relative bound in
Theorem 2.1. Setting A; = I and Ay = A gives (Eisenstat and Ipsen 1997,
Corollary 3.5)

min A — 5\‘
i A
This bound includes as a special case (Veseli¢ and Slapnic¢ar 1993, Theorem
3.17). Another popular choice for A; and A, is a square root AY2 of A. In
this case Theorem 2.2 gives (Eisenstat and Ipsen 1997, Corollary 3.6)
i = A

mmW < k(X)) ||AV2EAT?).

< w(X) [EATM.

2.2. Bauer-Fike-Type Bounds for Normal Matrices

Normal matrices have unitary eigenvector matrices but, in contrast to Her-
mitian or real symmetric matrices, their eigenvalues are not necessarily real.
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Normal matrices include Hermitian, skew-Hermitian, real symmetric, real
skew-symmetric, diagonal, unitary and real orthogonal matrices.

Since the condition number of a unitary eigenvector matrix equals one, the
Bauer-Fike theorem applied to a normal matrix A simplifies. The absolute
error bound (2.1) becomes

min [\, — A| < || E],
1

while the corresponding relative bound requires again that A be non-singu-
lar.

Theorem 2.3 Let A be normal and non-singular. If A = A} Ay, where A;
and Ao commute, then

X — Al
| Al

Proof. Follows immediately from Theorem 2.2. U

< |[ATTEALY.

min
13

Therefore eigenvalues of normal matrices are well-conditioned, in the ab-
solute as well as in many relative senses. The relative bound in Theorem 2.3
is tight for diagonal matrices A and component-wise perturbations F, like
those in Example 1.1.

For the relative bound to remain in effect, A; and Ay have to commute.
Our choices for ‘commuting factorisations’ have been so far:

(A1, Ag) = (A, 1), (A1, As) = (I, A), (A1, Ag) = (A2, AV/?),

But since A is normal there is another commuting factorisation: the polar
factorisation. KEvery square matrix A has a polar factorisation A = HU,
where H = (AA*)'/? is Hermitian positive-semidefinite and U is unitary
(Horn and Johnson 1985, Theorem 7.3.2). The matrix H is always unique,
while U is only unique when A is non-singular. In particular, when A is
Hermitian positive-definite H = A and U is the identity. We use the fact
that polar factors of normal non-singular matrices commute in the following
sense (HEisenstat and Ipsen 1997, Lemma 4.2)

HU =UH = H'?2ugY/?.

Theorem 2.4 If A is normal and non-singular, with Hermitian positive-
definite polar factor H then
Ai — A
min i = Al <||H'?EH'/.
i A
Proof. (Eisenstat and Ipsen 1997, Theorem 4.3)
Since A = H1/2UH1/2, we can set A; = H/?U and Ay = H'Y? in Theo-



RELATIVE PERTURBATION RESULTS 9

rem 2.3 to get
1AV BA Y| = |0 H P ER?| = | HVPER V.
O

Therefore the eigenvalues of a normal matrix have the same relative error
bound as the eigenvalues of its positive-definite polar factor. This suggests
that the eigenvalues of a normal matrix are as well conditioned as the eigen-
values of its positive-definite polar factor. More generally we conclude that
eigenvalues of normal matrices are no more sensitive than eigenvalues of
Hermitian positive-definite matrices.

2.8. Hoffman- Wielandt-Type Bounds for Diagonalisable Matrices

The Hoffman-Wielandt theorem establishes a one-to-one pairing between all
eigenvalues of A and A + E and bounds the sum of all pairwise distances
in the Frobenius norm. This requires not only A but also A + E to be
diagonalisable.

Let A and A + E be diagonalisable matrices with eigendecompositions
A=XAX tand A+ E=XAX1, respectively. The eigenvalues are

A A
An An
The extension of the Hoffman-Wielandt theorem from normal to diag-

onalisable matrices (Elsner and Friedland 1995, Theorem 3.1) bounds the
absolute error,

\IZ i = A2 < w(X) R(X) 1B (2.2)
i=1

for some permutation 7. The condition numbers x(X) and k(X) are ex-
pressed in the two-norm to make the bound tighter, since the two-norm
never exceeds the Frobenius norm.

We can obtain a relative Hoffman-Wielandt-type bound from a stronger
version of (2.2) that deals with eigenvalues of matrix products. To this
end write the perturbed matrix as AC + E, where C' must have the same
eigenvector matrix as AC' + E. The bound (2.2) is the special case where
C = I. The eigendecomposition of C' is

gi!
C=X?1X"", where 7 =

Tn
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The eigendecompositions of A and the perturbed matrix remain the same,
A=XAX"", AC+E =XAX"".

The stronger Hoffman-Wielandt-type bound below bounds the sum of squares
of absolute errors in the products of the eigenvalues of A and C.

Lemma 2.1 If A, C and AC + E are diagonalisable then there exists a
permutation 7 such that

\IZ Aivr(y = Ae(i) |2 < K(X) 6(X) [ Bl
i=1

Proof. (Eisenstat and Ipsen 1997, Theorem 6.1) O

Now we are ready for the relative bound. The stronger absolute bound in
Lemma 2.1 implies a relative version of the original Hoffman-Wielandt-type
bound (2.2), provided A is non-singular.

Theorem 2.5 Let A and A + E be diagonalisable. If A is non-singular
then there exists a permutation 7 so that

" (A A i . 1
2\ T ) SeE) s AT B
i=1 t

Proof. (Eisenstat and Ipsen 1997, Corollary 6.2)
Since A" Y(A+ E) — A"'E = I we can set
A=A"1, C=A+E, E=—-A'E.

Then A is diagonalisable with eigenvector matrix X and eigenvalues )\;1; C

is diagonalisable with eigenvector matrix X and eigenvalues 5\2-; and AC +
E = X{X’1 1s diagonalisable, where the eigenvalues are 1 and one can
choose X as an eigenvector matrix. Applying Lemma 2.1 to A, C' and E
gives

DA Ay = 117 S R(X)PR(X)?IAT B E.
i=1
m

2.4. Hoffman- Wielandt-Type Bounds for Hermitian Matrices

When A and A+ F are Hermitian the permutation in the Hoffman-Wielandt
Theorem is the identity, provided exact and perturbed eigenvalues are num-
bered as

An < oo <AL Ay <<
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The Hoffman-Wielandt Theorem for Hermitian matrices (Bhatia 1997, Ex-
ercise I11.6.15) (Lowner 1934) bounds the absolute error by

DDA = A2 < LB g (2.3)
=1

The relative bound below requires in addition that A and A+ E be positive-
definite.

Theorem 2.6 If A and A+ F be Hermitian positive-definite then

< ||A 1/2EA 1/2 (I+A 1/2EA 1/2) 1/2”

n
> RAe
i=1

Proof.  (Li 19944, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4’)
O

As consequence a small |A~/2EA~1/2|| guarantees a small eigenvalue

error. If one does not mind dealing with majorisation theory one can de-
rive bounds that are stronger than Theorem 2.6 and hold for any unitarily
invariant norm (Li and Mathias 1997, Proposition 3.4, (3.19)).

2.5. Weyl-Type Bounds

Weyl’s perturbation theorem (Bhatia 1997, Corollary I11.2.6) bounds the
worst distance between the ith eigenvalues of Hermitian matrices A and
A + FE in the two-norm,

— < .
max [ il < 1B (2.4)

The absolute bound (2.4) implies a relative bound, provided that A is
positive-definite. There is no restriction on E other than being Hermitian.

Theorem 2.7 Let A and A+ F be Hermitian. If A is also positive-definite

then
Ai — A
max MMy g
1<i<n |\

Proof. (Eisenstat and Ipsen 1997, Corollary 5.2), (Mathias 1994, Theorem
2.3)

We reproduce the proof from (Eisenstat and Ipsen 1997) because it ex-
plains how the absolute bound (2.4) implies the relative bound. Fix an index

i. Let & be an eigenvector of A + E associated with );, i.e.
(A+ E)i = \i.

Multiplying (S\ZI — E)i = Az by A~'/? on both sides gives
(A+E)z =2z,
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where

A=NATY,  E=-A'EATVE = AY?%

Hence 1 is an eigenvalue of A+ E.

We show that it is actually the (n — i + 1)st eigenvalue and argue as in
the proof of (Eisenstat and Ipsen 1995, Theorem 2.1). Since Ai is the ith
eigenvalue of A + E, 0 must be the 7th eigenvalue of

(A+E)—MNI=AY?(1—-A—E)A2

But this is a congruence transformation because square-roots of positive-
definite matrices are Hermitian. Congruence transformations preserve the

inertia. Hence 0 is the ith eigenvalue of I — A — E, and 1 is the (n —i+ 1)st
eigenvalue of A + F. ) o
Applying Weyl’s Theorem (2.4) to A and A + E gives
7

— oy < | Bl =[ATPEAT?,
An—j+1

max
1<j<n

where p1; are the eigenvalues of A+ E. When j =n —i+ 1, then pi =1
and we get the desired bound. O

The following example illustrates what the relative bound in Theorem 2.7
looks like when F is a component-wise relative perturbation.

Example 2.1 (Mathias 1994, pages 6, 7)

Let’s first subject a single diagonal element of a Hermitian positive-definite
matrix A to a component-wise relative perturbation. Say, a;; is perturbed
to a;;(1 + €). The perturbed matrix is A + E, where E = eeje]T and e; is
the jth column of the identity matrix. Then

JATZEAT?)| = (e |[AT Peje] ATV = Je] le] ATVPAT e
= e[ (AN

where (A1), is the jth diagonal element of A~! (which is positive since A
is positive-definite). The relative error bound in Theorem 2.7 is

A — N

< e (A1
fgzgn ‘)\z| = |6| ( )]]

This means, a small relative error in a diagonal element of a Hermitian
positive-definite matrix causes only a small relative error in the eigenvalues
if the corresponding diagonal element of the inverse is not much larger than
one.

Next we’ll subject a pair of off-diagonal elements to a component-wise
relative perturbation. Say, aj, and ay; are perturbed to aj(1 + €) and
ar;(1+€), respectively. The perturbed matrix is A+ E, where E = €(eje] +
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ejel). In this case we get

1A ZEAT 2 < 2l /(A1) j5(A g
The relative error bound in Theorem 2.7 becomes
A — Al

e - —1Y).. —1
max < 20e] /(A1) j5(A g

This means, a small relative error in a pair of off-diagonal elements of a
Hermitian positive-definite matrix causes only a small relative error in the
eigenvalues if the product of the corresponding diagonal elements in the
inverse is not much larger than one. O

The bound below, for a different error measure, is similar to the Frobenius
norm bound in Theorem 2.6.

Theorem 2.8 If A and A + E are Hermitian positive-definite then

1I£Ia<X M S ||A*1/2EA71/2 (I+A71/2EA71/2)71/2||.
<i<n N

Proof. (Li 1994a, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4’)
([

2.6. Weyl-Type Bounds for More Restrictive Perturbations

It is possible to get a Weyl-type bound for eigenvalues of Hermitian matri-
ces without officially asking for positive-definiteness. The price to be paid,
however, is a severe restriction on F to prevent perturbed eigenvalues from
switching sign.

Theorem 2.9 Let A and A+ E be Hermitian. If 0 < ¢; < ¢, and
13 Ar < 3'Ex <e¢,z"Ax forall z

then
X <A — N <eu i, 1<i<n.

Proof. This is a consequence of (Barlow and Demmel 1990, Lemma 1).
The Minimax Principle for eigenvalues of Hermitian matrices (Bhatia
1997, Corollary I11.1.2) implies
T*Ax . Tt Az

A = max min = min ,
dim(S)=i z€S T*T z€So T*T

for some subspace Sy of dimension ¢. Then
. z(A+ E)x > i " (A+ E)z  z5(A+ E)xg

A; = max min————— > min =

dim(S)=i z€S ¥z z€So T*x THTo
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for some xy € Sy. The above expression for A; and the assumption imply

* * *
(A + E)xg . x*Ax zh Azq
_llg_________z___ 22 min _% €] U*

€S0 T*x T(To

p > A + e,
./U./U

where we have also used the fact ¢, > 0. Hence ¢)\; < 5\1 — X;. The upper
bound is proved similarly using the characterisation

. z* Az
N = min max .
dim(S)=n—i+1 zeS x*x

O

Therefore the relative error in the eigenvalues lies in the same interval as
the relative perturbation. The relative error bound in Theorem 2.9 implies

(T+e) N <X < (1+e) N,

where ¢, and ¢, are positive. Hence ); has the same sign as \;, and |A;| > |\;].
Thus the restriction on the perturbation is strong enough that it not only
forces A and A+ F to have the same inertia, but it also pushes the perturbed
eigenvalues farther from zero than the exact eigenvalues.

The restriction on the perturbation in the following bound is slightly
weaker. It uses the polar factor technology from Theorem 2.4.

Theorem 2.10 Let A and A + E be Hermitian. If H is the positive-
semidefinite polar factor of A and if for some 0 < e < 1

"Bzl < er*Hzx for all x
then

Proof. This is a consequence of (Veseli¢ and Slapnicar 1993, Theorem 2.1).
The assumption implies

2 (A—eH)x < 2" (A+ E)z < z*(A+eH)z.

If A= XAX" is an eigendecomposition of A then, because A is Hermitian,
the polar factor is H = X|A|X ™, where |A] is the matrix whose elements are
the absolute values of A. Hence A and H have the same eigenvectors. A
min-max argument as in the proof of Theorem 2.9 establishes

O

Therefore the relative error in the eigenvalues is small if the relative per-
turbation with regard to the polar factor is small. Since 0 < € < 1 the
relative error bound implies that 5\1 has the same sign as A;. Hence the
assumptions in Theorem 2.10 ensure that A + E has the same inertia as A.
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Theorem 2.10 applies to component-wise relative perturbations. Matrix
inequalities below of the form |E| < €| A| are to be interpreted element-wise.

Corollary 2.1 Let A and A + E be Hermitian, and |E| < € |A]| for some
e > 0. If H is the positive-definite polar factor of A and for some n > 0

e lz|*|Allz]| <nax*Hzx for all x

then
X — Nl <7 |l

Proof. This is a consequence of (Veseli¢ and Slapnicar 1993, Theorem 2.11).
We merely need to verify that the assumptions of Theorem 2.10 hold,

2" Ba| < |of"|B|le| < e |o*|Alle| < o Ha.
O

2.7. Congruence Transformations for Positive-Definite Matrices

All the bounds we have presented so far for positive-definite matrices con-
tain the term A"Y/2EA~1/2_ Since A is Hermitian positive-definite, A!/2
is Hermitian, which makes A=1/2EA~1/2 Hermitian. This in turn implies
that the two-norm and Frobenius norm of A~/2EA~1/2 are invariant under
congruence transformations. We say that two square matrices A and M are
congruent if A = D*M D for some non-singular matrix D. If A is Hermitian
positive-definite, so is M because congruence transformations preserve the
inertia.

We start out by showing that the bound in Theorem 2.7 is invariant under
congruence transformations.

Corollary 2.2 Let A and be Hermitian positive-definite and A + E Her-
mitian. If A = D*MD and A+ E = D*(M + F)D, where D is non-singular,
then
A — s
max A1z py)
1<i<n ||
Proof. (Mathias 1994, Theorem 2.4)
Start with the bound in Theorem 2.7,
i = Al
max ————
1<i<n |\

<[A2EAT2).

Positive-definiteness is essential here. Since A is Hermitian positive-definite,
it has a Hermitian square-root A2, Hence A~/2EA~1/2 is Hermitian. This
implies that the norm is an eigenvalue,

JAT2EATY?) = max |\ (A V2EATY?).
1<j<n
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Now comes the trick. Since eigenvalues are preserved under similarity trans-
formations, we can reorder the matrices in a circular fashion until all grading
matrices have cancelled each other out,

N(ATVPEATY?) = MN(AT'E) =MD" MT'F D) = \(MT'F)
= N(MY2RMY?).
At last recover the norm,

max |\ (M~ Y2FEM7V2)| = M2 EMY2).
1<j<n

O

Corollary 2.2 extends (Barlow and Demmel 1990, Theorem 2) and (Dem-
mel and Veseli¢ 1992, Theorem 2.3) to a larger class of matrices. It suggests
that the eigenvalues of A + E have the same error bound as the eigenvalues
of M + F. We can interpret this to mean that the eigenvalues of a Hermi-
tian positive-definite matrix behave as well as the eigenvalues of any matrix
congruent to A. The example below illustrates this.

Example 2.2 (Demmel and Veseli¢c 1992, page 1211)

The matrix
107 10% 10Y
A=1[10* 10* 10
10" 107 1
is symmetric positive-definite with eigenvalues (to six decimal places)
1.00000 - 1040, 9.90000 - 10'?, 9.81818 - 10 1.
If we write A = DM D, where

1 1 .1 10%°
M=|1 1 1}, D= 100 ,
1 1 1 1

then the eigenvalues of M are (to six decimal places)
9.00000 - 107!, 9.00000 - 107!, 1.20000.

Corollary 2.2 implies that the widely varying eigenvalues of A, and in
particular the very small ones, are as impervious to changes in M as the
uniformly sized eigenvalues of M.

Already thirty years ago structural engineers considered congruence trans-
formations like the one above where D is diagonal and all diagonal elements
of M are equal to one (Rosanoff, Glouderman and Levy 1968, pages 1041,
1050). They observed that such an equilibration ‘reduce[s] the ratio of ex-
treme eigenvalues’ (Rosanoff et al. 1968, page 1045), and that ‘equilibration
is of major importance in measurement of matrix conditioning’ (Rosanoff et
al. 1968, page 1059). O



RELATIVE PERTURBATION RESULTS 17

From the circular reordering argument in the proof of Corollary 2.2 it
also follows that the other bounds for positive-definite matrices are invariant
under congruences. One bound is Theorem 2.8.

Corollary 2.3 Let A and A + E be Hermitian positive-definite. If A =
D*MD and A+ E = D*(M + F)D, where D is non-singular then

max P2 < |\\MYPEMTY2 (I + MTV2EM )2

1<i<n 3

= i
Proof. (Li 1994a, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4’)
([

The other bound that is also invariant under congruences is the Frobenius
norm bound Theorem 2.6.

Corollary 2.4 Let A and A + E be Hermitian positive-definite. If A =
D*MD and A+ E = D*(M + F)D, where D is non-singular then

Z )\z>\ j\>\| < ||M 1/2FM 1/2 (I+M 1/2FM 1/2) 1/2”
i=1 i\

Proof.  (Li 19944, Theorem 3.2), (Li and Mathias 1997, Proposition 3.4’)
Since the Frobenius norm sums up squares of eigenvalues, the bound from
Theorem 2.8 can be written as

A V2gpA-1/2 T+ A 12 A 1/2 —1/292
H ( I ZHM

where y; are the eigenvalues of the Hermitian matrix A~Y2EA-Y2. The
circular reordering argument from the proof of Corollary 2.2 implies that pu;
are also the eigenvalues of M~Y2FM~1/2 O

One may wonder what’s so interesting about congruence transformations.
One can use congruence transformations to pull the grading out of a matrix
(Barlow and Demmel 1990, §2), (Demmel and Veseli¢ 1992, §1, §2.1), (Math-
ias 1995a). Consider the matrix A in Example 2.2. It has elements of widely
varying magnitude that decrease from top to bottom. The diagonal matrix
D removes the grading and produces a matrix M, where M = D"'AD~",
all of whose elements have about the same order of magnitude and all of
whose eigenvalues are of about the same size.

More generally we say that a Hermitian positive-definite matrix A is
graded, or scaled, if A = DM D* and the eigenvalues of M vary much less
in magnitude than the eigenvalues of A (Mathias 19954, §1).
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2.8. Congruence Transformations for Indefinite Matrices

Since the application of congruence transformations is not restricted to Her-
mitian positive-definite matrices, we may as well try to find out whether
indefinite matrices are invariant under congruences. It turns out that the
resulting error bounds are weaker than the ones for positive-definite matrices
because they require stronger assumptions.

If we are a little sneaky (by extracting the congruence from the polar
factor rather than the matrix proper) then the bound for normal matrices
in Theorem 2.4 becomes invariant under congruences.

Corollary 2.5 Let A be normal and non-singular, with Hermitian posi-
tive-definite polar factor H. If D is non-singular and

E = DE,D*, H = DM, D*
then

Ai — A - -
min P2 a2
i |\
Proof. (Eisenstat and Ipsen 1997, Corollary 4.4) O

This means the error bound for eigenvalues of a normal matrix is the
same as the error bound for eigenvalues of the best scaled version of its
positive-definite polar factor.

Let’s return to Weyl-type bounds, but now under the condition that the
congruence transformation is real diagonal. Theorem 2.10 leads to a bound
that is essentially scaling invariant. It is similar to the one above, in the
sense that the scaling matrix is extracted from its positive-definite polar
factor. However now the perturbations are restricted to be component-wise
relative.

Corollary 2.6 Let A = DM D be non-singular Hermitian, where D is di-
agonal with positive diagonal elements, and let H = DM; D be the positive-
definite polar factor of A. If A+ E is Hermitian and |E| < € |A] for some
e > 0 then

Ai — Al

< el | M| || M.
e NP < el [M] ] ||M ]

Proof. Thisis a consequence of (Veseli¢ and Slapnicar 1993, Theorem 2.13).
We use variational inequalities to show that the assumptions of Corollary
2.1 are fulfilled. Since D is positive-definite,

\z|*|A]|z| = |2|*D |M| D|z| < || |M]|| z*D*z for all x.
Variational inequalities imply

*D?z < ||M;{ Y| =*Ha.
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Therefore
e lz|*|A| || <nz*Hzx for all z,

where 1) = € || |[M] | ||M; "||. Now apply Corollary 2.1. O

The amplifier in the bound, || |M]]| |[M; |, is almost like the condition
number of the absolute value matrix |M| or almost like the condition number
of the scaled polar factor M;. Therefore the relative error in the eigenvalues
of a Hermitian matrix is small if the polar factor and the absolute value of
the matrix are well-scaled.

The following bound is similar in the sense that it applies to a column
scaling of a Hermitian matrix A = MD. In contrast to Corollary 2.6,
however, the scaled matrix M is in general not Hermitian anymore; and
the inverse of the scaled matrix, M ', now appears in the bound rather
than the inverse of the scaled polar factor, Mfl.

Corollary 2.7 Let A = MD be non-singular Hermitian and D diagonal
with positive diagonal elements. If A + E is Hermitian, and |E| < € |A] for
some € > 0 then

Ai — Ai
max P g,
<i<n |>\z‘

Proof. (Veseli¢ and Slapnicar 1993, Theorem 3.16)

First we take care of the scaling matrix D. The technology of previous
proofs requires that D appear on both sides of the matrix. That’s why we
consider A2 = A*A = DM*MD. The component-wise perturbation implies

B2z < € |zt A? |z).
Proceeding as in the proof of Corollary 2.6 gives
(2l *| AP @] < | M| [M72 2" A% for all a.
Hence
|* B2z| < n* 2% A%z,

where n = € || [M||| ||M;Y]]. Now that we got rid of D, we need to undo
the squares. In order to take the positive square-root without losing the
monotonicity we need positive-definite matrices under the squares. Polar
factors do the job.

If H and Hg are the Hermitian positive-definite polar factors of A and
E. respectively then

t*FE’z = z*Her, ¥ A%r = o*Hz.

Therefore
t*Hix < n° z*Hz for all x.
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Now comes the trick. Because Hr and H are Hermitian positive-definite we
can apply the fact that the square-root is operator-monotone (Bhatia 1997,
Proposition V.1.8) and conclude

2*Hpz < nz*Hz.
Since |z*Ez| < z*Hpx, Theorem 2.10 applies. O

The next bound, the last one in this section, applies to general pertur-
bations. Compared to other bounds it severely constrains the size of the
perturbation by forcing it to be smaller than any eigenvalue of any principal
submatrix.

Theorem 2.11 Let A= DMD and A+ E = D(M + F)D be real, sym-
metric and D a real non-singular diagonal matrix. Among all eigenvalues of
principal submatrices of M, let p be the smallest in magnitude. If ||F| < |u
then

—[1#]] - <||1F)

2ul = 1F] _ Ai—A 2u| — ||F

LD WP e
] Ai (sl = 1F1)

Proof. (Gu and Eisenstat 1993, Corollary 5) O

2.9. Ritz Values

Ritz values are ‘optimal’ approximations to eigenvalues of Hermitian matri-
ces.

Let A be a Hermitian matrix of order n and () a matrix with m orthonor-
mal columns. Then W = Q*AQ is a matrix of order m whose eigenvalues

A > > A,

are called Ritz values of A (Parlett 1980, §11.3). The corresponding residual
is R = AQ — QW. Ritz values are optimal in the following sense. Given
@, the norm of R can only increase if we replace W by another matrix, i.e.
(Parlett 1980, Theorem 11-4-5),

IR = [AQ — QW] < [[AQ — QC|

for all matrices C of order m.
Moreover one can always find m eigenvalues of A that are within absolute
distance ||R| of the Ritz values (Parlett 1980, Theorem 11-5-1),
max, Ar) — Al S IR
for some permutation 7.
Unfortunately the corresponding relative error bounds are not as sim-

ple. They are expressed in terms of angles between the relevant subspaces
range(Q), range(AQ), and range(A'Q). Let 0 < 6; < 7/2 be the maximal
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principal angle between range(Q)) and range(AQ), and 0 < 0y < w/2 be the
maximal principal angle between range(AQ) and range(A Q).

Theorem 2.12 If A is non-singular Hermitian then there exists a permu-
tation 7 so that
Aoy — s

max 7‘ 7(0) d < sin#; + tanf,.

1sism Az
Proof. (Drmac 19964, Theorem 3, Proposition 5)

In order to exhibit the connection to previous results we sketch the idea

for the proof. First express the Ritz values as an additive perturbation. To
this end define the Hermitian perturbation

= —(RQ"+ QR").
Then @ is an invariant subspace of A + F,
(A+ E)Q =QW,

and the eigenvalues of W are eigenvalues of A + E.
Now proceed as in the proof of Corollary 2.7 and look at the squares,

t*E%r = 2*A* ATE*EA™" Az < |EA™"||*2* A%z for all x.

Undo the squares using polar factors and the operator-monotonicity of the
square root, and apply Theorem 2.10. Hence the eigenvalues p1 > ... > u,
of A+ F satisfy

i — 11
max 22—l ipany
1<i<n |\
Let 5\1 > ... > j\m be those u; that are also eigenvalues of W; and let 7 be
a permutation that numbers the eigenvalues of A corresponding to pu; first.
Then

IAriiy = il

a < ||[EA7Y.
e s A

We still have to worry about ||[EA~!||. Write
~BATN = (I -QQAQQ AT + QQ*(I - AQQ"A™).

Here QQ* is the orthogonal projector onto range(Q), while AQQ*A~! is the
oblique projector onto range(AQ) along range(Q*A~!). This expression for
EA~! appears in (Drma¢ 1996a, Theorem 3). It can be bounded above by
sinf#; 4+ tan fy. O

Therefore the relative error in the Ritz values of W = Q*AQ) is small
if both subspace angles 6y and 6y are small. Things simplify when the
matrix A is also positive-definite because there is only one angle to deal with.
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Let A be Hermitian positive-definite with Cholesky factorisation A = LL*.
Let 0 < 6 < 7/2 be the maximal principal angle between range(L*(Q) and
range(L Q).

Theorem 2.13 If A is Hermitian positive-definite and if sinf < 1 then
there exists a permutation 7 so that

Ariiy — il o _sind
1212857(71 ‘)\T(Z)‘ —1—sinf’

Proof. (Drmac 19964, Theorem 6) O

Theorem 2.13 can be extended to semi-definite matrices (Drma¢ and Hari

1997).

3. Additive Perturbations for Singular Values

Let B be a complex matrix. We want to estimate the absolute and the
relative errors in the singular values of the perturbed matrix B 4+ F. For
definiteness we assume that B is tall and skinny, i.e. B ism xn withm >n
(if this is not the case just consider B*).

Perturbation bounds for singular values are usually derived by first con-
verting the singular value problem to an Hermitian eigenvalue problem.

3.1. Conwverting Singular Values to Eigenvalues

The singular value decomposition of a m X n matrix B, m > n, is

X\ s
s (%)

where the left singular vector matrix U and the right singular vector matrix
V' are unitary matrices of order m and n, respectively. The non-negative
diagonal matrix > of order n contains the singular values o; of B,

o1
Y= . ,
On
where

o1 >...>20, >0.

There are two popular ways to convert a singular value problem to an eigen-
value problem.

e The eigenvalues of
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are
Olyeue,Opny =01y, —0p,0,...,0.
———
m—n
Therefore the singular values of B are the n largest eigenvalues of A

(Horn and Johnson 1985, Theorem 7.3.7).
e The eigenvalues of B*B are

2 2
O1y...,0p.

Therefore the singular values of B are the positive square-roots of the
eigenvalues of B*B (Horn and Johnson 1985, Lemma 7.3.1).

Since singular values are eigenvalues of a Hermitian matrix, they are well-
conditioned in the absolute sense.

3.2. Hoffman- Wielandt- Type Bounds

We bound the sum of squares of all distances between the ith exact and
perturbed singular values in terms of the Frobenius norm.
The singular values of B and B + F' are, respectively,

01> ... >0 >0, 61> ...> 6, > 0.

Converting the singular value problem to an eigenvalue problem a la §3.1
and applying the Hoffman-Wielandt Theorem for Hermitian matrices (2.3)
leads immediately to the absolute error bound

n
> loi—6i? < ||F|r.
i=1

The relative bound below requires in addition that both matrices be non-
singular.

Theorem 3.1 Let B and B + F be non-singular. If |[FB~!|| < 1 then

I(I+FB ) — (I+FB Y Yp.

Therefore the error in the singular values is small if I + FB~! is close to
being unitary (or orthogonal). This is case when B+ F = (I + FB™1) B is
more or less a unitary transformation away from B.

Proof. (Li 1994a, Theorem 4.3). O

3.83. Weyl-Type Bounds

We bound the worst-case distance between the ith exact and perturbed
singular values in terms of the two-norm.
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The absolute error bound is an immediate consequence of Weyl’s Pertur-
bation Theorem (2.4)
loi — il < ||F, 1<i<n.

The corresponding relative bound below restricts the range of F' but not its
size. Here B is the Moore-Penrose inverse of B.

Theorem 3.2 If range(B + F') C range(B) then

If range((B + F)*) C range(B*) then

Proof. (Di Lena, Peluso and Piazza 1993, Theorem 1.1)

We prove the first bound, the proof for the second one is similar.

Life would be easy if we could pull B out of F, say if FF = BC for some
matrix C. Then we could write B+ F = B(I + C) and apply the sum and
product inequalities for singular values (Horn and Johnson 1985, page 423)
to get the relative bound

lo; — &3] < oy |C].

It turns out that the range condition is exactly what is needed to pull B
out of F'. This is because range(B + F') C range(B) implies F = BC, for
some C7. This allows us to write

F =BC, = BB'BC, = BB'F.
Consequently, setting C' = BT F gives the desired result. O

When B has full column rank the second range condition in Theorem 3.2
is automatically satisfied.

Corollary 3.1 If B has full column rank then

Proof. (Di Lena et al. 1993, Remark 1.1)

If B has full column rank n then its rows span n-space. Hence range((B +
F)*) C range(B*) for any F', and the second relative bound in Theorem 3.2
holds. U

Therefore singular values of full-rank matrices are well-conditioned in the
absolute as well as relative sense. This may sound implausible at first, in
particular when B has full rank while B+ F' is rank-deficient. In this case all
singular values of B are non-zero while at least one singular value of B + F
is zero. Hence a zero singular value of B + F' must have relative error equal
to one. How can the singular values of B be well-conditioned? The answer
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is that in this case the relative perturbation || BfF|| is large. The following
example illustrates that || BTF| is large when B and B + F differ in rank.

Example 3.1 Let

2 0 0 0
B=10 n], F=|0 —n],
0 0 0 0

where 1) # 0. The rank of B is two, while the rank of B + F' is one.
The relative error in the singular value 6 = 0 of B 4+ F' is equal to one
because [n —0|/|n| = 1. Since

1
10 0 0 0
t_ (2 b
B _<0 ! 0), BF_<0 1),

we get |BTF| = 1. Corollary 3.1 gives

min i — 9| <1
7 Ui

Therefore Corollary 3.1 is tight for the zero singular values of B+ F. O

Corollary 3.1 extends (Demmel and Veselic 1992, Lemma 2.12) to matrices
that do not necessarily have full rank (Di Lena et al. 1993, Remark 1.2).
When B is non-singular Corollary 3.1 implies that both range conditions in
Theorem 3.2 hold automatically.

Corollary 3.2 If B is non-singular then

loi — a4
max

< mi -1 -
o — < min{||B"F|.||FB [/}

The following bound, for a different error measure, is similar to the Frobe-
nius norm bound Theorem 3.1. It requires that both B and B + F be
non-singular.

Theorem 3.3 Let B and B + F be non-singular. Then

loi — 5 1 B N —1y-1
——— < -+ FB — (I +FB .
pax < o U4 FBY (14 B

Proof.  (Li 19944, Theorem 4.3). O

As in Theorem 3.1, the error in the singular values is small if I + FB~!
is close to being unitary (or orthogonal). This is case when B+ F = (I +
FB~1) B is more or less a unitary transformation away from B.
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3.4. Congruence Transformations

We start with one-sided grading of matrices B with full-column rank. That
is, B=CD or B = DC, where D is non-singular. In the event D is diagonal,
CD represents a column scaling while DC represents a row scaling.

All relative singular value bounds presented so far are invariant under one-
sided grading from the appropriate side. That’s because the bounds contain
terms of the form BYF or FB!. Consider BTF, for instance. Grading from
the right is sandwiched in the middle, between B and F, and therefore
cancels out.

Let’s first look at the Hoffman-Wielandt-type bound for graded matrices,
which follows directly from Theorem 3.1.

Corollary 3.3 Let B=CD and B+ F = (C + G)D be non-singular. If
|IGC~ Y| < 1 then

(I +GC™H* — ([T +GC Y k.

Proof.  (Li 19944, Theorem 4.3)
The grading is sandwiched in the middle of the relative perturbation
FB~', and cancels out,

FB'=(GD)(CD)'=GDD 'Cc'=GC™.
O

Moving right along to the two-norm, we see that Corollary 3.1 is invariant
under grading from the right.

Corollary 3.4 If B = CD has full column rank, and if B+ F = (C+G)D
then

Proof. (Di Lena et al. 1993, Remark 1.2)
Full column rank is needed to extract the grading matrix from the inverse,

Bt = (CcD)! = D'ct = D11,
O

Therefore the relative error in the singular values of B+ F' is small if there
is a grading matrix D that causes the relative perturbation of the graded
matrices ||GCT| to be small. For instance, suppose B = CD has columns
whose norms vary widely while the columns of C are almost orthonormal.
If the perturbed matrix is scaled in the same way then the error bound
in Corollary 3.4 ignores the scaling and acts as if it saw the well-behaved
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matrices C' and C 4+ G. Corollary 3.4 extends (Demmel and Veselic 1992,
Theorem 2.14) to a larger class of matrices.
The other two-norm bound, Theorem 3.3, is also invariant under grading.

Corollary 3.5 Let B =CD and B+ F = (C + G)D be non-singular. If
|GC™'| <1 then

loi — 5 1 B N —1y-1
— < (I — (I .
max < (U4 GO ) = (1G0T

Proof. (Li 19944, Theorem 4.3) O

Finally we present the only bound that is invariant under grading from
both sides. It requires that the grading matrices be real diagonal; and it
restricts the size of the perturbation more severely than the other bounds.

Theorem 3.4 Let B = D;CD, and B+ F = D|(C + G)D, be real sym-
metric, where D; and D, are real non-singular diagonal matrices. Among
the singular values of all square submatrices of B, let 6 be the smallest one.
If |G| < @ then

20— |G| _ 6i—oi 20 — |G|

< <||G|| ——== <

e T
Proof. (Gu and Eisenstat 1993, Corollary 10) O

~l&l

4. Some Applications of Additive Perturbations

We discuss Jacobi’s method for computing singular values and eigenvalues,
and deflation of triangular and bidiagonal matrices.

4.1. Jacobi’s Method for Singular Values

Jacobi’s method is generally viewed as a method that computes eigenvalues
and singular values to optimal accuracy. It was Jacobi’s method that first at-
tracted attention to invariance of eigenvalue and singular values error bounds
under congruence (Demmel and Veseli¢ 1992, Mathias 19954, Rosanoff et al.
1968). We give a very intuitive plausibility argument, shoving many sub-
tleties under the rug, to explain the high accuracy and invariance under
grading of Jacobi’s method. Our discussion runs along the lines of (Dem-
mel 1997, §5.4.3) and (Mathias 1995a, §2, 3). Other detailed accounts can
be found in (Demmel and Veselic 1992), (Drmac¢ 1996b6). An attempt at a
geometric interpretion of Jacobi’s high accuracy is made in (Rosanoff et al.
1968, pages 1045-6).

A one-sided Jacobi method computes the singular values of a tall and
skinny matrix by applying a sequence of orthogonal transformations on the
right side of the matrix. The duty of each orthogonal transformation is
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to orthogonalise two columns of the matrix. The method stops once all
columns are sufficiently orthogonal to each other. At this point the singular
values are approximated by the column norms, i.e. the Euclidian lengths of
the columns.

For simplicity assume that B is a real non-singular matrix of order n. Let
D be a row scaling of B, i.e. B = DC, where D is diagonal. We show
that the one-sided Jacobi method ignores the row scaling. When Jacobi
applies an orthogonal transformation @) to B the outcome in floating point
arithmetic is BQ + F. Corollary 3.2 implies that the singular values &; of
BQ + F satisty

07 — i

max ———— < [|C7'G|| < |7 ]G,

1<i<n g;

where F' = D@G.
Let’s bound the squared error ||G]|. Round-off error analysis tells us that
the error in the ¢th row is

lef FIl < €6; llef Bl + O(¢?),

where (3; depends on the matrix size n and ¢ > 0 reflects the machine
accuracy. Now the crucial observation is that the orthogonal transformations
happen on one side of the matrix and the scaling on the other side. Because
() operates on columns it does not mix up different rows and therefore
preserves the row-scaling. This means we can pull the ith diagonal element
of D out of e F,

lef Fll < ep; llef Bll = ef; llef (DO)|| = |dii] e lle O
This gives a bound for the ¢th row of G,
lef Gl = |diil " lle FI| < €6; [l C|l + O(e?).
The total error is therefore bounded by
1G] < B IC]| +O(e),

where # depends on n. Therefore the error bound for the singular values of
B(@ + F is independent of the row-scaling,

|oi — 6i 2
max B <efK(C)+ O(€).

This means Jacobi’s method produces singular values of B but acts as if
it saw C instead. That’s good, particularly if D manages to pull out all the
grading. Then all singular values of C' have about the same magnitude and
k(C) is close to one. Therefore the above bound £(C) fe tends to be on the
order of machine accuracy e, implying that the relative error in the singular

values is on the order of machine accuracy.
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The argument is more complicated when the orthogonal transformations
are applied on the same side as the scaling matrix. Fortunately the resulting
error bounds do not tend to be much weaker (Mathias 1995a, §4).

4.2. Jacobi’s Method for Eigenvalues

A two-sided Jacobi method computes eigenvalues of a real symmetric posi-
tive-definite matrix by applying a sequence of orthogonal similarity transfor-
mations to the matrix. An orthogonal similarity transformation operates on
two rows, i and j, and two columns, 7 and j, to zero out elements (7, j) and
(7,4). The method stops once all off-diagonal elements are sufficiently small.
At this point the eigenvalues are approximated by the diagonal elements.
Let A be real symmetric positive-definite of order n, and A = DMD,
where D is a non-singular diagonal matrix. The Jacobi method computes
the eigenvalues of a matrix A + E. According to Corollary 2.2, the error
bound for the eigenvalues \; of A + E is
Ai — Al
max ———
1<i<n |\

where £ = DFD. One can show that the error is bounded by
IF]| < ae [|M]| + O(e?),

< |MTVEEMTVR < (MY |F, (4.1)

where a depends on n and € > 0 reflects the machine accuracy. Therefore

i — A 2
— < oaek(M :
Joax. o < aek(M)+ O(e)
This means, the relative error in the eigenvalues is small, provided the am-
plifier k(M) is small.
The amplifier k(M) can be minimised via an appropriate choice of the
scaling matrix D. If

Vai
D e

Gnn

then all diagonal elements of M are equal to one. Therefore (van der Sluis
1969, Theorem 4.1)

k(M) < nmgn Kk(SAS),

where the minimum ranges over all non-singular diagonal matrices S. This
means, a diagonal scaling that makes all diagonal elements the same gives
the minimal condition number among all diagonal scalings (up to a factor
of matrix size n).

We claimed above that the error ||[F|| in (4.1) is small. Let’s examine in



30 I.C.F. IPSEN

more detail why. The error F' comes about because of floating point arith-
metic and because of the fact that eigenvalues are approximated by diagonal
elements when the off-diagonal elements are small but not necessarily zero.
Let’s ignore the round-off error, and let’s ask why ignoring small off-diagonal
elements results in a small ||F'||. The trick here is to be clever about what
it means to be ‘small enough’.

Suppose the Jacobi method has produced a matrix A whose off-diagonal
elements are small compared to the corresponding diagonal elements,

laij| < ey/aiiag;.
This implies |m;;| < € where m;; are the elements of the graded matrix M =
D= 'AD~" and D is the above grading matrix with \/a;; on the diagonal.
Since the diagonal elements of M are equal to one, we can write M = I + F,
where F' contains all the off-diagonal elements of M and
1P < (0= 1)e.
Therefore ||F|| is small, and (4.1) implies that the error in the eigenvalues
is bounded by
A — s
max i = Al < ||M7Y (n— 1)
1<i<n ||

Furthermore one can bound ||M ~!|| in terms of ¢,

1 < 1
1—|F|| —1—(n—1)
Replacing this in the error bound gives

IAi — A (n—1)e
max < .
1<i<n || 1—(n—1)e

M =17+ F) 7 <

Therefore ignoring small off-diagonal elements produces a small relative er-
ror.

The preceding arguments illustrate that Jacobi’s method views a matrix
in the best possible light, i.e. in its optimally scaled version. Therefore
eigenvalues produced by Jacobi’s method tend to have relative accuracy
close to machine precision. This is as accurate as it gets. In this sense
Jacobi’s method is considered optimally accurate.

One way to implement a two-sided Jacobi method is to apply a one-sided
method to a Cholesky factor (Barlow and Demmel 1990, Mathias 1996).
Let A be a Hermitian positive-definite matrix with Cholesky decomposition
A = L*L. The squares of the singular values of L are the eigenvalues
of A. The singular values of L can be computed by the one-sided Jacobi
method from §4.1. The preliminary Cholesky factorisation does not harm
the accuracy of the eigenvalues. Here is why. The computed Cholesky factor
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is the exact Cholesky factor of a matrix A + E, where (Mathias 19954,
Lemma 2.6)

leij| < vey/aiag;,
and v depends on n. These perturbations have the same form as the ones
above, hence lead to a small relative error. A similar argument shows that

the squares of the diagonal elements of L are often good approximations to
the eigenvalues of A (Mathias 1996).

4.8. Deflation of Block Triangular Matrices

When a matrix is tall and skinny, or short and fat, one can save operations
by first converting it to a skinny, short matrix before computing singular
values. This can be accomplished by applying a QR decomposition and
then computing the singular values of the resulting triangular matrix (Chan
1982). If done properly, the relative accuracy of the singular values is pre-
served (Mathias 1995a, Theorem 3.2).

Suppose we compute the singular values of a triangular matrix by reducing
the matrix to diagonal form, say by a Jacobi or QR method. Partition the

triangular matrix as
By B )
B = .
( Bos

If the off-diagonal block B9 were zero then the problem of finding the singu-
lar values of B could be split into the two smaller, independent subproblems
of finding the singular values of B;j; and of Bgs. However if the off-diagonal
block Bis is not zero, we want to know when it can be thrown away without
causing too much harm to the singular values of B. The process of dis-
carding information in a matrix to reduce the problem complexity is called
‘deflation’.
The deflated matrix and the perturbation are, respectively,

_ (Bn (0 =By
B+F_< BQ2>’ F_<0 0 )

Corollary 3.2 implies the following relative bound for the singular values &;
of the deflated matrix B + F.

Corollary 4.1 If B is non-singular then

|oi — 64 . —1 -1
lrg%xn % < min{|| By, Biz||; [|B12Bg, [I}-

Proof. (Di Lena et al. 1993, Theorem 2.1) O

This means the singular values of the deflated matrix have small relative
error when the off-diagonal block is small compared to one of the diagonal
blocks.
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Now let’s suppose a preliminary ordering of the singular values has already
taken place. Say, the large singular values have floated to the top of the
matrix B while the smaller ones have sunk to the bottom. The bound
below is useful when the singular values of the top diagonal block are well
separated from the singular values of the bottom block.

Theorem 4.1 If

Umin(Bll) > a> /6 > Umax(BQQ)

then

max |o; — G| <0~M
1<i<n' ¢ U T TN a2 — 527

Proof. (Di Lena et al. 1993, Theorem 2.2) O

This means the singular values of the deflated matrix have small relative
error if the off-diagonal block is small compared to the separation between
the singular values of the two diagonal blocks. Theorem 4.1 is an extension
of (Demmel and Kahan 1990, Theorem 5). Other bounds that profit from a
strong singular value separation appear in (Chandrasekaran and Ipsen 1995,
Theorem 5.2.1), (Eisenstat and Ipsen 1995, §5), and (Mathias and Stewart
1993, Theorem 3.1).

4.4. Deflation of Bidiagonal Matrices

Triangular matrices are often further reduced to bidiagonal form before sin-
gular values are computed. A bidiagonal matrix is of the form

ar B

B=
Qp—1 /67171
7))

Bidiagonal matrices can also arise when one computes the vibrational fre-
quencies of a linear mass-spring system (Demmel et al. 1997, §12.1).

There are several algorithms for computing singular values of a bidiagonal
matrix to high relative accuracy (Demmel and Kahan 1990, Fernando and
Parlett 1994). Because such algorithms apply a sequence of transformations
to reduce B to diagonal form, they need to decide when an off-diagonal
element (3; is small enough to be neglected without severely harming the
singular values.

Suppose we are contemplating the removal of a single off-diagonal element.
Here B + F' is equal to B, except for the off-diagonal element in row j and
column j + 1, which is equal to zero. Then F = ﬁjeje]TH and ||F|| = |5l
Corollary 3.2 implies the following bound.
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Corollary 4.2 If B is non-singular bidiagonal then

i — & ) _ _
max ——— < [g;| min{||B""e;|, || B *ej41l}.

1<i<n oy
Proof. (Di Lena et al. 1993, §3) O

This means if we remove a small element from row 7 and column j + 1
of a bidiagonal matrix then the relative error in the singular values of the
deflated matrix is small if column 5 or row j 4 1 of B~! are small in norm.
Similar bounds, but for a different error measure, appear in (Deift, Demmel,
Li and Tomei 1991, Theorem 4.7) and (Demmel and Kahan 1990, Theorem
4).

Corollary 4.2 justifies the use of Convergence Criterion 1 (Demmel and
Kahan 1990, §2), (Deift et al. 1991, §4) in the zero-shift Golub-Kahan algo-
rithm for computing singular values of bidiagonal matrices. The practical
usefulness of this bound also derives from the fact that it can be computed
via the simple recursion below.

Corollary 4.3 If B is non-singular bidiagonal then

o7 — G4

max ———— < min{,/75,/¢;},

1<i<n g;

where
i B
"= r]:g(l—l—rj,l), 2<j<n,
1 J
and
2 ) 52
1= "5, j = ——(l+c¢), n-2>j>1

Proof. (Di Lena et al. 1993, Theorems 3.1, 3.2) O

When the shift in the Golub-Kahan algorithm or the qd algorithm is non-
zero, it can be incorporated into the perturbation bounds (Eisenstat and
Ipsen 1995, Theorem 5.7), (Fernando and Parlett 1994).

5. Multiplicative Perturbations for Eigenvalues

We shift gears and represent the perturbed matrix from now on as D1 ADg
where D; and D5 are non-singular. When Dy = Dfl this is just a similarity
transformation, which means that A and D;ADs have the same eigenval-
ues. When Dy = D7 this is a congruence transformation, which means
that A and D;ADs have the same inertia when A is Hermitian. Since the
non-singularity of Dy and Dy forces A and Dy ADy to have the same rank,
multiplicative perturbations are less powerful than additive perturbations.

Then why are multiplicative perturbations useful? It turns out that it
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is sometimes easier to express a component-wise relative perturbation of a
sparse matrix as a multiplicative perturbation than as an additive perturba-
tion. The following example illustrates how natural multiplicative pertur-
bations can be, especially for bidiagonal and tridiagonal matrices.

Example 5.1 (Barlow and Demmel 1990, p 770), (Eisenstat and Ipsen
1995, Corollary 4.1)
Consider the real, symmetric tridiagonal matrix

0 an
o 0 a9
a9 0 (0%}
a3 0 oy
as 0 s
(673 0

Such a matrix occurs, for instance, when one converts the singular value
problem of a bidiagonal matrix to an eigenvalue problem (see §3.1). A
component-wise relative perturbation of a single off-diagonal pair in A pro-
duces the perturbed matrix

0 o
o 0 a9
9 0 ,60[3

NS
I

Baz 0 oy
Q4 0 a5
(075 0

where 3 # 0. For instance, 5 could be of the form 8 = 1+ ¢, where |e| does
not exceed machine epsilon. The perturbed matrix A can be represented as
a multiplicative perturbation A = DT AD, where

VB

VB

In this case a component-wise relative perturbation of an off-diagonal pair
can be represented as a multiplicative perturbation. O

The simple-minded approach of disguising a multiplicative perturbation
as an additive perturbation, like so

DlADQ =A + E, where FE = DlADQ - A,

produces a perturbation matrix £ that may not be small or meaningful.
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There are different techniques for deriving multiplicative perturbation
bounds, and some of them are compared in (Li and Mathias 1997, §4.2).
Here we start from absolute perturbation bounds and show that they imply
many of relative bounds.

5.1. Bauer-Fike-Type Bounds

Again we start with a diagonalisable matrix, and we bound the distance of a
perturbed eigenvalue to a closest exact eigenvalue in terms of the two-norm.
Let A= XAX ! be an eigendecomposition of A, where

A1
A —
An

and )\; are the eigenvalues of A. Let A be an eigenvalue of the perturbed
matrix D1 ADs and Z # 0 a corresponding unit eigenvector,

(D1ADy) & = Ak, [1&] =1,
with residual
r= A7 — \i.

This time we use the Bauer-Fike Theorem with residual bound (Bauer and
Fike 1960, Theorem IIIa),

; N <k . .
min [ A< K(X) ] 6.)

The relative error bound below for the eigenvalue A of the perturbed
matrix D1 ADs measures the error relative to the perturbed eigenvalue rather
than an exact eigenvalue.

Theorem 5.1 If A is diagonalisable then

. 3 < 13 _p-lp-.
min [\~ A < A R(X) |12 - D; 1Dy |

Proof. (Eisenstat and Ipsen 1996, Theorem 6.1)

The idea is to concoct a residual that contains the factor A and then to
use the absolute bound (5.1).

From (D, AD;)# = A follows

Az=AD;'D;"z,  where 2z= Dyi/|Dsi|.
The residual for A and z is
f=Az—dz=XAD;'Dy' 1)z,

and it contains \ as a factor. Now apply the absolute bound (5.1) to f. O
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The perturbed matrix Dy AD5 is not required to be diagonalisable. As in
the case of additive perturbations, x(X) can be interpreted as a condition
number. The factor |[I — Dy Dy || represents a relative deviation from
similarity, because

I—D{'Dy' = (Dy — Dy Y)Dy!

represents a difference relative to Da.
There are two cases in which the bound in Theorem 5.1 is guaranteed to
be zero and hence tight. First, when D; = D;l, because similar matrices

have the same eigenvalues. Second, when A= 0, because A and D1 ADs are
singular and both have a zero eigenvalue.

5.2. Hoffman- Wielandt- Type Bounds for Diagonalisable Matrices

Based on a one-to-one correspondence between exact and perturbed eigen-
values, we bound the sum (of squares) of all distances between exact and
perturbed eigenvalues in terms of the Frobenius norm. In contrast to the
previous section, the perturbed matrix must now also be diagonalisable.
Let A and D1 AD4 be diagonalisable with respective eigendecompositions

A=XAX"',  DiAD,=XAX L.
The eigenvalues are
A ) A1
. 7 A= -
An An

Theorem 5.2 If A and D ADs are non-singular and diagonalisable then
there exists a permutation 7 so that

A:

2

" (X = Ayl ; o
BTV < K(X)K(X) | D] Dy — Dy | -
t ;

7

There also exists a permutation o so that

"N Aol ) A .
) S K(X)E(X) ([ DDy = Dallp-
—1 i

7

Proof. The first bound is (Li 1997, Theorem 2.1), while the second one is
(Li 1997, Theorem 2.1'). O

Therefore the relative error bound can only be small if D1 and D4 are close
to being a similarity transformation. A similar bound in (Li and Mathias
1997, Proposition 3.5) applies to a one-sided perturbation and matrices with
positive eigenvalues and holds in any unitarily invariant norm.
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5.3. Hoffman- Wielandt- Type Bounds for Hermitian Matrices

Hoffman-Wielandt-type bounds for Hermitian matrices require that the per-
turbed matrix also be Hermitian. This means the perturbed matrix better
be of the form DAD*, where D is non-singular. Since the perturbed matrix
is congruent to A, it has the same inertia as A. Number the eigenvalues of
A and DAD* so that

Ay <o < Ay, M < <\

Theorem 5.3 If A and DAD* are Hermitian and non-singular then

2N — A2

>

_ < |D* -~ D7 '|p.
= 1A

Proof. (Li and Mathias 1997, Corollary 3.27)
A proof for the special case of positive-definite matrices appears in (Li
19944, Theorem 3.1). O

Therefore, the relative error in the eigenvalues of DAD* is small if D is
close to a unitary (or orthogonal) matrix. The bound (Li 1997, Theorem
2.2) is weaker than Theorem 5.3 (Li and Mathias 1997, §4.1). Majorisation
theory can deliver bounds that are stronger than Theorem 5.3 and hold for
any unitarily invariant norm (Li and Mathias 1997, Proposition 3.2, (3.8)).

5.4. Ostrowski-Type Bounds

In 1959 Ostrowski presented the first relative perturbation bounds for eigen-
values. He created a multiplicative perturbation DAD* of a Hermitian ma-
trix A, where D is non-singular; and he bounded the ratio of exact and
perturbed eigenvalues in terms of the smallest and largest eigenvalues of
DD* (Ostrowski 1959), (Horn and Johnson 1985, Theorem 4.5.9),

Amin (DD*) Ai < Ai < Ai Amaa (DD*). (5.2)

Ostrowski’s theorem can also be phrased in terms of absolute values of
eigenvalues.

Theorem 5.4 If A and DAD* are Hermitian then
|Adl

I(D*D)~ 1]

Proof. (Eisenstat and Ipsen 1995, Theorem 2.1) O

< |\i| < |\i| [|D*D.

This bound is tight, for instance, when D is a multiple of an orthogonal
matrix. The following example illustrates what the bound looks like in the
case of tridiagonal matrices.
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Example 5.2 (Eisenstat and Ipsen 1995, Corollary 4.1)

Return to the symmetric tridiagonal matrix with zero diagonal and its
single-element perturbation in Example 5.1. In this case the bound in The-
orem 5.4 amounts to (Kahan 1966, p 49ff), (Demmel and Kahan 1990, The-
orem 2)

1 .
EW‘ < Nl < fAils

where 7 = max{|f3|,1/|8|}. Therefore the ratio between perturbed and exact
eigenvalues is close to one if the perturbation |3| is close to one.

This bound can be extended to the perturbation of any number of off-
diagonal pairs of a real symmetric tridiagonal matrix with zero diagonal
(Demmel and Kahan 1990, Corollary 1). O

Ostrowski’s Theorem (5.2) can also be extended to products of eigenvalue
ratios (Li and Mathias 1997, Theorem 2.3).

5.5. Weyl-Type Bounds

Ostrowski’s theorem leads to a relative Weyl-type bound for multiplicative
perturbations.

Theorem 5.5 If A and DAD* are Hermitian then
X — il < [N DD -1, 1<i<n.

Proof. (Eisenstat and Ipsen 1995, Theorem 2.1)

The proof is similar to that of Theorem 2.7 for additive perturbations.
Fix an index ¢. Since 0 is the ith eigenvalue of A — \;I, Sylvester’s Law of
Inertia (Horn and Johnson 1985, Theorem 4.5.8) implies that 0 is the ith
eigenvalue of D(A — A\, I)D*. Write

D(A — \;I)D* = DAD* — \;,DD* = A+ E,
where
A= DAD* — \1, E =)\, (I — DD").
Applying Weyl’s absolute bound (2.4) to A and A + E gives

(A — )\.(A Y < || Bl = . ¥ .
e [\(A) = X (A4 + B)| < 1B = x| DD~ 1]

In particular, for j =1,
0= (A = M) < I\l |IDD* 1.
O

The bound above holds even for zero eigenvalues. The factor |[DD* — I||
represents the deviation of the congruence transformation from similarity.
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This means, if the perturbed matrix is a congruence transformation of the
original matrix, then the relative error in the perturbed eigenvalues is small
if the congruence transformation is close to similarity.

Example 5.3 We can apply Theorem 5.5 to the symmetric tridiagonal
matrix with zero diagonal in Example 5.1. If we assume that the multiplica-
tive perturbation « is of the form o = 1 + ¢ then

A — il < [l el

Therefore a small relative error in a pair of off-diagonal elements causes only
a small relative error in the eigenvalues.

The bound below is similar in spirit to Theorem 5.5 but applies to a
different error measure.

Theorem 5.6 If A and DAD* are non-singular Hermitian then

A — s
max M < ||D71 — D¥|.
1<i<n N

i
Proof. (Li and Mathias 1997, Proposition 3.2’) O

This bound was first derived for the special case of positive-definite ma-
trices (Li 19944, Theorem 3.1).

6. Multiplicative Perturbations for Singular Values

The perturbed matrix is represented as D1 B Dy, where D; and Dy are non-
singular diagonal matrices. Such a perturbation can occur, for instance,
when a one-sided Jacobi method is applied to B. In this case the computed
singular values are exact singular values of a matrix Dy BDs where D; and
Dy are close to the identity (Demmel 1997, §5.4.3).

Again let B be a tall and skinny matrix, i.e. B is m xn with m > n. The
singular values of B are

o1>...>0, > 0.

The perturbed matrix is represented as D1 B Dy, where D; and D5 are non-
singular. The singular values of DyBDy are

61 >...26,>0.
When D; is diagonal it represents a row scaling, while a diagonal Dy repre-
sents a column scaling.
6.1. Ostrowski- Type Bounds

Let’s first determine by which factor the singular values of B change when
multiplicative perturbations D{ and D5 are applied.
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Theorem 6.1
a; <
IDTHHID
Proof. (Eisenstat and Ipsen 1995, Theorem 3.1)

Convert the problem to an eigenvalue problem as in §3.1 and apply the
eigenvalue result Theorem 5.4. UJ

i <oi | D] [ De]l.

Q>

This means, if Dy and D, are almost unitary then the norms in The-
orem 6.1 are almost one, and a perturbed singular value differs from the
corresponding exact singular value by a factor close to one.

Theorem 6.1 can reproduce perturbation bounds for component-wise per-
turbations of bidiagonal matrices from (Barlow and Demmel 1990, Theorem
1), (Deift et al. 1991, Theorem 2.12) and (Demmel and Kahan 1990, Corol-
lary 2). The example below illustrates how.

Example 6.1 (Eisenstat and Ipsen 1995, Corollary 4.2)
Consider the bidiagonal matrix

ar
as [
B:
as  fs
(871
and its component-wise perturbation
Yan v2bh
B— Y302 Y4
Y53 Y603 |’
Y704

where y; # 0. For instance, if v; = 14-¢; for small €; then B is a component-
wise relative perturbation of B.

Write B = DyBD,, where D; takes care of the odd-numbered, diago-
nal perturbations, while D, takes care of the even-numbered, off-diagonal
perturbations, like so:

g 1
21793 72
D, = s ; Dy = eoRr)
Y1Y3Y5Y7 ? Y27Y476
Y6 Y5
The perturbation D operates on rows and Dy operates on columns. The
resulting interference is apparent in the increasing products and the denom-
inators, where each D; undoes part of the other’s action in its own territory.
Application of Theorem 6.1 yields

1
—0; < 0; <oy,
Ui
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where n = H;-:l max{|y;|,1/|v;|}. This means, if each factor v; is close to
one then the ratio of perturbed to exact singular values is close to one. O

These bounds are actually realistic. There are algorithms that deliver
singular values of bidiagonal matrices to high relative accuracy: the dqds
algorithm (Fernando and Parlett 1994) and, to a large extent, a fine-tuned
zero-shift version of the Golub-Kahan algorithm (Demmel and Kahan 1990,
Deift et al. 1991).

6.2. Hoffman-Wielandt-Type Bounds
Now let’s bound the sum of squares of all relative errors.

Theorem 6.2 If B and D{BD> have full column rank then

;|2 1 * —1 * —1
<5 (1Dt~ Dy 'lle +11D5 -~ Dy ).

Proof. (Li and Mathias 1997, Proposition 3.3’) O

The terms |[Df — D; '||r and ||Dj — Dy || indicate how far D; and Dy,
respectively, are from being unitary (or orthogonal). The relative error is
small if D; and Dy are close to unitary. A weaker version of Theorem 6.2
appears in (Li 1994a, Theorem 4.1). As with Theorem 5.3, majorisation
theory yields a bound stronger than Theorem 6.2 that holds in any unitarily
invariant norm (Li and Mathias 1997, Proposition 3.3, (3.12)).

The bound below is similar in spirit but applies to a different error mea-
sure.

Theorem 6.3 If B and DyBDy have full column rank then

2
s
|Ui _0i| 1 * —1 * -1
> (F < grvrgp (11 = D3l + 105 = Dyl )

where 1 < p < oc is an integer.

Proof.  (Li 19944, Theorem 4.2)
Follows from Theorem 6.2 because

9 1/”< 1
0’?4—5’? - 0’15'1

O

6.3. Weyl-Type Bounds

At last we bound individual relative errors.
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Theorem 6.4
|07 — 6i < o max{||[I — Dy 'Dy*|, |1 — Dy *Dy [}

Proof. (Eisenstat and Ipsen 1995, Theorem 3.3)
Convert the singular value problem to a large eigenvalue problem as in
§3.1 and apply Theorem 5.5 to the eigenvalue problem. O

The factors ||[I—D; ' Dy *| and ||[I— D, * D, !|| represent relative deviations
of Dy and Dy, respectively, from being unitary (or orthogonal). Hence the
relative error in the singular values of Dy B D, is small if D; and D5 are close
to unitary.

The following bound is similar to the Frobenius norm bound in Theorem
6.2.

Theorem 6.5 If B and D;BD>, have full column rank then

‘U’i*a—i‘ 1 * -1 * —1
- < - — — .
ax ——— <3 (I1D7 = D + 105 — Dy ')

Proof. (Li and Mathias 1997, Proposition 3.3’) O

A weaker bound appears in (Li 1994a, Theorem 4.1).
The following bound is a counterpart of the Frobenius norm bound in
Theorem 6.3.
Theorem 6.6 If B and DyBDy have full column rank then
max |ai _ &i‘ < !
1<i<n /|oi[P + |63P ~ 21+1/p
where 1 < p < oc is an integer.
Proof.  (Li 19944, Theorem 4.2)

Follows from Theorem 6.5 in the same way that Theorem 6.3 follows from
Theorem 6.2. O

(ID7 = D+ 105 = Dy ')

7. Some Applications of Multiplicative Perturbations

We discuss component-wise perturbations of generalised bidiagonal matri-
ces; deflation of triangular matrices; and rank-revealing decompositions.

7.1. Component-Wise Perturbations of Generalised Bidiagonal Matrices

Example 6.1 illustrates that small relative changes in any bidiagonal matrix
cause only small relative changes in its singular values, regardless of the
value of the non-zero matrix elements. Are there other matrices with this
pleasant property? The answer is not really. The only other matrices with
this property are those whose sparsity structure is ‘essentially’ bidiagonal
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(Demmel and Gragg 1993). At first glance this result looks pretty nega-
tive. It appears to suggest that we can forget about high relative accuracy
for matrices other than bidiagonals. But then again, not all perturbations
are component-wise relative perturbations. Just think about the perturba-
tions caused by the deflation of triangular matrices in §§4.3 and 4.4. There
is still plenty of room for singular values of all kinds of matrices to have
relative accuracy, but mostly not with regard to component-wise relative
perturbations™.

So, what are ‘essentially’ bidiagonal matrices? We define an undirected
bipartite graph G of a matrix B as follows. Each row of B is represented
by a node r;, and each column by a node c¢;. There is an edge between r;
and ¢; if and only if element (i,7) of B is non-zero. The matrix B is called
biacyclic if its graph G is acyclic (Demmel and Gragg 1993, §1). Examples of
biacyclic matrices, in addition to bidiagonal matrices, include the following
‘half arrow’ matrices (Demmel and Gragg 1993, §5)

*
¥ X X Xx *
¥ X ¥ %

The nice thing about subjecting biacyclic matrices to component-wise
relative perturbations is that we get an Ostrowski-type bound. This means,
changing an element of a biacyclic matrix by a factor does not change the
singular values by more than this factor, regardless of the value of the non-
zero matrix elements. No other matrices possess this property.

Theorem 7.1 Let B be a matrix of order n. The following two conditions
are equivalent:

e B is biacyclic.
e If B is equal to B except for element (k,l) which is multiplied by
v # 0, then the singular values ; of B satisfy

min{|y|, |y |} 05 < 6; < 0y max{|y|, [y}, 1<i<n

Proof. (Demmel and Gragg 1993, Theorem 1)
The result also follows directly from Theorem 6.1 (Eisenstat and Ipsen
1995, Corollary 4.3). O

* However, if we are willing to restrict the values of the matrix elements and impose signs
on the non-zero entries of a matrix so as to forestall cancellation in the computation
of certain quantities, then one can also obtain high relative accuracy (Demmel et al.
1997).
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Theorem 7.1 implies that a small relative perturbation in a matrix element
causes small relative changes in the singular values, regardless of the values
of the non-zero matrix elements, if and only if the matrix has an acyclic
graph. To see this consider v = 1 + € for some € > 0. Theorem 7.1 implies
the relative error bound

\0; — G| < o€, 1<i<n.

Theorem 7.1 can be extended to the case where all elements of a biacyclic
matrix are multiplied by non-zero factors. This gives a bound similar to the
one in Example 6.1 (Demmel and Gragg 1993, page 206), (Eisenstat and
Ipsen 1995, Corollary 4.3).

7.2. Deflation of Block Triangular Matrices, Again

First we prove an auxiliary bound for a special multiplicative perturbation
which is useful for modelling deflation in triangular matrices. Let

By B12>
B =
< Bas

be a block triangular matrix of order n; and let the perturbed matrix be

DB or BD, where
I X
p=(" 1)

is partitioned commensurately with B.

Theorem 7.2 The singular values &; of DB, or BD, satisfy
lo; — i <o || X|, 1<i<n.
If in addition B is non-singular then

|Ui — (32| 1
— < || X].
X e S Xl
Proof. The first inequality (Eisenstat and Ipsen 1995, Lemma 5.1) follows
from Theorem 6.1,

and from

1D = 1D~ < 1+ |1 X].

The second inequality (Li 19944, Corollary 4.1) follows from Theorem 6.5.
O
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Now look at a perturbed matrix that is a deflated version of the block

triangular matrix B,
A By )
B = .
( By

The following bound is the same as the one in Corollary 4.1 which was
derived in the context of additive pertubations.

TheoreAm 7.3 If By1 or Byy are non-singular then the singular values of
B and B satisfy

|07 — 63| < o7 min{|| By Biall, [ Bi2Ba,' |1}

Proof. (Eisenstat and Ipsen 1995, Theorem 5.2)
Follows directly from Theorem 7.2. O

Let’s see what happens for bidiagonal matrices. We write the bidiagonal
matrix and it’s perturbation so as to highlight the action,

B_ <Bll 5j€j€{> B (Bll )
By )’ Ba
Both matrices are bidiagonal, and Bis equal to B, except for the off-diagonal
element in row j and column j + 1, which is equal to zero. Application of

Theorem 7.3 to B and B produces a bound similar to the one in Corollary
4.2.

Theorem 7.4 If B and B are non-singular then

L < oi <1l+n,
1+n = o
where
0 = |6j| min{||Byy'e;ll, | Bys"enl|}-
Proof. (Eisenstat and Ipsen 1995, Theorem 5.5) O

This bound, like Corollary 4.2 in the context of additive perturbations, can
be used to justify Convergence Criterion 1 in the Golub-Kahan algorithm
with zero shift (Eisenstat and Ipsen 1995, Corollary 5.6).

7.8. Rank-Revealing Decompositions

A rank-revealing decomposition is a cheap imitation of a singular value de-
composition. It can serve as an intermediate step in the high-accuracy com-
putation of a singular value decomposition. Passing through a rank-revealing
decomposition on the way to a singular value decomposition allows one to
represent all errors in terms of multiplicative perturbations (Demmel et al.

1997, §3).
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Consider a m X n matrix B, m > n, of rank r. Decompose B = XDY*
where X is m x r, Y is n X r, and D is diagonal of order r and r < n.
This means D is non-singular, and X and Y have full column rank. The
decomposition B = X DY ™ is a rank-revealing decomposition of A if X and
Y are well-conditioned, that is, if

R(X) = IXIIXT and (V) = VIV

are close to one (Demmel et al. 1997, Definition 2.1).

A singular value decomposition qualifies as the luxury edition of a rank
revealing decomposition because X and Y are orthogonal, hence perfectly
conditioned. Gaussian elimination with complete pivoting may be a more
affordable model. Here X = P, and Y = U P,, where P, and P, are permu-
tation matrices, L is unit lower triangular and U is unit upper triangular.
Because all entries of L and U are bounded by one in absolute value, X and
Y tend to be well-conditioned.

Suppose the computed version of our rank revealing decomposition is B =
X DY *. 1f the elements of the diagonal matrix D have high relative accuracy,
and X and Y have high norm-wise accuracy then the singular values 6; of
B have small relative error.

Theorem 7.5 Let
D=D+A, X=X+E, Y=Y +F.
If for some 0 < e <1

Aal o IEL . E
S € S €, <e€
| Dy |1 X]| Y]]
then
o — 65 < oi (2n +n?),
where

n = €(2+¢€) max{r(X),s(Y)}.

Proof. (Demmel et al. 1997, Theorem 2.1)
The idea is to express A, E and F' as multiplicative perturbations. Since
X has full column rank, it has a left-inverse X and we can write

B=(X+E)DY* =1+ EXY)XDY* =D, XDY"*,
where Dy = I + EX' is a multiplicative perturbation and
1Dyl < 1+ B XT] < 1+ en(X).
Similarly one can show B = D1BD5y, where
| Dol <14 K(Y) (2¢ + €%).
Application of Theorem 6.1 gives the desired bound. O



RELATIVE PERTURBATION RESULTS 47

Therefore if X and Y are well-conditioned the relative error in the sin-
gular values of B is proportional to the accuracy e of the rank-revealing
decomposition. Note that the error bound depends on k(X) and x(Y) but
not on k(D). That’s because of the stricter requirement for the perturbation
A of D, which must be a component-wise relative perturbation.

8. The End

We have seen that many absolute perturbation bounds imply relative bounds.
Examples include the bounds by Bauer-Fike, Hoffman-Wielandt and Weyl.
So there is no question of existence. Relative error bounds always exist, for
any matrix and for any perturbation.

Like absolute bounds, relative bounds become stronger when the matrices
have structure. A Weyl-type bound for Hermitian positive-definite matri-
ces, for instance, is stronger than a Bauer-Fike-type bound for diagonalisable
matrices. In contrast to absolute bounds, though, relative bounds can im-
pose more stringent conditions on the matrices to achieve the corresponding
bound. For example, most relative bounds for additive perturbations require
that the original matrix be non-singular.

Therefore relative error bounds are not necessarily stronger than absolute
error bounds. They just rely for their accuracy on different perturbations.
Consider eigenvalues of normal matrices, for instance. A small absolute
perturbation F guarantees a small absolute error, while a small relative
perturbation, such as

IATVZEATY?| o 1= Dy'Dy Y,

guarantees a small relative error. This means, before requesting high relative
accuracy you’d better be sure to have a small relative perturbation.

Several theses have been written on the subject of relative error bounds in
the context of Jacobi methods for computing singular values (Drmac 1994),
eigendecompositions of Hermitian matrices (Slapnicar 1992), and eigenval-
ues of skew-symmetric matrices (Pietzsch 1993), as well as fast algorithms
for computing eigendecompositions of real symmetric tridiagonal matrices
(Dhillon 1997).

We have omitted the following issues in our discussion of relative error
bounds:

e  generalised eigenvalue problems (Barlow and Demmel 1990, Hari and
Drmac 1997, Li 19944, Veseli¢ and Slapnicar 1993),

e  sensitivity of eigenvalues and singular values to perturbations in the
factors of a matrix (Dhillon 1997, Demmel et al. 1997, Parlett 1997,
Veseli¢ and Slapnicar 1993),

° relative errors in the form of derivatives when the matrix elements
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depend smoothly on a parameter (Deift et al. 1991, §2), (Parlett 1997,
Theorem 1).

It is also possible to derive relative perturbation bounds for invariant
subspaces and singular vector spaces. These are generally bounds on the
angle between an exact and perturbed invariant subspace in terms of a rela-
tive eigenvalue separation as opposed to an absolute eigenvalue separation.
Many of the papers cited here also discuss bounds for subspaces. Papers
solely dealing with subspaces include among others (Eisenstat and Ipsen
1994, Li 19946, Mathias 1995b, Mathias and Veseli¢ 1995, Slapnicar and
Veselic 1992, Truhar and Slapnicar 1997).
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