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Relative phase of two Bose-Einstein condensates

Yvan Castin and Jean Dalibard
Laboratoire Kastler Brossel, 24 rue Lhomond, 75005 Paris, France

~Received 24 June 1996; revised manuscript received 21 January 1997!

We show that two independent Bose-Einstein condensates, each initially containing a well-defined number
of atoms, will appear coherent in an experiment that measures the beat note between these condensates. We
investigate the role played by atomic interactions within each condensate in the time evolution of their relative
phase.@S1050-2947~97!03606-8#

PACS number~s!: 03.75.Fi, 42.50.Gy, 05.30.Jp
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Since the recent observations of the Bose-Einstein c
densation~BEC! of a dilute atomic gas@1–3#, the problem of
the phase of an atomic sample has been raised with rene
interest. Theoretically, this phase appears naturally as a r
of a broken symmetry in the theory of BEC@4,5#. At zero
temperature, the atomic sample is described by a cohe
state, i.e., an eigenstate of the annihilation operator fo
particular state of the one-atom Hilbert space. A class
field uc0ueif with a well defined amplitudeuc0u and phase
f is associated with this coherent state. Experimenta
however, one can, in principle, measure the exact numbe
trapped atoms. The condensate is then described by a
state~or number state!, and no definite phase can be attri
uted to the gas. The question then arises of whether th
two different descriptions lead to identical predictions for
given experimental setup.

To investigate this problem, we consider the followin
Gedanken experiment, using two trapped condensates o
same atomic species. The trapping potentials are isotr
and harmonic, except for a finite barrier in a given directio
through which the atoms can tunnel~Fig. 1!. The phase be-
tween the two emerging beams can be probed by ‘‘beatin
them together, i.e., by mixing them with a 50-50 atom
beam splitter@6#.

If each condensate is in a coherent state with the s
average number of atoms, the beams incident on the b
splitter are described by the two fields,uc0ueifA and
uc0ueifB. The intensities in the two outputs of the beam sp
ter are then

I152uc0u2cos2f, I252uc0u2sin2f, ~1!

wheref5(fA2fB)/2. The recording ofI6 allows one to
determine the absolute value of the relative phase 2f. Note
that f is an unpredictable random variable, which take
different value for any new realization of the experiment.

In a description of the system in terms of Fock states,
supposes that the system is initially in the stateuNA ,NB&, i.e.,
there areNA/B particles in the condensatesA/B. Our purpose
is to show that the predictions corresponding to a statist
mixture of statesuNA ,NB& with a Poissonian distribution fo
NA/B are identical to Eq.~1!. The notion of phase-broke
symmetry is therefore not indispensable in order to und
stand the beating of two condensates@7#. On the other hand
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it provides a simple way of analyzing such an experime
while, as we see below, Fock states are more difficult
handle in such a situation.

The problem that we are facing here is analogous to
question raised by P. W. Anderson@8#: Do two superfluids
that have never ‘‘seen’’ one another possess a definite r
tive phase? As pointed out in@4#, the question is meaningles
as long as no measurement is performed on the system
Javanainen and S. M. Yoo recently addressed a similar q
tion by considering the spatial interferences of two cond
sates prepared in the stateuN,N& and arriving on a given
array of detectors@9#. He showed numerically that, after th
detection of all the atoms of the two condensates, the co
distribution on the set of detectors was similar to the o
predicted from a phase broken symmetry state.

The paper is organized as follows. In the Sec. I, we
dress the simple particular case where all the detected
ticles are bunched in the same output channel of the b
splitter. In Sec. II, we present a general reasoning show
that the descriptions in terms of coherent or Fock states
to identical predictions for any type of measurements p
formed on the system. In Sec. III, assuming an initial Fo
state for the system, we investigate the buildup of a rela
phase between the two condensates as the measurement
ceed. In Sec. IV, we add a device, shifting the atomic ph
in one of the channels of Fig. 1, in order to perform mul
channel detection; we then recover analytically the numer
results of@9#. Finally, we include the effect of the atomi
interactions on the distribution of the relative phase betw
the two condensates. We predict collapses and revivals
this distribution with time scales that should be experime
tally accessible.

I. A PARTICULAR CASE: ALL THE DETECTIONS
IN ONE CHANNEL

We assume thatk atoms are detected onD6 . For sim-
plicity we consider in this section the situation where all t
k detections occur in the (1) channel. If the system is ini-
tially in a coherent state, the probability for such a seque
~given thatk atoms have been detected! is cos2kf. The aver-
age over the unknown relative phase 2f gives

Wk5E
2p/2

p/2 df

p
cos2kf5

~2k!!

~2kk! !2
;
k@1

1

Apk
~2!
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55 4331RELATIVE PHASE OF TWO BOSE-EINSTEIN CONDENSATES
For k5100, this probability of getting all counts in th
(1) channel is;6%.

We suppose now that the system is in a Fock state and
simplicity we takeNB5NA@k. A naive argument could con
sist of saying that sincek!NA , the probability of detecting
the nth atom (n<k) in the (1) channel is nearly indepen
dent of then21 previous detection results. The probabili
of k detections in the (1) channel should then be 22k. This
is obviously very different from the resultWk obtained from
the coherent state point of view (22k,10230 for k5100).

However, the latter reasoning is wrong; the first detect
of an atom in the (1) channel projects the atom in a sta
proportional to

~ â1b̂!uNA ,NA&}uC&5uNA ,NA21&1uNA21,NA&, ~3!

whereâ ~b̂! annihilates a particle in the condensateA ~B!. To
calculate the probability of detecting a second atom in
(1) channel, we have to compare the squared norm of
two vectors corresponding to a detection in the (6) chan-
nels:

~1 !:~ â1b̂!uC&5ANA21~ uNA22,NA&1uNA ,NA22&)

12ANAuNA21,NA21&, ~4!

~2 !:~ â2b̂!uC&5ANA21~ uNA22,NA&2uNA ,NA22&).
~5!

For NA51, we recover the well-known interference effe
leading to a bunching of the two bosons in a single outpu
the beam splitter@11#. For NA@1, the squared norms o

FIG. 1. A Gedanken experiment: atoms leaking from tw
trapped condensates,A andB, are detected in the output channe
(6) of a 50-50 beam splitter.
or

n

e
e

f

these two vectors are in the ratio 3:1. This indicates that o
a first atom has been detected in the (1) channel, the prob-
ability of detecting the second atom in the same channe
3/4, while the probability of detecting this second atom in t
(2) channel is only 1/4. This somewhat counterintuitive r
sult shows clearly that the successive detection probabil
are strongly correlated in the case of an initial Fock sta
even if the number of detected atoms is very small compa
to the number of atoms present in the condensates. The
soning can be extended tok detections~see Fig. 2! and we
find that the probability of detecting respectively,k15k and
k250 atoms in the two channels is

P~k,0!5
1

2

3

4
•••

2k21

2k
, ~6!

which is equal toWk for anyk. Note that the explicit average
overNA andNB is correctly omitted in this last calculation i
the limit N̄A5N̄B@1, where the Poissonian fluctuations ha
a negligible effect.

The predictions for an initial Fock state and for an initi
coherent state with random phase are therefore equiva
but the result for the coherent state is obtained in a m
more straightforward and intuitive manner than for the Fo
state.

II. ENSEMBLE AVERAGE WITH
AND WITHOUT PHASE-BROKEN SYMMETRY

This equivalence between the Fock-state and the cohe
state descriptions is actually not restricted to the particu
detection scheme considered in this paper. It is a con
quence of the identity of the density operators of the to
system in those two descriptions. To prove this identity,
first consider the coherent state with well-defined pha
fA andfB :

uN̄A
1/2eifA,N̄B

1/2eifB&

[ (
NA ,NB

N̄A
NA/2 N̄B

NB/2

ANA! NB!
ei ~NAfA1NBfB!uNA ,NB&

3e2~N̄A1N̄B!/2, ~7!

where N̄A and N̄B are the mean number of particles in th
condensatesA andB. In the coherent-state description, th
lit-
h

FIG. 2. Possible outcomes~and the corre-
sponding branching ratios! of the first three de-
tections in the output channels of the beam sp
ter. Initially, the system is in a Fock state, wit
the same numbers of particlesNA@1 in the two
condensates.
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4332 55YVAN CASTIN AND JEAN DALIBARD
density operatorr of the system is then obtained by a stat
tical average over the phasesfA andfB :

r5E
0

2pE
0

2pdfA

2p

dfB

2p
uN̄A

1/2eifA,N̄B
1/2eifB&

3^N̄A
1/2eifA,N̄B

1/2eifBu. ~8!

Using the explicit expression~7! of the coherent states, w
find that all off-diagonal terms in the Fock-state basis
suppressed after the integration overfA ,fB ,

r5 (
NA ,NB

N̄A
NAN̄B

NB

NA! NB!
uNA ,NB&^NA ,NBu e2~N̄A1N̄B!, ~9!

which coincides with the Poissonian statistical mixture co
sidered in the Fock-state description@7,12#.

From the identity of the density operatorsr we can con-
clude that no measurement~or no series of measurement!
performed on the system can allow one to distinguish
tween the coherent state and the Fock-state descriptions
deed, in a sequence of measurements, the probability of
ting a given set of results can always be expressed as
expectation value Tr(Ôr) of an operatorÔ @13#. For ex-
ample, the probability that at leastk atoms are detected an
that the firstk detections occur in the (1) channel is ob-
tained from~see Appendix!

Ô5
1

2k
~ â†1b̂†!k

1

~N̂11!•••~N̂1k!
~ â1b̂!k, ~10!

where N̂5â†â1b̂†b̂. It is shown in the Appendix tha
Tr(Ôr) is nearly equal toP(k,0). The difference betwee
the two quantities is due to the fact thatP(k,0) is acondi-
tional probability that the firstk detections occur in the
(1) channel, knowing that at leastk particles have been
detected. This difference is negligible in the limit where t
mean numbers of atomsN̄A5N̄B are much larger thank,
since the probability that at leastk detections occur after a
arbitrarily long time approaches 1 in this case.

III. PROBABILITY OF A GENERAL „k1 ,k2… DETECTION
RESULT

We now generalize the discussion of Sec. I to the gen
case ofk6 detected atoms in the (6) channels for a fixed
number of measurementsk5k11k2 . We first address the
case of an initial coherent state. We then define the so-ca
phase states, which correspond to a well defined total n
ber of particles and a well defined relative phase between
two condensates. Finally, starting from the system in a F
state, we expand the state vector on those phase states
measurements proceed, to show the emergence of a rel
phase.

A. Case of an initial coherent state

We assume that the system is initially in the coher
state, Eq.~7!. As the measurements proceed, the state of
system remains coherent, with the same relative ph
-
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f5(fA2fB)/2. Each count occurs with probabilitie
cos2f and sin2f in the (1) and (2) channels. Given tha
k particles have been detected, the distribution of count
the (6) channels is binomial and the probability for th
result (k1 ,k2) is

P~k1 ,k2 ,f!5
k!

k1! k2!
~cosf!2k1~sinf!2k2. ~11!

The number of countsk1 in the (1) channel has, therefore
a mean valuekcos2f and a standard deviation~shot noise!
s@k1#5Akucosf sinfu.

In the limit k6@1, using lnn!;nlnn2n for n@1, we find
from Eq. ~11! that P(k1 ,k2 ,f) is maximal for
k2 /k15tan2f, as expected from Eq.~1!. In other words, for
k@1, the mean and most probable intensities coincide, s
the shot noise on the signal in the two channels (6) becomes
negligible.

B. Phase states

For an initial stateuC& with a well-defined total numbe
of particlesN, the evolution due to the sequence of measu
ments is conveniently analyzed by expandinguC& onto the
overcomplete set ofphase statesuf&N @4#:

uf&N5
1

A2NN!
~ â†eif1b̂†e2 if!Nu0&, ~12!

whereu0& stands for the vacuum. If the system is in a giv
stateuf&N , there exists a well defined relative phasef be-
tweenA andB: if a device shifting the phase of the matt
wave by 2f were placed in front of theB input of the beam
splitter, all the atoms would be detected in the (1) output of
the beam splitter.

Any stateuC& with N particles can be expanded in the s
of phase states:

uC&5E
2p/2

p/2 df

p
c~f! uf&N , ~13!

where the phase amplitudec(f) is obtained as

c~f!52N/2 (
NA50

N SNA! ~N2NA!!

N! D 1/2ei ~N22NA!f

3^NA ,N2NAuC&. ~14!

In what follows, we will use the quasiorthogonality of th
phase states valid for largeN and for2p/2<f,f8,p/2:

N^fuf8&N5cosN~f2f8!.e2N~f82f!2/2

.A2p/Nd~f2f8!. ~15!

As an illustration of the relevance of the phase states
now derive the probabilityP(k1 ,k2) for the system in the
initial state uN/2,N/2&. We show that it is approximately
equal to the result obtained for a statistical mixture of coh
ent states, as expected from the general discussion of Se

Using the formula found in Eq.~A4! of the Appendix, we
get as a starting point
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55 4333RELATIVE PHASE OF TWO BOSE-EINSTEIN CONDENSATES
P~k1 ,k2!5
~N2k!!

2kN!

k!

k1! k2!

3uu~ â1b̂!k1~ â2b̂!k2uN/2,N/2&uu2. ~16!

We expand the state vector over the set of phase states

uN/2,N/2& 5c0E
2p/2

p/2 df

p
uf&N, ~17!

c052N/2
~N/2!!

AN!
;~pN/2!1/4. ~18!

We calculate first the action of the annihilation operators
Eq. ~16! on the phase states:

~ â1b̂!k1~ â2b̂!k2uf&N

5S N! 2k

~N2k!! D
1/2

eik2p/2~cosf!k1 ~sinf!k2 uf&N2k , ~19!

with k5k11k2 . The quasiorthogonality@Eq. ~15!# of the
phase states in the limit of largeN then gives

P~k1 ,k2!;
k!

k1! k2!
E

2p/2

p/2 df

p
~cosf!2k1 ~sinf!2k2

5E
2p/2

p/2 df

p
P~k1 ,k2 ,f!, ~20!

which shows the announced equivalence.

C. Emergence of the relative phase for an initial Fock state.

For an initial Fock stateuN/2,N/2&, which has a flat phase
probability distribution uc(f)u2, we now investigate the
emergence of a relative phase between the two conden
during the sequence of measurements.

After a sequence of (k1 ,k25k2k1) detections, the state
of the system is obtained from Eqs.~17! and ~19!:

uC~k1 ,k2!&}~ â1b̂!k1~ â2b̂!k2uN/2,N/2&

}E
2p/2

p/2

df ~cosf!k1~sinf!k2uf&N2k .

~21!

For k6@1, we use the stationary-phase method, which
proximates the integrand (cosf)k1(sinf)k2 by a Gaussian
around each of its maxima. The maxima in@2p/2,p/2# are
located inf0 and2f0, with 0<f0<p/2 and

k15kcos2f0 , ~22!

k25ksin2f0 . ~23!
n

tes

-

We get, for instance, forf close tof0,

~cosf!k1~sinf!k2.expF12S k1log
k1

k
1k2log

k2

k D
2k~f2f0!

2G . ~24!

We obtain therefore:

uC~k1 ,k2!&}E
2p/2

p/2

df @e2k~f2f0!2

1~21!k2e2k~f1f0!2#uf&N2k . ~25!

The interpretation of this result is quite clear: initially, th
relative phase of the two condensates is indefinite, since
vector state of the system projects equally onto the vari
phase states@see Eq.~17!#. After k@1 detections, the system
has evolved into a state where the phasef is well defined;
more precisely, the phase distribution is a double Gauss
centered onf0 and 2f0, with a standard deviation o
1/A2k. This ambiguity betweenf0 and2f0 also arises in
the determination off from Eq. ~1!.

To summarize, we have two different points of view o
the system: for an initial coherent state, the measurem
‘‘reveals’’ the pre-existing phase through tan2f5k2 /k1 ;
for an initial Fock state, the detection sequence ‘‘builds u
the phase. A similar conclusion has been reached by a
merical analysis of quantum trajectories in the framework
continuous measurement theory@12#. It is not possible to
favor one particular point of view, based on experimen
results. If the same experimental sequence involvingk detec-
tions is repeated, with the phase varying randomly from s
to shot in the coherent-state point of view, the predicted
currence of a given resultk1 ,k25k2k1 is identical in the
two points of view.

IV. MOST PROBABLE MEASUREMENT SEQUENCES
IN A MULTICHANNEL DETECTION SCHEME

In this section, we analyze the results of a multichan
experiment where a device shifting the atomic phase by
adjustable quantity 2g is introduced in one of the input chan
nels of the beam splitter, sketched in Fig. 1. Our analy
also applies to the case of spatial interferences between
condensates arriving simultaneously on an array of atom
tectors@9#.

We imagine that the phase shiftg is tuned successively to
the L different valuesg j5 jp/2L, j50, . . . ,Ł21. We as-
sume, for simplicity, that exactlyk@1 particles are detecte
for each value ofg. Our goal is to show that the signals i
each1 and2 channel,k1( j ) andk2( j ), are equal~within
shot noise! to k cos2(f02gj) and k sin

2(f02gj), where the
parameterf0, varying randomly for any new realization o
the whole experiment, is the same for all channels.

As emphazised in Sec. II, the probability for a given set
results$k6( j )% is given by the average of an operatorÔ over
the density matrix of the system@Eq. ~8!#. For the multichan-
nel detection scheme considered here, the probability of
serving this sequence, knowing thatk counts have been ob
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4334 55YVAN CASTIN AND JEAN DALIBARD
tained in each channel, is obtained by a generalization of
result of the Appendix:

P@$k1~ j !%#5E
2p/2

p/2 df

p )
j50

L21
k!

k1~ j !! k2~ j !!

3@cos~f2g j !#
2k1~ j !@sin~f2g j !#

2k2~ j !.

~26!

To demonstrate this result, we have used the opera
â6e2ig j b̂ associated with a count in the (6) channel with a
phase shift 2g j .

We investigate first the caseL51 discussed in the pre
ceding section, to identify a physically optimal parametriz
tion of the problem. Fork@1,k6.1, we get an approxima
tion of the right-hand side of Eq.~20! by using the stationary
phase method for the integral@Eqs. ~24! and ~25!# and
Stirling’s formula for the binomial factor:

k!

k1! k2!
.S k

2pk1k2
D 1/2expS 2k1ln

k1

k
2k2ln

k2

k D .
~27!

This leads to

P~k1 ,k2!.
1

pAk1k2

. ~28!

The remaining slow variation withk6 can be suppressed b
characterizing the sequence of measurements by the a
f0, defined in Eq.~22!, rather than byk6 ; in the limit
k@1 we treatf0 as a continuous variable, and the Jacob
for the change of variablesk1→f0 satisfactorily leads to a
flat probability density forf0:

P̃~f0![P~k1 ,k2!Udk1

df0
U. 2

p
. ~29!

We now generalize this calculation to an arbitrary va
for the number of phase binsL. A sequence ofkL detections
~with k detection in each bin! $k1( j ), j50, . . . ,L21% is
characterized by theL anglesu j , such that

k1~ j !5kcos2u j , u jP@0,p/2#, j50, . . . ,L21. ~30!

In the limit k@1, we consider theu j ’s as continuous vari-
ables; expanding the binomial factors in Eq.~26!, using Eq.
~27! as in the previous caseL51, we find for the probability
density of theu j ’s

P̃~u0 , . . . ,uL21!

[P~$k1~ j !%! )
j50

L21 Udk1~ j !

du j
U

.S 2kp D L/2E
2p/2

p/2 df

p
exp@kS~u0 , . . . ,uL21 ,f!#, ~31!

where we have introduced
e

rs

-

gle

n

S~u0 , . . . ,uL21 ,f![ (
j50

L21

cos2u j lnS cos2~f2g j !

cos2u j
D

1sin2u j lnS sin2~f2g j !

sin2u j
D . ~32!

We now look for the values (u0 , . . . ,uL21) maximizing
P̃(u0 , . . . ,uL21). We note the positionf0 of the absolute
maximum of S @15# as a function of f, for given
(u0 , . . . ,uL21), and we perform the stationary-phase a
proximation in the integral@Eq. ~31!#:

P̃~u0 , . . . ,uL21!.
C

Au]f
2Suf0

exp@kS~u0 , . . . ,uL21 ,f0!#,

~33!

where the normalization factorC depends onk andL only.
If one neglects the slow variations of the prefactor, the ma
mum of P̃ is obtained by maximizingS in Eq. ~33! over the
remaining variablesu0 , . . . ,uL21. This is equivalent to a
global maximization ofS in Eq. ~32! over all the variables.
We find @16# that the maximal value ofS is 0 and that it is
obtained for the measurement sequences

k1~ j !5kcos2~f02g j !, j50, . . . ,Ł21,

2p/2<f0,p/2. ~34!

The curve defined by Eq.~34! for theu j ’s is the straight line
u j56(f02g j )@p#. Along this line the probability density
is constant~and equal toC/A4L). ExpandingS around the
distributions@Eq. ~34!#, we find, after a rather involved cal
culation, that the probability density decreases away fr
this line as

P̃.
C

A4L
exp~22kd2!, ~35!

whered is the Euclidian distance to the line.
These results can be understood in a simple and phys

manner as follows. Assume that the system is initially in
coherent state@Eq. ~7!#, with a random relative phas
fA2fB[2f0 uniformly distributed in@2p,p@ . For a total
number ofk@1 counts, measured with a phase shift 2g j in
the input channelB of the beam splitter, we use the results
Sec. III A, replacingf by f02g j in Eq. ~11!; we find that
the probability distribution for the angleu j in Eq. ~30! is
strongly peaked aroundf02g j , with a standard deviation
1/A4k, in agreement with Eqs.~34! and ~35!.

This exemplifies again the relevance of the coherent-s
point of view in the description of the measured results fo
single realization of the beating experiment.

V. ROLE OF ATOMIC INTERACTIONS:
COLLAPSES AND REVIVALS

Up to now, we have neglected the time evolution of t
system, except for the state projection consecutive to a
tection onD6 . We now investigate the dynamics of th
phase distributionc(f,t) @Eq. ~14!# for a state withN par-
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ticles, including the effects of atomic interactions. We co
sider here the situation where no interaction takes place
tweenA andB; this situation differs from the one in@10#
where the two condensates are spatially overlapping and
interferences are modified by their mutual interactions.

In our case, the Fock statesuNA ,NB& are eigenstates of th
total Hamiltonian, with an energyE(NA ,NB). To express the
phase distribution at timet in terms ofc(f,0), we expand
the initial state to the Fock states using Eqs.~12! and ~13!,
we evolve the Fock states for the timet with the appropriate
phase factors, and we calculatec(f,t) from Eq. ~14!. This
leads to

c~f,t !5E
2p/2

p/2 df8

p
K~f2f8;t !c~f8,0!, ~36!

with

K~f;t !5 (
NA50

N

ei [ ~NB2NA!f2E~NA ,NB!t/\] , ~37!

whereNB5N2NA . Assuming a distribution of the Foc
states peaked aroundNA5NB5N/2 with a width!N @14#,
we expand

E~NA ,NB!5E~N/2,N/2!1~mB2mA!~NB2NA!/2

1\k~NB2NA!21•••, ~38!

wheremA/B are the chemical potentials for the condensa
A/B. From Eq.~38!, we find that the effect of the linear term
is a mere phase drift, with a velocityḟ5(mB2mA)/(2\).
For an ideal gas,k50 and this drift is the only possible
evolution, withḟ5(3/4)(VB2VA), whereVA/B are the trap
oscillation frequencies.

When atomic interactions are present,kÞ0, and the
(NB2NA)

2 term in E(NA ,NB) is responsible for a phas
spreading analogous to the spreading of the wave functio
a free massive particle. This phenomenon is similar to
‘‘phase diffusion’’ predicted in@17#. If we replace the sum
overNA in Eq. ~37! with an integral, we find that an initia
Gaussian phase distribution remains Gaussian; the vari
for f calculated inuc(f,t)u2 then evolves as

Df t
25Df0

21~kt/Df0!
2. ~39!

Therefore, a state with a well- defined initial pha
(Df0!1) will be ‘‘dephased’’ in a time
;tcollapse[Df0 /k. For times longer thantcollapse, we have to
keep the discrete sum overNA in Eq. ~37!. We find that this
phase collapse is followed by revivals occurring at tim
t j5p j /4k, j integer @18#, with an average phase displace
by ḟt j1 jp/2 from its initial value.

This discussion implies that the results derived in the fi
part of this paper are valid provided the measurement
quence is performed in a time short enough that the ph
spreading or drift is small compared to the final phase wid
As a typical situation, we consider a condensate in
Thomas-Fermi regime@19# for which

2m i5\V i~225Ni
2a2mV i /\!1/5, i5A,B, ~40!
-
e-

he

s

of
e

ce

s

t
e-
se
.
e

wherem is the atomic mass anda is thes-wave scattering
length; this leads to \k5(mA1mB)/(10N). Using
V i52p3100 Hz @1#, we find tcollapse5Df0318 s for
N/25104 rubidium atoms (a;10 nm!. The phase collapse is
followed by partial fractional revivals~see Fig. 3!, a known
phenomenon in quantum mechanics@20#. The first full re-
vival occurs at a time;14 s, with an average phase shifted
by

df5
p

2
1
5p

4
N

VA
6/52VB

6/5

VA
6/51VB

6/5. ~41!

For N@1, this shift is very sensitive to any asymmetry be-
tween the two traps.

To summarize, we have developed an approach to the
problem of relative phase of two macroscopic entities that is
based on microscopic measurements. In this way, quantita
tive predictions can be obtained about the phase distribution
and its time evolution. This approach is complementary to
the one dealing with a macroscopic variable, such as a Jo
sephson current, connecting these two entities@4,21#. It can
be extended to the case of more than two condensates i
order to discuss the problem of an ‘‘atomic phase standard’’
@22#. We note, however, that the phase dynamics described
above makes it difficult to establish a long-lived phase co-
herence between separate atomic samples.
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FIG. 3. Short time evolution of the phase probability distribu-
tion uc(f,t)u2 for NA5NB5104 rubidium atoms. The scattering
length isa510 nm. The frequencies of the two traps are identical,
VA/B52p3100 Hz. The initial phase distributionc(f,t50) is
real Gaussian, withuc(f,t50)u2 leading to a standard deviation
Df051/10. Note the emergence of fractional revivals after the col-
lapse of the wave packet.
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APPENDIX A: PROBABILITY FOR A GIVEN DETECTION
SEQUENCE

Consider first a single condensateA leaking with a loss
rateG towards an ideal detector. As usual, in the continuo
measurement theory@23,24# the state of the system unde
goes a sequence of quantum jumps; the operator charac
ing these jumps isAGâ, whereâ annihilates one particle in
the condensate. Between these jumps, the evolution of
system is governed by the non-Hermitian Hamiltoni
2 i\GN̂A/2, where N̂A5â†â. From @23#, we find that the
probability density that k counts occur at times
t1<t2<•••<tk ~with no additional count betweent50 and
t5tk) is given by

Q~ t1 , . . . ,tk!5Gk Tr@r~0!e2GN̂At1/2â†•••e2GN̂A~ tk2tk21!/2

3â†âe2GN̂A~ tk2tk21!/2
•••âe2GN̂At1/2#.

~A1!

The probability of getting at leastk counts for an arbitrarly
long measurement time is obtained after some algebra:

Q~k!5E
0

1`

dt1 E
t1

1`

dt2 . . . E
tk21

1`

dtk Q~ t1 , . . . ,tk!

5TrFr~0!~ â†!k
1

~N̂A11!•••~N̂A1k!
âkG , ~A2!

which, in the present case of a single condensate, reduc
the expectation value of the projector onto the states wit
leastk particles.

This can be generalized to the case of two condens
A andB, with identical loss ratesG and whose outputs ar
mixed on a 50-50 beam splitter~see Fig. 1!. The measure-
ment process now involves two types of quantum jum
characterized by the two operatorsAG/2(â6b̂). The non-
Hermitian Hamiltonian governing the evolution between t
quantum jumps is given by2 i\GN̂/2, with N̂5â†â1b̂†b̂.
We now define the probability densityQ(t1 h1 ,•••,tk hk)
that k counts occur at timest1<t2< . . .<tk ~with no addi-
tional count betweent50 andt5tk) in the output channels
h156, . . . ,hk56:

Q~ t1 h1 , . . . ,tk hk!

5~G/2!kTr@r~0!e2GN̂t1/2~ â†1h1b̂
†!•••

3e2GN̂~ tk2tk21!/2~ â†1hkb̂
†!

3~ â1hkb̂!e2GN̂~ tk2tk21!/2
•••

3~ â1h1b̂!e2GN̂t1/2#. ~A3!

From this expression, we can determine the probab
Q(k1 ,k2) of getting at leastk5k11k2 counts for an arbi-
s

riz-

he

to
at

es

,

y

trarily long measurement time, the firstk counts involving
k6 counts in the output channels6:

Q~k1 ,k2!5
1

2k
k!

k1! k2!
TrFr~0!~ â†1b̂†!k1~ â†2b̂†!k2

3
1

~N̂11!•••~N̂1k!
~ â2b̂!k2~ â1b̂!k1G .

~A4!

The operatorÔ introduced in Eq.~10! is readily obtained
from this expression, withk15k,k250.

We now calculate the probabilityQ(k1 ,k2) when the
system is in the coherent state Eq.~7!, assumingN̄A5N̄B .
The action of the annihilation and creation operators in E
~A4! is easily obtained and we are left with

Q~k1 ,k2!

5~2N̄A!k
k!

k1! k2!
~cosf!2k1~sinf!2k2

3K 1

~N̂11!•••~N̂1k!
L , ~A5!

wheref5(fA2fB)/2 and where the average^•••& is taken
in the coherent state. Since the total number of particles
a Poissonian distribution with a mean valu
N̄A1N̄B52N̄A , this average is given by

K 1

~N̂11! . . . ~N̂1k!
L

5 (
N50

`
1

~N11! . . . ~N1k!

1

N!
~2N̄A!Ne22N̄A

5
1

~2N̄A!k
@12P~k,N̄A!#, ~A6!

where we have introduced

P~k,N̄A!5e22N̄A(
N50

k21
~2N̄A!N

N!
~A7!

which is the probability that the total number of counts r
mains smaller thank for an arbitrarily long time. This quan
tity becomes exponentially small whenN̄A@k.

For a statistical mixture of coherent states with rand
phases@see Eq.~8!, with N̄A5N̄B], Q(k1 ,k2) becomes

Q~k1 ,k2!5@12P~k,N̄A!#
k!

k1! k2!
E

2p/2

p/2 df

p

3~cosf!2k1 ~sinf!2k2 . ~A8!

The conditional probabilityP(k1 ,k2) defined in the text is
equal toQ(k1 ,k2)/@12P#, since 12P is the probability
of getting at leastk counts.
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