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ABSTRACT 
 

 Many sticky-price models suggest that relative price distortion is one of the 
major costs of inflation. We show that this resource misallocation is costly even 
at quite low rates of inflation. This is because inflation strongly affects price 
dispersion which in turn has an impact on the economy qualitatively similar to, 
and of the order of magnitude of, a negative shift in productivity. Similarly, the 
utility cost of price dispersion is large. We incorporate price dispersion in a 
linearized model. This radically affects how shocks are transmitted through the 
economy. Notably, a contractionary nominal shock has a persistent, negative 
hump-shaped impact on inflation, but may have a positive hump-shaped impact 
on output. Observed persistence in the policy rate is not due to the policy rule 
per se. 
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1. Overview

In this paper we investigate the macroeconomic implications of relative price

distortions as this is where many, though not all, sticky-price models locate the

costs of inflation1. The first thing we do is quantify how costly price dispersion

is in a standard macroeconomic model with imperfect competition and price

rigidity as in Calvo (1983). Despite being very costly in welfare terms, price

dispersion is generally considered to be a term of second-order importance in

linearized models. That is why many economists conclude that the direct impact

of price dispersion on welfare is small (e.g., Canzoneri, Cumby and Diba, 2004).

However, in economies with, say, trend inflation of 2 − 3%, no indexation and a
degree of nominal price inertia, price dispersion, viewed through the lens of our

simple model, will be an important (first-order) variable. Therefore, we develop

a log-linear approximate model which includes price dispersion as a first-order

term. We find that a negative nominal shock under an interest rate rule has an

effect similar to a positive productivity shock, driving output up and inflation

down. But, unlike in the model with no price dispersion, these responses are often

persistent and hump-shaped. We trace these and other surprising results to the

fact that the economy is being perturbed from a steady state that is distorted by

price dispersion.

1.1. The analysis in more detail

In the basic sticky-price model that we set out, private consumption is not

maximized in the presence of relative price distortion (‘price dispersion’, for short),

for a given amount of nominal expenditure. The reflection on the supply-side of

1For example, in the sticky-price model of Rotemberg (1982) all firms charge the same price,
even though that price differs from the price that would have been charged had price changes
not been costly. So, there is no dispersion of prices across firms which is the focus of this paper.
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the economy of that reduction in consumption is that labour is allocated away

from ‘high-price’ firms to ‘low-price’ firms. Due to diminishing returns, average

labour productivity is lower than it would be were all firms facing the same level

of demand. In a sense, then, at the aggregate level the economy uses too much

labour to produce a given level of output. Given increasing disutility of labour,

there is upward pressure on the equilibrium real wage and hence the economy

incurs higher total costs of production compared with an economy with no price

dispersion.

In short, for a given output level, the economy with price dispersion behaves in

a manner qualitatively similar to a low productivity economy, needing to employ

more labour input to meet demand. We demonstrate this argument formally in

Section 3 by forming a Ramsey problem which allows us easily to inspect the

general equilibrium impact of price dispersion. In section 4 we then show that

price dispersion also has an impact on outcomes quantitatively of the order of

magnitude of a negative shift in productivity. We observe that price dispersion is

itself sensitive even to relatively low rates of inflation and increases sharply in the

level of inflation. In section 5 we then enquire, following Lucas (1987), what the

consumption-equivalent impact is of a given level of price dispersion and confirm

that it is indeed very costly. Of course, unlike productivity, price dispersion is not

exogenous and so in section 6 we analyze the impact that price dispersion has on

the optimal monetary policy. We recover a result like Yun’s (2005), demonstrating

that in the presence of price dispersion, disinflation may be the optimal policy.

Typically, linearized models do not come to that conclusion as price dispersion is

absent from these models. We indicate why even a full second-order approximation

to our model’s equations would not recover Yun’s or our result and would continue

to conclude that the impact of price dispersion on welfare is quantitatively very

small.
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In order to analyze the impact of price dispersion on dynamics, in sections 7

and 8 we develop our linearized model around a non-indexed, inflationary steady-

state2; as a result, price dispersion is of first-order significance. We simply take as

given that trend inflation is positive. We find that the impact of a persistent,

negative nominal shock appears similar to a persistent, positive productivity

shock, which is consistent with our analysis in sections 3 and 4. However, there

is a marked difference between the models with and without price dispersion: We

find that inflation follows a hump-shaped response following both a nominal and

real shocks in the model with price dispersion; its maximal response is not in the

period following the shock. Interest rates also respond more gradually following

shocks in the model with price dispersion. Underlying these results is the fact

that any shock which decreases price dispersion will impart upward momentum

to output and downward momentum to inflation, and because price dispersion is

a persistent process, this momentum will itself be persistent. Section 9 offers some

conclusions.

2. The Model

In this section we present a standard sticky-price model. There are a large number

of identical agents in the economy who evaluate their utility in accordance with

the following criterion:

E0

∞X
t=0

βtU(Ct, Nt(i)) ≡ E0

∞X
t=0

βt
µ
log(Ct)−

λt
1 + v

Z
i

N1+v
t (i)di

¶
. (2.1)

2Some recent contributions have incorporated indexation of some prices as a means to impart
peristence into inflation. However, as Blanchard and Gali (2005) note, there is probably little
empirical justification for this assumption in low inflation economies. Indexing in this manner
also seems to make price dispersion a second-order term.
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Et denotes the expectations operator at time t, β is the discount factor, Ct is

consumption and Nt(i) is the quantity of labour supplied to firm i; labour is firm

specific. υ ≥ 0 measures the labour supply elasticity while λt is a ‘preference’

parameter.

Consumption is defined over a basket of goods and indexed by i, in the manner

of Spence-Dixit-Stiglitz

Ct ≡
∙Z 1

0

ct(i)
θ−1
θ di

¸ θ
θ−1

. (2.2)

The average price-level, Pt, is known to be

Pt =

∙Z 1

0

pt(i)
1−θdi

¸ 1
1−θ

. (2.3)

The demand for each good is given by

Yt(i) =

µ
pt(i)

Pt

¶−θ
Y d
t , (2.4)

where pt(i) is the nominal price of the final good produced by firm i and Y d
t

denotes aggregate demand. We assume that the labour market is such that all

the firms pay the same real wage for the same labour. As a result, we may write

wt(i) = wt, ∀i. Further, as in Benigno and Woodford (2003), all households
provide the same share of labour to all firms. It follows that we may write the

agent’s flow budget constraint asZ 1

0

pt(i)ct(i)di+Bt = [1 + it−1]Bt−1 +WtNt(1− τht ) +Πt. (2.5)

As all agents are identical, the only financial assets traded in equilibrium will be

those issued by the fiscal authority. Here Bt denotes the nominal value at the

end of date t of government bond holdings, 1 + it is the nominal interest rate on

this ‘riskless’ one-period nominal asset, Wt is the nominal wage in period t, and

Πt is profits remitted to the individual. We denote the tax rate applied to labour
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income by τht . We also impose the following familiar restriction on the equilibrium

plan of the representative agent:

lim
J→∞

Et

JY
j=0

Rt+j−1Bt+J ≥ 0, Rt ≡ (1 + it)
−1 . (2.6)

Hence, the necessary conditions for an optimum include:

Nt =
£
wt

¡
1− τht

¢
(λtCt)

−1¤1/v ; (2.7)

and

Et

½
βCt

Ct+1

Pt

Pt+1

¾
=

1

1 + it
. (2.8)

The complete markets assumption implies the existence of a unique stochastic

discount factor,

Qt,t+k = β
CtPt

Ct+kPt+k
(2.9)

where

Et {Qt,t+k} = Et

kY
j=0

1

1 + it+j
.

2.1. Representative firm: factor demand

Labour is the only factor of production. Firms are monopolistic competitors who

produce their distinctive goods according to the following technology

Yt(i) = At [Nt(i)]
1/φ , (2.10)

where Nt(i) denotes the amount of labour hired by firm i in period t, At is a

stochastic productivity shock and φ > 1.

The demand for output determines the demand for labour. Hence we find that

Nt(i) =

µ
Pt(i)

Pt

¶−θφµ
Yt
At

¶φ

. (2.11)
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It follows that the total amount of labour demanded will be

Nt =

Z
Nt(i)di =

µ
Yt
At

¶φ Z µ
Pt(i)

Pt

¶−θφ
di = N∗

t ∆t h−θφi , (2.12)

where we define ∆t h−θφi ≡ ∆t as our measure of price dispersion:

∆t =

Z 1

0

µ
Pt(i)

Pt

¶−θφ
di. (2.13)

From an empirical point of view this is not a natural measure of price dispersion

and so in section 4.1 we shall map this into the coefficient of variation for prices.

In this simple set-up, as we confirm below, were all firms given the chance to

re-price at any instant in time, they would all choose the same price. In that case,

if all prices are similar, then for a given level of output the labour supply would

be

N∗
t =

¡
A−1t Yt

¢φ
. (2.14)

If we substitute (2.14) into (2.12) we receive

Nt =
³
A−φt ∆t

´
Y φ
t . (2.15)

This corresponds to the amount of labour which would be employed to produce

quantity Yt should prices not be equal across industries. Finally, it follows that

the equilibrium wage can be written as

wt = λt
1

1− τht
Ct∆

v
t

µ
Yt
At

¶φv

. (2.16)

2.2. Representative firm: price setting

We adopt the Calvo (1983) approach to price-stickiness. This is a convenient and

familiar approach to modelling sticky prices but the same basic issues that we are

interested in would seem to arise in any model where price dispersion is present.
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Each period a measure, 1 − α, of firms is allowed to adjust prices. Those firms

choose the nominal price which maximizes their expected profit given that they

may have to charge the same price in k−periods time with probability αk.

Importantly, we are assuming that firms are cost-takers and that they do

not anticipate the change in equilibrium wages in reaction to their price setting

decision, evident from (2.16). The price setting problem can then be characterized

as follows:

max
p0t

Et

∞X
k=0

αkQt,t+k

Ã
Yt+k

µ
p0t

Pt+k

¶1−θ
− wt+kA

−φ
t+kY

φ
t+k

µ
p0t

Pt+k

¶−θφ!
, (2.17)

where p0t is the price chosen by firms which update prices. There is no need to

index this nominal price on i as it is clear that this will be a function solely of

variables that affect all firms symmetrically. The first order condition with respect

to p0t impliesµ
p0t
Pt

¶1+θ(φ−1)
=

µ
θ

θ − 1

¶P∞
k=0(αβ)

kEtC
−1
t+k

h
φwt+kA

−φ
t+kY

φ
t+k(Pt/Pt+k)

−θφ
i

P∞
k=0(αβ)

kEtC
−1
t+k [Yt+k(Pt/Pt+k)1−θ]

.

(2.18)

The price index then evolves according to the law of motion

Pt =
£
(1− α) p01−θt + αP 1−θt−1

¤1/(1−θ)
. (2.19)

Because the relative prices of the firms that do not change their prices in period

t fall by the rate of inflation, we may derive a law of motion for our measure of

price dispersion,

∆t = α∆t−1π
θφ
t + (1− α)

µ
p0t
Pt

¶−θφ
. (2.20)

2.3. Fiscal Authorities

The government purchases goods in the same proportions as do private agents.

These purchases yield no utility to agents nor do they boost the productive
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potential of the economy. Further, government expenditure is assumed exogenous

and stochastic. For now, we assume that government raises revenue solely through

taxes on labour income. We assume that the government can borrow by issuing a

one period risk-free nominal bond. The nominal value of government debt evolves

according to the law of motion

Bt = (1 + it−1)Bt−1 − St. (2.21)

Bt and it were defined above, and St is the (primary) budget surplus,

St = τhtWtNt −GtPt.

We assume that the expected path of government surpluses satisfies an

intertemporal solvency condition, by design, for all feasible paths of the model’s

endogenous variables. There is a sequence of intertemporal constraints for all t of

the following sort,

(1 + it−1)Bt−1 = Et

∞X
k=0

Qt,t+k (St+k) , (2.22)

which we can simplify as

(1 + it−1)
bt−1
Ctπt

= Et

∞X
k=0

βk
1

Ct+k

¡
τht+kwt+kNt+k −Gt+k

¢
, (2.23)

and where bt−1 is a measure of the real value of debt inherited from the previous

period, bt−1 = Bt−1/Pt−1, while πt is inflation, πt = Pt/Pt−1.

Associated with this sequence, is a sequence of transversality conditions. This

sequence is ultimately related to the incompleteness of (government debt) markets

(see Hahn, 1971). Finally, there is an economy-wide resource constraint such that

total output is equal to (private plus government) consumption:

Yt = Ct +Gt. (2.24)
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2.4. A policy problem

We now formulate the policy problem as a search for the best macroeconomic

policy for a competitive equilibrium defined as follows:

Definition 2.1. A competitive equilibrium is defined as a set of

plans,
©
Ct+k, Yt+k, Nt+k, wt+k,∆t+k,Bt+k, p

0
t+k, Pt+k,

ª∞
k=0

, given initial conditions,

{bt−1, it−1,∆t−1, Pt−1} , and expected dynamics of future policy variables,

{EtPt+k, Etτ t+k, }∞k=0 , and exogenous shocks, {EtAt+k, EtGt+k, Etλt+k}∞k=0 , and
satisfying conditions (2.15), (2.16), (2.18), (2.19), (2.20), (2.23) and (2.24).

We are now able to set out the Ramsey problem in Proposition 2.1:

Proposition 2.1 The Ramsey plan is a choice of state contingent paths for

the endogenous variables
©
Pt+k, Ct+k,∆t+k, τ

h
t+k,

ª∞
k=0

from date t onwards given

{EtAt+k, EtGt+k, Etλt+k, bt−1, it−1,∆t−1, Pt−1}∞k=0 so as to maximize social welfare
function (2.25) subject to constraints (2.26)-(2.28):

maxEt

∞X
k=0

βk

Ã
log (Ct+k)− λt+k∆

v+1
t+k

¡
A−1t (Ct+k +Gt+k)

¢(v+1)φ
v + 1

!
; (2.25)

subject to:

• Solvency Constraint

(1 + it−1)
bt−1
Ctπt

(2.26)

= Et

∞X
k=0

βk
µ

τht+k
1− τht+k

λt+k∆
v+1
t+k

¡
A−1t+k (Ct+k +Gt+k)

¢(v+1)φ − Gt+k

Ct+k

¶
;

• Phillips Curveµ
1− απθ−1t

1− α

¶−θ+θφ+1
1−θ

Et

∞X
k=0

(βα)k
Ct+k +Gt+k

Ct+k

µ
Pt

Pt+k

¶1−θ
(2.27)

=
θ

(1− θ)
φEt

∞X
k=0

(βα)k
λt+k

1− τht+k
∆v

t+k

¡
A−1t+k (Ct+k +Gt+k)

¢(v+1)φµ Pt

Pt+k

¶−θφ
;
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• Law of Motion of Prices

∆t = α∆t−1π
θφ
t + (1− α)

µ
1− απθ−1t

1− α

¶ θφ
θ−1

. (2.28)

Proof. See Appendix.

The foregoing formulation of the policy problem brings out very clearly the

impact of price dispersion and the sense in which its impact is like a drag

on the level of factor productivity. Indeed, the following change of variables,

AR
t := At∆

− 1
φ

t , demonstrates that any degree of price dispersion greater than unity

impacts in the utility function and the solvency constraint exactly like a downward

shift in the level of productivity; as proposition 3.1 below establishes, ∆t ≥ 1.

This change of variables does not quite work in the Phillips curve where price

dispersion enters as ∆v
t (as opposed to ∆v+1

t in the utility function and solvency

constraint). One may be tempted to conclude that this simply points to the fact

that optimal monetary policy ought to ensure that price dispersion is minimized,

or set to zero (i.e., perfect price-level stability). However, in an appendix available

from the authors, we demonstrate that this analogy between price dispersion and

productivity shocks goes through when one incorporates nominal wage stickiness

in the manner of Erceg, Henderson and Levin (2000). This is important since in

the presence of more than one source of nominal rigidity some systematic deviation

from price stability will in general be optimal. Additionally, if we derive a log-

linear approximation to this model economy around a non-zero inflation steady

state then we shall find that in general a policy of ensuring perfect price stability

will not be part of a Ramsey program. We pursue this issue further in section 6.

We also note, in passing, that price dispersion also bears a close similarity

to a preference shift into leisure. If we employ the following change of variables,

λRt := λt∆
v+1
t , we see that the problem facing the policymaker is almost identical
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to that facing a policymaker in an economy with a higher preference for leisure.

Again, this change of variables does not quite work in the Phillips relation; here

the price dispersion term enters in a less quantitatively significant way: ∆v
t+k, ∀k,

as opposed to ∆v+1
t+k , ∀k. We prefer to emphasize the similarity between price

dispersion and productivity since in the appendix to which we have just referred,

we show that in the presence of nominal wage rigidity the wage dispersion term

in naturally ‘paired’ with the preference shifter while the price dispersion term is

naturally linked, as above, with productivity.

We return to the implications for price dispersion of this policy problem in

section 6. First, we investigate the quantitative impact of price dispersion in the

model.

3. The Costs of Price Dispersion

We begin by establishing the following proposition:

Proposition 3.1. Price dispersion is always greater than or equal to one, ∆t ≥ 1,
while equality can only happen when all prices are equal.

Proof. This is a consequence of Jensen’s inequality. We need to demonstrate

that ∆t hxi > 1, for x = −θφ. For this purpose we will use Jensen’s inequality
that f

¡R
uidi

¢
≤
R
f (ui) di which holds for any convex function, f . Consider

f (u) = u
x
1−θ , and ui =

³
pt(i)
Pt

´1−θ
. We can easily show that f (u) is convex for

x < 1 − θ, since f 00 (u) =
¡

1
1−θ
¢2
x (x− 1 + θ)u

x
1−θ−2 > 0. Now we can apply
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Jensen’s inequality

f

µZ
uidi

¶
= f

ÃZ µ
pt(i)

Pt

¶1−θ
di

!
= f(1) = 1

≤
Z

f

"µ
pt(i)

Pt

¶1−θ#
di =

Z Ãµ
pt(i)

Pt

¶1−θ! x
1−θ

di =

Z µ
pt(i)

Pt

¶x

di

= ∆t hxi

In our particular case x = −θφ < −θ < 1− θ, since φ ≥ 1.

3.1. Higher Production Costs

We now demonstrate Proposition 3.2 which establishes that rising price dispersion,

ceteris paribus, increases marginal production costs and distorts the demand for

and supply of labour.

Proposition 3.2. At the economy-wide level, for a given output level

(i) the labour input employed;

(ii) the aggregate production costs;

(iii) the disutility from labour,

all increase in price dispersion.

Proof. The proof of (i) follows immediately from (2.15)

Not surprisingly, total production costs are increasing in labour employed.

Combining (2.15) with (2.16) we can calculate total production costs

TCt := wtNt = µtλt
1

1− τht
Ct

³
A−φt Y φ

t ∆t

´1+v
. (3.1)

It follows immediately that [∂TCt/∂∆t] > 0.

Finally, the higher is employment the less time households have for leisure.

The aggregate disutility from labour, for a given level of output, is given in (3.2)
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and it is clear that this also is increasing in price dispersion.

λt
1

1 + v
N1+v

t = λt
1

1 + v

³
A−φt Y φ

t ∆t

´1+v
. (3.2)

The implications of this proposition will be useful in interpreting the impulse

responses that we report in Section 8.

4. Price Dispersion and Productivity shocks: Some Back-
of-the-Envelope Calculations

4.1. Theoretical Calculations

We can use the law of motion (2.28) to make some inference on the impact of

price dispersion. We do this by mapping a given average level of inflation, via its

impact on price dispersion, into an equivalent decrease in productivity using the

change of variable deduced above. This is shown in the bottom line of Table 4.13.

That is, we use the following expression:

∆t = ∆t−1 = (1− α)

µ
1− απθ−1t

1− α

¶ θφ
θ−1

/
³
1− απθφt

´
. (4.1)

In Table 4.1 column I corresponds to a benchmark economy, while column II

shows that a higher level of competition, θ, makes price dispersion more costly, as

does, respectively, the degree of concavity of the production function, φ, (column

III), inflation, πt, (column IV ) and the degree of price stickiness, α (column V ).

The final row in the figure, under the maintained assumptions, maps a given degree

of price dispersion into an equivalent percentage decrease in productivity. These

numbers, and those in subsequent tables, are in terms of annualized percentage

3The values for the parameters in column I in this table and in the subsequent tables
correspond to those we used in conducting the simulations reported in Section 8. These appear
to be in line with much of the literature.
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decreases. It is striking that a steady-state inflation rate of 2.5% maps into an

almost equivalent (2.4%) decrease in factor productivity in the base case (column

I ).

Table 4.1 I II III IV V
θ 7 10 7 7 7
φ 1.38 1.38 1.6 1.38 1.38
π 2.5% 2.5% 2.5% 5% 2.5%
α 0.5 0.5 0.5 0.5 0.6
∆ 1.034 1.09 1.06 1.28 1.08

1−∆−1/φ -2.4% -5.8% -3.6% -16.6% -5.4%

However, an obvious question follows from this simple analysis: How large

is price dispersion in the data? Unfortunately, so far as we are aware, there

is little direct empirical guidance on this issue, although there is some general

evidence on price dispersion. For instance, Baye, Morgan and Scholten (2004)

calculate the coefficient of variation (cvar) for online products in the USA. They

find it equals 10% on average. And it may well be the case that the coefficient of

variation could be significantly larger in European countries. Gatti and Kattuman

(2003), for example, find that the coefficient of variation for online products in the

Netherlands is 12.6%, although they also report that the coefficient of variation for

online bookstores can be up to 30%. We can, in fact, map these numbers into our

productivity equivalent measure, making no assumptions about trend inflation.

We recall the definition of the coefficient of variation:

cvar =

³R
p2(i)di−

¡R
p(i)di

¢2´1/2R
p(i)di

=

=

µR ³p(i)
P

´2
di−

³R p(i)
P
di
´2¶1/2

R p(i)
P
di

.
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In the appendix we show how one can relate this measure to our model’s

measure of price dispersion to arrive at the following expression:

∆ ' 1 + 1
2

θφ

θ + 1
(θφ− θ + 1)

cvar2

1− 1
2

θ
θ+1

(cvar2 + 1)
. (4.2)

Applying formula (4.2) we can estimate the effect of price dispersion in terms

of productivity permitting the coefficient of variation to go from 5% to 20% (recall

the studies above suggest a range of something like 10% to 30%). The results are

reported in Table 4.2.

Table 4.2 I II III IV V
cvar 0.05 0.1 0.1 0.1 0.2
θ 7 7 10 7 7
φ 1.38 1.38 1.38 1.6 1.38
∆ 1.01 1.04 1.06 1.07 1.16

1−∆−1/φ -0.7% -2.7% -3.8% -3.9% -10.3%

Interestingly, column II in Table 4.2 corresponds quite closely to column I

in Table 4.1, in terms of the ultimate productivity-equivalent impact, suggesting

that a coefficient of variation of 10%, or a little lower, may be a realistic number.

And we emphasize, we made no assumption about inflation in constructing Table

4.2. Taken together, the complementary evidence in Tables 4.1 and 4.2 indicate

that an empirically plausible level of price dispersion is a potentially very costly

in welfare terms. We may ask the question, in the spirit of Lucas (1987), how

costly in terms of utility a given degree of price dispersion might be.

5. The Consumption Equivalent Cost of price Dispersion

We will compare two economies; one corresponding to the situation when all firms

charge the same price, the other with a degree of price dispersion corresponding

16



to what we hope are reasonable levels for actual price dispersion. Due to price

dispersion, households in the second economy would work more, and, ceteris

paribus, therefore have lower welfare. We would like to know how damaging

to welfare is a given degree of price dispersion.

So, we would like to calculate a quantity of consumption, Φ%, which represents

the percentage point amount by which consumption would need to be higher every

period, to achieve the same level of utility as in the case when all firms charge the

same price, ∆v+1
t+k = 1

4. To calculate this welfare equivalent we set

Ut

³
Φ,
nb∆t+k

o´
= Et

∞X
t=0

βt+k

Ã
log(Ct+k) + logΦ− λt+k∆

v+1
t+k

¡
A−1t+kYt+k

¢(v+1)φ
v + 1

!

such that Ut

³
Φ,
nb∆t+k

o´
= Ut(1, 0). Note that this calculation is quite general

as it may be interpreted as assuming that the optimal degree of price dispersion is

necessarily positive—that the policymaker is required to deliver a positive degree

of price dispersion perhaps most plausibly as a result of numerous sources of

nominal rigidity. Our calculation, therefore, reflects the remaining welfare cost of

such rigidities. It follows then that5

logΦ = (1− β)Et

∞X
t=0

βt+kλt+k

¡
A−1t+kYt+k

¢(v+1)φ
v + 1

;

=
λ

1 + v
Y (v+1)φ

¡
∆v+1 − 1

¢
=
1− τ

1− g

(θ − 1)
θφ (1 + v)

¡
∆v+1 − 1

¢
. (5.1)

This is what we are seeking: It shows by how much consumption would need to

be increased to compensate for a given degree of price dispersion in the economy.

4Of course, Lucas (1987) considered the mean-variance trade-off in consumption; our thought
experiment is trading off mean consumption and mean price dispersion.

5In formula (5.1) Y denotes the steady-state level of output, g denotes government
expenditure to output ratio and τ is the steady pay-roll tax rate. The Phillips curve (2.27)
and an assumption of price stability, help us to solve for the steady state output value
λY (v+1)φ = 1−τ

1−g
θ−1
θφ .
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Table 5.1 provides details of the calculations based on this expression. The

required change in consumption appears far from negligible. Indeed, even on

relatively moderate assumptions that number does not fall below 0.5%, and may

rise substantially above it; column II, assuming a coefficient of variation of prices

of 10%, implies a consumption equivalent of 2.2%.

Table 5.1 I II III IV V
cvar 0.05 0.1 0.1 0.1 0.2
θ 7 7 10 7 7
φ 1.38 1.3 1.38 1.6 1.38
∆t 1.01 1.04 1.06 1.07 1.16
g 0.15 0.15 0.15 0.15 0.15
τ 0.25 0.25 0.3 0.25 0.25

1 + ν 2.8 2.8 2.8 2.8 2.8
∆ν+1 − 1 2.8% 11.5% 16.4% 19.4% 52.3%
1−τ
1−g

1−θ
θφ(1+ν)

0.2 0.2 0.19 0.17 0.2

Φ% 0.5% 2.2% 3.1% 3.3% 10.2%

6. Optimal monetary policy under price dispersion

We now return to the problem of section 2.4. Following Tack Yun (2005), we

consider an economy with an initial degree of price dispersion, ∆t−1 > 1 and access

to lump-sum taxation (the full problem is set out and solved in the appendix). Yun

(2005) considers an economy with linear production, φ = 1,while we consider the

more general case of concave production technology. The next proposition shows

that optimization over price dispersion implies negative inflation in a transition

period. Lump sum taxes are employed to meet the solvency requirement attached

to the policy program. The price setting constraint in this case can be supported

by payroll subsidies, τ t+k. Yun (2005) shows that with competitive labour markets
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the optimal subsidy rate should correct for the distortion associated with imperfect

competition, τht+k = − 1
(θ−1) .

6

Proposition 6.1. (Tack Yun, 2005) Given initial price dispersion, the optimal

policy corresponds to negative inflation.

Proof. We can easily recover his result by writing the first-order condition for

the law of motion (2.28)

∂∆t

∂πt
= θφα

⎛⎝∆t−1π
θφ−1
t −

µ
1− απθ−1t

1− α

¶ θφ
θ−1−1

πθ−2t

⎞⎠ = 0. (6.1)

We can simplify (6.1), which gives us the optimal rate of inflation

πt =

∙
(1− α)∆

θ−1
θφ+1−θ
t−1 + α

¸ 1
1−θ

. (6.2)

Clearly, this implies that πt < 1 iff ∆t−1 > 1. Finally, this optimal path for

inflation is feasible: See the formal proof in the appendix.

Substituting the expression for optimal inflation (6.2) into the law of motion

(2.28) we obtain the optimal level of price dispersion to be achieved in the next

period

∆t = ∆t−1

h
(1− α) (∆t−1)

θ−1
θφ+1−θ + α

i θφ+1−θ
1−θ

, (6.3)

which implies the following dynamic relation between inflation and price

dispersion:

πθφ+1−θt =
∆t

∆t−1
. (6.4)

We emphasize that one still cannot recover an optimal stabilization policy for price

dispersion should one adopt a second-order approximation around a zero-inflation

6It is straightforward to demonstrate that when the labour market is imperfectly competitive,
as in Erceg et al., τht+k = 1 −

θµt+k
θ−1 and that this result holds for any φ > 1. Here µ refers to

the wage markup. An appendix is available from the authors.
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steady state. The logarithmic second-order approximation to the law of motion

is given by (6.5)

c∆t = α[∆t−1 +
1

2

α

1− α
θφ (θφ+ 1− θ) bπ2t +O

¡°°ξ3°°¢ (6.5)

and the policy that minimizes price dispersion implies immediate inflation

stabilization: bπt = 0.
The usual linear-quadratic approach drops the law of motion (6.5) as a "second-

order constraint", and therefore does not allow one to investigate the dynamics of

price dispersion at all. As we noted in the introduction, this assumption lies at

the heart of the usual conclusion in the literature that the direct impact of price

dispersion on welfare is close to negligible.

7. Reincorporating price dispersion into linearized models

In economies with low inflation and no indexation, price dispersion has a large

impact on the economy and welfare. Optimal monetary policy, if it could, drives

price dispersion to zero. However, there may be good reasons to expect that it

cannot (for example, lack of enough policy tools—lump-sum taxation, as above,

fear of a liquidity trap, etc.). Hence, if optimal inflation is non-zero and pricing

behaviour cannot be fully synchronized, then some price distortion (in steady-state

and in the dynamics) is unavoidable.

The reason why price dispersion is generally excluded from linearized models

is because the linearization takes place around a steady state in which there is no

price dispersion7. In the previous sections we have tried to indicate that price

dispersion can be significant even at relatively low rates of inflation. In the

remainder of the paper, we develop a log-linear version of our model in which
7Of course, price dispersion may not be entirely absent in L-Q approximate models. That

is because price dispersion is the source of the inflation stabilization objective in quadratic
approximations to the representative agent’s utility function. See Woodford (2003).
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price dispersion is no longer of second-order importance. Crucially, we linearize

the model around an inflationary steady state in which there remains some price

dispersion.

First, consider price adjustment in the Calvo-Yun set-up. Each period firms

who are unable to reprice adjust their price for steady state inflation, π. Other

firms are allowed to adjust prices in a more sophisticated way, optimally choosing

their price. The aggregate price-level, (2.19) impliesÃ
1− α (πt/π)

θ−1

1− α

! 1
1−θ

=

µ
p0t
Pt

¶
. (7.1)

Thus, the dynamics of price dispersion can be shown to be given by:

∆t =

Z 1

0

µ
pt(i)

Pt

¶−θφ
di

= α (πt/π)
θφ∆t−1 + (1− α)

Ã
1− α (πt/π)

θ−1

1− α

! θφ
θ−1

, (7.2)

where π is steady-state inflation. See the appendix for the full derivation. The

steady state value of ∆ is given by

∆ = α (π/π)θϕ∆+ (1− α)

Ã
1− α (π/π)θ−1

1− α

! θϕ
θ−1

, (7.3)

which implies that ∆ = 1 in steady state. Hence, this is also consistent with the

case in which steady-state inflation is zero. Linearizing this expression around

this steady state results in (again, see the appendix for the details):

b∆t = αk b∆t−k +O2 ' O2.

O2 indicates terms of second-order, or higher. Now let us consider the

approximation to the law of motion around a steady state with positive inflation
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and no indexation. This seems a reasonable approach given that we observe little

or no indexation in low inflation economies and that most monetary authorities,

to put it mildly, do not seem to wish to achieve zero inflation. We find that

∆t = απθφt ∆t−1 + (1− α)

µ
1− απθ−1t

1− α

¶ θφ
θ−1

. (7.4)

The steady state price dispersion is then

∆ =
(1− α)

(1− απθφ)

µ
1− απθ−1

1− α

¶ θφ
θ−1

. (7.5)

And what we now find is that

b∆t = απθφb∆t−1 + αθφ

¡
πθφ − πθ−1

¢
(1− απθ−1)

bπt +O2. (7.6)

So, price dispersion is not a second order term any longer. Hence an approximate

log-linear model will include price dispersion and it follows that: The law of motion

(7.6) has to be part of the linear system of the model’s equations; the inflation

rate which reduces price dispersion is necessarily below trend inflation, so that we

may recover a version of Yun’s (2005) result (although we do not pursue that issue

in this paper); price dispersion and inflation will directly affect production costs

in the same way as a negative productivity shock. We now present the equations

of the full linearized model, with the details left to the appendix.

8. The log-linear model

1. The expression for the real wage (8.1) is obtained using (2.16)

bλt + v bNt + bCt = bwt + bst, (8.1)

where we define bst =\1− τ t.
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2. The log-linear form of labour demand is derived from (2.15):

bNt = c∆t + φ
³bYt − bAt

´
. (8.2)

3. Market clearing is derived using (2.24):

bYt = (1− g) bCt + g bGt. (8.3)

4. In the appendix we show how one can construct the following log-linear

form of the Phillips relation:

−Λ1 bπt − Λ2Zt + Λ3Xt = 0; (8.4)

Zt − bYt + bCt −
θ − 1

1− αβπθ−1
bπt = αβπθ−1EtZt+1; (8.5)

Xt− bwt+k+ bCt+k−φ
³bYt+k − bAt+k

´
−
µ

θφ

1− αβπθφ

¶bπt+k = αβπθφEtXt+1. (8.6)

Λ1,Λ2 and Λ3 are parameters defined in the appendix, and where

Zt =
∞X
k=0

(αβπθ−1)k
µbYt+k − bCt+k +

θ − 1
1− αβπθ−1

bπt+k¶ ;
Xt =

∞X
k=0

(αβπθφ)k
µbwt+k − bCt+k + φ

³bYt+k − bAt+k

´
+

µ
θφ

1− αβπθφ

¶bπt+k¶ .

5. Approximating equation (2.8) yields

Et
bCt+1 +Etbπt+1 = bCt +bit, (8.7)

where bit is the gross nominal interest rate, bit = log ¡βπ (1 + it)
¢
.

6. We log linearize (8.8) to yield (8.9)

Etbtπt+1
1

1 + it−1
= bt−1 − τhtwtNt +Gt; (8.8)

b

C
β
³bbt +Etbπt+1 −dit−1´ = b

C
bbt−1 − τ

wN

C
(
τ − 1
τ
bst + bwt + bNt) +

g

1− g
bGt. (8.9)
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7. The log-linear dynamics of price dispersion is

b∆t+1π
−θφ − αθφ

¡
πθφ − πθ−1

¢
(1− απθ−1)

bπt+1 = αb∆t. (8.10)

To close the system we need to specify the actions of the fiscal and monetary

authorities.

8. Monetary policy may be taken to follow a simple Taylor-type rule:

bit = i∗t + (ψπ + 1)bπt + ψy
bYt;

i∗t = ρi∗t−1 + bmt.

Here, bmt is a white-noise, serially uncorrelated shock; i∗t is an exogenous stochastic

process as in Woodford (2001) which reflects many potential factors such as shifts

in the natural rate of output, preference shocks, and such like, and we assume

ρ = 0.9, consistent with the analysis in Rudebusch (2002)8. There is some debate

about which output gap monetary authorities actually do react to, so in what

follows we simply set ψy = 0; in effect we assume a simple Wicksell-Woodford

reaction function9. Had we set ψy = 0.5, none of our conclusions below would be

altered.

9. We assume that fiscal authorities respond to lagged debt in the following

way: bst = −ξbbt−1.
10. Productivity follows an AR(1) process with white-noise shock term:

bAt+1 = ρA bAt + εAt+1;

Full details of the calibration are in the appendix. First, we consider a shock to

the interest rate target. In each graph we compare the model with price dispersion

8In fact, Rudebusch’s results suggest that a value for ρ slightly higher than 0.9 is plausible.
9See Woodford (2003) chapter 4.
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(the solid line) with the model in which price dispersion is absent (broken line).

Figure 8.1 looks at how inflation and interest rates respond to our ‘nominal’ shock.

Following the target interest rate shock inflation falls in both model economies,

but by more in the no-price-dispersion (npd) model. More interestingly, it follows

a hump-shaped path in the economy with price dispersion (pd), and appears to

be more persistent. The lower panel of Figure 8.1 shows that this hump-shaped

pattern shows up in the path of interest rates, which are thus somewhat more

smoothed than one observes in the npd model; that is, the initial changes in

interest rates are somewhat more gradual.

The impact of this shock on price dispersion is persistent and long-lasting (top

panel, Figure 8.2). Although Proposition 3.1 above was established taking as

given the level of output, it provides some clues as to the implications of this fall

in price dispersion. Producers anticipate a persistent decline in price dispersion

and as a result a period of lower than average production costs. This means that

firms increase production (so that equilibrium production costs actually rise). As

a result, labour input (top panel Figure 8.3) rises as does output (lower panel,

Figure 8.3).

The rise in output in the pd economy is again hump-shaped and is a rather

striking finding. The reduction in price dispersion, from a distorted steady-state,

acts like a positive productivity shock, so long as the change in the target rate

is sufficiently persistent. And it is this increase in output (and hence demand)

that accounts for the smaller initial fall in inflation in the pd economy. This

result is somewhat reminiscent of the disinflationary booms found by Ball (1994),

Ireland (1997) and Nicolae and Nolan (2006). We stress, however, that our result

is distinct in the sense that both economies (i.e., the pd and the npd economies)

will display the behaviour identified by Ball for a future anticipated tightening in

monetary policy; the channel we have identified is over and above that identified
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by Ball.

Less persistent shocks to the target rate, ceteris paribus, tend to make inflation

persistence less pronounced, although the hump-shaped pattern to interest rates

may still be present.

Following a productivity shock inflation and interest rates again follow the

hump-shaped path back to base (Figure 8.4). The deviation of price dispersion is

again persistent (top panel, Figure 8.5), whilst output responds maximally in the

first period in both model economies (lower panel, Figure 8.6).

We conclude that the expected impact of a nominal shock looks to be highly

dependent on both the persistence of that shock and on the steady state from

which the economy is perturbed. If that steady state is distorted by what appears

to be an empirically plausible amount of relative price dispersion (here we assumed

an economy with a trend inflation of 2.5% and no indexation) then one may obtain

some surprising results. By incorporating price dispersion, we are able to account

for a persistent and gradual response in inflation to two familiar types of shocks.

However, the response of output to a persistent, contractionary ‘nominal’ shock

is striking and further work is required to understand this and reconcile it with

how one typically thinks the economy responds to such a shock.
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Peristent monetary shock: impact on inflation
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Figure 8.1:
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Peristent monetary shock: impact on price dispersion
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Peristent monetary shock: impact on production costs
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Peristent monetary shock: impact on labour 
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Peristent productivity shock: impact on inflation
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Peristent productivity shock: impact on price dispersion
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Peristent productivity shock: impact on production costs
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Peristent productivity shock: impact on labour 
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9. Conclusion

This paper has attempted to clarify the impact of price dispersion in a simple

economic environment. We went to some effort to try to establish a rough order

of magnitude for price dispersion. We found that the impact of price dispersion,

on welfare and the dynamics of the simple model we set out, is substantial. Our

model with price dispersion seemed to make the economy evolve in a more sluggish

manner than the model with no price dispersion. Notably, inflation followed a

hump-shaped path following either a real or a persistent nominal shock, and so

any observed persistence in the policy rate was ultimately due to the persistence in

the nominal shock, and not ‘sluggish’ policy decisions. These sorts of issues have

been of concern to quantitative theorists recently; see the insightful discussion

in Mash (2004). However, the expansionary impact on output of a persistent

nominal contraction may be a challenge for the positive properties of the set-

up. A number of research questions appear important. It would be especially

interesting to have a better feel for how dispersed are actual prices through time,

how that changes with inflation and the persistence of actual monetary shocks.

Also, to slow the response of output one may think of incorporating sticky wages,

as it seems reasonable to suppose that this will stop production costs from falling

so quickly following a monetary contraction. Incorporating learning may also be

useful in this regard10.

10Nicolae and Nolan (2006) showed in a related, but simpler, model to the one presented
here that one could ‘avoid’ disinflationary booms by incorporating a period of learning into the
model.
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10. Appendix

10.1. Appendix to section 2.4

Proof of Proposition 2.4

Proof. The Ramsey plan is a policy plan
©
Pt+k, τ

h
t+k,

ª∞
k=0

which is a

competitive equilibrium corresponding to Definition 2.1 and which maximizes

(2.1). We recall that a competitive equilibrium is a path for endogenous

variables
©
Ct+k, Yt+k, Nt+k, wt+k, ∆t+k, p

0
t+k, Pt+k,

ª∞
k=0

satisfying conditions

(2.16), (2.15), (2.18), (2.19), (2.20), (2.23) and (2.24). To receive a simpler system

we will first substitute for Yt+k, Nt+k, wt+k using (2.16), (2.15) and (2.24). This

operation will immediately result in revised expressions for social welfare (2.25),

the solvency constraint (2.26) and the Phillips Curve (10.1)

(p0t/Pt)
−θ+θφ+1

Et

∞X
k=0

(βα)k
Ct+k +Gt+k

Ct+k
(1− θ)

µ
Pt

Pt+k

¶1−θ
(10.1)

= θφEt

∞X
k=0

(βα)k
λt+k

1− τht+k
∆v

pt+k

¡
A−1t+k (Ct+k +Gt+k)

¢(v+1)φµ Pt

Pt+k

¶−θφ
.

Then, using (2.19) we can calculate the optimal relative price,

p0t/Pt =

µ
1− απθ−1t

1− α

¶ 1
1−θ

, (10.2)

which can be plugged into (2.20) to receive the law of motion as in (2.28). Finally,

we plug (10.2) into the transformed Phillips curve (10.1) to receive (2.27).

10.1.1. The relationship between the coefficient of variation and the
measurement of price dispersion: derivation of (4.2)

We recall that ∆t h−θφi is our measure of price dispersion

∆t h−θφi =
Z µ

pt(i)

Pt

¶−θφ
di. (10.3)
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For any x relation (10.4) is true up to second order:

∆t hxi = 1 + x

Z ³bpt(i)− bPt

´
di+

1

2
x2
Z ³bpt(i)− bPt

´2
di+O3. (10.4)

Furthermore, from the definition of average price (2.3) implies that

∆t h1− θi = 1, which together with (10.4) gives (10.5)Z ³bpt(i)− bPt

´
di =

θ − 1
2

Z ³bpt(i)− bPt

´2
di+O3. (10.5)

In turn, expression (10.5) and (10.4) result in (10.6)

∆t hxi = 1 +
x

2
(θ − 1 + x)

Z ³bpt(i)− bPt

´2
di+O3, (10.6)

which can be rewritten as (10.7) for x = −θφ

∆t h−θφi ' 1 +
1

2
θφ (θ (φ− 1)− 1)

Z ³bpt(i)− bPt

´2
di (10.7)

By definition, the coefficient of variation is the ratio of standard deviation to

mean. Formally

cvar =

³R
p2t (i)di−

¡R
pt(i)di

¢2´1/2R
pt(i)di

=

=

µR ³p(i)
Pt

´2
di−

³R p(i)
Pt
di
´2¶1/2

R p(i)
Pt
di

,

which we rewrite as (10.8)

cvar =

p
∆t h2i−∆2

t h1i
∆t h1i

, (10.8)

where we can express ∆t h2i and ∆t h1i using relation (10.6)

∆t h2i = 1 + (θ + 1)
Z ³bpt(i)− bPt

´2
di+O3; (10.9)
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∆t h1i = 1 +
θ

2

Z ³bpt(i)− bPt

´2
di+O3. (10.10)

Combining (10.9) and (10.10) we receive

∆t h1i ' 1 +
1

2

θ

θ + 1
(∆t h2i− 1) . (10.11)

Expressions (10.8) and (10.11) help us to relate ∆t h2i and the coefficient of

variation, cvar: ¡
cvar2 + 1

¢µ
1 +

1

2

θ

θ + 1
(∆t h2i− 1)

¶
= ∆t h2i ,

cvar2 +
1

2

θ

θ + 1
(∆t h2i− 1)

¡
cvar2 + 1

¢
= ∆t h2i− 1

cvar2

1− 1
2

θ
θ+1

(cvar2 + 1)
= ∆t h2i− 1 (10.12)

Finally, we can combine (10.6) and (10.9) to receive (10.13)

∆t h−θφi ' 1 +
1

2

θφ

θ + 1
(θφ− θ + 1) (∆t h2i− 1) . (10.13)

Now, plugging (10.12) into (10.13) we receive the final expression, (4.2), used in

the main text,

∆t h−θφi ' 1 +
1

2

θφ

θ + 1
(θφ− θ + 1)

cvar2

1− 1
2

θ
θ+1

(cvar2 + 1)
.
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10.2. Appendix to Section 6

The Lagrangian for the Ramsey policy problem may be written as:

L = Et

∞X
k=0

βk

Ã
log (Ct+k)− λt+k∆

v+1
t+k

¡
A−1t (Ct+k +Gt+k)

¢(v+1)φ
v + 1

!

+ψ

"
(1 + it−1)

bt−1
Ctπt

−Et

∞X
k=0

βk

Ã
τht+kλt+k∆

v+1
pt+k

1− τht+k

µ
Ct+k +Gt+k

At+k

¶(v+1)φ
− Gt+k + Tt+k

Ct+k

!#

µh
µ
1− απθ−1t

1− α

¶−θ+θφ+1
1−θ

Et

∞X
k=0

(βα)k
Ct+k +Gt+k

Ct+k

µ
Pt

Pt+k

¶1−θ
−

− θ

(1− θ)
φEt

∞X
k=0

(βα)k
Ã

λt+k
1− τht+k

∆v
t+k

¡
A−1t+k (Ct+k +Gt+k)

¢(v+1)φµ Pt

Pt+k

¶−θφ!

+Et

∞X
k=0

βkηt+k

⎛⎝∆t+k − α∆t+k−1π
θφ
t+k − (1− α)

Ã
1− απθ−1t+k

1− α

! θφ
θ−1
⎞⎠

The first order condition with respect to Tt, implies that the solvency constraint

is not binding, ψ = 0. Similarly, the first order condition with respect to τht+k,

implies that price-setting curve is not binding either so that µ = 0; we can

always ‘correct’ it by adjusting the labour tax/subsidy rate, τht+k. The first order

condition with respect to consumption implies (10.14)

Ct+k +Gt+k

Ct+k
= φλt+k∆

v+1
t+k

¡
A−1t (Ct+k +Gt+k)

¢(v+1)φ
v + 1

(10.14)

which implies that consumption is bigger when price dispersion is smaller. Finally,

the first order condition with respect to πt gives us expression (6.2), which together

with the law of motion (2.28) impliesµ
1− απθ−1t

1− α

¶−θ+θφ+1
1−θ

= ∆t. (10.15)
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From equation (6.4) we derive the following dynamic relationship between the

level of price dispersion and average price inflation

Pt

Pt+k
=

µ
∆t

∆t+k

¶ 1
θφ+1−θ

. (10.16)

Now we plug (10.14) ,(10.15) and (10.16) into the price setting curve (2.27)

and receive condition (10.17)

0 = ∆tEt

∞X
k=0

(βα)k
Ct+k +Gt+k

Ct+k

µ
∆t

∆t+k

¶ 1−θ
θφ+1−θ

− (10.17)

− θ

(θ − 1)Et

∞X
k=0

(βα)k
∆−1t+k
1− τht+k

(Ct+k +Gt+k)

Ct+k

µ
∆t

∆t+k

¶ −θφ
θφ+1−θ

=

Et

∞X
k=0

(βα)k
Ct+k +Gt+k

Ct+k
∆t

µ
∆t

∆t+k

¶ 1−θ
θφ+1−θ

µ
1− θ

(1− θ)

1

1− τ t+k

¶
which is always true if τ t+k = 1− θ

1−θ .

This proves that when the solvency constraint is not binding, the optimal

policy minimizes price dispersion.

10.2.1. The Law of motion for the Calvo-Yun model

The dynamic of price dispersion is derived as follows:

∆t =

Z 1

0

µ
pt(i)

Pt

¶−θφ
di

= α

Z 1

0

µ
pt−1(i)π

Pt

¶−θφ
+ (1− α)

Z 1

0

µ
p0t
Pt

¶−θφ
= α (πt/π)

θφ

Z 1

0

µ
pt−1(i)

Pt−1

¶−θφ
+ (1− α)

µ
p0t
Pt

¶−θφ
= α (πt/π)

θφ∆t−1 + (1− α)

Ã
1− α (πt/π)

θ−1

1− α

! θφ
θ−1

,

where π is steady-state inflation.
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10.3. The approximate relationship around π

∆t = α (πt/π)
θφ∆t−1 + (1− α)

Ã
1− α (πt/π)

θ−1

1− α

! θφ
θ−1

³
1 + b∆t

´
= α (1 + θφbπt) (1 + b∆t−1)

+(1− α)

µ
1 +

θφ

θ − 1

µ
\1− α (πt/π)

θ−1
¶¶

+O2

where µ
\1− α (πt/π)

θ−1
¶
= −αbπt θ − 1

1− α
+O2

and therefore

b∆t = α
³
θφbπt + b∆t−1

´
− (1− α)

θφ

θ − 1αbπt θ − 11− α
+O2

b∆t = αb∆t−1 +O2

Since our variables are bounded, backward recursive substitution leads us to

conclude that price dispersion is of second-order significance.

11. Calibration

Our baseline settings are as follows: Preference parameters: v = 1.8, λ = 1,

β = 0.96. Technology parameters: φ = 1.38, θ = 7, α = 0.5. Fiscal policy in

a steady state: b/Y = 0.4, g = 0.15. Monetary policy parameters: ψπ = 0.5,

ξ = 0.1. Persistence of stochastic shocks: ρA = 0.9.

The model is linearized around two steady states, one where steady-state price

dispersion is zero, and inflation is zero, and another where inflation is 2.5% and

there is price dispersion in steady state: i.e., π = 1, or π = 1.025.
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12. Steady states of the model

As we explained in the text, when the model is linearized around a non-inflationary

steady state, the law of motion for price dispersion is dropped as price dispersion

is a second-order variable. However, if we consider the model with a small

yet positive trend inflation and no indexation then price dispersion is of first-

order importance. Moreover it impacts on the model economy like a negative

productivity shock and in addition to being persistent it also increases with

inflation.

13. Appendices to Section 8

13.1. The steady state

First, for any given level of the steady state inflation, π, we can find price

dispersion using the law of motion equation (2.28)

∆ =
(1− α)

(1− απθφ)

µ
1− απθ−1

1− α

¶ θφ
θ−1

.

Without loss of generality we assume the following normalization in the steady

state of the economy A = 1, λ = 1. Then, we may calculate the steady-state value

of output from the Phillips Curve (2.18).µ
1− απθ−1

1− α

¶1−θ+θφ
1−θ 1

1− αβπθ−1
1

1− g
=

µ
θφ

θ − 1

¶
1

1− αβπθφ
w

1− g
Y ϕ−1. (13.1)

Where g is the government consumption to GDP ratio, g = G/Y.

The steady state labour supply and real wage follow from (2.15) and (2.16):

N = ∆Y φ;

w =
1

1− τh
λCNv =

1− g

1− τh
λY Nv =

1− g

1− τ
λ∆vY φv+1.
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These allow us to compute output as a function of the steady state tax rate, τ ;

1

1− g

µ
1− απθ−1

1− α

¶ 1−θ+θφ
1−θ 1− αβπθφ

1− αβπθ−1

µ
θ − 1
φθ

¶
=

λ∆vY φ(v+1)

1− τ
. (13.2)

From the solvency constraint (2.26) we can then relate the debt to GDP ratio to

the levels of tax and output

b

C
(1− β) =

τ

1− τ
λ
¡
∆Y φ

¢v+1 − g

1− g
. (13.3)

Combining the Phillips curve (13.2) and the solvency constraint (13.3) we receive

the equilibrium level of output

b

C
(1− β) +

g

1− g
+ λ

¡
∆Y φ

¢v+1
=

1

1− g

µ
1− απθ−1

1− α

¶ 1−θ+θφ
1−θ

∆
1− αβπθφ

1− αβπθ−1

µ
θ − 1
φθ

¶
.

13.2. Appendix 2: Linearization of the Phillips curve

A convenient way to linearize the Phillips curve is as follows. First re-write

expression (2.18) as follows, rebundling the terms in current-period inflation:µ
1− απθ−1t

1− α

¶1−θ+θφ
1−θ

π1−θ+θφt (13.4)

∞X
k=0

(αβ)kEt
Yt+k
Ct+k

£
(Pt−1/Pt+k)

1−θ¤ (13.5)

=

µ
θ

θ − 1

¶ ∞X
k=0

(αβ)kφEt
wt+k

Ct+k

µ
Yt+k
At+k

¶φ

(Pt−1/Pt+k)
−θφ. (13.6)

Hence, linearizing the first expression above (13.4):µ
1− απθ−1t

1− α

¶−θ+θφ+1
1−θ

π1−θ+θφt

=

µ
1− απθ−1

1− α

¶ θφ
1−θ

π1−θ+θφ
µ
1− απθ−1

1− α
+
−θ + θφ+ 1

1− α
bπt¶ .
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Similarly, linearizing the second expression (13.5):

∞X
k=0

(αβ)kEt
Yt+k
Ct+k

£
(Pt−1/Pt+k)

1−θ¤
=

∞X
k=0

(αβπθ−1)k
πθ−1

1− g
Et

Ã
1 + bYt+k − bCt+k + (θ − 1)

kX
i=0

bπt+i!

=
∞X
k=0

(αβπθ−1)k
πθ−1

1− g
Et

³bYt+k − bCt+k

´
+

1

1− αβπθ−1
πθ−1

1− g

+
πθ−1 (θ − 1)
1− g

∞X
k=0

(αβπθ−1)kEt

kX
i=0

bπt+i (13.7)

We may change the order of integration in the last line of (13.7)

:
∞X
k=0

(αβπθ−1)kEt

kX
i=0

bπt+i = ∞

Et

X
i=0

∞X
k=i

bπt+i(αβπθ−1)k
=

∞

Et

X
i=0

bπt+i ∞X
k=i

(αβπθ−1)k =
1

1− αβπθ−1
Et

∞X
i=0

(αβπθ−1)kbπt+k.
And so we find that:

∞X
k=0

(αβ)k
Yt+k
Ct+k

£
(Pt−1/Pt+k)

1−θ¤
=

1

1− g

" ∞X
k=0

(αβπθ−1)k
µbYt+k − bCt+k +

1

1− αβπθ−1
θ − 1
1− g

bπt+k¶+ 1

1− αβπθ−1

#
.(13.8)
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Hence, the product of (the approximations of) expressions (13.4) and (13.5) isµ
1− απθ−1

1− α

¶ θφ
1−θ

πθφ
µ
1− απθ−1

1− α
+
−θ + θφ+ 1

1− α
bπt¶ 1

1− g
×

∞X
k=0

(αβπθ−1)kEt

µbYt+k − bCt+k +
1

1− αβπθ−1
θ − 1
1− g

bπt+k¶+ 1

1− αβπθ−1

=

µ
1− απθ−1

1− α

¶ θφ
1−θ −θ + θφ+ 1

1− α

π1−θ+θφ

1− αβπθ−1
1

1− g
bπt

+

µ
1− απθ−1

1− α

¶ θφ+1−θ
1−θ π1−θ+θφ

(1− g)2

∞X
k=0

(αβπθ−1)kEt

µbYt+k − bCt+k +
1

1− αβπθ−1
θ − 1
1− g

bπt+k¶ .

We turn now to the third component (13.6) of the Phillips curve:µ
θ

θ − 1

¶ ∞X
k=0

(αβ)kφEt
wt+k

Ct+k

µ
Yt+k
At+k

¶φ

(Pt−1/Pt+k)
−θφ

=

µ
θ

θ − 1

¶
φwY φπθφ

C (1− g)

∞X
k=0

(αβπθφ)kEt

µbwt+k − bCt+k + φ
³bYt+k − bAt+k

´
+

µ
θφ

1− αβπθφ

¶bπt+k¶ .

And so, the log linearization of the Phillips curve is completed asµ
1− απθ−1

1− α

¶−θ+θφ+1
1−θ πθφ

1− αβπθ−1
−θ + θφ+ 1

1− απθ−1
bπt

+

µ
1− απθ−1

1− α

¶−θ+θφ+1
1−θ

πθφ
∞X
k=0

(αβπθ−1)kEt

µbYt+k − bCt+k +
θ − 1

1− αβπθ−1
bπt+k¶

=

µ
θφ

θ − 1

¶
wY φ−1πθφ

∞X
k=0

(αβπθφ)kEt

µbwt+k − bCt+k + φ
³bYt+k − bAt+k

´
+

θφ

1− αβπθφ
bπt+k¶
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We use the following notational simplifications:

Λ1 : = Λ2
1

1− αβπθ−1
−θ + θφ+ 1

1− απθ−1
;

Λ2 : =

µ
1− απθ−1

1− α

¶−θ+θφ+1
1−θ

;

Λ3 =

µ
θφ

θ − 1

¶
w
Y φ

C
(1− g) ;

Zt =
∞X
k=0

(αβπθ−1)kEt

µbYt+k − bCt+k +
θ − 1

1− αβπθ−1
bπt+k¶ ;

Xt =
∞X
k=0

(αβπθφ)kEt

µbwt+k − bCt+k + φ
³bYt+k − bAt+k

´
+

µ
θφ

1− αβπθϕ

¶bπt+k¶ .

The following bloc of equations thus comprise our Phillips relation:

−Λ1 bπt − Λ2Zt + Λ3Xt = 0;

Zt − bYt + bCt −
θ − 1

1− αβπθ−1
bπt = αβπθ−1EtZt+1;

Xt − bwt + bCt − φ
³bYt − bAt

´
− θφ

1− αβπθφ
bπt = αβπθφEtXt+1.

When π = 1, we see that Λ3 = 1 and Λ2 = 1, and therefore we can recover a

‘standard’ Phillips relation:

bπt − κbYt + µ

µbst − bλt + g

1− g
bGt + (1 + v)φ bAt

¶
= βEtdπt+1,

where we define

µ =
(1− αβ) (1− α)

−θ + θφ+ 1
;

κ = µ

µ
(v + 1)φ+

g

1− g

¶
.
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