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Abstract Rewards are often not only valued according to
their physical characteristics but also relative to other
available rewards. The striatum (caudate nucleus, pu-
tamen, ventral striatum including nucleus accumbens) is
involved in the organization of movement and the pro-
cessing of reward information. We studied the activity of
single striatal neurons in macaques that were presented
with different combinations of two rewards. We found in
nearly half of the investigated neurons that the pro-
cessing for one reward shifted, relative to the other re-
wards that were available in a given trial block. The
relative reward processing concerned all forms of striatal
activity related to reward-predicting visual stimuli, arm
movements and reception of rewards. The observed
changes may provide a neural basis for the known shifts
in valuation of rewarding outcomes relative to known
references.

Keywords Neurophysiology - Behavior - Caudate -
Putamen - Ventral striatum

Introduction

Although rewards are objects with well defined phys-
ical properties, their motivational value can vary
(Tinklepaugh 1928; Crespi 1942; Bevan 1968). For
example, animals may choose a usually preferred re-
ward less frequently, or work less energetically for it,
when other, even more preferred rewards have been
encountered (Reynolds 1961; Black 1968; Dunham
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1968; Cox 1975; Flaherty 1996). The reward contrast
may occur even when a more valued reward is
observed with another animal (Brosnan and de Waal
2003). Thus rewards may influence each other, and the
value of a reward can depend on other available
rewards.

Besides playing a major role in movement processes,
the striatum is also a key reward structure of the brain.
Lesions in different parts of the striatum impair reward-
seeking behavior, adaptation to changed rewards, and
valuation of one reward relative to others (Flaherty
1996; Salinas and White 1998; Bowman and Brown
1998; Leszczuk and Flaherty 2000). Single striatal neu-
rons show sustained activations during the expectation
of reward (Hollerman et al. 1998; Kawagoe et al. 1998)
and discriminate between different rewards or reward
magnitudes (Bowman et al. 1996; Hassani et al. 2001;
Cromwell and Schultz 2003). However, it is unknown
whether individual striatal neurons process rewards
according to their physical characteristics or relative to
other rewards.

This work extends our previous studies on simple
reward discrimination in the anterior striatum (Hassani
et al. 2001; Cromwell and Schultz 2003) and examines
how the neural processing of one reward may depend on
other rewards. We used a spatial delayed response task
in which specific, reward-predicting instructions signaled
to the animal which of two rewards would be delivered
for correct performance in each trial. Different reward
combinations served to study the same reward in rela-
tion to different alternatives.

Methods

We employed the same three monkeys and similar
methods as in two previous studies (Hassani et al. 2001;
Cromwell and Schultz 2003) (A, B: Macaca fascicularis,
female 3.4 kg; male 2.8 kg; C: Macaca mulatta, male
6.0 kg). All experiments conformed to Swiss Animal
Protection Law and the NIH guiding principles.



Behavioral task

A visual instruction (13°x13°) appeared for 1 s on a 13-
inch computer monitor at a left or right position to
indicate a target lever below the stimulus for the operant
arm movement (Fig. 1a). The shape and color of the
instruction predicted which of two rewards would be
delivered for correct target acquisition. At 3.5-4.5 s after
instruction onset a uniform twin trigger stimulus ap-
peared on the monitor. The moderately fluid-deprived
animal released the resting key, touched the lever pre-
viously indicated by the instruction, and received the
reward predicted by the instruction at 2.0 s after lever
touch through a spout at its mouth. Error trials were
unrewarded and repeated. Animals received no further
conditioning for associating instructions with rewards.
The left and right targets and the two rewards varied
pseudorandomly between trials, with a maximum of
three identical consecutive trials. We presented 7-15
trials for each of two targets and two rewards (total of
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28-60 trials per block), a trial lasted 7-9 s, and intertrial
intervals were 9-11 s.

Behavioral reward preferences were assessed in
blocks of choice trials in which the two instructions were
presented simultaneously. Each instruction pair con-
tained one picture associated with a preferred, or larger,
reward and one with a nonpreferred, or smaller, reward.
Stimuli inducing visual preferences were discarded. The
animal chose the reward after the trigger stimulus by
touching the lever previously indicated by the instruc-
tion associated with the desired reward. Neural data
from choice trials are not presented in this report.

We used different juice rewards with the same quan-
tity (0.18 mL; animals A, C) or one juice reward with
different quantities (0.12, 0.18, 0.24 mL; animals A, B).
Rewards were selected in choice trials for consistent and
satiety-insensitive preference. Rewards were blackcur-
rant or raspberry (most preferred), orange (intermedi-
ately preferred), and grenadine or lemon juices (least
preferred; animal A), or raspberry (most preferred),
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Fig. 1 A Spatial delayed response task. The position of the colored
instruction picture indicated the left or right movement target. The
visual aspect of the instruction predicted the kind or amount of
liquid reward. Following a brief delay after the instruction, two
identical red squares appeared and triggered the arm movement
from the resting key to the left or right target lever previously
indicated by the instruction. Correct performance was rewarded
after a brief delay with a drop of liquid. Two different kinds or
amounts of reward, each predicted by a different instruction
picture, alternated pseudorandomly in a given block of trials, as did

the left and right movement targets. B Positions of striatal neurons
showing relative reward processing (dots). Data were plotted
superimposed from the three monkeys on coronal histological
sections at approximate antero-posterior levels (A18-25 denote mm
rostral to earbars). Interrupted lines denote approximate bound-
aries of ventral striatum (Haber et al. 1995) and internal capsule.
Neurons located in the internal capsule were recorded from cell
bodies, not fibers, as inferred from their long impulses (> 0.8 ms).
(Put putamen, Cd caudate, VSt ventral striatum, AC anterior
commissure)
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blackcurrant (intermediately preferred), and orange or
lemon juices (least preferred; animal C). For studying
reward quantity we used raspberry (animal A), black-
currant (animals A and B) and grenadine juices (animal
B).

Blocks of choice trials assessed reward preferences at
least once on each neural recording day. Animals
showed stable reward preferences over several weeks in
all reward comparisons. They chose the same, preferred
kind of reward in 92.8 £ 1.1% of trials (mean + SE of the
mean, SEM; 93 choice blocks of 28-60 trials/block,
range 56-100%). When reward magnitude was varied,
animals selected the larger reward in >95% of trials.

Data acquisition and evaluation

After behavioral training, the activity of single, slowly
discharging neurons in the left (animals A, B, C) and
right striatum (animal A) was recorded extracellularly
with moveable microelectrodes using standard electro-
physiological techniques while monitoring licking
movements. Tonically active striatal neurons (TAN)
were not studied. Recording sites were reconstructed
from small electrolytic lesions on 50 um thick, cresyl
violet-stained, coronal brain sections.

We evaluated relative reward processing in single
neurons in three steps. First, we assessed task-related
activations for a given reward by comparing impulse
rates in single trials during postinstruction (<1s
duration), pretrigger, posttrigger, prereward or postre-
ward periods against 1-2 s preinstruction control peri-
ods (P<0.01, I-tailed Wilcoxon test). We rejected ~5%
of neurons with nonstationary activity within or across
identical trial blocks (P <0.01; 2-tailed Mann—Whitney
U test, M—W). Second, we assessed reward discrimina-
tion within a trial block by comparing task-related
activity in identical periods between two rewards (M—W;
P <0.01). Third, we assessed relative reward processing
across trial blocks by comparing activations for the same
reward between different combinations with other
rewards (P <0.01; M-W).

Results

We investigated each neuron with three different re-
wards or reward magnitudes (A, B and C) but delivered
only two of them in each trial block (A-B, B-C or A-
C) and only one reward on each trial. The block design
allowed the animal to predict after a few trials the
particular combination of two rewards that would
pseudorandomly alternate between trials. Animals dis-
criminated between rewards by showing shorter arm
movement reaction times (276-465 ms), longer antici-
patory licking durations (850-2,900 ms) and fewer
behavioral errors (3-14%) for preferred versus less
preferred kinds or magnitudes of reward (250-2,980
trials per comparison, three animals; P <0.0005-0.025

in 10 of 16 comparisons; 1-tailed ¢ test or Wilcoxon
test).

Basic relative reward processing

To test relative reward processing, we compared neural
activity for the same reward between two different re-
ward combinations. We investigated 185 striatal neu-
rons, which were a subset of 984 slowly discharging
striatal neurons tested for simple reward discrimination
(Hassani et al. 2001; Cromwell and Schultz 2003). Of the
185 neurons, 79 (43%) showed significantly different,
task-related activity for the same reward between two
different reward combinations (P <0.01; M—W). Beha-
vioral reaction times, reward-anticipating licking dura-
tions and error rates varied for the same reward when
tested in two different reward combinations, although
the differences reached significance only in 12 of the 79
pairs of trial blocks (overall P>0.25 in all three mea-
sures). Relative reward processing occurred in 27 neu-
rons showing higher activity for preferred rewards, 26
neurons showing higher activity for nonpreferred re-
wards, eight neurons showing highest activity for a
particular reward object or magnitude, and 18 neurons
that failed to discriminate between any of the rewards
used. The 79 neurons were recorded from monkeys A
(n=33 neurons), B (n=4) and C (n=42) in the ‘“asso-
ciative” striatum rostral to the anterior commissure
(caudate, n=20; putamen, n=40; ventral striatum,
n=19) (Fig. 1b).

An example of relative reward processing is shown in
Fig. 2a. The neuron responded more to grenadine than
orange or blackcurrant juice. However, the response to
the identical grenadine juice was higher when blackcur-
rant juice was the alternative reward (bottom), com-
pared to orange as alternative (top) (P<0.01; M-W).
Similar differences were seen in the 79 neurons in any of
the five task periods (postinstruction, pretrigger, post-
trigger, prereward or postreward; Table 1). They
amounted to an overall median increase in activation of
185% for the more effective above the less effective re-
ward combination (n=79; Fig. 2c). Linear regression
analysis across individual neurons failed to reveal rela-
tionships between differences in neural activation and
reaction times (R*><0.1), including premovement and
movement epochs (R?=0.064), suggesting that simple
movement differences were not responsible for the ob-
served neural changes. Thus some striatal neurons do
not process reward information in a fixed manner but
relative to other available rewards.

Shift of reward processing

We investigated further the nature of relative reward
processing in 20 of the 79 neurons that discriminated be-
tween all rewards and labeled the rewards according to the
animal’s preferences as A < B < C. We presented the same,
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Fig. 2 Relative reward processing in striatal neurons. A Change of
response to identical grenadine juice depending on the alternative
reward. This putamen neuron discriminated between grenadine and
orange (fop) and between grenadine and blackcurrant juices
(bottom). However, the grenadine response was lower with orange
juice as alternative (zop), compared with blackcurrant as alternative
in a different trial block (bottom). During this neural recording, the
animal preferred blackcurrant >orange > grenadine juice. The
neuron showed higher activity for less preferred rewards. Prere-
ward background activity was higher in blackcurrant compared
with orange trials but was similar in grenadine trials across trial
blocks, arguing against a change in general neural excitability.
Chronology of trials is from top to bottom in each raster. Perievent
time histograms of neural impulses are shown above rasters in
which each dot denotes the time of a neural impulse relative to
reward onset. Each line shows one trial. Trials alternated
pseudorandomly between two rewards and were separated for
analysis. Top and bottom trials were run in separate blocks. B Shift
of reward coding in a caudate neuron (variation of reward
magnitude). Activation with medium reward depended on the
magnitude of the other reward within the same block (top vs.
bottom). Thus, neural activity was higher for whatever reward was
relatively larger. Chronology of trials is from top to bottom in each
raster. Reward was blackcurrant juice. Reward amount was
indicated at trial onset by the instruction (Ts at different
orientations). C Quantitation of relative reward processing in the
79 neurons. Low and high refer to the lower and higher activations
for a given reward tested in two trial blocks against different kinds
or amounts of reward, irrespective of activation increases or
decreases with more preferred reward. Activation magnitudes are
expressed in % above preinstruction control activity and comprise
all types of task-related activation (postinstruction, pretrigger,
posttrigger, prereward, postreward). Medians were 137% for
“low” and 391% for “high” activations (increase of 185%). D
Shift of reward processing according to currently available rewards
in nine neurons showing increases with rewards of increasing
preference (reward kind or magnitude). Interrupted lines connect
magnitudes of activation for the same intermediately preferred
reward (mid) tested in combination with reward of “low” (left) or
“high” preference (right). (Note that “low” and “high” refer to
behavioral preference in D and to neural activation in C)

intermediately preferred reward B in two trial blocks in
which it was either the relatively more (A—B block) or less
preferred reward (B—C block). Behavioral reaction times
with reward B were significantly shorter in A—B compared
to B-C blocks, indicating a behavioral contrast, although
the differences reached significance only during 10 of the
20 neural recordings (P<0.1; M-W). The neuron of
Fig. 2b showed stronger instruction-trigger delay activity
for the same intermediate reward B in A-B (top) com-
pared to B-C blocks (bottom). Within both blocks, acti-
vations were strongest with whatever was the larger of two
rewards, irrespective of actual reward size. Of the 20
neurons, 12 showed similar shifts in any of the five task
periods (median 268 % activation increase with reward B;
P <0.01; M-—W). The change occurred irrespective of kind
(n="7 neurons) or amount of reward (rn=35), and irre-
spective of activation increases (n=9; Fig. 2d) or de-
creases (n=3) with the more preferred reward. Thus
neural reward coding in some striatal neurons can shift
depending on the currently available rewards.
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Table 1 Numbers of striatal neurons with relative reward processing

Task relationship Reward Reward Total neurons with Total task-related
kind amount relative processing neurons tested

Response to instruction 4/7 0/3 4 (40%) 10

Activation during instruction-movement delay 19/52 8%/15 27 (40%) 67

Activation following trigger 13/23 0/3 13 (50%) 26

Activation preceding reward 8/13 2/8 10 (48%) 21

Response to reward 22/48 3/13 25 (41%) 61

Sum 66/143 13/42 79 (43%) 185

A total of 185 task-related neurons was tested for relative reward
processing. The 185 neurons showed one of the five forms of task
relationship indicated on the left. For reasons of simplicity, only
the strongest activation was analyzed when individual neurons
showed multiple activations, irrespective of relative reward coding.
The two left numeric columns contain the numbers of neurons
showing relative reward processing/numbers of task-related neu-
rons tested

Discussion

These data show that some neurons in the anterior
striatum were not only influenced by the reward in the
current trial but also by rewards presented in other trials
within the same block. Whereas our previous studies
concerned the neural discrimination of rewards (Hassani
et al. 2001; Cromwell and Schultz 2003), the current
results suggest rapid shifts in reward processing through
which neurons would adapt the dynamic range of
responding to the currently available rewards. This
mechanism would enable optimum reward discrimina-
tion at the instant at which an animal makes a decision
concerning rewards.

Although the neural changes concerned all forms of
task-related activation, they were only accompanied by
subtle behavioral effects. Behavioral changes were
insignificant when testing the basic relative processing
and reached significance in only half the tests for shifted
reward processing. These comparisons suggest that the
relative reward processing may represent a basic neural
mechanism operating even without overt behavioral ef-
fects.

The shift in reward processing may reflect an adap-
tation that could be expressed, in the most simple form,
as a change in the linear input-output function of
y=a+b(x) to y=a+b(x—p), with p as offset of pro-
cessing induced by prediction about the current reward
distribution (a is a constant, b is the slope) (Fig. 2d).
Thus reward sensitivity may adapt rapidly to changes in
the distribution of rewards, although the details of the
adaptation remain to be investigated.

Similar relative, rather than absolute, processing of
reward seems to occur also in other brain structures.
Orbitofrontal neurons adapt their discrimination to the
current rewards (Tremblay and Schultz 1999), although
they rarely show the goal-related (Dickinson and Bal-
leine 1994) movement preparatory delay activity of
striatal neurons (Hollerman et al. 1998) (Fig. 2b). Dor-
solateral prefrontal neurons show activations in unre-

Measurement periods for statistical analysis were < 1.0 s after the
instruction, < 3.5 s during the instruction-movement delay,

< 1.0 s following the trigger stimulus and during the movement,
< 2.0 s preceding the reward, < 1.0 s after the reward

40Of these eight neurons, three showed significantly different acti-
vation for movements to the left versus right, the remaining five
had nonspatial task-related activations

warded trials that depend on the available reward in
rewarded trials (Watanabe et al. 2002). Posterior parietal
neurons show rapidly adapting, constant responses to
preferred rewards irrespective of absolute value in a
game task in which animals by definition chose out-
comes with the highest utility (Dorris and Glimcher
2004). Taken together, relative reward processing
involving response adaptation seems to constitute a ra-
ther general reward mechanism.

In a general sense, relative reward processing in the
striatum may contribute to the shift in reward valuation
relative to variable references in a number of behavioral
situations conceptualized in learning theory (Flaherty
1996) and microeconomic decision theory (Kahneman
and Tversky 1984). The reduction of reward contrast in
instrumental responses after ventral striatal lesions in
rats (Leszczuk and Flaherty 2000) may suggest that the
relative reward effect observed in this work provides a
neural mechanism for valuation of predictable outcomes
relative to other available outcomes and contributes to
the efficacy of goal-directed behavior.
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