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Abstract: 

 
The thermal stability of self-assembled monolayers (SAMs) is of fundamental importance for 

the majority of their applications. It strongly depends on the type of chemical group used for 

bonding the molecules forming the SAMs to the selected substrate. Here, we compare the 

impact of using S and Se bonding groups on the thermal stability of aromatic model SAMs 

based on naphthalene, containing a polar substituent, and formed on a Au(111) substrate. Using 

a combination of secondary ion mass spectrometry (SIMS) and X-ray photoelectron 

spectroscopy (XPS) while heating the samples, we show that the thermal stability of S-bonded 

SAMs is higher although the bonding between Se and the Au substrate is stronger. This seeming 

contradiction is found to result from a higher stability of the S−C compared to Se−C bond. The 

latter forms the weakest link in the SAMs with Se anchor and, thus, controls its thermal stability. 

These conclusions are supported by state-of-the art dispersion-corrected density-functional 

theory (DFT) calculations. Notably, full qualitative agreement between the experiments and 

simulations is obtained only when including Au adatoms in the set-up of the unit cells, as these 

reinforce the bonding between the docking groups and the metal surface. This is an indication 

for the occurrence of such surface reconstructions also for SAMs consisting of comparably 

large aromatic molecules. 
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I. Introduction 

 

Self-assembled monolayers (SAMs)1-3 are considered as prototypical systems for investigating 

physical and chemical properties of organic nanostructures and their potential application in 

nanotechnology.4,5 The key to SAMs functionality is the comparably strong chemical bonding 

between the SAM-forming molecules and the respective substrate on which the monolayer is 

formed. So far the overwhelming majority of studies analyzing fundamental properties and 

applications of SAMs have been conducted on molecules containing sulfur as head groups 

covalently bonded to the Au(111) substrates.3,6 In recent years it has, however, been 

demonstrated that selenium, which has the same valence electron configurations as sulfur, is a 

promising alternative for docking molecules to noble-metal substrates.7  

 

One of the advantages of selenium-based SAMs on Au(111) is their better structural quality. 

Scanning tunneling microscopy (STM) studies of purely aromatic8-10 as well as hybrid 

aromatic-aliphatic11,12 selenolate SAMs on the Au(111) demonstrated the formation of layers, 

which were superior to their thiolate analogues in terms of structural perfection, domain size, 

and long-range order. It has been proposed that the main reason which limits structural quality 

of SAMs with aromatic backbones is related to the stress originating from the misfit between 

the structure favored by the aromatic backbone and the template provided by the Au(111) 

substrate.13 The release of this stress leads to the formation of defects and limits the achievable 
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domain size. One of the ways to circumvent this problem is the application of hybrid aromatic-

aliphatic molecules, where insertion of flexible aliphatic chains between docking group and 

aromatic backbone provides pathways to reduce stress without breaking the structure preferred 

by the aromatic moieties.13 This approach, however, also affects other properties of the films; 

it, for example, results in a significant reduction in the conductance of the monolayer. Thus, 

solving the stress problem via the application of another head group atom, i.e., selenium instead 

of sulfur with no further modification of the molecular backbone is an attractive alternative 

solution for improving film quality, especially as this substitution does not change the 

conductance of the monolayer.14 

 

The substitution of the head group also affects the stability of the molecule-metal bond, which 

is fundamental for most applications of SAMs. Despite several studies addressing the relative 

strength of S−Au and Se−Au bonds in SAMs, this issue is still not fully clarified. Several 

conceptually different experimental approaches were used for the analysis including thermal 

desorption,9,15 electrochemical desorption,15,16 ion-induced desorption,14,17-19 competitive 

adsorption,20 X-ray photoelectron spectroscopy (XPS)21,22 and exchange reactions.14,23,24 With 

one exception24 all these experiments geared at determining stability were done by comparing 

SAMs with molecular backbones based on benzene,7,13,15,19 such as BS(Se), C6H4-S(Se), 

biphenyl and its derivatives,9,16,20,21 (such as BPnS(Se), CH3-(C6H4)2-(CH2)n-S(Se), n = 2-6), or 

recently naphthalene,14  (NC-NapS(Se), NC-C10H6-S(Se)). The majority of these reports 

indicates a higher stability of the Se−Au bond14,16-18,20,22-24 with, however, two publications9,21 

claiming a higher stability of the S−Au bond. Interestingly, experiments arriving at the 

contradicting conclusions (i.e., a higher stability of either S−Au9,21 or Se−Au15,16,20) were 

exclusively performed on benzene-based systems comparing benzenethiol (BS) and 

benzeneselenol (BSe) SAMs.  
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In this context it is important to consider that for a meaningful comparison of the relative 

molecule-substrate bonding strength, the studied SAMs not only need to have the same 

molecular backbones, but they also should represent well-defined films with very similar 

molecular packing. Only under such conditions the impact of differences in intermolecular 

interactions can be minimized and the bonding of the head group to the substrate becomes the 

main factor determining film stability. Notably, for the BS/Au(111) and BSe/Au(111), STM 

analysis9 indicates the formation of structures with packing densities differing by as much as 

~40%. Moreover, high-resolution XPS (HRXPS) analysis15 reveals co-adsorption of the head 

group atoms (S or Se) and unbounded molecules in these SAMs. Therefore, in our opinion, a 

precise comparison of stability of S−Au and Se-Au bonds using the BS/Au(111) and 

BSe/Au(111) SAMs is not reliable. Similar considerations apply also to investigations of the 

thermal stability of these SAMs, where, again, contradicting results have been obtained 

suggesting either a lower9 or higher15 thermal stability of BSe/Au(111) compared to 

BS/Au(111). 

 

Considering that the thermal stability of SAMs is one of the most important factors determining 

their range of applications, a systematic investigation of this property for SAMs differing only 

in the used docking atom, but otherwise having similar structures and packing densities (where 

the latter ought to be sufficiently high) is in high demand. Accordingly, we provide a detailed 

analysis of the thermal stability of the NC-NapS/Au(111) and NC-NapSe/Au(111) (see Figure 

1 for chemical structures).  They serve as well-defined model systems with no co-adsorption of 

docking group atoms or unbound molecules seen in HRXPS.14 Moreover, they form well-

ordered high-density structures displaying similar packing densities as found by STM.14  
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Our experimental studies rely on X-ray photoelectron spectroscopy (XPS) and secondary ion 

mass spectrometry (SIMS) performed on samples during heating cycles. They are supported by 

dispersion-corrected density-functional theory (DFT) calculations, describing the stability of 

chemical bonds close to the metal-molecule interface for different bonding scenarios (i.e., flat 

Au(111) surfaces and surfaces in the presence of a varying number of adatoms). We find that a 

larger bonding energy between the metal and the docking group does not necessarily yield 

higher thermal stability. Moreover, full qualitative agreement between the experiments and 

calculations is achieved only when considering surface reconstructions for both SAMs. 

II. Experimental 

 

2.1 SAM preparation. The Au(111) substrates were prepared by evaporating 150 nm of gold 

onto single crystal silicon (100) wafer substrates (ITME, Warsaw) primed with a 5 nm 

chromium adhesion layer (base pressure of ~10-7 mbar, rate 0.5 nm/s). The synthesis of the NC-

NapS(Se) molecules is described in ref. 14. Following a previously developed procedure,14 

SAMs were prepared by immersion of the Au(111) substrates into 1 mM solutions of the 

 
 
 

 
 
 

Figure 1. Schematic structures of the SAMs used in this study along with their acronyms. 
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respective precursors in pure ethanol at 60 oC for 24 h. After immersion, samples were rinsed 

with pure ethanol, blown dry with nitrogen and immediately transferred to the experimental 

setups (XPS or S-SIMS).  

 

2.2 XPS. XPS measurements were performed with a dedicated spectrometer equipped with a 

hemispherical energy analyzer (VG SCIENTA R3000). The spectra were taken using a 

monochromatized Al K source (E = 1486.6 eV; MX-650 VG Scienta). The base pressure in 

the analytical chamber was 5×10-9 mbar. The acquisition of all spectra was carried out in normal 

emission geometry with an energy resolution of 0.15 eV. The binding energy (BE) scale was 

referenced to the Au 4f7/2 peak at 84.0 eV. To monitor the thermal stability, the sample 

temperature was linearly ramped at a rate of 5K/min. Upon reaching the desired temperature, 

the system was left to stabilize for 5 minutes and then the measurement of the chosen signal 

was carried out. Due to the poor signal-to-noise ratio and the resulting long acquisition time, S 

and Se core-level spectra were collected in independent experiments. All spectra were fitted by 

symmetric Voigt functions and a Shirley-type background was subtracted. For fitting S 2p3/2,1/2 

and Se 3p3/2,1/2  doublets, two peaks with the same FWHM, a fixed branching ratio (2:1), and 

defined spin-orbit splitting   (1.2 eV 25
 and 5.40 eV26, respectively), verified by fits, were 

used.  

 

2.3 S-SIMS. The SIMS experiments were performed using a time of flight SIMS (TOF SIMS 

V system, ION TOF GmbH, Germany). The instrument was operated at a base pressure of 6×10-

10 mbar. The primary 30 keV Bi+ ion beam was scanned over a 500 m × 500 m area (128 × 

128 data points) during data acquisition. The secondary ions were extracted into a reflectron 

TOF mass spectrometer before reaching a multi-channel plate (MCP) detector. For the thermal 

stability analysis, the sample temperature was linearly ramped from room temperature up to 
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725 K at a rate () of 3.75 K/min. The SIMS measurements were performed at selected 

temperatures without interrupting the sample heating. As discussed in the Supporting 

Information (Figure S1), SIMS experiments were also performed at room temperature to prove 

the absence of ion-beam-induced damage of the investigated samples. These experiments 

confirmed the prevalence of static conditions during the SIMS measurements (S-SIMS).  Before 

analysis, all spectra were normalized to the respective total counts.  

 

2.4 Simulations.  To analyze the bonding between the adsorbates and substrate, we calculated 

the energies associated with breaking S(Se)/Au and S(Se)/C bonds for a variety of adsorbate 

configurations using dispersion-corrected DFT. All calculations were performed using the FHI-

aims code,27 employing the PBE functional.28 To include long-range van der Waals interactions, 

the latter was augmented by the Tkatchenko-Scheffler29,30 scheme parameterized specifically 

to treat adsorption on metallic surfaces (PBE+vdWsurf).31 The dispersion corrections between 

the substrate Au atoms were turned off. To model bonded monolayers on substrates and clean 

metal surfaces, periodic boundary conditions and the repeated slab approach were employed 

representing the substrate by five layers of Au. Periodic replicas of the slab were decoupled by 

an at least 20 Å wide vacuum gap and a self-consistently determined dipole layer to account for 

the electrostatic asymmetry.32 The bottom three Au layers were kept fixed in the geometry 

optimizations to avoid spurious relaxations at the bottom surface of the slab. As the observed 

energy differences between SAMs bonded by S and Se atoms in many cases are very small, it 

has been crucial to carefully converge the k-point sampling, the basis set (avoiding artefacts 

due to basis-set superposition errors), and other numerical parameters with more details given 

in the Supporting Information. In short, Au atoms were described using the default FHI-aims 

“tight” settings, while for all the other atoms the default tight settings were augmented by 

adding a further basis function and tightening numerical settings (for more details see 

Supporting Information). 6×3×1, 9×5×1 and 4×4×1 Monkhorst – Pack k-point grids33 were 
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used for the rectangular (4√3), rectangular (3√3) and oblique (3√7) unit cell, respectively. 

The convergence criterion for the total energy in the self-consistency cycle was set to 10-6 eV 

and the optimizations were performed until the maximum residual force component per atom 

was below 0.01 eV/Å.  

 

The primarily analyzed quantities derived from the simulations are the bonding energies 

(respectively, bond-breaking energies) between the docking atoms S or Se (X) and the Au 

surface or the first C atom (Y), EX-Y. They are defined as the differences in total energy between 

the isolated molecular fragments, Emol-fragment,X-Y, plus the energy of the Au(111) surface (in 

some cases containing adatoms and/or adsorbed S/Se atoms), Esurf,X-Y, and the energy of the 

adsorbed SAM on the Au substrate (i.e., the undisturbed, bonded SAM), ESAM-bonded   

 

EX-Y = Emol-fragment,X-Y + (Esurf,X-Y - ESAM-bonded)/2. 

 

The factor of 1/2 accounts for the two molecules in the unit cell (vide infra) such that average 

energies per molecule are obtained. Esurf,X-Y and ESAM-bonded (Emol-fragment,X-Y) have been obtained 

using periodic (open) boundary conditions. Note that for calculating those energies, the 

geometries of all sub-systems were fully relaxed. To assess the impact of vibrational degrees 

of freedom, we also calculated the vibrational eigenmodes of the bonded layer and of the 

individual fragments after bond-braking for the unreconstructed rectangular (4×√3) unit cell 

employing finite displacements (for details see Supporting Information). These calculations 

allowed for an assessment of the impact of zero-point energies and the thermal occupation of 

vibrational modes. As the vibrational energies had only a minor impact on the overall energetics 

and in view of the massive computational efforts associated with such calculations, we 

considered vibrational effects only for a single adsorption motifs, as discussed below.  
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III. Results 

Thermal Stability Analysis by XPS. To monitor the evolution of NC-NapS/Au and NC-

NapSe/Au structure with temperature, signals corresponding to Au, C, S and Se were monitored 

by XPS (Figures 2-4) at several different temperatures ranging from 297 K (24 °C, room 



11 
 

temperature) up to 623 K (350 °C). In Figures 2a and 2b selected Au 4f7/2,5/2 spectra obtained 

for NC-NapS/Au and NC-NapSe/Au at temperatures of 297, 433 and 573 K are presented. The 

temperature dependence of the integrated Au 4f7/2,5/2 intensity (normalized to the room 

 
 
 

 
 
 

Figure 2. XPS data analysis. (a) and (b) show selected Au 4f spectra obtained at different 

temperatures for the NC-NapS/Au and NC-NapSe/Au SAMs, respectively. (c) shows Au 4f 

signal intensities normalized to the room-temperature values as a function of the sample 

temperature measured for NC-NapS/Au (blue points) and NC-NapSe/Au (red points). (d) 

shows the normalized film thickness as a function of temperature (relative to the value at 

room temperature) measured for NC-NapS/Au (blue points) and NC-NapSe/Au (red points), 

respectively. The color-coded lines in c and d are guides to the eye. 
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temperature value) is shown in Figure 2c for the two SAMs. It reveals a substantial difference 

between  NC-NapS/Au and NC-NapSe/Au. Starting from 350 K (77 oC), a pronounced increase 

of the Au 4f7/2,5/2 signal for the NC-NapSe/Au SAM is observed and it becomes noticeably 

higher than that for the NC-NapS/Au system. For the latter a somewhat steeper increase of the 

signal is observed only above 450 K (177 °C) but the overall signal remains lower than that for 

NC-NapSe/Au. Above ca. 525 K (252 oC) the signal saturates for both types of SAMs. Notably, 

for NC-NapSe/Au the saturation level corresponds to ca. 1.35 of the room temperature signal, 

while for the NapS/Au the ratio is only 1.25.  

The increase of the Au 4f7/2,5/2 signal reflects a temperature induced reduction in the effective 

SAM thickness. Assuming the standard exponential dependence of the Au 4f signal on the 

thickness of the adsorbate layer due to attenuation, one can determine relative changes in the 

effective film thickness as a function of temperature using the following equation: 

(1)         
𝑑𝑇𝑑𝑇0 =  1 − 𝜆𝑑𝑇0 𝑙𝑛 ( 𝐼𝐴𝑢(𝑇)𝐼𝐴𝑢(𝑇0)). 

Here,  𝑑𝑇 is the effective film thickness at elevated temperature T, 𝑑𝑇0 the equivalent quantity 

at room temperature, 𝜆  is the electron mean free path,  𝐼𝐴𝑢(𝑇) the Au 4f intensity at temperature 

T, and 𝐼𝐴𝑢(𝑇0) the Au 4f intensity at room temperature. Setting  to 3.15 nm (in accordance 

with ref 34) and using for 𝑑0 the values obtained in our previous HRXPS studies14 on these 

SAMs (1.17 nm for NC-NapSe/Au and 1.05 nm for NC-NapS/Au), the corresponding 
𝑑𝑇𝑑0 (𝑇) 

values were calculated from the measured 
𝐼𝐴𝑢(𝑇)𝐼𝐴𝑢(𝑇0) ratios. The resulting evolution is presented in 

Figure 2d. It reproduces the trend inferred from the intensity ratios, indicating a more 

pronounced decrease of the effective film thickness with temperature for the Se-bonded SAM.  

 

Selected C 1s spectra for the NC-NapS/Au and NC-NapSe/Au are shown in Figures 3a and 3b, 

respectively, together with the temperature-dependent evolution of the peak intensities in 
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Figure 3c. The spectra acquired at the room temperature exhibit an intense peak at a BE of 

284.5 eV accompanied by a shoulder at higher BE (286.0 eV). Following previous HRXPS 

study,14 the intense peak is assigned to the naphthalene backbone, while the high binding energy 

shoulder is associated with the nitrile carbon. For both types of SAMs, the integrated C 1s 

intensity, normalized to the value at room temperature, decreases with increasing temperature, 

followed by a saturation around 525 K (252 oC) (Figure 3c). This is the inverse of the behavior 

of the Au 4f7/2,5/2 signal discussed previously. Above ca. 350 K (77 oC) the normalized C 1s 

 
 

 

 

Figure 3. XPS data analysis. (a) and (b) show selected C 1s spectra obtained at different 

temperatures for NC-NapS/Au and NC-NapSe/Au, respectively (all spectra have the same 

vertical scale). (c) shows C 1s signal intensities normalized to the room-temperature values as 

a function of the sample temperature measured for NC-NapS/Au (blue points) and NC-

NapSe/Au (red points). The color-coded lines in c are guides to the eye. 
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intensity is consistently lower for the NC-NapSe/Au layer compared to NC-NapS/Au, which is 

inverse to the trend observed for the Au 4f7/2,5/2 signal.  

 

Interestingly, a qualitatively different behavior is observed for the S 2p3/2,1/2 and Se 3p3/2,1/2 

spectra presented in Figure 4. The analysis of the integrated and normalized S 2p3/2,1/2 signal in 

Figure 4c shows a roughly constant value between room temperature and ca. 450 K (177 oC), 

which is followed by a drop below the detection limit of XPS for temperatures exceeding 550 

 

 
 
 

Figure 4. XPS data analysis. (a) and (b) show selected S 2p and Se 3p spectra obtained at 

different temperatures for NC-NapS/Au and NC-NapSe/Au, respectively. (c) shows S 2p and 

Se 3p signal intensities normalized to the room-temperature values as a function of the sample 

temperature measured for NC-NapS/Au (blue points) and NC-NapSe/ (red points), respectively. 

The color-coded lines in c are guides to the eye. 
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K (277 oC). In contrast, for the Se 3p3/2,1/2 signal, an increase by ca. 25% is observed up to a 

temperature of ca. 400 K (127 oC), which is again followed by a sharp drop at higher 

temperatures. 

 

Thermal Stability Analysis by S-SIMS. SIMS is a useful, complementary technique to study 

the thermal stability of SAMs.35 Here, we recorded the emission intensity of characteristic 

secondary ions associated with the SAMs as a function of the (linearly increasing) sample 

temperature (a heating rate of 3.75 K/min). Two types of secondary ions were analyzed, namely 

“organic” ions, such as M2Au- (where M denotes the complete NC-NapS or NC-NapSe 

molecules), and “inorganic” ions, such as AuS(Se)-, AuS(Se)2
-, and Au2S(Se)-. To ensure that 

the measured intensity changes analyzed in the thermal SIMS experiments are not related to 

primary ion beam damage during the data acquisition, separate reference experiments 

monitoring the intensity of the analyzed signals at room temperature for 110 scans were 

conducted (see Figure S1 in the Supporting Information). The data show that during the entire 

measurement time needed for the thermal analysis (65 scans in Figure 5 and 95 scans in Figure 

6) all signals remain constant. From this behavior one can conclude that all experiments were 

conducted in the static SIMS (S-SIMS) mode.  

 

The signal for the “organic” M2Au- secondary ion provides information on changes in the 

coverage for a given SAM as a function of the temperature ramping. In fact, metal-organic 

secondary ions like M2Au- are well known “fingerprints” for SAM formation and desorption 

analysis in SIMS.35-41 The “inorganic” secondary ion group can be used to trace the stability 

of the bonding between the head group atom and the substrate.  

 



16 
 

Figure 5a shows changes in the emission intensity of the M2Au- secondary ions as a function 

of temperature in the range between room temperature and 570 K (297 °C). To enable a direct 

comparison of both types of SAMs, the data presented in Figure 5a are normalized to the value 

measured at room temperature. For both types of SAMs, an approximately constant signal 

intensity is observed up to a certain temperature, which is followed by an intensity drop to zero 

at the higher temperatures. The character of the signal decrease is, however, substantially 

different between NC-NapS/Au and NC-NapSe/Au. While for the Se-bonded SAM, a single 

sharp drop is observed, which starts already below 400 K (127 oC), the signal for the S-bonded 

 
 

 
 
 

Figure 5. S-SIMS data analysis. (a) shows M2Au- secondary ion intensities normalized to the 

room-temperature values as a function of the sample temperature measured for NC-NapS/Au 

(blue points) and NC-NapSe/Au (red points), respectively. Solid lines in (a) show the spline 

function fitted to the data points to enable the data processing. (b) shows derivatives of the 

experimental curves in a (calculated from the aforementioned spline functions) for NC-

NapS/Au (blue line) and NC-NapSe/Au (red line). The desorption temperatures (TD) 

corresponding to the minima of the derivatives are indicated.   
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SAM decreases in two steps, which both occur at significantly higher temperatures. To 

determine the temperatures characteristic of the observed drops of the M2Au- signal, the first 

derivative of the normalized intensity as a function of temperature was calculated (Figure 5b). 

This derivative yields a single characteristic temperature of 397 K (124 °C) for the NC-

NapSe/Au, indicative of a single thermal desorption process. In contrast, for the NC-NapS/Au, 

two minima at 448 K (175 °C) and 529 K (256 °C) are obtained, indicative of a two successive 

 

 

Figure 6. S-SIMS data analysis. (a) shows AuS- and AuSe- secondary ion intensities 

normalized to the room-temperature values as a function of the sample temperature measured 

for NC-NapS/Au (blue points) and NC-NapSe/Au (red points) SAMs, respectively. (b) shows 

equivalent data for the AuS2
- and AuSe2

- secondary ions and (c) shows displays them for the 

Au2S- and Au2Se- secondary ions. 
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desorption processes which sets in at significantly higher temperatures. We note here that such 

two-step desorption process is not visible in the temperature dependent XPS data (Figure 2 and 

3) which are acquired with much slower procedure (27 minutes per each temperature step in 

XPS in contrast to only 1 minute in SIMS) and with much lower resolution (16 points per 

whole temperature range in XPS in contrast to 74 points in SIMS). Provided that the change in 

the SIMS signal intensity is proportional to the surface coverage, , of the NC-NapS/Au, the 

first desorption process reduces the coverage by ca. 60%. Assuming the first-order kinetics of 

all observed processes one can estimate the value of the corresponding desorption energy ED 

using the Redhead formula42: 

 (2)    𝐸𝐷 = 𝑘𝑇𝑃 [𝑙𝑛 (𝑣𝑇𝑇𝑃𝛽 ) − 3.64] ,  

where k is the Boltzmann constant, TP is the peak temperature (i.e., the temperature where the 

change in the surface coverage  is most pronounced and d/dT becomes a minimum), vT is 

the frequency factor (which is usually approximated as ca. 1013 s-1)9,15,43,44 and  = 3.75 K/min 

is the heating rate. For the NC-NapSe/Au, TP = 397 K yields a value of ED = 1.20 eV; for the 

NC-NapS/Au the two characteristic temperatures of TP = 448 K (175 oC)  and TP = 529 K (256 

oC) correspond to ED = 1.35 eV and ED = 1.61 eV, respectively.  

 

The analysis of the “inorganic” signals corresponding to the AuS(Se)-, AuS(Se)2
-, and 

Au2S(Se)-  secondary ions is presented in Figure 6. All three signals exhibit significant 

differences for the NC-NapS/Au and NC-NapSe/Au. First, for NC-NapS/Au an abrupt drop of 

the signals is observed above ca. 500 K (227 oC) reaching zero above ca. 600 K (327 oC). In 

contrast, for NC-NapSe/Au an increase of the signals is observed in the region between ca. 400 

K (127 oC) and 450 K (177 oC), which is especially pronounced for the AuSe2
-  and the Au2Se-  
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ions. Additionally, for NC-NapSe/Au a significant intensity of all signals is observed even at 

725 K (452 oC), i.e., at the upper temperature limit of our experiments.  

 

Simulations. To further analyze the bonding between the docking groups and the substrate, as 

well as, bonding between the docking groups and the molecular backbone, we calculated the 

energies associated with the breaking of these bonds for a variety of adsorbate configurations. 

These simulations follow the approach usually applied for computing stabilities of adsorbate 

layers, namely comparing the energy differences between SAMs adsorbed on the substrate and 

molecules detached from the surface. What they do not take into account are the details of the 

desorption process. Unfortunately, a meaningful simulation of the dynamics of molecular 

desorption for system as complex as the present ones is intractable by computational 

techniques, which provide the accuracy required for the present problem (see below). One of 

the reasons for that is that thermally initiated desorption most likely occurs from the rims of 

islands or disordered regions of the adsorbate layer, the simulation of which would require the 

consideration of huge supercells. Therefore, we restrict the following analysis to bond-

breaking energies (for further details see Experimental section). In this context it is, however, 

worthwhile mentioning that calculations on phenyl-thiolates and -selenolates at low coverage 

by Cometto et al.15 suggest that energy differences and activation barriers are at least intimately 

related for systems like the present one. 

Notably, in the simulations considering a translational periodicity of the substrate and the 

adsorbate, we need to consider adsorbate unit cells that are also commensurate with the 

periodicity of the unreconstructed Au(111) surface. Moreover, even with state of the art 

resources, simulations like the present ones are limited to a few hundred atoms in the unit cell. 

These aspects prevented us from directly adopting the large (2√3x√37) unit cell identified 

experimentally14 for the NC-NapS/Au SAM or the (2x1.5√3) adsorbate unit cell reported for 
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the NC-NapS/Au SAM, which is non-commensurate with the Au substrate. Consequently, we 

identify computationally affordable unit cells commensurate with the periodicity of the 

unreconstructed Au(111) surface, in which the SAMs display packing densities similar to the 

ones obtained in the respective experiments. Therefore, in our simulations we considered three 

different unit cells containing two molecules arranged in a herringbone pattern, as identified 
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for the related anthraceneselenolates10,45 on the Au(111) substrate (see Figure 7). The first is 

the commensurate rectangular (3√3) unit cell, which has the same area per molecule (0.215 

 

 

Figure 7. Top- and side views of exemplary unit cells of the NC-NapSe adsorbates on 

Au(111) after geometry optimization. All unit cells contain two molecules in herringbone 

arrangement and in the bottom two panels of each plot, the molecular backbones are not 

displayed to more clearly show the relative positions of the gold adatoms and the docking 

groups. (a) rectangular (4x√3) surface unit cell with unreconstructed Au surface; (b) 

rectangular (4x√3) surface unit cell containing one gold adatom; (c) rectangular (3x√3) 

surface unit cell containing two gold adatoms; (d) oblique (3√7) unit cell containing two 

adatoms. Au atoms are yellow, respectively red (adatoms); docking atoms (S or Se) are 

orange, C atoms grey, H atoms white and N atoms blue. 
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nm2) as the incommensurate rectangular (21.5√3) unit cell observed14 in previous STM 

experiments on the NC-NapSe/Au interface as the closest approximation to the real structure 

(bearing in mind the finite experimental resolution). The molecules in that unit cell are tightly 

packed with the area per molecule slightly smaller than in some of the reported naphthalene 

crystal structures.14 In spite of considerable efforts, this very tight packing prevented a 

converge of the self-consistent field cycles in the absence of reconstructions of the Au(111) 

surface. Therefore, we also considered a larger commensurate rectangular (4√3) surface unit 

cell with an area per molecule of 0.287 nm2. Notably, the (4√3) surface unit cell is also the 

one found for anthraceneselenolate SAMs on Au(111).10 Finally, we also tested an even larger 

commensurate oblique (3√7) cell with an area per molecule of 0.323 nm2. This served to 

evaluate the impact that an increased molecular tilt angle, occurring at lower coverages, has on 

binding energies. In passing we note that the above areas per unit cell are reported for the 

experimental Au(111) lattice constant of 0.286 nm while in the simulations the equilibrium 

lattice constant for the employed methodology has been used (0.294 nm) in order to avoid 

spurious relaxations of the surface atoms during the geometry optimizations.  

 

In addition to varying the size of the unit cells, we also considered several adatom motifs 

discussed in the literature.6,46 This is insofar relevant in the present context, as reconstructions 

of the Au(111) surface are expected to modify the bonding between the docking atom (S or Se) 

and the substrate, which in-turn also changes the bonding between S(Se) and the adjacent C 

atom.14,17,18 Moreover, the existence and nature of surface reconstructions has been intensively 

(and sometimes controversially) discussed for short-chained thiolates. Still, very little is known 

for comparably large conjugated backbones like the anthracenes considered here. Thus, the 

comparison between the calculated and measured trends discussed in the following will also 
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provide valuable insight into the nature of surface reconstructions in such systems. In particular, 

we considered  

(i) a flat unreconstructed Au(111) surface (see Figure 7a; calculated only for the 

rectangular (4√3) surface unit cell due to the above-described convergence problems): 

there we find the molecules bonded to the substrate with the S/Se atoms in the fcc-

hollow sites shifted towards the bridge. 

(ii) a reconstructed surface with one adatom per unit cell located on a bridge site as 

suggested in ref 6 (see Figure 7b; calculated for the rectangular (3√3) and (4√3)  unit 

cells): There the docking atoms coordinate with the adatom and with an atom of the 

regular surface, which shifts them to a position between fcc-hollow and on-top. 

(iii) a reconstructed surface with two adatoms per unit cell6,46 (see Figure 7c and d; 

calculated for the rectangular (3√3), the rectangular (4√3), and the oblique (3√13) 

surface unit cells): For the rectangular (3√3) and oblique (3√13) unit cells, each 

docking atom is coordinated with 2 adatoms, the S (respectively, Se) atoms are lifted 

from the surface, and docking atoms and adatoms form an alternating chain on the 

surface. Conversely, for the optimized structure  in the rectangular (4√3) unit cell the 

second adatom appears not to interact very strongly with the adjacent docking atom (see 

Supporting Information). 

 

The relative stabilities of the adatom structures are discussed in detail in the Supporting 

Information where also structures of all calculated systems are shown.  

 

The bond-breaking energies calculated for all considered systems are summarized in Table 1 

with the energy differences between S and Se docking atoms plotted in bold. In all studied 

configurations, ES/Se-C is negative, i.e., the bonding energy between S and C is always higher 
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than between Se and C, independent of the considered unit cell or adatom structure; conversely, 

EAu-S/Se is always positive, indicating that the binding energy between Se and Au is 

consistently larger than between S and Au (albeit differences here are comparably small). These 

observed opposing trends for bonding  between the docking atom and the substrate, 

respectively, the backbone support the notion that strengthening one of the bonds weakens the 

other.14,17,18  

 

Interestingly, the relative strength of the bonds between the docking atom and either the metal 

substrate or the nearest C atom strongly depends on the number of adatoms per unit cell. For an 

unreconstructed surface, the bonds of both S and Se to C (i.e., to the molecular backbone) are 

stronger than those to Au. Adding adatoms, however, reinforces the bonds between the docking 

atoms and the substrate. For only one adatom per unit cell, this results in nearly identical 

bonding energies for the Se−C and Au−S bonds. With two adatoms per unit cell the bonding 

strength to the substrate increases further and for the rectangular (3√3) and oblique (3√7) 

unit cells, the Au−Se becomes the strongest of the considered bonds. Concomitantly, the Se−C 

bond becomes the weakest (notably, for all analyzed cells with two adatoms).  The particularly 

 
 

Table 1. Bond-breaking energies (ES-C, ESe-C, EAu-S, EAu-Se) and respective differences (ES/Se-

C EAu-S/Se) for all studied systems together with the average tilt angles of each conformation 

and the order of the bonding energies. 
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large bonding energies to the substrate for two adatoms in the rectangular (3√3) and oblique 

(3√7) unit cells can be tentatively attributed to the formation an alternating chain of adatoms 

and docking atoms lifted from the surface (see structures in Figure 7). For such a situation one 

obtains a bonding energy order of EAu-Se > EAu-S > ES-C > ESe-C. This order prevails independent 

of the molecular tilt angle, which in our calculations varies from 19° (in the rectangular (3√3) 

structure) to 57° (in the oblique (3√13) structure). 

 

The biggest impact of the vibrational contributions to bond-breaking energies is expected for 

the Au−S/Se bonds, as then the masses of the leaving fragments differ considerably; moreover, 

even when the SAM is still intact, a vibration involving the Au−S(Se) bond is expected to most 

strongly depend on the docking atom considering the significant differences in the oscillating 

masses. Thus we only tested the impact of vibrational energies on breaking the bond between 

the two docking atoms (S or Se) and the (unreconstructed) Au surface. Here we found only a 

small increase in the bonding asymmetry between S−Au and Se−Au from 0.085 eV (when 

disregarding vibrations) to 0.098 eV (when including the zero-point energy) and to 0.120 eV  

(when considering the thermal occupation of vibrational modes at room temperature). A more 

detailed discussion of vibrational contributions can be found in the Supporting Information. 

 

As another possible scenario, we tested the desorption of molecules as dithiols, as this has been 

discussed in several publications on aliphatic thiolates.43,47-50 A comprehensive study of all 

possible leaving fragments goes beyond the scope of the present manuscript, but it should be 

mentioned that the binding energy of a dithiol (i.e., the energy difference of the dithiol minus 

two times the energy of the individual radicals) is 0.080 eV larger than that of the diselenols 

(2.239 eV for dithiols and 2.160 for diselenols). This would make it energetically less costly to 
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break Au−S bonds compared to Au−Se bonds provided that dimer desorption is a favorable 

process also for the present systems.  

 

A final “word of warning” concerns the impact of disorder: As mentioned earlier, desorption is 

not to be expected from perfectly packed films, but from rims of islands, respectively, 

disordered portions of the films; thus calculating surfaces with perfect lateral periodicity can 

only approximate the real situation. Still, it is interesting to see that aspects like molecular tilt 

(potentially varying significantly in disordered areas) have only a comparably minor impact on 

bonding strengths. In contrast, the actual structure of the substrate (i.e., the presence of adatoms) 

and, thus, the local bonding partners of the docking atoms are crucial for the interface 

energetics. 

 

IV Discussion 

 The key conclusion that can be drawn from the above experiments is that the Se-bonded SAMs 

are thermally less stable than their thiolate counterparts. This can, for example, be inferred 

from the faster decrease of the nominal film thickness with heating that is observed in the XPS 

experiments on Se-bonded films. It is also consistent with the larger film thickness at saturation 

range above 525 K (252 oC) observed for S-bonded SAMs (Figure 2): The saturation of the 

signals at high temperatures is consistent with previous observations on biphenylthiol-based 

SAMs,51,52 and can be attributed to the binding of the carbonaceous fragments to defects and 

steps on the gold substrate.53 The saturation-level is primarily determined by the amount of 

material still present on the surface. Therefore, the higher saturation levels for the S-bonded 

SAM is another aspect testifying to its increased thermal stability. 
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A more quantitative picture is obtained from the S-SIMS experiments (employing a much 

faster annealing procedure than for XPS). The temperature evolution of the M2Au+ signal not 

only confirms the higher thermal stability of the thiol-bonded monolayer, but also allows 

extracting activation energies. For the NC-NapSe/Au desorption takes place in a single step 

with an estimated activation energy of ED = 1.20 eV. In contrast, for the NC-NapS/Au 

desorption occurs in two steps. The first and major step (~60% reduction in coverage) 

corresponds to an activation energy of ED = 1.35 eV, which is noticeably higher than the 

activation energy for selenolate desorption. Like the single desorption step for the NC-

NapSe/Au, it is attributed to desorption of molecules from the initial high density structures of 

both SAMs, i.e., presumably from the rims of islands of upright-standing molecules. The 

second step for the NC-NapS/Au at ED = 1.61 eV, corresponds to desorption from a low density 

(~40% of initial coverage) structure. It is tentatively associated with an adsorbate film 

consisting of strongly tilted molecules,54 with the backbones interacting with the surface by 

van der Waals interactions (in addition to the headgroup-substrate bond).55,56 This leads to an 

overall increase of the binding energy per molecule. 

 

The observation of a more strongly bonded phase at low coverages in NC-NapS/Au is insofar 

important, as it strongly supports our statement in the introduction section that for 

understanding the fundamental reasons for the thermal stability of molecule-metal interface 

one has to compare desorption from equivalent (typically high density) phases with similar 

structures. As this is the case for NC-NapS/Au and NC-NapSe/Au, with microscopically and 

spectroscopically well-characterized structure,14 this justifies an estimation of the difference in 

desorption energies between NC-NapS/Au and NC-NapSe/Au. It amounts to ED = 0.15 eV. 

Notably, even for well-defined samples like the present one, this value is associated with a 

non-negligible error bar, as choosing a frequency factor of 1016 s-1 Hz (as it has been done in 
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refs 35,43) in contrast to the 1013 s-1 Hz used above (to be consistent with refs 9,15,57) increases 

that difference to ED = 0.20 eV. 

The obtained value of ED = 0.15 eV is very close to the desorption-energy difference of ED 

= 0.12 eV, which has been derived from thermal desorption spectroscopy (TDS) data for 

phenylthiol (BS) and phenylselenol (BSe) SAMs on Au employing the Redhead formula with 

the same frequency factor of 1013 s-1 as used here.9 Interestingly, in those systems, a two-step 

desorption has been observed for both docking groups and, consistent with what has been stated 

above, the quoted value corresponds to desorption from the high-density phase. In contrast, 

recent ex situ studies in nitrogen atmosphere of the BS/Au and BSe/Au surface coverage 

changes as a function of thermal annealing15 yielded, for a high density phases, a much smaller 

difference in desorption energies of only 0.03 eV.  

 

What still needs to be clarified is the reason for the reduced thermal stability of the Se-docked 

SAMs in spite of the typically observed stronger bonding of that group to the metal surface 

(refs 14,16-18,20,22,23 and Table 1). This question can be addressed on the basis of the S2p/Se2p 

XPS spectra and the AuSe(S)2
- and Au2Se(S)- S-SIMS data, where the S-SIMS experiments 

benefit from a much higher signal-to-noise ratio. Moreover, XPS and S-SIMS provide 

complementary information. The XPS signal intensities are determined by two competing 

trends: On the one hand, the S/Se signal drops due to the desorption of the S and Se atoms from 

the surface (potentially with attached molecular backbones). This process dominates, when the 

Se/S−Au bonds are broken. On the other hand, an increase of the S2p/Se2p XPS signals is 

possible, when the Se/S−C bond breaks and the docking atoms remain on the substrate, as then 

the attenuation of the photoelectron signal is reduced due to a decreased effective thickness of 

the hydrocarbon film. Following these arguments, the initial increase of the Se 3p signal for 

the NC-NapSe/Au sample in the temperature range between 350-450 K (Figure 4c) is a clear 
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indication for an efficient scission of the bond between Se and the adjacent C atom of the 

molecular backbone. Conversely, the S 2p signal remains constant in the given temperature 

range.  As the C 1s signal drops upon heating the sample (to about 50% at 450 K, Figure 3c), 

this indicates that also for the NC-NapS/Au system the S−C scission occurs accompanied by a 

breaking of the S−Au bond. We note at this point that efficient breaking of the S−C bond during 

thermal annealing of thiols has been reported earlier for aromatic and aliphatic SAMs formed 

on different metal substrates such as Au,51,52,58 Cu,59 and Ni.60 Comparison of data obtained 

here for NC-NapS/Au and NC-NapSe/Au system shows that the Se−C bond scission during 

annealing is much more effective as compared to the S−C bond breaking. 

 

S-SIMS provides information on the desorbing ions without being affected by signal 

attenuation effects. Still, the AuSe-, AuSe2
-, and Au2Se- signals increase significantly at 

temperature above 400K, i.e., at a temperature corresponding to the onset of the desorption 

process for the NC-NapSe/Au (see Figure 5). This indicates a much higher efficiency of Se−C 

bond scission than for the Au−Se bond at an elevated temperature. In contrast, the AuS-, AuS2, 

and Au2S- signals remain constant, supporting the assumption of a much more balanced 

efficiency for S−C and Au−S bond breaking.  

The above conclusions are in agreement with the results of a recent study on the same SAMs 

as investigated here, probing the relative stability of S−C and Se−C bonds by ion-induced 

desorption.14 There, as an explanation for the comparably weak bonding between the Se and 

the C atoms, it has been suggested that a higher involvement of the head group atom in the 

chemical bonding with the Au(111) substrate reduces its involvement in the chemical bonding 

to the molecular backbone.14 Ion-desorption experiments for a homologues series of biphenyl 

substituted aliphatic SAMs (Au(Ag)-S(Se)-(CH2)n-C6H4-C6H4-CH3, n = 2-6) have, in fact, 
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suggested that this effect is rather general and leads to an oscillation in stability of consecutive 

chemical bonds in molecular adsorbates.17,18  

 

Overall, the current thermal stability experiments in conjunction with former SIMS14,17,18 and 

exchange23 experiments imply the following sequence of bonds stabilities: Au−Se > Au−S > 

C−S > C−Se. Notably, especially the S-SIMS data provide further insight into the interface 

properties. They, for example, hint towards a possible existence of adatoms: The observed 

increase of the signal of the “inorganic” ions is much more pronounced for AuSe2
- and Au2Se-  

secondary ions compared to AuSe-, which indicates that AuSe2
-  and Au2Se-  signals more 

directly follow the changes in Se concentration on Au surface. Assuming that Au and Se atoms 

in these secondary ions reflect the original bonding geometry at the molecule-metal interface, 

this observation would be consistent with the adsorption model involving adatoms,6,38-40 in 

which the head group atom forms chemical bonds with two Au adatoms (forming Au2Se-) and 

the Au adatom binding with two head group atoms (forming AuSe2
-). 

Information on the fate of the docking atom can be gained from the S-SIMS data at higher 

temperatures: For the AuS-, AuS2
-, and Au2S- signals a sharp drop is observed down to the zero 

level at 600 K (327 oC), where also the signal from the molecules traced by the M2Au+ emission 

has vanished completely. This suggests a complete removal of the S atoms from the surface. 

The drop in the AuSe-, AuSe2
- and Au2Se- signals is more gradual and even at the highest tested 

temperature (725 K) the associated signal does not reach the zero level. This hints towards a 

particularly strong bonding of the Se atoms to the Au substrate preventing their complete 

desorption, which is fully consistent with literature reports on the formation of Au−Se alloys 

at temperatures above 613 K. 61  
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Comparing the experimentally determined data to the results of the calculations, several 

interesting observations can be made: (i) Consistent with the current thermal experiments and 

former bonding stability analysis,14,17,18 the Se−C bond is weaker than the S−C bond for all 

considered unit cells and surface reconstructions. In line with the arguments from refs 14,17,18 

that strengthening the bond between the docking atom and one partner weakens the bond to 

the other partner, this results in the Se−Au bond being stronger than the S−Au one. (ii) Whether 

or not the links to C or to the Au atoms are the weakest elements of the SAM depends on the 

presence of adatoms. These strengthen the bonds to the (reconstructed) Au surface and, 

consequently, weaken the bonds to the C backbone. As a result, the Se−C bond represents the 

weakest link also in the simulations, but only when adatoms are considered (typically for two 

adatoms per unit cell, but in case of a rectangular (4√3) unit cell also for one). Finally, and 

most importantly, the sequence of bonds stability which has been deduced from the 

experiments, i.e., Au−Se > Au−S > C−S > C−Se is observed exclusively for rectangular (3√3) 

and oblique (3√7) unit cells containing two adatoms. Note that the latter unit cell is contained 

here only for comparative reasons to show that the adatoms rather than details of the molecular 

arrangement determine the order in bond strength. Its comparably large molecular footprint 

(0.323 nm2) is not compatible with experimental values for the NC-NapSe/Au (0.215 nm2) and 

NC-NapS/Au (0.239 nm2). This suggests the rectangular (3√3) unit cell with two adatoms per 

unit cell as the most likely scenario (at least amongst the ones considered here), which is also 

supported by the observation that for that unit cell we calculate the highest SAM-formation 

energy per surface area (see Table S4 in the Supporting Information).  

 

Finally,  we note that the experimentally obtained difference in desorption energies for NC-

NapS/Au and NC-NapSe/Au (0.15 eV) is smaller than the difference in the S−C and Se−C 

bond stability (0.32 eV) calculated for the rectangular (3√3) unit cell with two adatoms. 
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Besides the uncertainty of the experimental value linked to the choice of the frequency factor 

(see above), a possible explanation for that is that in the calculations we consider the breaking 

up of the continuous SAM into individual molecules and a substrate still containing the surface 

reconstructions, while the actual thermal desorption of molecules happens from the rim of 

molecular islands with modified molecule-molecule and molecule-substrate interactions. This 

is also almost certainly the reason for very large absolute values of the calculated bond-

breaking energies. Moreover, as described in the results section, also the nature of the actually 

leaving species does have some impact on the exact energetics of the process. Independent of 

these complications, the simulations clearly support the qualitative picture that arises from the 

thermal stability experiments. 

 

IV. Summary and Conclusions 

 

Two independent sets of experiments based on the XPS and S-SIMS techniques were 

performed for probing the influence of the bonding group (S or Se) on the thermal stability of 

prototypical aromatic SAMs on the Au(111) substrate. Both types of experiments 

unequivocally demonstrated a higher thermal stability of thiolate-bonded SAMs with the 

quantitative analysis by SIMS showing ca. 0.15 eV higher desorption energy for that system.  

 

This is insofar surprising, as most experiments suggest a lower stability of the S−Au compared 

to the Se−Au bond. The apparent contradiction is resolved by showing that not Se−Au but 

Se−C is the actual weak link in the studied SAMs, i.e. that the lower thermal stability of the 

selenolate-bonded layers is a consequence of a preferential scission of the bond between the 

docking group and the backbone. The experimental studies are augmented by state-of-the-art 

DFT simulations which confirm the main trends seen experimentally. Interestingly, to fully 
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reproduce the order of the bond-strengths suggested by the experiments (Au−Se > Au−S > C−S 

> C−Se), it is necessary to include two adatoms per surface unit cell in the simulations. This 

hints towards the prevalence of such reconstructions not only in S-bonded, but also in Se-

bonded monolayers. The obtained order in the bond-strengths supports the notion that a higher 

involvement of the bonding atom in the chemical linking to the substrate weakens its bond to 

the molecular backbone. From a design point of view, the present results show that for 

obtaining of SAMs with higher thermal stability one cannot simply follow the strategy of 

selecting a docking group with a particularly high bonding-strength to the substrate but needs 

to finely balance the strength of the bonding between docking group and the substrate and 

between docking group and molecular backbone. 
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