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Abstract

In this paper we present a relative transfer function (RTF) identification method for speech sources in reverberant

environments. The proposed method is based on the convolutive transfer function (CTF) approximation, which enables

to represent a linear convolution in the time domain as a linear convolution in the short-time Fourier transform (STFT)

domain. Unlike the restrictive and commonly used multiplicative transfer function (MTF) approximation, which

becomes more accurate when the length of a time frame increases relative to the length of the impulse response,

the CTF approximation enables representation of long impulse responses using short time frames. We develop an

unbiased RTF estimator that exploits the non-stationarity and presence probability of the speech signal and derive an

analytic expression for the estimator variance. Experimental results show that the proposed method is advantageous

compared to common RTF identification methods in various acoustic environments, especially when identifying long

RTFs, typical to real rooms.

Index Terms

Acoustic noise measurement, adaptive signal processing, array signal processing, speech enhancement, system

identification.

I. INTRODUCTION

Identification of a relative transfer function (RTF) between two sensors is an important component of multichannel

hands-free communication systems, particulary in reverberant and noisy environments [1], [2], [3], [4], [5]. Shalvi

and Weinstein [6] proposed to identify the coupling between speech components received at two microphones

by using the non-stationarity of the desired speech signal received at the sensors, assuming stationary additive

noise and static RTF. By dividing the observation interval into a sequence of subintervals, the speech signal can

be regarded as stationary in each subinterval, and non-stationary between subintervals. Thus, computing the cross

power spectral density (PSD) of the sensor signals in each subinterval yields an overdetermined set of equations for

two unknown variables: the RTF and the cross PSD of the sensors’ noise signals. Estimates of these two variables
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are derived using the weighted least squares (WLS) approach. One limitation of the non-stationarity based method

is that both the RTF and the noise PSD are estimated simultaneously through the same WLS optimization criterion.

This restricts the RTF identification performance since it requires large weights in high signal-to-noise ratio (SNR)

subintervals and low weights in low SNR subintervals, whereas the noise cross PSD estimate requires that the

weights be inversely proportional to the SNR.

Cohen [7] proposed an RTF identification method, which solves the above conflict, by adding a-priori knowledge

regarding speech presence during each observation interval. By using a voice activity detector (VAD), it is possible to

separate the subintervals into two sets, one containing noise-only subintervals, while the other including subintervals

where speech is present. The first set enables to find a reliable estimate for the noise cross PSD, while the second set

of subintervals is employed for identifying the RTF using the already estimated cross PSD of the noise. Unfortunately,

the above methods rely on the multiplicative transfer function (MTF) approximation [8]. The MTF approximation

enables to replace a linear convolution in the time domain with a scalar multiplication in the short-time Fourier

transform (STFT) domain. This approximation becomes more accurate when the length of a time frame increases,

relative to the length of the impulse response. However, long time frames may increase the estimation variance,

increase the computational complexity and restrict the ability to track changes in the RTF [8].

In this paper we present an RTF identification method based on the convolutive transfer function (CTF)

approximation. This approximation enables representation of long impulse responses in the STFT domain using

short time frames. We develop an unbiased RTF estimator that exploits the non-stationarity and presence probability

of the speech signal. We derive an analytic expression for the estimator variance, and present experimental results

that demonstrate the advantages of the proposed method over existing methods. Relying on the analysis of the system

identification in the STFT domain with cross-band filtering [9], we show that the CTF approximation becomes more

accurate than the MTF approximation, as the SNR increases. In addition, unlike existing RTF identification methods

which are based on the MTF approximation, the proposed method enables flexibility in adjusting the lengths of

time frames and the estimated RTF. Experimental results demonstrate that the proposed estimator outperforms the

competing method when identifying long RTFs. We investigate the influence of important acoustic parameters on the

identification accuracy. In particular, we find that the proposed method is advantageous in reverberant environments,

when the distance between the sensors and the SNR are larger than certain thresholds.

This paper is organized as follows. In Section II, we formulate the RTF identification problem in the STFT domain.

In Section III, we introduce the CTF approximation and propose an RTF identification approach suitable for speech

sources in reverberant environments. Finally, in Section IV we present experimental results that demonstrate the

advantage of the proposed method.

II. PROBLEM FORMULATION

Let s(n) denote a non-stationary speech source signal, and let u(n) and w(n) denote additive stationary noise

signals, that are uncorrelated with the speech source. The signals are received by primary and reference microphones,
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Fig. 1. RTF Model scheme with directional noise.

respectively:

x(n) = s(n) + u(n) (1)

y(n) = h(n) ∗ s(n) + w(n) (2)

where * represents convolution. In this work, our goal is to identify the response h(n). Usually s(n) is not a clean

speech source signal but a reverberated version, s(n) = h1(n) ∗ s̄(n), where s̄(n) is the clean speech signal and

h1(n) is the room impulse response of the primary sensor to the speech source. Accordingly, h2(n) = h(n)∗h1(n)

is the room impulse response of the reference sensor to the speech source, and h(n) represents the relative impulse

response between the microphones with respect to the speech source.

An equivalent representation of (1) and (2) is

y(n) = d(n) + v(n) = h(n) ∗ x(n) + v(n) (3)

v(n) = w(n) − h(n) ∗ u(n) (4)

where in (3) we have an LTI system with an input x(n), output y(n), and additive noise v(n). The formulation

in (3) cannot be considered as an ordinary system identification problem, since (4) indicates that v(n) depends on

both x(n) and h(n).

Here, we assume that the microphones’ noise signals are generated by a single noise source in the room.

Accordingly, the additive noise at the reference microphone w(n) can be written as

w(n) = g(n) ∗ u(n) (5)

where g(n) is the relative impulse response between the microphones with respect to the noise source signal. Such

an RTF model scheme is represented in Fig. 1.

As in many speech enhancement applications, the signals can be divided into overlapping time frames and

analyzed using the short-time Fourier transform (STFT). Common RTF identification methods [6] [7] assume that

the support of h(n) is finite and small compared to the length of the time frame. Then, (3) can be approximated

in the STFT domain as

yp,k = hkxp,k + vp,k (6)
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where p is the time frame index, k is the frequency sub-band index and hk is the RTF. This approximation is known

as the multiplicative transfer function (MTF) approximation for modeling an LTI system in the STFT domain [8].

Using (6), the cross PSD between y and x can be written as

φyx(p, k) = hkφxx(p, k) + φvx(p, k). (7)

Notice that in (7) we implicitly used the assumption that the speech is stationary in each time frame, which restricts

the time frames to be relatively short (< 40ms).

As stated before, a major problem in identifying acoustic impulse responses (AIRs) is their length. AIRs length

is significantly influenced by the room reverberation time1[10], since the longer the reverberation time is, the longer

it takes for the the AIR to convey most of its energy. For typical reverberant rooms with T60 of several hundred

milliseconds, the MTF approximation restricts the time frames to be much larger than T60, but then the speech

signal cannot be assumed stationary during such long time frames. In this work we address the problem of RTF

identification in the STFT domain using short time frames, without resorting to the MTF approximation.

Let Nx denote the number of time frames, let N denote the length of a time frame in the STFT domain and let

L denote the framing step. According to [9], [12], [13] a filter convolution in the time domain can be represented as

a sum of N cross-band convolutions in the STFT domain. The cross-band filters are used for canceling the aliasing

caused by sampling in each frequency sub-band [14]. Accordingly, (1) and (2) can be written in the STFT domain

as

xp,k = sp,k + up,k (8)

yp,k =

N−1
∑

k′=0

∑

p′

sp′,k′hp−p′,k′,k + wp,k (9)

where p is the time frame index, k and k′ are the frequency sub-band indices and hp,k′,k are the cross-band filter

coefficients between frequency bands k′ and k of length Nh. The length of yp,k is given by Ny = Nx + Nh − 1.

Similarly, an STFT representation of (3) and (4) is given by

yp,k = dp,k + vp,k

=

N−1
∑

k′=0

∑

p′

xp−p′,k′hp′,k′,k + vp,k (10)

vp,k = wp,k −

N−1
∑

k′=0

∑

p′

up−p′,k′hp′,k′,k. (11)

Let hk′,k denote the cross-band filter from frequency band k′ to frequency band k:

hk′,k = [h0,k′,k h1,k′,k · · · hNh−1,k′,k]T (12)

1The room reverberation time is the time for the acoustic energy to attenuate by 60dB, after a sound source is stopped [11]. This value is

usually denoted by T60.
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and let hk denote a column stack concatenation of the cross-band filters {hk′,k}
N−1

k′=0

hk = [hT
0,k hT

1,k · · · hN−1,k]T . (13)

Note that due to the non causality of the cross-band filter hp,k′,k, the time index p should have ranged differently

according to the number of non causal coefficients of hp,k′,k. However, we assume that an artificial delay has been

introduced into the system output signal y(n) in order to compensate for those non causal coefficients. Let
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(14)

be an Ny × Nh Toeplitz matrix constructed from the STFT coefficients of the input signal x in the kth sub-band,

and let ∆x
k be a concatenation of {Xk}

N−1

k=0

∆x
k = [X0 · · · XN−1]

T
. (15)

Similarly, define ∆u
k as a concatenation of {Uk}

N−1

k=0
, where Uk is an Ny × Nh Toeplitz matrix constructed from

the STFT coefficients of the noise signal u. Then, we can represent (10) and (11) in a matrix form as

yk = dk + vk = ∆x
khk + vk (16)

vk = wk − ∆u
khk (17)

where

yk =
[

y0,k y1,k · · · yNy−1

]T
(18)

being vk and wk defined similarly.

Identification of the system hk from (16) based on several cross-band filters is presented and analyzed extensively

in [9]. However, the signal x is assumed to be uncorrelated with the additive noise v, which is clearly not the case

in RTF identification as seen in (17). Thus, applying this method to an RTF identification problem leads to a biased

estimation.
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III. RTF IDENTIFICATION USING CTF APPROXIMATION

A. The CTF Approximation

In order to simplify the analysis, we consider in (10) and (11) only band-to-band filters (i.e. k = k′). Then, (10)

and (11) reduce to

yp,k =
∑

p′

xp−p′,khp′,k,k + vp,k

= xp,k ∗ hp,k,k + vp,k (19)

vp,k = wp,k −
∑

p′

up−p′,khp′,k,k =

= wp,k − up,k ∗ hp,k,k. (20)

For more details see [9], where an extensive discussion is given on the STFT domain representation with only a

few cross-band filters. In (19) and (20) we have approximated the convolution in the time domain as a convolution

between the STFT samples of the input signal and the corresponding band to band filter. Using our previous notation,

we can also write (19) and (20) in a matrix form as

yk = Xkhk,k + vk (21)

vk = wk − Ukhk,k (22)

B. The Proposed Method

By taking the expectation of the frame by frame multiplication of the two observed signals yp,k and xp,k, we

obtain from (21)

Φyx(k) = Ψxx(k)hk,k + Φvx(k) (23)

where Ψxx(k) is an Ny × Nh matrix and its (p, l)th term is

[Ψxx(k)]p,l = E
{

xp−l,kx∗

p,k

}

, ψxx (p, l, k) (24)

and Φyx(k) and Φvx(k) are Ny × 1 vectors, given as

Φyx(k) =
[

φyx(0, k) · · · φyx(Ny − 1, k)
]T

(25)

Φvx(k) =
[

φvx(0, k) · · · φvx(Ny − 1, k)
]T

(26)

where E{·} denotes mathematical expectation, φyx(p, k) denotes the cross PSD between the signals y(n) and

x(n), φvx(p, k) denotes the cross PSD between the signals v(n) and x(n) and ψxx(p, l, k) denotes the cross PSD

between the signal x(n) and its delayed version x′(n) , x(n − lL), all at time frame p and frequency k. Since

the speech signal s(n) is uncorrelated with the noise signal u(n), by taking mathematical expectation of the cross

multiplication of v and x in the STFT domain, we get from (22):

Φvx(k) = Φwu(k) − Ψuu(k)hk,k (27)
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where Φwu(k) is an Ny × 1 vector, given as

Φwu(k) =
[

φwu(k) · · · φwu(k)
]T

(28)

and Ψuu(k) is an Ny × Nh matrix and its (p, l)th term is given by

[Ψuu(k)]p,l = E
{

up−l,ku∗

p,k

}

, ψuu (p, l, k) = ψuu (l, k) (29)

where φwu(k) denotes the cross PSD between the signals w(n) and u(n), and ψuu(l, k) denotes the cross PSD

between the signal u(n) and its delayed version u′(n) , u(n − lL), both at frequency bin k. It is worth noting

that since the noise signals are stationary during our observation interval (it is sufficient to assume that the noise

statistics are changing slowly compared to the speech statistics [7]), the noise spectrum terms are independent of

the time frame index.

Once again, by exploiting the fact that the speech signal s(n) and the noise signal u(n) are uncorrelated, we

obtain from (1)

Ψxx(k) = Ψss(k) + Ψuu(k) (30)

where Ψss(k) is defined similarly to (24). Substituting (27) into (23) and using (30), we have

Φyx(k) = Ψss(k)hk,k + Φwu(k). (31)

Now, writing (31) in terms of the PSD estimates, we have

Φ̂k = Ψ̂khk,k + ek (32)

where ek denotes the PSD estimation error (See Appendix A), and

Φ̂k , Φ̂yx(k) − Φ̂wu(k) (33)

Ψ̂k , Ψ̂ss(k) = Ψ̂xx(k) − Ψ̂uu(k). (34)

A weighted least square (WLS) solution to (32) is of the form2:

ĥk,k =
(

Ψ̂H
k WkΨ̂k

)

−1

Ψ̂H
k WkΦ̂k (35)

where Wk is the weight matrix. This yields the proposed RTF identification method carried out in the STFT

domain using the CTF approximation. The suggested estimator requires estimates of the PSD terms φyx(p, k),

φwu(k), ψxx(p, l, k) and ψuu(l, k). We can estimate φ̂yx(p, k) and ψ̂xx(p, l, k) directly from the measurements,

whereas the stationary noise signals PSDs ψ̂uu(l, k) and φ̂wu(k) can be obtained from measurements in passages

where the speech signal is absent. In practice we can determine the speech presence probability and use MCRA

[15] or IMCRA [16] methods for the PSD estimation.

2Assuming
(

ΨH

k
WkΨk

)

is not singular. Otherwise, a regularization in needed.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2008 8

The covariance matrix of ĥk,k is given by [17]

cov
{

ĥk,k

}

=
(

ΨH
k WkΨk

)−1

ΨH
k Wkcov (ek)

× WkΨk

(

ΨH
k WkΨk

)−1

(36)

where cov (ek) is the covariance matrix of ek and its (p, l)th element is given by (See Appendix A)

[cov(ek)]p,l = ψvv (l − p, k)ψss (p, p − l, k) (37)

and ψss(p, l, k) and ψvv(l, k) are defined similarly to (24) and (29) respectively. According to [18], the weight

matrix Wk that minimizes the estimator variance is

Wk = (cov (ek))
−1

. (38)

Substituting (38) into (35) yields

ĥk,k =
(

Ψ̂H
k (cov (ek))

−1
Ψ̂k

)

−1

Ψ̂H
k (cov (ek))

−1
Φ̂k. (39)

The proposed estimator in (39) is often referred to as the best linear unbiased estimator (BLUE) [17]. By substituting

(38) into (36), we obtain the variance of the proposed estimator

cov
{

ĥk,k

}

=
(

ΨH
k (cov (ek))

−1
Ψk

)

−1

. (40)

C. Particular Case

When the STFT samples of the signals are uncorrelated, i.e.

ψxx(p, l, k) = φxx(p, k)δ(l) (41)

ψuu(p, l, k) = φuu(k)δ(l) (42)

We can substitute (41) and (42) into (23) and (27) yielding

Φyx(k) = Φxx(k)h0,k,k + Φvu(k) (43)

Φvu(k) = Φwu(k) − Φuu(k)h0,k,k. (44)

In this case hk , h0,k,k can be regarded as the multiplicative transfer function for each frequency bin k. The

proposed estimator and the estimation variance are (See Appendix B) respectively

ĥ0,k,k =
〈φ̂yx(p, k) − φ̂wu(k)〉p

〈φ̂ss(p, k)〉p
(45)

var
{

ĥ0,k,k

}

=
φvv(k)

Ny〈φss(p, k)〉p
(46)

where 〈·〉p is an average operator over the time frame p.

These results coincide with the estimator and estimation variance under the MTF assumption introduced in [7].

It is worthwhile noting that when using the MTF approximation and setting the time frame to be larger than the

support of the acoustic impulse response, the assumption that the STFT samples of the signals are uncorrelated
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Fig. 2. Experimental setup.

becomes more accurate. In addition, we obtain the same results also in case the cross-band filters contain a single

tap (i.e. Nh = 1).

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed method using the CTF approximation, and compare

it with Cohen’s RTF identification method [7] using the MTF approximation in various environments.

In the following experiments we use Habets’ simulator [19] for simulating acoustic impulse responses, based

on Allen and Berkley’s image method [20]. The responses are measured in a rectangular room, 6 m wide by 7 m

long and 2.75 m high. We locate the primary microphone at the center of the room, at (3m, 3.5m, 1.375m), and the

reference microphone at (3m, 3.5m−d, 1.375m) with several spacings d. A speech source at (5m, 3.5m, 1.375m) is

2 m distant from the primary microphone3, and a noise source is placed at (4m, 5.5m, 1.375m). Figure 2 shows an

illustration of the room setup. In each experiment this setup (the speech and noise sources and the two microphones)

is rotated 16 times around the center of the room in azimuth steps of 22.5◦ (with respect to the room floor) and

the results are obtained by averaging over these rotated setups.

The signals are sampled at 8 kHz. The speech source signal is a recorded speech from TIMIT database [21]

and the noise source signal is a computer generated white zero mean Gaussian noise with variance that varies to

control the SNR level. It is worthwhile noting that we obtained similar results using recorded (colored) stationary

noise signals. The microphone measurements are generated by convolving the source signals with the corresponding

simulated impulse responses. The STFT is implemented using Hamming windows of length N = 512 with 75%

overlap. The relative impulse response is infinite but both methods approximate it as a finite response filter. Under

3Creating a far-end field configuration.
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the MTF approximation, the RTF length is determined by the length of the time frame, whereas under the CTF

approximation the RTF length can be set as desired. In the following experiments we set the estimated RTF length

to be 1/8 of the room reverberation time T60. This particular ratio was set since empirical tests produced satisfactory

results. In addition, we used a short period of noise-only signal at the beginning of each experiment for estimating

the noise signals PSD. In practice, it can be performed adaptively using a VAD based on MCRA [15] or IMCRA

[16] methods.

For evaluating the identification performance, we use a measure of the signal blocking factor (SBF) defined by

SBF = 10 log
10

E
{

s2(n)
}

E {r2(n)}
(47)

where E{s2(n)} is the energy contained in the speech received at the primary sensor, and E{r2(n)} is the energy

contained in the leakage signal r(n) = h(n) ∗ s(n) − ĥ(n) ∗ s(n). The leakage signal represents the difference

between the reverberated speech at the reference sensor and its estimate given the speech at the primary sensor.

This parameter indicates the ability to block the desired signal in generalized sidelobe canceler (GSC) techniques

and produce reference noise signals [1] [2]. It has a major effect on the amount of signal distortion at an adaptive

beamformer output. It is worthwhile noting that the time domain impulse response ĥ(n) is not directly reconstructed

from the filter estimate in the STFT domain ĥk,k, obtained from (39). First, the output of the convolution ĥ(n)∗s(n)

is calculated in the STFT domain using ĥk,k. Second, the time domain leakage signal r(n) is calculated using inverse

STFT.

Deriving an explicit expression for the MSE obtained by the proposed estimator, taking the CTF approximation

into account, is mathematically untraceable due to the correlation between the additive noise and the reference signal.

In case of high SNR level at the primary microphone, the MSE analysis of the system identification in the STFT

domain with cross-band filters [9] guarantees better performance for identification based on the CTF approximation

rather than identification that relies on the MTF model. While the model complexity increases under the CTF

approximation, as the SNR level increases and the data becomes more reliable, a larger number of parameters can

be accurately estimated, thus enabling better identification.

Figure 3(a)-(c) shows the SBF curves obtained by both methods as a function of the SNR at the primary

microphone. We observe that the RTF identification based on CTF approximation achieves higher SBF than the

RTF identification based on MTF approximation in higher SNR conditions, whereas, the RTF identification that

relies on MTF model achieves higher SBF in lower SNR conditions. Since the RTF identification using CTF

model is associated with greater model complexity, it requires more reliable data, meaning, higher SNR values.

In addition, as the environment becomes more reverberant, the intersection point value between the SBF curves

decreases, implying that the RTF identification using CTF model outperforms the RTF identification based on

MTF model starting from lower SNR conditions. In Fig. 3(a), the reverberation time is T60 = 0.125s and the

intersection point between the SBF curves is at SNR of 17dB. As the reverberation time increases in Fig. 3(b) and

(c) (T60 = 0.25s and T60 = 0.5s, respectively), the intersection point values decrease to lower SNR values (−3dB

and −6dB, respectively). We also observe that the gain for 20 dB SNR is much higher in the case of T60 = 0.25s
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Fig. 3. SBF curves obtained by using the MTF and CTF approximations under various SNR conditions. The time frame length is N = 512

with 75% overlap, and the distance between the primary and reference microphones is d = 0.3m. (a) Reverberation time T60 = 0.125s. (b)

Reverberation time T60 = 0.25s. (c) Reverberation time T60 = 0.5s.
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Fig. 4. SBF curves under the same setup as of Fig. 3 with additional uncorrelated Gaussian noise. (a) Reverberation time T60 = 0.125s. (b)

Reverberation time T60 = 0.25s. (c) Reverberation time T60 = 0.5s.

than in the case of T60 = 0.5s. In the case of T60 = 0.5s (i.e longer impulse response) the model mismatch using

only a single band-to-band filter is larger than the model mismatch in the case of T60 = 0.25s. Thus, in order

to obtain larger gain in the later case, more cross-band filters should be employed to represent the system. More

details and analytic analysis is presented in [9]. Generally the microphones introduce additional static noise into

the measurements. We demonstrate the robustness of the proposed method in Fig. 4(a)-(c), where we repeat the

last experiment with additional uncorrelated additive Gaussian noise. We observe that the improvement of the RTF

identification based on the CTF method is slightly degraded (e.g. in Fig. 4(a) the intersection point is moved to the

right, compared with Fig. 3(a)). The additional additive uncorrelated noise reduces the effective SNR of the RTF

identification and thus, as previously claimed, the RTF identification that relies on the CTF approximation becomes

less advantageous.

Figure 5(a)-(f) shows waveforms and spectrograms of the speech and leakage signals obtained by the proposed

and competing methods. In Fig. 5(c) and (e) we observe that the leakage signal obtained by the RTF identification

that relies on CTF approximation is much lower than the leakage signal obtained by the RTF identification based

on MTF approximation. Similar results are obtained in Fig. 5(d) and (f) where the reverberation time is longer, and
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Waveforms and spectrograms obtained under SNR = 15dB. The time frame length is N = 512 with 75% overlap, and the distance

between the primary and reference microphones is d = 0.3m. (a) Speech signal s(n) with reverberation time T60 = 0.25s. (b) Speech signal

s(n) with reverberation time T60 = 0.5s. (c) Leakage signal r(n) based on the MTF model with reverberation time T60 = 0.25s. (d) Leakage

signal r(n) based on the MTF model with reverberation time T60 = 0.5s. (e) Leakage signal r(n) based on the CTF model with reverberation

time T60 = 0.25s. (f) Leakage signal r(n) based on the CTF model with reverberation time T60 = 0.5s.

hence, the leakage signals have greater amplitudes in comparison with Fig. 5(c) and (e).

Figure 6(a)-(c) shows the SBF curves obtained as a function of the reverberation time. Increasing the reverberation

time results in longer acoustic impulse responses, and consequently the RTF identification using CTF approximation

yields higher SBF than that obtained by the RTF identification based on MTF approximation. On the other hand, the

RTF identification using MTF model performs better than the RTF identification using CTF model in less reverberant

environments. In addition, the higher the SNR conditions are, the more advantangeous the RTF identification based

on CTF model is. In Fig 4(a), where the SNR value is 5dB, the RTF identification using CTF approximation
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Fig. 6. SBF curves for the compared methods in various T60 conditions. The time frame length is N = 512 with 75% overlap, and the

distance between the primary and reference microphones is d = 0.3m. (a) SNR = 5dB. (b) SNR = 0dB. (c) SNR = −5dB.
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Fig. 7. SBF curves for the compared methods in various distances between the primary and reference microphones d. The time frame length

is N = 512 with 75% overlap, and the reverberation time is T60 = 0.5s. (a) SNR = 5dB. (b) SNR = 0dB.

outperforms the RTF identification that relies on MTF approximation. However, in Fig. 6(b) and (c), where the

SNR values are lower (0dB and −5dB, respectively), the RTF identification based on CTF model yields better

results when the reverberation times are long enough (the intersection points values between the SBF curves are at

0.2s and 0.3s, respectively).

Figure 7(a)-(b) shows the SBF curves obtained as a function of the distance between the primary and reference

microphones d. The coupling between the microphones becomes more complicated as the distance between the

microphones increases. Hence, the RTF is more difficult to identify and requires longer FIR representation. The RTF

identification that relies on CTF model performs better than the RTF identification using MTF approximation when

the distance between the microphones is large. A comparison of Fig. 7(a) and (b) indicates that the intersection

point between the curves decreases as the SNR increases.

In the following experiment we compare the competing methods for various time frame lengths. Under the MTF

approximation, longer time frames enable identification of a longer RTF at the expense of fewer observations in

each frequency bin. Thus, under the MTF model, controlling the time frame length controls both the representation
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Fig. 8. SBF curves for the compared methods using various time frame lengths N . The SNR level is 15dB, and the distance between the

primary and reference microphones is d = 0.3m. (a) Reverberation time T60 = 0.2s. (b) Reverberation time T60 = 0.3s. (c) Reverberation

time T60 = 0.4s.

of the data in the STFT domain and the estimated RTF. On the other hand, under the CTF model, the length of the

estimated RTF can be set independently from the time frame length. Thus, under the CTF approximation, controlling

the time frame length controls only the representation of the data in the STFT domain. Figure 8(a)-(c) shows the

SBF curves obtained by the proposed and competing methods as a function of the time frame length N with a

fixed 75% overlap. It is worthwhile noting that this experiment is most favorable to the competing method since

the number of variables under the MTF model increases as the time frame increases, while the number of estimated

variables under the CTF model is fixed (since the RTF length is fixed, longer time frame yields shorter band-to-band

filters). We observe that using the RTF identification method based on MTF model requires longer time frames for

longer T60 in order to achieve optimal performance. In addition, we observe a trade-off as the time frame increases

between increasing the length of the estimated RTF and decreasing the estimation variance. Similar trade-off can be

observed for the RTF identification that relies on CTF approximation. As the time frame length increases, the band-

to-band filters become shorter and easier to identify, whereas less frames of observations are available. This trade-off

between the length of the band-to-band filters and the number of data frames is studied for the general system

identification case in [9]. We can also observe that the optimal performance of the RTF identification method under

the CTF approximation is achieved using shorter time frames compared with the optimal performance achieved

by the RTF identification method that relies on the MTF model. The RTF identification method based on CTF

approximation performs better using short time frames, which enable greater flexibility and reduced computational

complexity. In addition, the RTF identification method under the MTF approximation doesn’t reach the optimal

performance of the RTF identification method under the CTF model. Since the model mismatch using the MTF

approximation is too large, it cannot be compensated by taking longer time frames and estimating more variables.

On the other hand, the CTF approximation enables better representation of the input data by appropriately adjusting

the length of time frames, while the estimated RTF length is set independently according to the reverberation time.

Now, we demonstrate the performance of the proposed method in the presence of diffused noise, which is used

to model many practical noise fields, e.g. a moving car interior. The diffused noise is simulated as a spherical
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Fig. 9. SBF curves for the compared methods under various SNR conditions with diffused noise. The time frame length is N = 512 with 75%

overlap, and the distance between the primary and reference microphones is d = 0.3m. (a) Reverberation time T60 = 0.125s. (b) Reverberation

time T60 = 0.25s. (c) Reverberation time T60 = 0.5s.

noise field according to [22], [23]. Figure 9(a)-(c) shows the SBF curves obtained as a function of the SNR at the

primary microphone in the presence of diffused noise. The performance of both proposed and competing methods

in the presence of diffused noise is similar to the performance achieved in the presence of directional noise in Fig.

3(a)-(c). We observe that both methods show increased SBF in low SNR values and that the RTF identification

using CTF model becomes advantageous starting from lower SNR levels (the intersection points between the curves

is shifted to the left, compared with Fig. 3).

V. CONCLUSION

We have proposed a relative transfer function identification method for speech sources in reverberant environments.

The identification is carried out in the STFT domain, without using the common and restrictive MTF approximation.

Instead, we have used the convolutive transfer function approximation, which supports the representation of long

transfer functions with short time frames. An unbiased estimator for the RTF was developed and analytic expressions

for its variance were presented. We have investigated the performance of the proposed method in various acoustic

environments, and demonstrated improved RTF identification when the SNR is high or when the time variations of

the transfer functions are relatively slow. The input signal used for the RTF identification is of finite length to enable

tracking of time variations. Hence, RTF identification that relies on the MTF approximation is significantly influenced

by the time frame length. Long time frames enable identification of a long RTF, but then fewer observations are

available in each frequency bin, which may increase the estimation variance. The proposed algorithm, on the other

hand, enables better representation of the input data by appropriately adjusting the length of time frames, and

better RTF identification by appropriately adjusting the length of the RTF in each subband. Following the attractive

results, we intend to develop an adaptive solution, in order to support dynamic environments, and to incorporate

the proposed identification method into a beamforming application.
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APPENDIX A

DERIVATION OF (37)

From (31) and (32) we get

ek =
(

Φ̂yx(k) − Φyx(k)
)

−
(

Φ̂wu(k) − Φwu(k)
)

−
(

Ψ̂ss(k) − Ψss(k)
)

hk,k. (48)

Using (4), (23) and (30), we have

ek =
(

Φ̂vx(k) − Φvx(k)
)

−
(

Φ̂vu(k) − Φvu(k)
)

=
(

Φ̂vs(k) − Φvs(k)
)

(49)

where Φvs(k) and Φvu(k) are defined similarly to (26) and (28) respectively. Now, assuming the STFT samples

have zero mean and using the fact that v(n) is a noise only signal uncorrelated with s(n), we get

φvs(p, k) = E
{

vp,ks∗p,k

}

= 0. (50)

Thus, the cross PSD estimation using cross periodograms yields

cov
(

φ̂vs(p, k)φ̂∗

vs(p
′, k)

)

= E
{

vp,ks∗p,kv∗

p′,ksp′,k

}

= E
{

vp,kv∗

p′,k

}

E
{

s∗p,ksp′,k

}

= ψvv (p′ − p, k)ψss (p, p − p′, k) (51)

where ∗ represents complex conjugation and ψss(p, l, k) and ψvv(l, k) are defined similarly to (24) and (29)

respectively. Finally, by combining (49) and (51), we obtain (37).

APPENDIX B

DERIVATION OF (45)-(46)

Similarly to (41) and (42) we get

ψss(p, l, k) = φss(p, k)δ(l) (52)

ψvv(p, l, k) = φvv(k)δ(l). (53)

By substituting (52) and (53) into (37), we have that cov (ek) is a diagonal matrix and its pth diagonal term is

[cov (ek)]p,p = φvv(k)φss(p, k) (54)

which is the cross PSD estimation variance of φ̂vs(k) using cross periodograms [18]. Thus, from (39) and (40)

using (54) we get

ĥ0,k,k =

(

∑

p

[

Φ̂H
ss(k)

]

p
[cov (ek)]

−1

p,p

[

Φ̂ss(k)
]

p

)

−1

×
∑

p

[

Φ̂H
ss(k)

]

p
[cov (ek)]

−1

p,p

[

Φ̂yx(k) − Φ̂wu(k)
]

p
(55)
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var
{

ĥ0,k,k

}

=

(

∑

p

[

ΦH
ss(k)

]

p
[cov (ek)]

−1

p,p [Φss(k)]p

)

−1

. (56)

Now, by substituting the elements of cov (e(k)) and Φss(k) into (55) and (56), we obtain

ĥ0,k,k =

∑

p

(

φ̂yx(p, k) − φ̂wu(k)
)

∑

p φ̂ss(p, k)
(57)

var
{

ĥ0,k,k

}

=

(

1

φvv(k)

∑

p

φss(p, k)

)

−1

. (58)
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T60 = 0.2s. (b) Reverberation time T60 = 0.3s. (c) Reverberation time T60 = 0.4s. . . . . . . . . . . . 14

9 SBF curves for the compared methods under various SNR conditions with diffused noise. The time

frame length is N = 512 with 75% overlap, and the distance between the primary and reference

microphones is d = 0.3m. (a) Reverberation time T60 = 0.125s. (b) Reverberation time T60 = 0.25s.

(c) Reverberation time T60 = 0.5s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15


