
Relative Undecidability in Term Rewriting

Alfons Geser1, Aart Middeldorp2?, Enno Ohlebusch3, Hans Zantema4??

1 University of Passau, Germany
2 University of Tsukuba, Japan

3 University of Bielefeld, Germany
4 Utrecht University, The Netherlands

Abstract. For two hierarchies of properties of term rewriting systems
related to conuence and termination, respectively, we prove relative un-

decidability : for implications X) Y in the hierarchies the property X
is undecidable for term rewriting systems satisfying Y .

1 Introduction

In this paper we consider �nite term rewriting systems (TRSs) over �nite signa-
tures. For these systems termination and conuence are desired properties that
are sometimes very hard to prove. Classical results ([7, 9]) state that they are
undecidable: no decision procedure exists getting an arbitrary �nite TRS as in-
put and giving as output whether the TRS is terminating (conuent) or not. In
this paper we don't consider only termination and conuence, but also a number
of related properties. For termination they are linearly ordered by implication:

PT) !T) TT) ST) NSE) SN) NL) AC

The acronyms stand for polynomial termination (PT), !-termination (!T), to-
tal termination (TT), simple termination (ST), non-self-embeddingness (NSE),
termination (strong normalization, SN), non-loopingness (NL), and acyclicity
(AC). We call this the termination hierarchy. One motivation for the properties
stronger than termination is that they obey better decomposition theorems. For
instance, !-termination and simple termination satisfy direct sum modularity
([12]), and total termination allows distribution elimination without linearity
conditions ([20]). Termination itself does not have these properties. The prop-
erties weaker than termination are motivated by frequently occurring shapes of
in�nite reductions. An extra implication SN) WN (weak normalization) can
be added as an independent branch in the hierarchy. The conuence hierarchy

reads as follows:

SCR) CR) NF) UN) UN!

+
WCR

? Partially supported by the Advanced Information Technology Program (AITP) of
the Information Technology Promotion Agency (IPA).

?? Email: hansz@cs.ruu.nl.

1

The acronyms stand for strong conuence (SCR), conuence (or the Church-
Rosser property, CR), local conuence (or weak Church-Rosser, WCR), the nor-
mal form property (NF), unique normal forms (UN), and unique normal forms
with respect to reduction UN!. For weakly normalizing systems the properties
CR, NF, UN, and UN! coincide. For terminating systems also WCR and CR
coincide and are decidable.

Undecidability of conuence is well-known ([9]), for the other properties in
the conuence hierarchy it is easy to see too. Also undecidability of most of the
properties related to termination is known ([7, 17, 1, 15, 22]), sometimes even
for single rules ([2, 15, 13]). The undecidability of !-termination is a new result;
this paper includes a sketch of the proof.

In this paper we do not only provide a general framework for proving this kind
of undecidability, for all implications in the hierarchies except one|PT) !T|
we prove the stronger result of relative undecidability : for such an implication
X) Y we prove that the property X is undecidable for TRSs satisfying Y .
As a consequence, relative undecidability of X) Z immediately follows from
validity of the implication Y) Z and relative undecidability of X) Y .

All of our proofs are given by means of Post's Correspondence Problem (PCP)
in the following way: for all of the implications X) Y and all instances of PCP
we construct a TRS that always satis�es Y , and either satis�es X if and only
if the PCP instance admits a solution, or satis�es X if and only if the PCP
instance admits no solution. Since PCP is known to be undecidable ([18]), this
proves relative undecidability of the implication X) Y .

The main part of the paper consists of constructions of such TRSs parametrized
by PCP instances and corresponding proofs of the above mentioned properties.
In the next section this is done for the conuence hierarchy and in Sect. 3 for
the termination hierarchy. These two sections can be read independently. The
de�nitions of the various properties are given in the respective sections; for fur-
ther preliminaries on term rewriting we refer to [3, 10]. In the remainder of this
section we recall the formulation of PCP:

given a �nite alphabet � and a �nite set P � �+ � �+, is there some
natural number n > 0 and (�i; �i) 2 P for i = 1; : : : ; n such that
�1�2 � � ��n = �1�2 � � ��n?

The set P is called an instance of PCP, the string �1�2 � � ��n = �1�2 � � ��n
a solution for P . Matiyasevich and Senizergues [14] recently showed that PCP
is undecidable even when restricted to instances consisting of seven pairs. We
assume that � is �xed throughout the paper. (One may assume that � = f0; 1g.)
In our TRSs we need for every a 2 � a unary symbol a (and sometimes also
unary symbols �a, â and ~a). For any string � = a1a2 � � � an 2 �

� and any term t

we de�ne �(t) = a1(a2(� � � (an(t)) � � �)).

2 The Conuence Hierarchy

In this section we show relative undecidability of all implications in the conu-
ence hierarchy as presented in the introduction. Actually we show the stronger

2

result that relative undecidability holds for linear TRSs.
Let us �rst recall the de�nitions of the six properties properties in the

conuence hierarchy. A TRS R is called conuent (or Church-Rosser, CR) if
 �
R � !

�
R � !

�
R �

�
R, or, equivalently, every two convertible terms have a

common reduct. A TRS R is called locally conuent (or weakly Church-Rosser,
WCR) if R � !R � !

�
R �

�
R. A TRS R is called strongly conuent (or

strongly Church-Rosser, SCR) if R � !R � !
=
R �

�
R. A TRS R is said to

have the normal form property (NF) if every term convertible to a normal form
reduces to that normal form, or, equivalently, every term that has a normal
form is conuent. A TRS R is said to have unique normal forms (UN) if di�er-
ent normal forms are not convertible. A TRS R is said to have unique normal

forms with respect to reduction (UN!) if every term has at most one normal
form. The above de�nition of strong conuence originates from Huet [8] and is
di�erent from the one in Dershowitz and Jouannaud [3]. They call a TRS R
strongly conuent if R � !R � !

=
R �

=
R. Klop [10] calls the latter property

subcommutativity (WCR�1).
Below we use PCP to show that for each of the �ve implications X) Y in

the conuence hierarchy the property X is undecidable for TRSs satisfying the
property Y . A key observation is that an arbitrary PCP instance P admits a
solution if and only if A!�

R0(P)
B for the TRS

R0(P) =

8<
:

A! f(�(c); �(c)) for all (�; �) 2 P
f(x; y)! f(�(x); �(y)) for all (�; �) 2 P
f(x; x)! B

To arrive at results for linear TRSs and for some technical convenience this basic
system is replaced by

R1(P) =

8>>>>>>>><
>>>>>>>>:

A! f(�(c); �(c)) for all (�; �) 2 P
f(x; y)! f(�(x); �(y)) for all (�; �) 2 P
f(x; y)! g(x; y)
f(x; y)! A

g(x; y)! A

g(a(x); a(y))! g(x; y) for all a 2 �
g(c; c)! B

Proposition 1. A!�
R1(P)

B if and only if P admits a solution.

Proof. Suppose 2 �+ is a solution for P . So = �1 � � ��n = �1 � � ��n for some
n � 1 with (�i; �i) 2 P for i = 1; : : : ; n. We have the following reduction in
R1(P):

A! f(�n(c); �n(c))!
� f(�1 � � ��n(c); �1 � � ��n(c)) = f((c); (c))

! g((c); (c))!+ g(c; c)! B:

Conversely, suppose that A !�
R1(P)

B. Beyond the last A occurring in this

3

reduction sequence it is of the form

A! f(�n(c); �n(c))!
� f(�1 � � ��n(c); �1 � � ��n(c))

! g(�1 � � ��n(c); �1 � � ��n(c))!
� g(c; c)| {z }! B:

for some n � 1 with (�i; �i) 2 P for i = 1; : : : ; n. In the underbraced part only
rewrite rules of the form g(a(x); a(y)) ! g(x; y) are used. Hence �1 � � ��n(c) =
�1 � � ��n(c), giving a solution for P . ut

Below we make frequent use of the following result of Huet [8].

Theorem2. Every linear strongly closed TRS is strongly conuent. ut

Here a TRSR is called strongly closed if both s!=
R �

�
R t and t!=

R �
�
R s

for every critical pair hs; ti of R.

2.1 NF) UN

Proposition 3. The TRS R1(P) has unique normal forms for every PCP in-

stance P .

Proof. Consider the TRS R01(P) = R1(P)[fA! B; f(x; y)! B; g(x; y)! Bg.
The relations $�

R1(P)
and $�

R0

1
(P) clearly coincide. Also the normal forms of

the two TRSs are the same. The TRS R01(P) is linear and strongly closed hence
(strongly) conuent by Thm. 2. This implies that R1(P) has unique normal
forms. ut

Proposition 4. The following statements are equivalent:

1. The TRS R1(P) has the normal form property.

2. The TRS R1(P) is conuent.

3. The PCP instance P admits a solution.

Proof. Since conuence implies the normal form property, according to Prop. 1
it su�ces to show that (i) A !�

R1(P)
B whenever R1(P) has the normal form

property and (ii) R1(P) is conuent whenever A !�
R1(P)

B. For (i) we note

that A g(c; c) ! B in R1(P) with B a normal form, hence A !�
R1(P)

B by

de�nition of the normal form property. For (ii) we consider the conuent TRS
R01(P) de�ned in the proof of Prop. 3. From A !�

R1(P)
B we obtain that the

relations !�
R1(P)

and !�
R0

1
(P) coincide. Hence R1(P) is conuent too. ut

4

2.2 CR) NF

Let R2(P) = R1(P) [fB ! Bg.

Proposition 5. The TRS R2(P) has the normal form property for every PCP

instance P .

Proof. The set of normal forms of R2(P) coincides with the set of weakly nor-
malizing terms. Hence the normal form property is trivially satis�ed. ut

Proposition 6. The TRS R2(P) is conuent if and only if P admits a solution.

Proof. Since the relations !�
R2(P)

and !�
R1(P)

coincide, R2(P) is conuent if

and only if R1(P) is conuent. Hence the result follows from Prop. 4. ut

2.3 SCR) CR

Let R3(P) = R1(P) [fB ! C;C ! Ag.

Proposition 7. The TRS R3(P) is conuent for every PCP instance P .

Proof. One easily checks that the linear TRS R03(P) = R3(P) [fB ! Ag is
strongly closed hence (strongly) conuent by Thm. 2. Since the relations!�

R3(P)

and !�
R0

3
(P) coincide, R3(P) is also conuent. ut

Proposition 8. The TRS R3(P) is strongly conuent if and only if P admits

a solution.

Proof. In a shortest R3(P)-reduction sequence from A to B the rewrite rules
B ! C and C ! A are not used. Hence A!�

R3(P)
B if and only if A!�

R1(P)
B.

According to Prop. 1 we have to show that R3(P) is strongly conuent if and
only if A !�

R3(P)
B. In R3(P) we have B g(c; c) ! A. If R3(P) is strongly

conuent then B != � � A, so either B � A or B ! C � A. Since any
reduction sequence from A to C must pass through B, in both cases we have
the desired A!�

R3(P)
B. Conversely, if A!�

R3(P)
B then one easily checks that

R3(P) is strongly closed and therefore strongly conuent by Thm. 2. ut

2.4 CR) WCR

Let R4(P) = R1(P) [fB ! f(c; c); B ! Cg.

Proposition 9. The TRS R4(P) is locally conuent for every PCP instance P .

Proof. One easily checks that all critical pairs of R4(P) are joinable. ut

Proposition 10. The TRS R4(P) is conuent if and only if P admits a solu-

tion.

5

Proof. In a shortest R4(P)-reduction sequence from A to B the rewrite rules
B ! f(c; c) and B ! C are not used. Hence A !�

R4(P)
B if and only if

A !�
R1(P)

B. According to Prop. 1 we have to show that R4(P) is conuent if

and only if A !�
R4(P)

B. In R4(P) we have A f(c; c) B ! C. If R4(P) is
conuent then A !�

R4(P)
C which is equivalent to A !�

R4(P)
B. Conversely, if

A !�
R4(P)

B then we obtain conuence by considering the linear and strongly

closed TRS R04(P) = R4(P) [fA! C; f(x; y)! C; g(x; y)! Cg. ut

2.5 UN) UN!

In this subsection we assume that PCP instances are presented as ordered lists
(�1; �1); (�2; �2); : : : ; (�n; �n) rather than sets. This entails no loss of generality.
Let R5(P) be the union of R1

5 = ff(c; c; c; w)! Ag,

R2
5(P) =

8>>>><
>>>>:

f(x; y; z; i(w))! f(�i(x); �i(y); i(z); w) for all i 2 f1; : : : ; ng
f(x; y; i(z); c)! g(x; y; i(z)) for all i 2 f1; : : : ; ng
g(x; y; i(z))! g(x; y; z) for all i 2 f1; : : : ; ng

g(a(x); a(y); c))! g(x; y; c) for all a 2 �
g(c; c; c)! B

and ff(x; y; z; w) ! f(x; y; z; w); g(x; y; z) ! g(x; y; z); A ! A;C ! A;C !
Dg. Note that n depends on the PCP instance P ; for every i 2 f1; : : : ; ng we
have a unary function symbol i.

Proposition 11. A$�
R5(P)

B if and only if P admits a solution.

Proof. Abbreviate R1
5 [R

2
5(P) to R

0
5(P). Suppose 2 �

+ is a solution for P .
So = �i1 � � ��im = �i1 � � ��im for some m � 1 and i1; : : : ; im 2 f1; : : : ; ng. Let
t = im � � � i1(c) and t

0 = i1 � � � im(c). We have the following conversion in R05(P):

A f(c; c; c; t)!� f((c); (c); t0; c)! g((c); (c); t0)!� g((c); (c); c)

!� g(c; c; c)! B:

Conversely suppose that A and B are convertible in R5(P). Consider a shortest
conversion between A and B. Since the rewrite rules in R5(P) n R

0
5(P) don't

contribute to a shortest conversion between A and B, it must be of the form
A f(c; c; c; t)$�

R0

5
(P) B for some term t such that in the conversion between

f(c; c; c; t) and B no R1
5-steps take place at root positions. Using the fact that

R2
5(P) is linear and non-erasing one easily concludes that there are no R1

5-
steps in the conversion between f(c; c; c; t) and B. Hence f(c; c; c; t) and B are
convertible in R2

5(P). Because the TRS R
2
5(P) is orthogonal hence conuent and

B is a normal form, we obtain f(c; c; c; t) !�
R2

5
(P)

B. Now it easy to show that

the term t codes a solution for P . ut

The sole purpose of the rules f(x; y; z; w) ! f(x; y; z; w) and g(x; y; z) !
g(x; y; z) is to avoid unwanted normal forms in R5(P), whose presence would
considerably complicate the proofs of Props. 12 and 13 below.

6

Note that the above proposition doesn't hold for (the TRSs based on) R1(P)
because in R1(P) the terms A and B may be convertible even if P admits no
solution. For instance, we have A ! f(100(c); 10(c)) f(0(c); 0(c)) !� B in
R1(f(100; 10); (10; 1)g).

Proposition 12. The TRS R5(P) has unique normal forms with respect to re-

duction for every PCP instance P .

Proof. By induction on the structure of terms we can easily prove that every
term has at most one normal form. ut

Proposition 13. The TRS R5(P) has unique normal forms if and only if P

does not have a solution.

Proof. According to Prop. 11 we have to show that R5(P) admits two di�erent
convertible normal forms if and only if A and B are convertible. If A and B are
convertible then so are the di�erent normal forms B and D: B $� A C ! D.
Conversely, suppose that R5(P) admits two di�erent convertible normal forms
t1; t2. Then we can write ti = �i(si) with �i 2 (� [f1; : : : ; ng)

� and si is either
B, D, c or a variable, for i = 1; 2. Due to the shape of the rules �1 is not a�ected
in the conversion �1(s1)$

� �2(s2), hence �1 = �2 and s1 $
� s2, where s1 and

s2 are di�erent. Since no non-trivial conversion is possible starting from c or a
variable, we conclude that s1 and s2 are D and B, or vice versa. Hence D and
B are convertible, and since A C ! D also A and B are convertible. ut

3 The Termination Hierarchy

In this section we show relative undecidability of the last six implications in the
termination hierarchy as presented in the introduction.

Before we can de�ne the properties in the termination hierarchy, we need
a few preliminary de�nitions. Throughout the following we assume that F is a
�nite signature containing at least one constant. A (strict partial) order > on the
set T (F) of ground terms is called monotonic if for all f 2 F and t; u 2 T (F)
with t > u we have f(: : : ; t; : : :) > f(: : : ; u; : : :). A TRS R over F and an
order > on T (F) are called compatible if t > u for all rewrite steps t !R u.
For compatibility with a monotonic order it su�ces to check that l� > r� for
all rules l ! r in R and all ground substitutions �. An F-algebra consists of
a set A and for every f 2 F a function fA : A

n ! A, where n is the arity of
f . A monotone F-algebra (A;>) is an F-algebra A for which the underlying
set is provided with an order > such that every algebra operation is monotonic
in all of its arguments. More precisely, for all f 2 F and a; b 2 A with a > b

we have fA(: : : ; a; : : :) > fA(: : : ; b; : : :). A monotone F-algebra (A;>) is called
well-founded if > is a well-founded order. A monotone F-algebra (A;>) is called
simple if for all n-ary f 2 F with n � 1, a1; : : : ; an 2 A, and i = 1; : : : ; n we
have fA(a1; : : : ; an) � ai. Every monotone F-algebra (A;>) induces an order
>A on the set of terms T (F ;X) as follows: t >A u if and only if [�](t) > [�](u)

7

for all assignments � : X ! A. Here [�] denotes the homomorphic extension of
�, i.e., [�](x) = �(x) and [�](f(t1; : : : ; tn)) = fA([�](t1); : : : ; [�](tn)) for x 2 X ,
f 2 F , and t1; : : : ; tn 2 T (F ;X). For ground terms t the value [�](t) does not
depend on � and is simply written as [t]. A TRS R and a monotone algebra
(A;>) are called compatible if R and >A are compatible. The set of rewrite
rules f(x1; : : : ; xn) ! xi for all f 2 F and all i = 1; : : : ; n, where n � 1 is the
arity of f , is denoted by Emb(F), or simply by Emb when the signature F can
be inferred from the context.

The properties in the termination hierarchy are now de�ned as follows. A
TRS is called terminating (or strongly normalizing, SN) if it does not allow in�-
nite reductions, or, equivalently, it is compatible with a well-founded monotone
algebra. A TRS R is called weakly normalizing (WN) if every term reduces to at
least one normal form. A TRS R over a signature F is called simply terminating

if R [Emb(F) is terminating, or, equivalently, it is compatible with a simple
monotone F-algebra. A TRS over a signature F is called totally terminating if
it is compatible with a monotonic well-founded total order on T (F), or, equiva-
lently, it is compatible with a well-founded monotone F-algebra (A;>) in which
the order > is total. A TRS over a signature F is called !-terminating if it
is compatible with a well-founded monotone F-algebra (A;>) in which A = N

and > is the usual order on N. A TRS over a signature F is called polynomially

terminating if it is compatible with a well-founded monotone F-algebra (A;>)
in which A = N, > is the usual order on N, and for which all functions fA are
polynomials. A TRS R is called looping if it admits a reduction t !+

R C[t�]
for some term t, context C, and substitution �. A TRS R is called cyclic if it
admits a reduction t!+

R t for some term t. A TRS R is called self-embedding if
it admits a reduction t!+

R u!�
Emb t for some terms t, u.

Recent investigations of these notions include [4, 5, 16, 19, 20, 23]. Validity
of most of the implications in the termination hierarchy is direct from the de�ni-
tions; only TT) ST requires some well-known argument, see e.g. [20], and NSE
) SN requires Kruskal's theorem. None of the implications are equivalences: for
all implications X) Y in the termination hierarchy a TRS exists satisfying Y
but not X . For in�nite TRSs over in�nite signatures the termination hierarchy
is more complicated: if the notion of embedding is not changed then NSE) SN
does not hold any more, if the notions of embedding and simple termination are
adjusted as motivated in [16], then the implication TT) ST no longer holds
([16]). In this paper however we consider only �nite TRSs over �nite signatures.

All TRSs needed for the termination hierarchy are modi�cations of two
basic TRSs parameterized by an arbitrary PCP instance P . For any string
� = a1a2 : : : an 2 � � and any term t we de�ne ��(t) = �an(� � � (�a2(�a1(t))) � � �).
The two basic TRSs are

R(P) =

�
F (c; c; a(z))! F (a(z); a(z); a(z)) for all a 2 �

F (�(x); �(y); z) ! F (x; y; z) for all (�; �) 2 P

S(P) =

�
F (x; �a(y); x; �a(y))! F (a(x); y; a(x); y) for all a 2 �
F (�(x); y; �(z); w) ! F (x; ��(y); z; ��(w)) for all (�; �) 2 P

The system R(P) is a minor modi�cation of the basic system from [13]; the

8

system S(P) is from [22]. The next well-known proposition is the motivation for
de�ning these systems.

Proposition 14. The following statements are equivalent:

1. The TRS R(P) is terminating.

2. The TRS S(P) is terminating.

3. The PCP instance P admits no solution.

Proof. We sketch the proof of the equivalence of 1 and 3; the equivalence proof
of 2 and 3 is similar. Suppose 2 �+ is a solution for P . So = �1 � � ��n =
�1 � � ��n for some n � 1 with (�i; �i) 2 P for i = 1; : : : ; n. We have the following
cyclic reduction in R(P):

F ((c); (c); (c))! F (�2 � � ��n(c); �2 � � ��n(c); (c))!
� F (c; c; (c))

! F ((c); (c); (c)):

Conversely, suppose that R(P) admits an in�nite reduction. It is not di�cult to
see that there exists an in�nite reduction in which all steps take place at the root
position and both kinds of rewrite rules are used in�nitely often. (This can be
shown formally using type elimination [20].) Any such reduction must contain a
subsequence of the form

F (c; c; a(t))! F (a(t); a(t); a(t)) !+ F (c; c; a(t)))| {z }
where in the underbraced part only rewrite rules of the form F (�(x); �(y); z)!
F (x; y; z) are used. Hence a(t) = �1 � � ��n(c) = �1 � � ��n(c) for some n � 1 with
�i; �i) 2 P for i = 1; : : : ; n, giving a solution for P . ut

This proves undecidability of termination. Since the constructed in�nite re-
duction is always cyclic, this also proves undecidability of both loopingness and
cyclicity. The advantage of S(P) over R(P) is that it is length-preserving, which
means that jl�j = jr�j for all rules l! r in S(P) and all ground substitutions �.
Here jtj denotes the number of function symbols in t. Since for length-preserving
TRSs termination and simple termination coincide, this proves that both simple
termination and self-embeddingness are undecidable. The main result of [22] is
that S(P) is totally terminating if and only if P admits no solution, proving
undecidability of total termination.

3.1 NL) AC

Let

S1(P) =

�
F (c; c; a(z))! g(F (a(z); a(z); a(z))) for all a 2 �

F (�(x); �(y); z) ! F (x; y; z) for all (�; �) 2 P

Proposition 15. The TRS S1(P) is acyclic for every PCP instance P .

9

Proof. For a proof by contradiction, assume a cyclic S1(P)-reduction t !+ t

exists. Applying rules of the form F (c; c; a(z)) ! g(F (a(z); a(z); a(z))) strictly
increases the number of g symbols, while the other kind of rules does not change
the number of g symbols. Hence in a reduction t !+ t only rules of the second
kind are applied. But these rules constitute a terminating system, yielding the
desired contradiction. ut

Proposition 16. The TRS S1(P) is looping if and only if P admits a solution.

Proof. If 2 �+ is a solution for P then we have the S1(P)-loop

F ((c); (c); (c))!+ F (c; c; (c))! g(F ((c); (c); (c))):

Conversely, if S1(P) is looping then it admits an in�nite reduction. Erasing
all occurrences of g in any in�nite S1(P)-reduction yields an in�nite R(P)-
reduction. According to Prop. 14, P admits a solution. ut

3.2 SN) NL

Let

S2(P) =

8>><
>>:

h(F (c; c; a(z)))! g(F (a(z); a(z); a(z))) for all a 2 �
F (�(x); �(y); z) ! F (x; y; z) for all (�; �) 2 P

h(g(x))! g(h(x))
f(g(x))! f(h(h(x)))

Proposition 17. The TRS S2(P) is non-looping for every PCP instance P .

Proof. For arbitrary terms t de�ne inductively:

�(x) = 0 (x) = 0 for x 2 X
�(c) = 0 (c) = 0

�(a(t)) = 0 (a(t)) = 1 + (t) for a 2 �
�(f(t)) = 0 (f(t)) = 1 + (t)
�(g(t)) = 1 + �(t) (g(t)) = (t)
�(h(t)) = 1 + �(t) (h(t)) = (t)

�(F (t1; t2; t3)) = 0 (F (t1; t2; t3)) = 1 +maxf (t1); (t2); (t3)g

For every S2(P)-reduction step t ! u we have �(t) = �(u) and (t) � (u).
Assume S2(P) admits a loop. Choose a loop t !+ C[t�] for which the nesting
of F symbols in t is minimal. From (t) � (C[t�]) we conclude that C only
consists of g and h symbols; from �(t) = �(C[t�]) we conclude that C is the
trivial context. Hence t!+ t�. Write t = D[F (t1; t2; t3)] for D consisting only of
unary symbols. Hence D[F (t1; t2; t3)]!

+ D[F (t1�; t2�; t3�)]. Due to minimality
not all steps take place inside t1, t2, t3. Moreover, at least one of the steps must
a�ect the contextD for otherwise we would have F (t1; t2; t3)!

+ F (t1�; t2�; t3�)
with only applications of the rules F (�(x); �(y); z) ! F (x; y; z) at root positions,
but then the size of the maximal topmost part of t1 consisting entirely of symbols
in � must exceed that of t1�, which is clearly impossible. Hence we obtain a

10

non-empty reduction D[c] !+ D[c] in the TRS consisting of the three rules
h(c) ! g(c), h(g(x)) ! g(h(x)), and f(g(x)) ! f(h(h(x))). Considering size
and observing that the �rst two rules are terminating yields a contradiction. ut

Proposition 18. The TRS S2(P) is terminating if and only if P admits no

solution.

Proof. Let 2 �+ be a solution for P . Write t = F ((c); (c); (c)). For every
i > 0 we have the S2(P)-reduction

f(hi(t)) = f(hi(F ((c); (c); (c))))!+ f(hi(F (c; c; (c))))

! f(hi�1(g(t)))!� f(g(hi�1(t)))! f(hi+1(t));

easily extending to an in�nite reduction. Conversely, assume S2(P) admits an
in�nite reduction. Erasing all occurrences of f , g, and h yields an in�nite R(P)-
reduction. According to Prop. 14, P admits a solution. ut

3.3 NSE) SN

Let

S3(P) =

8<
:

F (c; c; a(z))! G(a(z); a(z); a(z)) for all a 2 �
G(�(x); �(y); z) ! G(x; y; z) for all (�; �) 2 P

G(c; c; z)! F (h(c); c; z)

Proposition 19. The TRS S3(P) is terminating for every PCP instance P .

Proof. We apply semantic labelling as described in [21]. As modelM we choose
two elements 0, 1, with interpretations FM(x; y; z) = GM(x; y; z) = aM(x) =
cM = 1 and hM(x) = 0 for all x; y; z 2 f0; 1g and a 2 � . Since all left and
right-hand sides of the rules are equal to 1 in this interpretation, M is indeed
a model for S3(P). Using this model we label the symbol F by the value of its
�rst argument, yielding the labelled system

S 03(P) =

8<
:

F1(c; c; a(z))! G(a(z); a(z); a(z)) for all a 2 �
G(�(x); �(y); z) ! G(x; y; z) for all (�; �) 2 P

G(c; c; z)! F0(h(c); c; z)

The main result of semantic labelling states that S3(P) is terminating if and
only if S 03(P) is terminating. The latter holds by recursive path order: choose
F1 > G > F0 > h. ut

Proposition 20. The TRS S3(P) is self-embedding if and only if P admits a

solution.

Proof. Let 2 �+ be a solution for P . Then we have the S3(P)-reduction

F (c; c; (c))! G((c); (c); (c))!+ G(c; c; (c))! F (h(c); c; (c)):

11

Since F (h(c); c; (c)) !Emb F (c; c; (c)), S3(P) is self-embedding. Conversely,
assume S3(P) is self-embedding. Let (t) denote the maximal nesting of F and
G symbols in a term t:

 (x) = 0 for x 2 X
 (a(t)) = (t) for a 2 �
 (c) = 0 (F (t1; t2; t3)) = 1 +maxf (t1); (t2); (t3)g

 (h(t)) = (t) (G(t1; t2; t3)) = 1 +maxf (t1); (t2); (t3)g

Obviously, t !S3(P) u implies (t) = (u). Let t !+
S3(P)

u !�
Emb t be such

that (t) is minimal. We may assume that the topmost symbol of t is either
(i) F or (ii) G. Since (t) = (u) and u !�

Emb t we conclude that the root
symbols of t and u coincide. Moreover, by our minimality assumption, there is
at least one reduction step in t!+

S3(P)
u at the root position. First we consider

case (i). The S3(P)-reduction from t to u must start as t = F (c; c; a(t1)) !
�

F (c; c; a(t2))! G(a(t2); a(t2); a(t2)), where t1 !
� t2, for otherwise there would

be no reduction step at a root position. Since the root symbols of t and u coincide,
it further follows that G(a(t2); a(t2); a(t2)) !

+ G(c; c; t3) ! F (h(c); c; t3) !
�

F (h(c); c; t4) = u. Consequently, a(t2) is a solution for P . Next we consider case
(ii). Write t = G(t1; t2; t3) and u = G(u1; u2; u3). Note that the rule G(c; c; z)!
F (h(c); c; z) is not applicable at root positions in the S3(P)-reduction (�) from
t to u because for no term t0 there is an S3(P)-reduction from F (h(c); c; t0) to u.
Hence only rules of the form G(�(x); �(y); z) ! G(x; y; z) are applicable at root
positions in (�) and thus the root symbol of every term in (�) is G. For every
reduction step G(t01; t

0
2; t

0
3) ! G(u01; u

0
2; u

0
3) in (�) we have either (1) t01 = u01

if the reduction took place in t02 or t03, (2) t
0
1 !S3(P) u

0
1 if the reduction took

place in t01, or (3) t
0
1 . u

0
1 (i.e., u01 is a proper subterm of t01) if the reduction

took place at the root. By assumption alternative (3) occurs at least once. Using
the well-known facts that . � !S3(P) � !S3(P) � . and . � . � . it follows that
t1 !

�
S3(P)

� . u1. Because (t) = (u), there are no reduction steps at root
positions in u!�

Emb t. Hence u1 !
�
Emb t1. Combining this with t1 !

�
S3(P)

� . u1

yields t1 !
+
S3(P)

� !�
Emb t1. However, (t1) < (t), contradicting the minimality

of (t). We conclude that case (ii) is impossible. ut

3.4 ST) NSE

Let S4(P) be the TRS�
F (x; �a(y); x; �a(y))! F (h(a(x)); h(y); a(x); y) for all a 2 �
F (�(x); y; �(z); w) ! F (h(x); h(��(y)); z; ��(w)) for all (�; �) 2 P

Proposition 21. The TRS S4(P) is non-self-embedding for every PCP instance

P .

Proof. For a term t, let ktk denote the number of F , a, and �a symbols in t. Clearly
ktk = kuk for every reduction step t !S4(P) u. For a proof by contradiction,

12

assume a self-embedding reduction t !+
S4(P)

u !�
Emb t (�) exists. Since ktk =

kuk, in u !�
Emb t only the rule h(x) ! x is applied. Just as in the proof of

Prop. 20 we may assume that there is at least one reduction step in t!+
S4(P)

u

at the root position. Hence we may write (�) as

t = F (t1; t2; t3; t4)!
� F (u1; u2; u3; u4)| {z }! F (h(v1); h(v2); v3; v4)!

� u!� t| {z }
where in the underbraced parts no steps take place at root positions. (Note that
no term of the form F (h(v1); h(v2); v3; v4) is a redex.) We obtain kt1k = ku1k 6=
kh(v1)k = kt1k, which is a contradiction. ut

Proposition 22. The TRS S4(P) is simply terminating if and only if P admits

no solution.

Proof. According to Prop. 14 it is su�cient to show that S4(P) is simply ter-
minating if and only if S(P) is terminating. Suppose S(P) is non-terminating.
Since !S(P) � !

+
S4(P)[Emb, also S4(P) [Emb is non-terminating and hence

S4(P) is not simply terminating. Conversely, assume S(P) is terminating. Since
S(P) is length-preserving it is simply terminating and thus admits a compatible
simple monotone algebra (A;>). By de�ning hA(x) = x for x 2 A this becomes
a simple monotone algebra compatible with S4(P), hence S4(P) is simply ter-
minating. ut

3.5 TT) ST

Let

S5(P) =

8>><
>>:

F (x; �a(y); x; �a(y))! F (â(x); y; ~a(x); y) for all a 2 �
F (â(x); y; â(x); y)! F (a(x); y; a(x); y) for all a 2 �
F (~a(x); y; ~a(x); y)! F (a(x); y; a(x); y) for all a 2 �
F (�(x); y; �(z); w) ! F (x; ��(y); z; ��(w)) for all (�; �) 2 P

Proposition 23. The TRS S5(P) is simply terminating for every PCP instance

P .

Proof. Since S5(P) is length-preserving it su�ces to prove termination. We apply
semantic labelling. As model M we choose two elements 0, 1, with interpreta-
tions FM(x; y; z; w) = aM(x) = �aM(x) = âM(x) = 0 and ~aM(x) = 1 for all
x; y; z; w 2 f0; 1g and a 2 � . Since all left and right-hand sides of the rules are
equal to 0 in this interpretation, M is indeed a model for S5(P). Using this
model we label the symbol F as follows: it is labelled by 1 if the interpretations
of the �rst and the third argument are equal, and by 0 otherwise. This yields
the labelled system

S 05(P) =

8>>>><
>>>>:

F1(x; �a(y); x; �a(y))! F0(â(x); y; ~a(x); y) for all a 2 �
F1(â(x); y; â(x); y) ! F1(a(x); y; a(x); y) for all a 2 �
F1(~a(x); y; ~a(x); y) ! F1(a(x); y; a(x); y) for all a 2 �
F1(�(x); y; �(z); w) ! F1(x; ��(y); z; ��(w)) for all (�; �) 2 P
F1(�(x); y; �(z); w) ! F0(x; ��(y); z; ��(w)) for all (�; �) 2 P

13

From [21] we know that S5(P) is terminating if and only if S 05(P) is terminating.
The latter holds by lexicographic path order: choose F1 > F0 > â > ~a > a > �a
for all a 2 � and compare the arguments of F1 from left to right. ut

Proposition 24. The TRS S5(P) is totally terminating if and only if P admits

no solution.

Proof. Assume P admits no solution. According to [22] the TRS S(P) is totally
terminating, hence admits a compatible well-founded monotone algebra (A;>)
with > a total order on A. We de�ne the well-founded monotone algebra (B;�)
by B = A � N, (x; n) � (x0; n0) if and only if x > x0 or x = x0 and n > n0, and
interpretations

FB((x1; n1); (x2; n2); (x3; n3); (x4; n4)) = (FA(x1; x2; x3; x4); n1 + n2 + n3 + n4)

aB((x; n)) = (aA(x); n)

�aB((x; n)) = (�aA(x); n)

âB((x; n)) = ~aB((x; n)) = (aA(x); n+ 1)

cB = (cA; 0)

One easily veri�es that (B;�) is a well-founded monotone algebra compatible
with S5(P). Since � is a total order on B, S5(P) is totally terminating. Con-
versely, assume that 2 �+ is a solution for P . For a proof by contradiction,
suppose that S5(P) is totally terminating. Then S5(P) admits a compatible
monotonic well-founded total order > on ground terms. Let t, u be arbitrary
ground terms (remember that a constant c 2 F is assumed) and a 2 � . If
â(t) > ~a(t) then

F (â(t); u; ~a(t); u) > F (~a(t); u; ~a(t); u) > F (a(t); u; a(t); u);

otherwise ~a(t) > â(t) and

F (â(t); u; ~a(t); u) > F (â(t); u; â(t); u) > F (a(t); u; a(t); u):

Hence for all ground terms t, u and all a 2 � we obtain F (â(t); u; ~a(t); u) >
F (a(t); u; a(t); u). Using this result and the compatibility of S5(P) and > yields

F ((c); c; (c); c) > � � � > F (c; �(c); c; �(c))

= F (c; �a(�1(c)); c; �a(�1(c))) > F (â(c); �1(c); ~a(c); �1(c))

> F (a(c); �1(c); a(c); �1(c)) > � � � > F ((c); c; (c); c);

where is written as 1a, contradicting the irreexivity of >. ut

3.6 !T) TT

Let S6(P) be the TRS8>><
>>:

F (c; �a(y); c; �a(w); u)! G(a(c); y; a(c); w; h(h(u))) for all a 2 �
G(x; �a(y); z; �a(w); u)! G(a(x); y; a(z); w; u) for all a 2 �

h(G(�(x); c; �(z); c; u)) ! F (x; ��(c); z; ��(c); u) for all (�; �) 2 P
F (�(x); y; �(z); w; u)! F (x; ��(y); z; ��(w); u) for all (�; �) 2 P

14

Proposition 25 [6]. The TRS S6(P) is totally terminating for every PCP in-

stance P .

Proof. We use the Knuth-Bendix order ([11]) where h is assigned weight 0, and
every other function symbol weight 1. For the precedence we choose h > F >

G > a > �a > c for all a 2 � . Note that h satis�es the constraint the Knuth-
Bendix order requires, namely that every function symbol of weight 0 is unary
and greatest in precedence. We take lexicographic status for each function sym-
bol, F left-to-right and G right-to-left. The induced Knuth-Bendix order orients
each rule from left to right. By a result of Ferreira [4, Thm. 4.47] the TRS S6(P)
is not only terminating, but even totally terminating. ut

Proposition 26 [6]. The TRS S6(P) is !-terminating if and only if P admits

no solution.

Proof. Let 2 �+ be a solution for P . Then we have for all ground terms t an
S6(P)-reduction

h(G((c); c; (c); c; t))!+ F (c; �(c); c; �(c); c; t)

!+ G((c); c; (c); c; h(h(t))):

For a proof by contradiction, assume that S6(P) is !-terminating, with com-
patible well-founded monotone algebra (A;>) where A = N. De�ne fA(t) =
GA([(c)]; cA; [(c)]; cA; t). The above reduction proves !-termination of the sin-
gle rule h(f(x)) ! f(h(h(x))), contradicting [20, Prop. 11]. Hence S6(P) is not
!-terminating.

This leaves to prove that S6(P) is !-terminating if P has no solution. Here
we sketch the proof, for more details we refer to [6]. For a ground term t, let
ktk denote the number of barred and unbarred letters in t not below an F ,
G, or h symbol. An analysis of reduction patterns shows that any reduction
starting from a term of the shape hk(G(p; q; r; s; t)) or hk(F (p; q; r; s; t)) with at
least 3 � minfkpk + kqk; krk + kskg steps at the topmost F or G symbol, gives
rise to a solution for P . We de�ne lenF (p; q; r; s) to be the maximum number
of reduction steps at the topmost F or G symbol, starting from a term of the
shape hk(F (p; q; r; s; t)). Similarly we de�ne lenG(p; q; r; s) for starting terms of
the shape hk(G(p; q; r; s; t)). We de�ne auxiliary functions on N+ as follows:

conc(x; y) = 10blog(y)c+1 � x+ y

revc(x; y) = conc(conc(x; y); 4 : : : 4| {z }
blog(x)c+1 digits

)

bound(x; y; z; w) = 3 �minfblog(revc(x; y))c; blog(revc(z; w)cg

15

Next an auxiliary function � : N+ ! T (F) is de�ned recursively as follows:

�(x) =

8>>>>>>>><
>>>>>>>>:

0(�(x0)) if x = 10x0 + 2

1(�(x0)) if x = 10x0 + 3
�0(�(x0)) if x = 10 � conc(2; x0) + 4
�1(�(x0)) if x = 10 � conc(3; x0) + 4

c if x = 1

h(c) otherwise

Now we de�ne the well-founded monotone algebra (A;>) with A = N+ :

cA = 1

0A(x) = 10x+ 2 �0A(x) = 10 � conc(2; x) + 4

1A(x) = 10x+ 3 �1A(x) = 10 � conc(3; x) + 4

hA(x) = 10x+ 5

FA(x; y; z; w; u) = 6 + 10u � 156lenF (�(x);�(y);�(z);�(w))+1+B

GA(x; y; z; w; u) = 7 + 10u � 156lenG(�(x);�(y);�(z);�(w))+1+B

where B = (bound(x; y; z; w) + 1)(revc(x; y) + revc(z; w)). The de�nition of �
expresses the fact that from [t] one can reconstruct the sequence of barred and
unbarred letters of t. This information is essential to determine the estimated
maximal topmost reduction length of F and G terms. Formally, structural in-
duction on � shows:

for all strings � of barred and unbarred letters and for all ground terms
t and t0, �([t]) = �(t0) is equivalent to the existence of a ground term t00

such that t = �(t00) and �([t00]) = t0.

Structural induction on � proves that

revc([�](�(x)); [�](y)) = revc([�](x); [�](��(y)))

for � 2 � �, � : X ! N+ , and x; y 2 X . Now one can show that [l�] > [r�] for
any ground instance l� ! r� of a rule in S6(P). The central step in this proof
is 156 � [t] > 155 � [t] = [h(h(t))] for the �rst type of rules. The functions 0A, 1A,
and hA are trivially monotonic. Observing that conc and revc are monotonic,
and that bound is weakly monotonic, in every argument, one obtains that �0A,
�1A are monotonic as well. To establish that FA and GA are monotonic in all
arguments, one proves �rst that if P has no solution then for all x; y; z; w 2 N+

lenF (�(x); �(y); �(z); �(w)) < bound(x; y; z; w)

and

lenG(�(x); �(y); �(z); �(w)) < bound(x; y; z; w):

16

Obviously FA and GA are monotonic in their last argument. For the other argu-
ments, let x � x0, y � y0, z � z0, w � w0 where at least one of these inequalities

is strict, and prove that log156b
FA(x;y;z;w;u)

10u c < log156b
FA(x

0;y0;z0;w0;u0)
10u c. So in-

deed we arrive at a compatible well-founded monotone algebra corresponding
to the positive integers N+ , which is order isomorphic to N, hence S6(P) is !-
terminating. This completes the proof. ut

3.7 WN and CR

None of the TRSs R(P), S(P), S1(P) to S6(P) is conuent for arbitrary PCP
instances. This can be repaired by adding appropriate rewrite rules of the shape
F (x; y; z; : : :)! c, G(x; y; z; : : :)! c, f(c)! c, g(c)! c, and h(c)! c without
a�ecting any of our propositions. This has the additional bene�t of making the
TRSs S1(P) and S2(P) weakly normalizing. (Note that S3(P) to S6(P) are
always terminating.) Consequently all of our results hold for conuent weakly
normalizing TRSs.

In particular, the union of R(P) and the rule F (x; y; z)! c is easily seen to
be weakly normalizing while it is terminating if and only if P admits no solution
as in Prop. 14. This proves relative undecidability of the implication SN)WN.

4 Conclusions

For most of the implications in the conuence and termination hierarchies we
proved relative undecidability; only for polynomial termination the question of
(relative) undecidability is still open.

One can wonder whether similar results hold for TRSs consisting of sin-
gle rules. Undecidability of termination ([2]), and non-self-embeddingness and
simple termination ([15]) of single rules was already known. For the lower four
implications in the termination hierarchy indeed relative undecidability for single
(even orthogonal) rules can be proved; this work is still in progress.

References

1. A.-C. Caron, Linear Bounded Automata and Rewrite Systems: Inuence of Initial
Con�guration on Decision Properties, Proceedings of the 15th Colloquium on Trees
in Algebra and Programming, Lecture Notes in Computer Science 493 (1991) 74{
89.

2. M. Dauchet, Simulation of Turing Machines by a Regular Rewrite Rule, Theoretical
Computer Science 103 (1992) 109{120.

3. N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, in: Handbook of Theoretical
Computer Science, Vol. B (ed. J. van Leeuwen), North-Holland (1990) 243{320.

4. M.C.F. Ferreira, Termination of Term Rewriting: Well-foundedness, Totality, and

Transformations, PhD thesis, University of Utrecht, 1995.
5. M.C.F. Ferreira and H. Zantema, Total Termination of Term Rewriting, Applicable

Algebra in Engineering, Communication and Computing 7 (1996) 133{162.

17

6. A. Geser, Omega-termination is Undecidable for Totally Terminating Term Rewrit-

ing Systems, Technical Report MIP-9608, Universit�at Passau (1996).
7. G. Huet and D. Lankford, On the Uniform Halting Problem for Term Rewriting

Systems, report 283, INRIA (1978).
8. G. Huet, Conuent Reductions: Abstract Properties ans Applications to Term

Rewriting Systems, Journal of the ACM 27 (1980) 797{821.
9. G. Huet and D.C. Oppen, Equations and Rewrite Rules: A Survey, in: Formal

Language Theory: Perspectives and Open Problems (ed. R. Book), Academic Press
(1980) 349{405.

10. J.W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer Science
(eds. S. Abramski, D. Gabbay and T. Maibaum), Volume 2, Oxford University
Press (1992) 1{116.

11. D.E. Knuth and P.B. Bendix, Simple Word Problems in Universal Algebras, in:
Computational Problems in Abstract Algebra (ed. J. Leech), Pergamon Press
(1970) 263{297.

12. M. Kurihara and A. Ohuchi, Modularity of Simple Termination of Term Rewriting

Systems, Journal of IPS Japan 31 (1990) 633{642.
13. P. Lescanne, On Termination of One Rule Rewrite Systems, Theoretical Computer

Science 132 (1994) 395{401.
14. Y. Matiyasevich and G. Senizergues, Decision Problems for Semi-Thue Systems

with a Few Rules. Proceedings of the 11th IEEE Annual Symposium on Logic in
Computer Science, New Brunswick, pp. 523{531, 1996.

15. A. Middeldorp and B. Gramlich, Simple Termination is Di�cult, Applicable Alge-
bra in Engineering, Communication and Computing 6 (1995) 115{128.

16. A. Middeldorp and H. Zantema, Simple Termination Revisited, Proceedings of the
12th International Conference on Automated Deduction, Nancy, Lecture Notes in
Arti�cial Intelligence 814 (1994) 451{465. Extended version to appear as Simple
Termination of Rewrite Systems in Theoretical Computer Science 175 (1997).

17. D.A. Plaisted, The Undecidability of Self-Embedding for Term Rewriting Systems,
Information Processing Letters 20 (1985) 61{64.

18. E. Post, A Variant of a Recursively Unsolvable Problem, Bulletin of the American
Mathematical Society 52 (1946) 264{268.

19. A. Rubio, Extension Orderings, Proceedings of the 22nd International Colloquium
on Automata, Languages and Programming, Szeged, Lecture Notes in Computer
Science 944 (1995) 511{522.

20. H. Zantema, Termination of Term Rewriting: Interpretation and Type Elimination,
Journal of Symbolic Computation 17 (1994) 23{50.

21. H. Zantema, Termination of Term Rewriting by Semantic Labelling, Fundamenta
Informaticae 24 (1995) 89{105.

22. H. Zantema, Total Termination of Term Rewriting is Undecidable, Journal of Sym-
bolic Computation 20 (1995) 43{60.

23. H. Zantema and A. Geser, Non-Looping Rewriting, Utrecht University, Department
of Computer Science, report UU-CS-1996-03 (1996).

18

