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Energies and Related Properties 
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Department of Chemistry 
and 
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Abstract 

LBL-14705 

Methods of calculation of potential energy curves or surfaces, 

including dissociation energies, bond distances, and vibration 

frequencies, are discussed as well as recently obtained results for 

several molecules. The ab initio relativistic methods involve the 

derivation of "shape-consistent" effective potentials from 

Dirac-Fock atomic calculations. These effective potentials are 

averaged and differenced with respect to spin with the differences, 

P3/2 - PI/2' etc., yielding spin-orbit operators. The molecular 

calculations are then set up in a familiar manner through the SCF 

stage using spin-averaged effective potentials. The final stage is 

a configuration interaction calculation including the spin-orbit 

terms as well as the electron repulsion terms. 

Calculations which have been made for several low-lying 

excited states as well as the ground state for Au
2

, T~H, T~2' Sn
2

, 

and Pb
2 

are reviewed. Good agreement is obtained with spectroscopic 

data and a number of interesting predictions are made. 

]his work was supported by the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Chemical Sciences Division of the 
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



This paper is based on a lecture at the 1982 Symposium on Relativistic 

Quantum Mechanics which reviewed both the calculational methods and the 

results for the dis~ociation energies and related properties for a variety 

of molecules containing very heavy atoms. Most chemical properties depend 

on the curves or surfaces giving potential energy, in the Born-Oppenheimer 

sense, for the dissociation or rearrangement of atoms in molecules or other 

clust.ers including activated complexes and in the extreme of large clusters, 

crystals. The location: of potential minima yield bond distances and angles 

while the curvature near minima together, with atomic mass factors, yield 

vibration frequencies. 

These potential curves or surfaces fo~. light atoms are now routinely 

calculated to an accuracy of chemical interest and methods for improvement 

of precision are regularly forthcoming. The choice (1) of basis functions 

and (2) of excited configurations to represent electron correlation still 

involve some personal judgment in procedures which are otherwise quite 

unambiguous and based on "first principles". The calculational cost rises, 

however, very rapidly as the number of basis functions increases. Hence, 

if the atoms have many inner-shell electrons whose orbitals are essentially 

unchanged in the processes of interest, it is most advantageous to avoid the 

inclusion of large numbers of basis functions to represent these inner-shell 

orbitals. 

Effective potential (EP) methods have been developed which circumvent 

the detailed representation of these inner-shell orbitals. It has now been 

demonstrated [1,2] that the interatomic potential curves or surfaces can be 

calculated accurately by effective potential methods; the agreement between 

the EP results and those from all-electron calculations provides the evidence 

of accuracy. 
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Relativistic effects are significant for these interatomic potential 

curves only for very heavy atoms which have many inner shell electrons. 

Thus it is very desirable to be able to use effective potential methods 

for any case where relativistic effects are important. Indeed for inter

mediate atomic numbers effective potential methods become advantageous 

while relativistic effects may still be negligible. 

There are a number of ab initio EP methods'as well as others of a 

semi-empirical nature. Even among the ab initio methods there are substan

tial differences in the accuracy to which various properties are calculated. 

For example, one method yields good results for the band structure of a 

crystal at fixed, experimental geometry, bu~ yields poor results for the 

dissociation energy of either a molecule or a crystal. Thus, one should 

choose an EP method which has been shown to yield accurate results for the 

properties of interest. For interatomic potential energies, at least, the 

essential features are now understood [1] and there is no significant 

uncertainty in the choice of an accurate EP method. 

Of course, if the phenomenon of interest makes a change in an inner 

shell of an atom, then the basic idea of an unchanged core is no longer 

appropriate, and no EP method will be satisfactory. The division between 

core and valence shells is arbitrary, however, and one can extend the valence 

shell to include all orbitals appreciably affected by any phenomenon related 

primarily to the outer electrons of the atom. For exa~ple, chemical bonding 

for the lead atom relates primarily to the 6p orbitals with important contri-

butions also from the 6s orbitals. Thus the primary effects can be described 

by an EP treatment with a 4-electron valence shell for Pb. However, an EP 

treatment with a l4-electron valence shell, including the Sd shell, will 

yield higher accuracy for the ground state and can describe excited states 

with Sd vacancies. 
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A complete relativistic treatment of a many electron system involves 

many complications which are unimportant for the phenomena of interest here. 

Thus nuclear size a~d shape and many-electron relativistic effects such as 

the Breit term have negligible effect on valence-level properties. Further

more, the relativistic effects which are important produce their effect on 

valence electrons indirectly. These effects arise in the inner portion of 

the atom and influence valence electrons through core-valence interactions 

and orthogonality. Thus these relativistic .effects are all contained in 

the effective potentials and the Schrodinger kinetic energy operator is 

fully satisfactory for valence electron motion in an EPtreatment. 

The Pauli approximation to the Dirac equation includes three relativistic 

terms commonly called the mass-velocity, Darwin, and spin-orbit (SO) terms. 

All three yield effects of significance for our purposes. While a full 

atomic solution in the Pauli approximation would probably serve reasonably 

well as a basis for relativistic EP, there is no difficulty in using the 

exact Dirac operator for the atomic calculation. Desclaux [3] has developed 

and made available computer codes which yield numerical solutions for atoms 

with the Dirac operator in the self-consistent-field (SCF) approximation. 

There seems to the writer to be no reason to use a less accurate or complete 

atomic solution when a Dirac operator solution is readily available. 

Given relativistic effective potentials (REP) for the atoms of the' 

system, there are still important problems in the solution for the motion 

of the valence electrons for the array of two or more atoms of interest. 

This is the primary subject of this paper. Excited states will be considered 

as well as the ground state. Further comment will also be given in the next 

section concerning the determination of the effective potentials. Results 

will be presented for a number of diatomic molecules and interesting features 

discussed. 
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Effective Potentials 

There is an extensive literature on effective or pseudo potentials; 

much of this concerns relatively crude methods which were useful for the 

purpose then at hand. But it is our objective to attain essentially the 

accuracy of an ab initio, all-electron treatment without detailed considera-

tion of the inner orbitals in the molecular calculation. EP methods with 

this objective were developed on a nonrelativisticbasis by Goddard and 

Melius [4] and by Kahn, et al. [5] among others. Their work was, in turn, 

based on that of Phillips and Kleinman [6]. 

For each angular symmetry the radial factor for the outer orbital 1/J~ 

of the atom is transformed to a pseudo-orbital X~ by a transformation which 

removes the inner nodes and oscillations. Then one calculates an EP for 

that angular symmetryu~P by requiring that it reproduce the pseudo~orbital 

and the true energy eigenvalue £~ through the one-electron equation 

(1) 

Here Z is the nuclear charge and W~ is the potential (comprising the usual 

Coulomb and exchange terms) arising from the interaction of the electron in 

. X~ with' all of the other electrons of the atom. This equation can be in

verted to yield 

(2) 

EP 
which can be solved for u~ provided all nodes have been eliminated from X~. 

The critical aspect in EP methods concerns the quantity W~ which should 

be the same whether calculated from the true orbitals or the pseudo-orbitals. 

At small r, i.e., within the core region, . some difference in W
t 

is 

unavoidable since the elimina.tion of the nodes in the true orbitals 
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necessarily yields some differences between the pseudo-orbitals and the true 

orbitals. However, Christiansen, ~ al. [1] showed that differences in WR. 

at small r were unimportant for our purposes whereas exact equality at large 

r, in the valence region, was essential. If the EP are to be used for a 

different purpose, this criterion might be altered, but we will not discuss 

that possibility. 

It was shown that the criterion for the pseudo-orbital was exact equality 

to the true orbital in the region of large r. At intermediate r the differ-

ence should be only that necessary to maintain normalization with smooth 

behavior and with no nodes even at small r. Explicitly for each R. one writes 

x = 1/J, 

x = f, 

r ~ r 
m 

r < r 
m 

where r is a radius at which the inner and outer expressions are joined. 
m 

The inner function f is chosen to have the same value and the same first, 

second, and third derivatives as 1/J at r and to have no nodes and not more 
m 

than two inflexions or more than three inflexions in the first derivative 

in the range 0 to r. While other criteria of smoothness could be chosen, 
m 

(3) 

these seem satisfactory. In our work we have used a five term power series 

for f with a fairly high power (at least R. =2) in the leading term. The. 

complete pseudo-orbital must be normalized and r is chosen as small as 
m 

possible subject to satisfaction of all other criteria. 

In our calculations we used the numerical expression for ~R. as it arises 

EP 
from the atomic calculation. Also XR. and, eventually, U were handled as 

numerical expressions. For many purposes it would be useful to express the 

EP as expansions in analytical functions, but we have not done so in the 

work reported here. 
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EP 
The EP comprising a series of UR. functions of r must be generalized for 

use in molecules where the potential is no longer spherical. The appropriate 

expression for each. atom in the nonrelativistic case was given by Goddard and 

Melius [4]. 

(4) 

where R. and m have their usual significance. The final factor is a projection 

operator comprising the usual angular factors in the SchrBdinger atomic orbitals. 

While the sum over R. runs, in principle, to infinity, it is found that 

there is no appreciable change in u~P with change in R. after R. exceeds by one 

the maximum represented in the core. Thus it is convenient to rewrite 

equation (4) in the form 

~ ~R. EP EP I I /.. /.. [U R. - U
L 

] R.m><R.m 
R.=o m=-R. 

(5) 

where L is a value of R. exceeding, usually by one, the maximum R. represented 

in the core of the atom. The complete EP is then the sum of expressions of 

equation (5) for the various atoms in the molecule or other cluster. 

This EP procedure has been tested [1,2] by comparison with all-electron 

calculations for the ground state potential curves for F
2

, CR.
2

, LiCR., Ar
2

, 

+ + + Ar
2 

' Kr
2

, Kr
2 

' Xe
2

, and Xe
2

• In all cases the agreement is excellent and 

within the uncertainties associated with small differences in choice of basis 

functions or other aspects of the calculations. 

Relativity introduces several changes in the solution for the atom some 

of which must be retained in the effective potentials. Four-component spinors 

replace the nonrelativistic spin orbitals. It is readily shown that the two 

small components are negligible for valence-shell spinors (but not for inner-

shell spinors). An alternate procedure, theoretically more exact, is to make 



the Foldy-Wouthuysen transformation of the Dirac spinor, but this has no 

significant effect on the result for a valence-shell orbital. Thus it is 

easier and quite adequate to simply discard the small components of the Dirac 

spinor and to form pseudo-orbitals from the large components. In general, 

however, the angular factors are now different and the quantum number j is 

introduced to define the relativistic angular functions. Also the radial 

functions for j = t + ~ and j = t - ~ are now different. Thus there will be 

different pseudo-orbitals and effective potentials for j = t + ~ and j = t - ~. 

With this generalization the relativistic EP for an atom becomes 

uEP 
+ 

L,J 

L 

~ 
t=o 

(6) 

where the projection operators are now two-component spinors comprising the 

angular factors for the two large components of the Dirac spinors. Again it 

EP 
is found that there is no significant change of Un • with t and j above 

"',J 

values slightly larger than those represented in the core; hence, the sum 

over t is terminated as in the nonrelativis~ic case. 

The difference in U
EP 

between j = t + ~ and j = t - ~ is just the 
t,j 

spin-orbit effect. We shall rearrange equation (6) on this basis later. 

The justification of this form of relativistic EP is discussed in more detail 

by Lee, et aL [7]. 

Of course, one does not ordinarily have exact atomic orbitals as an 

input to the generation of effective potentials. Usually the orbitals from 

numerical Hartree-Fock (HF) or Dirac-Fock (DF) calculations are used. In 

addition to ground state ~tomic calculations, one must have results for 

appropriate excited states in which other orbitals of interest are occupied. 

If the energies calculated for these excited states agree reasonably well 

with the experimental values, one presumes that the variousorbitals t 
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pseudo-orbitals, and effective potentials will be quite accurate. This has 

been the case for the atoms of greatest interest in our recent work, e.g., 

gold, thallium, and,lead. 

But there are cases where the HF or DF calculations are in serious error 

with respect to the energy differences between various low-energy atomic 

states. This is well-known for the elements of the first transition series. 

For example, for nickel the 3d
8

4s
2

(3F) and 3d
9
4s(3D) states actually differ 

in energy by only 0.03 eV whereasHF calculatio~s place the 3D state higher 

by 1.28 eVe The error 
10 1 . 

for the 3d (S) state is even larger. Also these 

errors are increased somewhat for relativistic DF calculations. Martin and 

Hay [8] discuss this problem and attempt its resolution by consideration of 

electron correlation. 

Molecular Calculations: Theory 

The Schrodinger Hamiltonian is adequate for valence-electron motion in 

the outer or valence region of atoms or molecules. This is established most 

easily by the smallness of the small component relative to the large 

component in the valence-level Dirac spinors for every heavy atoms. 

Relativistic effects are important, in heavy atoms, on the motion of elec-

trons near the nucleus - even of valence electrons of low angular momentum 

which do approach the nucleus. But all of these effects are incorporated in 

the effective potentials: both the indirect effects of core electrons and 

the direct effects on valence electron motion near the nucleus. Thus the 

use of the nonrelativistic Hamiltonian is adequate 'for molecular calculations 

.~ , 
but the relativistic properties of the EP, i.e., the difference for j = ~ + ~ 

and j = ~ - ~, impose relativistic symmetry on the molecular wavefunctions. 

9 



Given the EP and the adequacy of the nonrelativistic Hamiltonian for 

valence electron motion, the form of the Hamiltonian for molecular problems 

is the same for the relativistic or nonrelativistic basis. 

n 
v 

-1 
H = L h + L (rJ,l') 

\l=l \l 
\l>V 

(7) 

,,2 
N 

+ UEP
) h = -~ + L (-Z /r 

II \l a all a 
a 

(8) 

where the n valence electrons are indicated by \l or v and the N nuclei by a. 
v 

The effective charge Z is defined consistently with the EP for that atom. 
a 

But, as noted above, the angular symmetries of the projection operators in 

U
EP 

differ in the relativistic and nonrelativistic cases and this must be 
a 

recognized in the formulation of the wavefunction. Two general approaches 

are possible in the relativistic case and they will be discussed serially. 

lI)-lI) Coupling 

The most straightforward procedure for a relativistic problem is to 

formulate the molecular wavefunction as linear combinations of relativistic 

atomic spinors. For valence electrons the small components of the four-

component Dirac spinors may be neglected, leaving two-component spinors. 

The matrix elements of the EP on the same atom are very simple since the 

projection operators involve the angular factors of these same two-component 

spinors. The radial factors can be expressed in either Slater or Gaussian 

basis functions. This procedure is given in detail (for Slater basis func-

tions and linear molecules) by Lee, et a1., [9] for single configuration, 

se1f-consistent-fie1d (SCF) calculations. It was extended to mu1ti-

configuration SCF (MCSCF) calculations by Christiansen and Pitzer [10]. 

10 
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For linear molecules this method is reasonably satisfactory since a 

relatively small basis of Slater functions is adequate and the various matrix 

elements are ca1cu1~ted without particular difficulty. For most cases, 

however, a single configuration is inadequate - even more inadequate than 

(0. for the nonre1ativistic examples with light atoms. The reason is that the 

ground atomic states of even the heaviest atoms of interest are usually in inter-

,. 

mediate coupling rather than very close to j-j coupling. In other words the 

va1en~e-1eve1, electron-repulsion integrals are of the same magnitude as the 

spin-orbit (SO) terms. In w-w coupling the SO terms are included in the 

single configuration treatment. But it is not a good approximation to 

regard the electron-repulsion terms as a small perturbation; hence an 

appropriate MCSCF calculation is required. To properly account for electron 

correlation a large configuration interaction (CI) calculation is requix:ed, 

and this has not yet been accomplished in w-w coupling. 

There are serious limitations to the method starting in w-w coupling. 

Programs for CI calculations have not been prepared. Extensions from linear 

to nonlinear molecules will require new programs of considerable complexity. 

Also, one has been trained to think about molecules in A-S rather than w-w 

coupling, and it is easier, conceptually, to add SO terms to a calculation 

initiated in A-S coupling than to add electron repulsion terms to the w-w 

treatment. Thus we turn now to the alternate approach. 

A-S Coupling 

If one eliminates, for the moment, the spin-orbit term, the relativistic 

EP have the same symmetry as the nonrelativistic EP (but the numerical values 

of the EP still differ). This can be accomplished by taking the appropriate 

EP 
weighted average of U~j for j = ~ + ~ and j = ~ - ~ and using that averaged 

relativistic EP (AREP) with the nonrelativistic projection operators in 



Equations (5 and 6). Specifically the AREP are 

(9) 

In the particular case of s electrons there is no SO effect and no averaging 

is involved. Thus molecules such as Au
2

, where the bonding involves pri

marily s orbitals, can be treated [11,12] easily in A-S coupling. 

Alternatively, approximate AREP have been obtained [13] by the use of 

atomic calculations in which the mass-velocity and Darwin terms in the 

Pauli approximation are added to the nonrelativistic Hamiltonian. Since 

the SO terms is not included, the orbitals remain the same for j = t + ~ 

and j = t-~. While this method is less accurate than the averaging of 

results from DF atomic calculations, the difference does not appear to be 

significant in work published to this time. But this method does not yield 

a theoretical value for the spin-orbit effect. 

Given the AREP, the molecular calculation is set up with a wavefunction 

expressed in spin-orbitals and can be compl~ted at the SCF, MCSCF, or CI 

level by the same methods used in nonrelativistic calculations. Either 

Slater or Gaussian basis functions can be used and programs are available 

for nonlinear as well as linear structures. 

For most examples where relativistic effects are significant, one should 

include the spin-orbit effect on as sound a theoretical basis as the mass-

velocity and Darwin terms. The spin orbit operator operator for use with 

molecular pseudo-orbitals is simply the difference in the EP for j = t+~ 

and j = t - ~ multiplied by the appropriate projection operator [14,15]. 

t t+~ 
{2t+1 L It,t+~,m><t,t+~,ml 

-t-~ 

t+1 t-~ 
- -- Lit, t - ~, m> < t , t - ~, m I } 

2t+1 -t+~ 
(10) 
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with 

(11) 

The matrix elements of H
SO 

with respect to the atomic spin-orbital 

basis set will have the form 

(12) 

where Xp and Xq are spacial basis functions and the Pauli spinors 

the a and S spins of the electrons such that Pi = a = (~) or Pi = 

Pi define 

o 
S = (1). 

The matrix elements of H
SO 

between various A-Sstates for a given molecule 

can then be obtained as a sum of these terms with appropriate expansion 

coefficients. 

More specifically our calculations in the A-S coupling method proceed 

first with an SCF calculation uSing AREP. It can be set Up with either 

Slater or Gaussian basis functions and carried out with exactly the same 

programs as are used for nonre1ativistic calculations including EP. 

Next one carries out a configuration interaction calculation in which 

the spin-orbit matrix elements are included as well as those for electron 

repulsion. This CI calculation must include all low-energy configurations 

interconnected by the SO operator. The extent to which higher-energy con-

figurations are included in order to optimize the orbitals and to represent 

• electron correlation remains the same problem for relativistic as for non-

relativistic calculations. 

In general, the SO matrix elements- may be complex and they are often 

purely imaginary. Thus thediagonalization procedure for the CI matrix must 

accommodate complex elements. The iterative procedure of Davidson [16] for 

diagonalization was readily modified to allow for complex elements. Since 
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the SO operator is a one-electron operator, there are only a few complex 

elements in a typical case, and the time required for diagonalization is not 

greatly increased •. The roots are, of course, real. 

Molecular Calculations: Results 

One of the first molecules considered was Au
2

• It was chosen because 

the primary bonding is based on s electrons where there is no SO effect. Also 

it is of great interest because the bond is known to be anomalously strong, 

stronger even than that in CU
2 

and much stronger than that in Ag
2

• Further

more AU
2 

is isoelectronic with the unusual doubly charged, diatomic aqueous 

ion Hg++. Unless the bond in Hg
2
++ is very strong, one would expect that 

+ 
electrostatic repulsion would cause dissociation to two Hg • 

The calculations on AU
2 

were made by older EP methods now known to 

yield somewhat too short bond distances. Nevertheless, the results [11,12] 

agreed quite well with experiment [17,18] for various properties of the 

ground and the two experimentally characterized excited states as shown in 

Table I which also includes results for six excited states not yet observed. 

It was found that the 2.3 eV bond in AU
2 

is weakened by about 1 eV if the 

calculation is made on a nonrelativistic basis. Thus the anomalously great 

++ strength of the bond in AU
2 

or Hg
2 

is primarily a relativistic effect. 

The potential curves for a large number of excited states of AU
2 

were 

calculated and are reported [12]. For the excited states the SO effect must 

be included; for AU
2 

this was done on a semi-empirical basis. 

+ 
T£2 and T£2 represent particularly interesting examples. The T£ atom 

has a single electron in a 6p~ spinor. The Pi spinor is 2/3 p and 1/3 p 
~ ~ a 

and if one combines these to form a diatomic molecular spinor it is either 

a bonding and ~ antibonding (if of g.symmetry) or a antibonding and ~ bonding 

14 



(if of usymmetry).The lighter analogs of Tt
2

(B
2

, Ai
2

, etc.) show 0 bonding 

which is expected from the nonrelativistic Po orbitals. This state can be 

obtained for Ti2 bu~ it requires promotion of the' 6Pl/2 electrons to Po 

orbitals which are 2/3 P3/2 + 113 Pl/2 and this requires almost 213 eV per 

electron. Of course, one expects partial rather than full promotion. 

+ 
The results [19] for Ti2 are shown in Figure 1. These are single 

configuration calculations in w-w coupling. Since there is a single bonding 

electron, the correlation correction for the change in energy on dissociation 

should be small. We see that the (l/2)g state of Ti
2
+ is significantly 

o 
bound with D = 0.58 eV and R = 3.84 A. There is substantial promotion 

e e 
+ 

from Pl/2 toward Po spinors in this state. '. For the (l/2)u state of Ti2 

there is only a very shallow potential minimum, but it does lie at a short 

o 
bond distance (3.50 A) as would be expected for a ~ bond. At longer distances 

the 0 antibonding effect yields a broad maximum in the energy curve for the 

(1/2) state. 
u 

+ 
Experimentally Tt2 is a known species but its exact para-

meters (R , D ) have not been determined. 
e e 

Discussion of the low-lying states of Ti2 can best begin with consider

ation of the situation without the SO effect as shown in the upper curves of 

Figure 2. 
3 - 3 1 + 

There are three A-S terms ~, IT, and ~ which correspond to 
g u g 

2 2 
~ , ~o, and 0 bonding, respectively. The potential minima lie at about the 

same level. When the spin-orbit effect is included, the energy of the dis-

sociated atoms drops far below the minima of the curves without SO. 

term splits 

2 states. 
u 

+ 
into 0 and 1 

g g 
3 + 

states while the IT splits into 0 , 0 , 1 , and 
u u u u 

1 + 
The ~ is a single 

g 
+ state now called O. Among these states in 
g 

w-w coupling only 0+, 0 -, and 1 dissociate to yield two ground state atoms 
g u u 

2 
(Pl/2)' The potential curves for these states are shown on Figure 2; none 

is strongly bound but, with more adequate CI, all would doubtless show signi-

ficant potential minima. The 0 state is lowest in our calculations but the 
u 

15 
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differences are small. These calculations [19] were made in w-w coupling and 

include only the required number of configuration for dissociation to neutral 

This + single configuration atoms. requir~s two configurations for 0 but a 
g 

-for sufficed 0 and 1 . Thus electron correlation for the two bonding elec-
u u 

trons is not well-described in these calculations and the true potential 

curves will be somewhat lower at bond distances. There is very little 

experimental evidence for Ti2 molecules; one preliminary report [20] on De 

appeared very recently. The bond distance, spin multiplicity, and other 

characteristics assumed in that report will need revision. More accurate 

calculations giving more consideration to electron correlation are required 

before one can reinterpret the experimental data and determine whether there 

is agreement for D • 
e 

The molecule TiH is also of considerable interest and has been treated 

in both w-w coupling [21,22] and A-S coupling [23]. The latter calculations 

include a much more complete consideration of electron correlation and there-

by yield a deeper potential well for the ground state; when this is considered, 

the various calculations are fully consistent. The calculation in A-S 

coupling will be described in some detail as an example of that method. 

A 13 electron valence shell was selected for the Tt atom; thus the SCF 

calculation involved 14 electrons. Cartesian Slater-type functions were used 

with a double zeta basis for s, p, and d on Tt and s on H. A single 

p-functionon H was added. After the SCF step, the 10 primarily d orbitals 

were frozen and the CI calculation included explicitly only the outer four 

electrons. 

+ 
Our CI wavefunction for the 0 state was generated from seven reference 

2 2 . 
configurations with occupations (ignoring 10 ), 0 , OTI aa, OTI SS, OTI aa, 

x x y 

aTI SS, TI TI as, and TI TI Sa. All normal single and double promotions were 
y x y x y 
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allowed from the first five references. The sixth and seventh were allowed 

only limited single and double promotions. This results in a total of 

approximately 1700 determinants. These seven references are required to 

allow the wavefunction the flexibility of intermediate coupling. The wave-

? function formed in this manner will not give a fully balanced description 

,~ 

of the separated atoms relative to the molecule; hence, the bond energy was 

not computed from this wavefunction alone. Instead, the energy for the 

separated atoms was computed for comparison. For thallium a CI wavefunction 

was generated using all single and double promotions from the three refer-

222 
ences 6s 6p a, 6s 6p Band 6s 6p B. 

(J x Y 
2 

For the P
l/2 

state the total energy 

2 
was -50.6827 a.u. The P312 state was higher in energy by .0339 a.u. or .92 

eV, which is in reasonable agreement with the experimental splitting of 

.97 eV [24]. 

For the 0- state the first reference configuration listed above (for the 

0+ state) is eliminated and certain sign relationships between the other 

terms are reversed. Also a aa'aB reference was added. Similar methods 

yield the appropriate references for the 1 and 2 states. From a A-S coupling 

1 + + 3 
basis the ~ state relates to the lowest 0 state and the n term is split 

to yield the second 0+ state and the lowest 0-, 1, and 2 states. The In 

. ld h d 1 hil h hi hI I· 3 + . ld term Y1es t e secon state wet e g y repu S1ve ~ term Y1e s 

the second 0- and third 1 states. 

The calculated energies, relative to ground-state atoms, are shown in 

Figure 3. 

symmetry. 

Included are results for the first excited states of 0+ and 1 

These states are related to the 3n and In terms and should be 

reasonably well described by the basis of these calculations. 

The experimental evidence for TlH was discussed by Ginter and Battino 

+ 
[25] whose potential curves for the two 0 states are compared in Figure 4 
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with our calculations. Other data and references are summarized by Huber and 

Herzberg [26]. Calculated and experimental spectroscopic constants are given 

in Table II. 

The calculated potential curve for the ground state is somewhat too high 

at short interatomic distances. The cause is probably the absence of inter-

shell correlation involving thallium d-shell electrons together with valence~ 

shell electrons. Expansion of the CI to include alld-shell excitations of 

this type would exceed the capacity of the present program. Also, to properly 

include these effects, one would have to expand the basis by the addition of f 

orbitals. The very recent nonrelativistic calculations of McLean [27] for 

AgH with very extensive CI lend support to this view. He finds about 0.2 

bohr shortening of R from that for an MCSCF calculation to the values for 
e 

any of a number of calculations with high order CI including these intershell 

correlation terms. McLean also reports similar but less extensive results 

for AuH. It is clear that our wavefunction for TtH is somewhat ·deficient 

at these short interatomic distances but further work will be required to 

remedy,this situation. For distances greater than about 4.5 bohr, where 

d-electron effects on the potential curve should be negligible, the agreement 

is excellent. 

+ The wavefunctions for the two 0 states, as expected, are dominated by 

singlet sigma and triplet pi character. In the bondirtg region the molecular 

ground state is essentially singlet sigma. However, at very large distances 

the triplet pi slightly dominates since the Tt atom is 2/3 p. The reverse 
'II" 

is true for the excited state; at shorter distances the wavefunction is 

heavily dominated by triplet pi character, with the singlet sigma slightly 

dominating at very large distances. This interchange of sigma and pi charac-

ter is apparently responsible for the peculiar behavior of the excited state 

18 



around 5 to 7 bohr. Figure 4 shows the striking agreement of the shapes of 

+ the calculated and experimental curves for this 0 (II) state. 

With this substantial confirmation of these calculations for the two 

0+ states where the experimental evidence is unambiguous, it is interesting 

~ to consider the predictions for the 0-, 1, and 2 states in relationship to 

the minimal experimental data for these states for TtH and in comparison 

with the data for InH where the spin-orbit splitting is much smaller but 

still significant. First, one notes that the inner well at about 3.5 bohr 

+ -
in the 0 (II), 0 , l(I), and 2 states appears to be at least partially the 

result of an avoided crossing.. In the region outside the inner well the 

wavefunction is dominated by configurations which correspond roughly to the 

s2p isolated thallium atom. However, in the region of the inner well, there 

2 
is considerable sp character, thereby allowing substantial sigma bonding 

of H with the s orbital on thallium. As noted above, this unusual shape of " 

+ the excited 0 state agrees very well with the experimentally known 

potential [25]. 

The inner portion of the potential curves for the 0-,0+(11), 1(1), 

and 2 states are all very similar, hence their relationship to the 3rr state 

in A-S coupling is pertinent. This is confirmed by an examination of the 

wavefunctions which are dominantly 3rr in the range 3.0 to 3.5 bohr. The 

spin-orbit energies simply shift the absolute energies in this region, and 

the pattern is similar to that found for InH where the order is the same 

+ - + and the spacings also increase in the same sequence (0 -0 )«1-0 )«2-1). 

But the very large spin-orbit separation of the atomic energies for T~ has, 

a profound effect at larger R. The curve for the 1(1) state has no signi-

ficant minimum; this agrees with the failure to observe discrete spectra 

for this state in TtH (in contrast to InH where it is observed). 
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Selection rules make direct observation of the 0- state difficult, and 

it has not beenmeasured·for any of the molecules GaH, InH, or T1H. The 

relative shapes of the 0 and 1(1) curves in the vicinity of 6 bohr can be 

understood from the details of the wavefunctions and are discussed elsewhere 

[23]. The situation for the 2 and 1(11) states at 5 to 7 bohr is interesting. 

A very flat minimum has been observed for the 1(11) state as noted in Table 

II. When one considers the shallowness of this minimum, the agreement of 

calculations with experiment is remarkable. Less certain experimental 

evidence indicates that the curve for the 2 state crosses that for the 1(11) 

state in this region and the calculations are also in agreement on this point. 

Calculations have just been completed for Pb
2 

and Sn
Z

' A preliminary 

report has been published for Pb
2 

[28]. Since the method is essentially 

similar to that for T1H it will not be discussed. The larger number of 

bonding electrons do complicate the situation. The results for Sn
2 

[29] 

are shown on Figures 5 and 6 and those for Pb
2 

on Figures 7 and 8. 

For Sn
2 

the SO effect is considerably smaller than the bond energy. 

The lowest configuration cr 2n 2(3 r- without SO) is split with the 0+ 
g u g g 

component lower. The cr n 3 configuration yields 3n and In terms without 
g u u u 

SO and the triplet is lower in energy. It is split by SO with the 2 state 
u 

lowest, 1 next, and 0+ and 0- at essentially the same energy. The configu-
u u u 

ration n 4 (lr+) which is the lowest in C
2

, is important only at short inter-
u g 

atomic distances where it yields an avoided crossing in the 0+ states. The 
g 

potential curves without SO are also shown as dashed lines. 

For Pb
2 

the SO effect is much larger and has a more drastic effect on 

the potential curves shown in Figures 7 and 8. Again the calculations with-

out SO are shown as dashed curves. Although most of the aspects for Pb
2 

are 

expected from Sn
2 

with an increase in the.SO splitting, a few points deserve 
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special comment. 
4 

The nu configuration yields a marked shoulder on the 

+ of the ground 0 curve. While the 2 curve is lower than 
g u 

repulsive portion 

1 at the distance of the minima, 2 dissociates to higher energy atoms 
u u 

o 
than 1 . hence the curves cross at about 3.3 A. 

u' 

The calculated dissociation energies, 0.88 eV for Pb
2 

and 1.86 eV for 

Sn
2

, agree well with the experimental mass spectrometric data [30,31] after 

recalculation to correct the partition function to present values of R , 
e 

W , and electronic multiplicity [32]. 
e 

Several excited states are known for Pb
2 

and the agreement between 

calculation and experiment is good [28]. Less is known about excited states 

for Sn
2

, but there is no disagreement. 
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State 

X 0; 

A 0+ 
u, 

+ 
B °u 

1 
u 

2 
u 

0 
g 

19 

2 
g 

3
g 

Table I . 

Calc. 

Expt.
a 

Calc. 
, a 

Expt. 

Calc. 

Expt. a 

Calc. 

Calc. 

Calc. 

Calc. 

Calc. 

Calc. 

a from Ref. 17. 

b from Ref. 18. 

AU 2 

0 

Re CA) 

2.37 

2.47 

2.51 

2.57 

2~50 

2.51 

2.44 

2.43 

2.44 

2.44 

2.61 

2.61 

24 

Spectroscopic Constants 

De CeV) w
e

Ccm- 1) Te(eV) 

2.27 165 0 

2.31
b 

191 0 

.79 121 2.61 

1.00 142 2.44 

1.38 146 3.55 

1.78 180 3.18 

.76 138 2.64 

.94 143 2.57 

.85 140 2.66 

.84 140 2.67 

.35 110 3.16 

.41 112 3.10 



, 

Table II. Spectroscopic Constants for Some Low Lying Bound 
States of TtH Calculated with CI by the A-S Coupling 
Method 

State R (A) D (eV) 
-1 -1 

w (cm ) T (cm ) 
e e e e 

0+(1) Theory 1.99 1.81 1300 0 

0+(1) Experiment 1.87 1.97 1391 0 

-0 Theory 1.95 795 16600 

0+ (II) Theory 1.91 0.61 . 1000 17100 

0+ (II) Experiment 1.91 0.74 760 17723 

2 Theory 1.90 740 21800 

1(11) Theory 3.1 200 23400 

1(11) Experiment 2.9 140 24180 
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Figure 5. Potential curves for the g states of Sn
2
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The dashed curves are computed without 
the spin-orbit term. The energies are in 
hartrees and the distances in bohr. The 
inset shows the region of avoided crossing 

near 4.4 bohr. 
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Figure 6. Potential curves for the u states and 
the ground 0+ state of Sn
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. Details 
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