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Abstract: We describe classical top-like integrable systems arising from the quantum

exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed

in terms of the quantum non-dynamical R-matrix even at the classical level, where the

Planck constant plays the role of the relativistic deformation parameter in the sense of

Ruijsenaars and Schneider (RS). The integrable systems (relativistic tops) are described

as multidimensional Euler tops, and the inertia tensors are written in terms of the quan-

tum and classical R-matrices. A particular case of glN system is gauge equivalent to the

N -particle RS model while a generic top is related to the spin generalization of the RS

model. The simple relation between quantum R-matrices and classical Lax operators is

exploited in two ways. In the elliptic case we use the Belavin’s quantum R-matrix to de-

scribe the relativistic classical tops. Also by the passage to the noncommutative torus we

study the large N limit corresponding to the relativistic version of the nonlocal 2d elliptic

hydrodynamics. Conversely, in the rational case we obtain a new glN quantum rational

non-dynamical R-matrix via the relativistic top, which we get in a different way — using

the factorized form of the RS Lax operator and the classical Symplectic Hecke (gauge)

transformation. In particular case of gl2 the quantum rational R-matrix is 11-vertex. It

was previously found by Cherednik. At last, we describe the integrable spin chains and

Gaudin models related to the obtained R-matrix.
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1 Introduction

We start with the quantum exchange relations [40–45] for the quantum glN -valued L-

operators:

R~
12(z − w) L̂η

1(z) L̂
η
2(w) = L̂η

2(w) L̂
η
1(z)R

~
12(z − w) , (1.1)

where the quantum non-dynamical R-matrix satisfies the quantum Yang-Baxter equation

R~
12(z − w)R~

13(z)R
~
23(w) = R~

23(w)R
~
13(z)R

~
12(z − w) (1.2)

and unitarity condition

R~
12(z)R

~
21(−z) = f~(z) 1⊗ 1 (1.3)

with some function f~(z).

In this paper we consider a class of solutions of (1.1) and (1.2) having simple pole at

z = 0 and satisfying relation

L̂η(z) = tr2

(

R η
12(z)Ŝ2

)

, Ŝ = Res
z=0

L̂η(z) , (1.4)
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where Ŝ is glN -valued operator. Then (1.1) leads to (quadratic) Sklyanin algebra [72, 73]

for Ŝ which we denote as ASkl
~,η. Notice here that we use two parameters ~ and η in (1.1)

(it is customary to consider η = ~). In fact, one can even eliminate the η-dependence

(see (1.20)) but we will see that it is useful to keep two free parameters from the very

beginning.

In the classical limit ~ → 0 the matrix components of the residue Ŝ become C-valued

coordinates on the phase space of an integrable system described by the Lax matrix Lη(z)

(it coincides with L̂η(z), where Ŝ is replaced with gl(N,C)-valued S)

Lη(z) = tr2 (R
η
12(z)S2) , S = Res

z=0
Lη(z) (1.5)

and the standard quadratic r-matrix structure:

{Lη
1(z) , L

η
2(w)} = [Lη

1(z)L
η
2(w), r12(z − w)] (1.6)

with the classical r-matrix r12(z). We call this type of models relativistic integrable tops

because η will be shown to play the role of the relativistic deformation parameter in the

sense of Ruijsenaars and Schneider [69, 70]. The underlying Poincaré invariance is discussed

in section 5.2.

Thus, when η = ~ we have simple relation (1.5) between the classical Lax operator and

the quantum R-matrix, i.e. having quantum R-matrix we can define the classical integrable

system. Write R-matrix in the standard glN basis (Eij)ab = δiaδjb as

R~
12(z) =

N
∑

i,j,k.l=1

R ~

ij,kl(z) Eij ⊗ Ekl . (1.7)

Then it follows from (1.5) that

Lη(z) = Lη(z, S) =
N
∑

i,j,k,l=1

R η
ij,kl(z) Eij Slk . (1.8)

The latter leads to the converse statement, i.e. having the classical Lax matrix Lη(z) we

can find the quantum R-matrix as

R ~
12(z) =

∂L~
1(z)

∂S2
=

N
∑

k,l=1

∂L~(z)

∂Slk
⊗ Ekl (1.9)

The purpose of the paper is twofold. The first one is to give description of the

relativistic classical tops arising from the quantum R-matrices following (1.5). The second

— is to derive new rational quantum R-matrix from the corresponding relativistic top

via (1.9), which we obtain in a different way - by applying gauge transformation of Hecke

type [6, 47–53, 75] to the rational Ruijsenaars-Schneider (RS) model [69, 70].
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1. Relativistic classical tops from quantum R-matrices. Using local expansion of

L-operator and R-matrix near z = 0 we get equations of motion related to the Hamiltonian

S0 = tr(S) for the relativistic top in the form:

∂t0 S = {S0 , S}
(1.5)–(1.6)

= [S, Jη(S)] , (1.10)

where the inverse inertia tensor Jη is the following linear functional:

Jη(S) = tr2

((

R
η,(0)
12 − r

(0)
12

)

S2

)

(1.11)

with R
η,(0)
12 and r

(0)
12 be zero terms in the expansions (2.3), (2.13) near z = 0 . See exam-

ples (3.36) and (1.23). These equations are presented in the Lax form

∂t0 L
η(z) = {S0 , L

η(z)}
(1.5)–(1.6)

= [Lη(z) ,M(z)] (1.12)

with M -operator defined in terms of the classical r-matrix:

M(z) = −tr2 (r12(z)S2) . (1.13)

The latter M -operator appears to be equal (up to sign) to the non-relativistic limit of the

Lax matrix Lη(z):

Lη(z) = η−1 S0

N
1N×N + l(z) + ηM(z) +O(η2) , l(z) = tr2 (r12(z)S2) = −M(z) .

(1.14)

Moreover, the next term in the expansion is the M -operator

∂t l(z, S) = [l(z, S),M(z, S)] (1.15)

of the non-relativistic top given by equation

∂t S = [S, J(S)] , J(S) = M(0, S) , (1.16)

where M(0) is the non-relativistic limit of Jη(S) (1.11).

The model (1.16) is bihamiltonian. It means that it can be described by a pair of

compatible Poisson structures. The first one (the Poisson-Lie) is generated by the linear

r-matrix structure

{l1(z) , l2(w)} = [ l1(z) + l2(w), r12(z − w)] , (1.17)

and the second — is by quadratic one

{L1(z) ,L2(w)} = [L1(z) L2(w), r12(z − w)] (1.18)

with

L(z, S) =
s0
N

1 + l(z, S)−
tr l(z, S)

N
1 , (1.19)

where s0 is additional generator (of the classical Sklyanin algebra). In the elliptic case

(corresponding to the Belavin-Drinfeld classical r-matrix [17]) this type of bihamiltonian

structure for (1.18)–(1.19) was described in [37].
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Thus, we have two quadratic algebras — (1.6) with η-dependent Lax operator (1.5),

and (1.18) with η-independent Lax operator (1.19). Both algebras are described by the

same r-matrix. Then it is natural to expect a relation between Lη(z, S) and L(z, S). It

can be written explicitly:

Lη
(

z + η0,L(−η0, S)
)

=
trLη (z + η0, S)

trS
L(z, S) (1.20)

where L(−η0, S) is inserted into Lη(z, S) as the second argument, η0 = η0(η) is a zero

of function trLη (z, S) /trS. In notations of this paper η0 = −η in the elliptic case and

η0 = −η/N in the rational one. Then the change of variables from the η-independent

description (1.19) to the η-dependent description (1.5) can be written as

S → −(η0/η) L(−η0, S) . (1.21)

Relation (1.20) allows also to find the M -operator for (1.19) as

M(z, S) = −(η0/η) J
−(η/η0)z(L(z, S)) . (1.22)

The simplest example of the relativistic top is obtained in the elliptic case, where the

quantum R-matrix is the Belavin’s one [16]. In gl2 case it coincides with the Baxter’s one.

Then for S =
3
∑

a=0
Saσa, where σa are the Pauli matrices (σ0 = 1)

Jη(S) =
3
∑

a=0

Jη
a Sa σa , Jη

0 = E1(η) , Jη
α = E1(η + ωα)− E1(ωα) , α = 1 , 2 , 3 ,

E1(z) = ∂z log ϑ(z|τ) , ω1 = τ/2 , ω2 = (1 + τ)/2 , ω3 = 1/2 .

(1.23)

In the elliptic case we also consider the large N limit to the elliptic hydrodynamics [37, 64]

by passage to the noncommutative torus description:

∂tS(x) = ad∗Jη(S)(x)S(x) = [S(x), Jη(S)(x)]θ (1.24)

where [f(x), g(x)]θ = θ−1(f ⋆ g − g ⋆ f) is the Moyal bracket (⋆ is the Moyal product) and

Jη(S) is the pseudo-differential operator given in (5.60) (cf. (5.23)).

2. Quantum rational R-matrix. We propose the factorized form for the rational

Ruijsenaars-Schneider (RS) Lax matrix

LRS(z) = g−1(z) g(z + η) eP/c , (1.25)

where c is the light speed, P is a diagonal matrix of the RS particles momenta, and g(z)

is the matrix depending on the RS particles coordinates q. The latter was introduced

in [6], where the non-relativistic rational top was constructed similarly starting from the

rational Calogero-Moser (CM) model [19–22]. The transformation g(z) is known for the

quantum elliptic and trigonometric RS models [7, 36] (where the quantum IRF-Vertex

– 4 –
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correspondence was described). The rational one was mentioned in [6].1 By performing

the gauge transformation

Lη(z) = g(z)LRS(z)g−1(z) = g(z + η) eP/c g−1(z) (1.26)

and re-expressing Lη(z) in terms of its residue we come to the relativistic rational top.

It corresponds to some special values of the Casimir functions, while arbitrary values are

related in the same way to the spin RS model [39] (see also [11]). The answer is given in

section 3.2.

Then using (1.5) we obtain rational unitary quantum R-matrix. In gl2 case it is the

11-vertex R-matrix

R~(z) =

















~
−1 + z−1 0 0 0

−~− z ~
−1 z−1 0

−~− z z−1
~
−1 0

−~
3 − 2 z~2 − 2 ~ z2 − z3 ~+ z ~+ z ~

−1 + z−1

















(1.27)

obtained previously in [76].2 In section 4 we obtain glN generalization of (1.27). Introduc-

tion of ǫ parameter as

R~,ǫ(z) = ǫR ǫ~(ǫz) (1.28)

allows to interpret it as deformation of the XXX R-matrix

lim
ǫ→0

R~,ǫ(z) = RXXX(z) =
1

~
1⊗ 1 +

1

z
P12 , P12 =

N
∑

i,j=1

Eij ⊗ Eji . (1.29)

Notice that in this limit the relativistic top (1.10), (1.11) becomes free mechanical system

in the sense that Lη(z) = η−1S0 1 + z−1S, and equations of motion are trivial Ṡ = 0.

Therefore, the parameter ǫ can be also treated as an alternative definition of the coupling

constant.

The Lax matrix (1.26) (which is gauge equivalent to the RS model) emerge from

explicit change of variables:

Lη(z) = tr2 (R
η
12(z)S2) ,

Sij(q,p) =
N
∑

m=1

(qm + η) ̺(i)epm/c

∏

k 6=m

(qm − qk)
(−1)̺(j) σ̺(j)(q) ,

(1.30)

where ̺(i) = δi≤N−1(i − 1) + δiNN (see (3.2)), while σj(q) are elementary symmetric

functions (3.21)–(3.23). The case (1.30) corresponds to rank one matrix S and to special

values of the Casimir function detLη(z) of Poisson brackets (1.6). In the quantum elliptic

and trigonometric cases the (1.30)-type formulae for Ŝ = Ŝ( ∂
∂q) can be found in [7, 36] (see

also [39]).

1These gauge transformations underly the Symplectic Hecke Correspondence [47] (see also [48–51, 75])

for the classical integrable systems in the Hitchin approach.
2It can be also obtained [74] by applying special limiting procedure to the Baxter elliptic R-matrix [15].
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In general case Lη(z) = tr2 (R
η
12(z)S2), where all Sij are independent variables. For

non-relativistic models it was shown in [47] that the top models on the special coadjoint

orbit are gauge equivalent to Calogero-Moser (CM) systems [19–22] while generic orbits

correspond to their spin generalizations. In the same way, the generic relativistic top

can be treated as alternative form of the spin RS model [39]. The gauge transformations

used in (1.26) are of the same form as in non-relativistic case, where they play the role of

modifications of the underlying Higgs bundles. Hence, we deal with the relativistic version

of the Symplectic Hecke Correspondence. It allows us to obtain the non-dynamical quantum

R-matrix instead of direct usage of the quantum IRF-Vertex Correspondence [65, 66].

In this respect, we realize the latter correspondence by means of the relativistic version

of the classical (Symplectic Hecke) one. It is also interesting to mention that in view

of (1.20), (1.21) we obtain the same form of equations (1.16) for the (spin) RS and (spin)

CM models

Spin chains and Gaudin models related to the 11-vertex rational R-matrix (1.27)

and its classical limit are obtained straightforwardly. As an example we get the gl2 Gaudin

model Hamiltonians emerging from non-relativistic limit of the inhomogeneous chain:

ha =
n
∑

c 6=a

tr
(

Ŝa l(za − zc, Ŝ
c)
)

=
n
∑

c 6=a

tr12

(

r12(za − zc)Ŝ
a
1 Ŝ

c
2

)

= (1.31)

=

n
∑

c 6=a

tr(ŜaŜc)

za − zc
− (za − zc)

(

Ŝa
12(Ŝ

c
11 − Ŝc

22) + Ŝc
12(Ŝ

a
11 − Ŝa

22)
)

− (za − zc)
3 Ŝa

12Ŝ
c
12 .

Notice that the first term corresponds to the standard rational (XXX) Gaudin Hamiltoni-

ans.

The 11-vertex model is defined by the quantum local Hamiltonian of the homogeneous

periodic spin (1/2) chain on n sites is of the form:

H local =
n
∑

k=1

Pk,k+1 − η2Ek
21 ⊗ (Ek+1

11 − Ek+1
22 )− η2(Ek

11 − Ek
22)⊗ Ek+1

21 − η4Ek
21 ⊗ Ek+1

21 ,

(1.32)

where En+1
ij = E1

ij (here we use the dual generators Eij : (Eij)ab = δiaδjb, Sji = tr(EijŜ)).

It is a deformation of the XXX spin chain described by the only first term in (1.32):

HXXX =
n
∑

k=1

Pk,k+1 , Pk,k+1 = Ek
11 ⊗ Ek+1

11 + Ek
12 ⊗ Ek+1

21 + Ek
21 ⊗ Ek+1

12 + Ek
22 ⊗ Ek+1

22 .

(1.33)
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2 Sklyanin algebras and classical integrable systems

2.1 Quantum Sklyanin algebra

Let the quantum L-operator (1.1) has the following expansions in spectral parameter near

z = 0:

L̂η(z) = Lη(z, Ŝ) =
∞
∑

k=−1

zk Lη,(k)(Ŝ) =
1

z
Ŝ + Lη,(0)(Ŝ) + z Lη,(1)(Ŝ) +O(z2) , (2.1)

where the residue Ŝ is glN -valued operator and Lη,(k) are linear functionals of Ŝ, i.e.

L̂η(z) =
∑

a,b

∞
∑

k=−1

zk
k

Rη
a,b Ta Ŝb , Lη,(k)(Ŝ) =

∑

a,b

k

Rη
a,b Ta Ŝb (2.2)

in some basis {Ta} of glN . The coefficients
k
Rη

a,b are functions of a free constant parameter

η which role is explained below. Due to (1.1) the matrix elements Ŝb satisfy quadratic

relations of ASkl
~,η (see (2.7)) such as Sklyanin algebra [72, 73] or its different extensions [23,

63, 67, 68]. Notice that the representation space of operators Ŝa is not fixed yet.

Similarly to (2.1) and (2.2) let the R-matrix be of the form:

R~
12(z) =

∞
∑

k=−1

zk R
~,(k)
12 =

1

z
P12 +R

~,(0)
12 + z R

~,(1)
12 +O(z2) , R

~,(k)
12 ∈ glN

⊗2 , (2.3)

R
~,(k)
12 =

∑

a,b

k

R~
a,b Ta ⊗ T−b , (2.4)

where the generators T−b are dual to Tb: tr (TaTb) = δa+b, and R
~,(−1)
12 = P12 =

∑

a
Ta⊗T−a

is the permutation operator. Formulae (2.3) and (2.4) imply the following simple link

between L-operator and R-matrix:

L̂η(z) = tr2

(

R η
12(z)Ŝ2

)

. (2.5)

It is important to mention that we deal with two constants ~ and η (1.1). While ~ plays

the role of the Planck constant, the parameter η will be shown to describe relativistic

deformation in the sense of Ruijsenaars.

Using notations of (2.1) and (2.3) it easy to write down the quadratic relations of ASkl
~,η.

Indeed, consider residue of (1.2) at w = 0:

R~

12(z) L̂
η
1(z) Ŝ2 = Ŝ2 L̂

η
1(z)R

~

12(z) . (2.6)

Expanding this equation near z = 0 we get identity P12Ŝ1Ŝ2 = Ŝ2Ŝ1P12 for z
−2 terms while

the coefficients behind z−1 give rise to the Sklyanin algebra:3

ASkl
~,η : P12 L

η,(0)(Ŝ)1 Ŝ2 +R
~,(0)
12 Ŝ1 Ŝ2 = Ŝ2 L

η,(0)(Ŝ)1 P12 + Ŝ2 Ŝ1R
~,(0)
12 . (2.7)

3In his original paper [72, 73] Sklyanin used η = ~.

– 7 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
2

A typical representative for (2.3)-type of solutions of the Yang-Baxter equation (1.2) is the

Belavin’s elliptic R-matrix. It is considered in section 5.

It follows from (2.4) that the Sklyanin algebra ASkl
~,~ (with η = ~) has finite-dimensional

representation4

ρ
(

ASkl
~,~

)

: ρ(Ŝa) = T−a ∈ glN , (2.8)

Then

R
~,(k)
12 = ρ

(

L~,(k)(Ŝ)
)

. (2.9)

With this definition the quantum Yang-Baxter equation (1.2) coincides with exchange

relations (1.1) in representation (2.8).

2.2 Classical limit

Quantum R-matrix. In the classical limit ~ → 0 the operators Ŝa become C-valued co-

ordinates on the phase space of an integrable system described by the Lax matrix Lη(z, S).

Notice that relation (2.5) remains intact at classical level, i.e.

Lη(z, S) = tr2 (R
η
12(z)S2) =

∑

a,b

∞
∑

k=−1

zk
k

Rη
a,b Ta Sb . (2.10)

Therefore, having the classical Lax matrix Lη(z) of the described type we can compute the

quantum R-matrix in the following way:

R ~
12(z) =

∑

b

∂L~(z, S)

∂Sb
⊗ T−b (2.11)

We will use this formula in section 3 for derivation of the rational R-matrix.

Classical r-matrix. Let the quantum R-matrix has the following expansion in the

Planck constant ~:

R~
12(z) =

1

~
1⊗ 1 + r12(z) + ~ r′12(z) +O(~2) ∈ glN

⊗2 , (2.12)

where

r12(z) =
P12

z
+ r

(0)
12 +O(z) , r′12(z) = r′12(0) +O(z) . (2.13)

and r
(0)
12 comes from R

~,(0)
12 in (2.3):

R
~,(0)
12 =

1

~
1⊗ 1 + r

(0)
12 +O(~) . (2.14)

The term r12(z) is the classical r-matrix. It is skew-symmetric

r12(z) = −r21(−z) , (2.15)

k

R0
a,b = (−1)k+1

k

R0
b,a ,

0

R0= lim
~→0

(
0

R~ −~
−1 1⊗ 1) (2.16)

4In gl2 case the original Sklyanin algebra has simple representation in terms of the Pauli matrices

Ŝa = σ−a = σa, a = 0, 1, 2, 3, with σ0 = 12×2, which are used as basis {Ta}.
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and satisfies the classical Yang-Baxter equation:

[r12(z − w), r13(z)] + [r12(z − w), r23(w)] + [r13(z), r23(w)] = 0 . (2.17)

The latter arises from (1.2) and (2.12). Similarly, by substituting (2.12) into (1.1) we come

to quadratic Poisson structure

lim
~→0

1

~
[L̂η

1(z) , L̂
η
2(w)] := {Lη

1(z) , L
η
2(w)} = [Lη

1(z)L
η
2(w), r12(z − w)] , (2.18)

where Lη(z) is the classical L-operator (the Lax matrix).

2.3 Relativistic top

Let us define the relativistic top as an integrable model described by the Lax matrix (2.10)

and the r-matrix structure (2.18):

{Lη
1(z) , L

η
2(w)} = [Lη

1(z)L
η
2(w), r12(z − w)] ,

Lη(z) = tr2 (R
η
12(z)S2) =

1

z
S + Lη,(0)(S) + z Lη,(1)(S) +O(z2) .

(2.19)

We will see that equations of motion have the form of the integrable multidimensional Eu-

ler (or Euler-Arnold) top. On the other hand, it will be shown below that the parameter η

plays the same role as the relativistic deformation parameter in the Ruijsenaars-Schneider

generalization of Calogero-Moser models. This is why we call these type of models rela-

tivistic tops.5

Classical Sklyanin algebra. The phase space is parameterized by N2 coordinates {Sa}.

It is equipped with the following quadratic Poisson structure:

ASkl
~=0,η : {S1, S2} = [S1S2, r

(0)
12 ] + [Lη,(0)(S)1 S2, P12] , (2.20)

where r
(0)
12 is defined in (2.13) and Lη,(0)(S) in (2.1) and (2.19). The brackets (2.20) can

be obtained both — from the quantum algebra (2.7) (by taking the classical limit (2.12))

or from (2.19) by computing residue at w = 0

{Lη
1(z) , S2} = [Lη

1(z)S2, r12(z)] (2.21)

and evaluating the coefficient in front of z−1. The Poisson brackets are degenerated. In

order to restrict it on a symplectic leaf we need to fix Casimir functions Ck(S). They

appear as coefficients in the expansion of detLη(z) which is known to be central element

for the Poisson brackets (2.18):

detLη(z) =
∞
∑

k=−N

zkCk(S) . (2.22)

5Our approach is in agreement with the one considered in [24–26] for relativistic particles and rotators

(in an external fields and on curved spaces), where the authors also used the term relativistic top. Our case

corresponds to their free top.
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The number of independent Casimir functions (in general) equals N . They can be accumu-

lated from coefficients in front of nonpositive powers of z in (2.22) (others are dependent).

The Hamiltonians (including the Casimir functions) can be computed from the expansion

near z = 0 of

1

k
tr (Lη(z))k =

1

k
tr0,1,...,k

(

Rη
01(z) . . . R

η
0k(z)S1 . . . Sk

)

=

=
1

zk
Hk,k +

1

zk−1
Hk,k−1 + . . .+Hk,0 + . . . , k = 1 . . . N

(2.23)

or from the spectral curve

det (λ− Lη(z)) = 0 . (2.24)

The number of Casimir functions N should be subtracted from the number of independent

Hamiltonians (2.23) N(N + 1)/2. This gives N(N − 1)/2 for the Hamiltonians only. It

equals to the half of dimension of a general symplectic leaf. The Poisson commutativity of

the Hamiltonians Hk,l is guaranteed by (2.19). Therefore, the model is integrable in the

Liouville-Arnold sense.

Equations of motion and Lax pair. The simplest Hamiltonian is given by

S0 := H1,1 = tr(S) . (2.25)

To get equations of motion let us compute the trace over the second component (in tensor

product glN
⊗2) of (2.20). It leads to the top-like equations

∂t0 S = {S0 , S} = [S, Jη(S)] , (2.26)

where the inverse inertia tensor Jη is the following linear functional of S:

Jη : S → Jη(S)1 = −tr2(r
(0)
12 S2) + Lη,(0)(S)1

(2.10)
= tr2

((

R
η,(0)
12 − r

(0)
12

)

S2

)

. (2.27)

In a similar way, by applying tr2 to the both parts of (2.21) we get equations of motion (2.26)

in the Lax form:

∂t0 L
η(z) = {S0 , L

η(z)} = [Lη(z) ,M(z)] , (2.28)

where the M -operator equals

M1(z) = −tr2 (r12(z)S2) . (2.29)

Notice that it is independent of η. As we will see below the M -operator in this description

coincides with non-relativistic Lax matrix.

2.4 Non-relativistic limit

The non-relativistic limit η → 0 is similar to the classical one due (2.10). It follows

from (2.12) and (2.10) that

Lη(z) =
S0

Nη
1N×N + tr2 (r12(z)S2) + η tr2

(

r′12(z)S2

)

+O(η2) , (2.30)

Lη,(0) =
S0

Nη
1N×N + tr2

(

r
(0)
12 S2

)

+ η tr2
(

r′12(0)S2

)

+O(η2) . (2.31)

– 10 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
2

Plugging (2.30) and (2.31) into (2.19) and (2.20) respectively we get

{Lη
1(z) , L

η
2(w)} =

S0

Nη
[ l1(z) + l2(w), r12(z − w)] + [ l1(z) l2(w), r12(z − w)] +O(η) ,

(2.32)

where

l1(z) := tr2 (r12(z)S2) , (2.33)

l(z) =
1

z
S + l(0)(S) + z l(1)(S) +O(z) , l(0)(S)1 = tr2

(

r
(0)
12 S2

)

. (2.34)

and

{S1, S2} =
S0

Nη
[S2, P12] + [S1S2, r

(0)
12 ] + [tr3(r

(0)
13 S3)S2, P12] +O(η) , (2.35)

where tr3(r
(0)
13 S3) is just l

(0)(S)1 as in (2.34).

When η → 0 the leading term in (2.35) is the linear Poisson-Lie structure on gl∗N Lie

coalgebra. The generator S0 = trS is the Casimir function of the latter brackets. Let us

fix it as S0 = N and set
{S1, S2}Lie := lim

η→0
η {S1, S2} . (2.36)

Then

{S1, S2}Lie = [S2, P12] . (2.37)

In the same way the linear r-matrix structure is obtained at the level of Lax matrices:

{l1(z) , l2(w)}Lie = [ l1(z) + l2(w), r12(z − w)] . (2.38)

Non-relativistic top. We will refer to an integrable model described by the Lax ma-

trix (2.33) and the Poisson structure (2.37), (2.38) as the non-relativistic top. The phase

space is the coadjoint orbit of GLN Lie group. It is equipped with the linear Poisson-Lie

structure on gl∗N . For example, using the standard basis of matrices (Eij)ab = δiaδjb (2.37)

acquires the from {Sij , Skl} = δilSkj − δkjSil. A general symplectic leaf is obtained by

fixation of eigenvalues of S or the Casimir functions ck = 1
k tr(S

k), k = 1 . . . N . The

Hamiltonians appear as in (2.23):

1

k
tr (l(z))k =

1

k
tr0,1,...,k (r01(z) . . . r0k(z)S1 . . . Sk) =

=
1

zk
hk,k +

1

zk−1
hk,k−1 + . . .+ hk,0 + . . . , k = 1 . . . N .

(2.39)

It is easy to see that hk,k = ck. The Poisson commutativity of the Hamiltonians hk,l
is guaranteed by (2.38). The M -operators corresponding to the Hamiltonians hk,l are

evaluated by expansion of −tr2(r12(z − w)lk−1
2 (w)) (see [14]). An alternative way is given

in (2.54)–(2.56).

Notice that the Poisson brackets (2.37) follows from (2.38) and local expansion from

(2.34). To get (2.37) one should substitute expansion (2.34) into (2.38) and compute the

residue at w = 0 and then at z = 0.
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Similarly to (2.10), we have a simple link between the Lax matrix and classical r-matrix

given by (2.33). Substitution of (2.33) into (2.38) gives rise to the classical Yang-Baxter

equation (2.17) (it follows from the Jacobi identity for the Poisson brackets (2.38) as well).

By analogy with (2.11) we have

r12(z) =
∑

b

∂l(z)

∂Sb
⊗ T−b . (2.40)

This relation was used in [6] for computation of the rational classical r-matrix.

2.5 η-independent quadratic Poisson brackets

Let us consider another limit of brackets (2.32) and (2.35). Set

S0 = η s0 . (2.41)

With this rescaling S0 → 0 when η → 0. Then the residue S becomes traceless, i.e.

S
η→0
−→ S̄ = S −

1

N
tr(S) 1N×N , (2.42)

l(z)
η→0
−→ l̄(z) = l(z)−

1

Nz
tr(S) 1N×N =

1

z
S̄ + l(0)(S) +O(z) . (2.43)

Applying this limit to (2.32) we get

{L1(z) ,L2(w)} = [L1(z) L2(w), r12(z − w)] , (2.44)

where the Lax matrix

L(z) :=
s0
N

1 + l̄(z) . (2.45)

The Poisson brackets (2.35) acquire the following form in the limit:

ASkl
~=0,η=0 : {S̄1, S̄2} =

s0
N

[S̄2, P12] + [S̄1S̄2, r
(0)
12 ] + [tr3(r

(0)
13 S̄3) S̄2, P12] . (2.46)

The missing brackets {S̄, s0} can be found by taking the limit in (2.26). Plugging (2.41)

into (2.26), (2.27) we get:

{s0, S̄} = lim
η→0

[S, Jη(S)]

η
= [S̄, J(S̄)] , (2.47)

where the inverse inertia tensor J is defined as

J : S̄1 → J(S̄)1 = tr2
(

r′12(0)S̄2

)

(2.48)

with r′12(0) from (2.31). Equations (2.47), (2.48) also play the role of equations of motion

generated by the Hamiltonian s0:

∂t0 S̄ = {s0, S̄} = [S̄, J(S̄)] , (2.49)

The corresponding Lax equation can be obtained in two ways. The first one [14] — is by

taking tr2 in (2.44). This yields

∂t0 L(z) = {s0,L(z)} = [L(z) ,M(z)] , (2.50)

– 12 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
2

where

M1(z) = −tr2 (r12(z − w)L2(w)) . (2.51)

The latter matrix should be w-independent up to some element from the kernel of adL(z).

Alternatively, one can consider the limit of (2.28): {S0 , L
η(z)} = [Lη(z) ,M(z)]. Notice

again that M(z) given by (2.29) is η-independent. Moreover, it coincides with L(z) up to

sign and some scalar - element from Ker(adL(z)), i.e.

{S0 , L
η(z)} = [Lη(z) ,M(z)] = −[Lη(z) ,L(z)] . (2.52)

Then, substituting rescaling (2.41) and using expansion (2.30) we get

∂t0 L(z) = {s0 ,L(z)} = lim
η→0

[L(z) , Lη(z)]

η
= [L(z) ,M(z)] , (2.53)

where

M(z) = tr2
(

r′12(z)S̄2

)

. (2.54)

with r′12(z) defined in (2.30). Thus, the roles of L and M -operators are interchanged while

taking the limit. In addition, r′12(z) has no singularities at z = 0. Then

M(0) = tr2
(

r′12(0)S̄2

) (2.48)
= J(S̄) . (2.55)

Finally, we see that the expansion (2.30) of Lη(z) in η provides M -operators for both —

η-dependent and η-independent descriptions:

Lη(z) = η−1S0/N −M(z) + ηM(z) +O(η2) . (2.56)

Notice also that the M -operator (2.54) is also valid for the linear r-matrix structure (2.38)

since the Lax pairs for the linear and quadratic (η-independent) r-matrix structures are

the same (up to scalar terms). The formulae obtained in this section can be considered as

an extension of [14] for the class of integrable systems under consideration.

Relation between ASkl

η 6=0 and ASkl

η=0. We have two different description of the classi-

cal Sklyanin algebras (and related integrable models). In the first one the quadratic

Poisson structure (2.20) ASkl
~=0,η is η-dependent. The second ASkl

~=0,η=0 (2.46), (2.47) —

is η-independent. The same happens at quantum level. One can quantize the Lax ma-

trix (2.45) as

L̂(z) :=
1

N
ŝ0 + tr2

(

r12(z)
ˆ̄S2

)

. (2.57)

Then the exchange relations (1.1) gives η-independent quadratic algebra ASkl
~,η=0.

Algebras ASkl
η 6=0 and ASkl

η=0 are related. The relation is easy to demonstrate explicitly in

the elliptic case (see section 5). The idea is the following. There exists a linear functional

ϕη on glN (depending on the boundary conditions) such that (2.5) and (2.57) are related

as follows:

gη(z) eη0∂z L̂(z, ϕη(Ŝ)) = L̂(z, Ŝ) , (2.58)
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where gη(z) is some function with a simple zero at z = −η0 and simple pole at z = 0.

Finally, the relation can be written as

Lη
(

z + η0,L(−η0, S)
)

=
trLη (z + η0, S)

trS
L(z, S) . (2.59)

It holds true in the rational case as well. We may use this relation to get explicit change

of variables from the η-independent description (2.45) to the η-dependent (2.19):

S → cL(cη, S) , c = −
η0
η

. (2.60)

The coefficient −η0/η is chosen in order to have Res
η=0

(

−η0
η L(−η0, S)

)

= Res
z=0

(z, S). It is

interesting to note that plugging this change of variables to the equations of motion (2.26)

gives

∂tL(cη, S) = [L(cη, S), cJη(L(cη, S))] , (2.61)

i.e. the Lax equations (2.50), where cη plays the role of the spectral parameter. Hence, we

get an alternative definition for the M -operator

M(z, S) = c Jz/c(L(z, S)) . (2.62)

3 Relativistic rational top

In this section we obtain explicit answer for the Lax pair of the relativistic top. As it was

already mentioned this model is a top-like form of the spin Ruijsenaars-Schneider (RS)

model. To get the answer we represent the Lax matrix of RS model in the factorized

form (3.6) which is convenient for the gauge transformation. The dynamical variables of

the top are the components of the residue (3.18), (3.26) of the gauge transformed RS Lax

matrix (3.16). We express the gauge transformed L-operator in terms of its residue. This

gives the correct answer for generic top since it is independent of the Casimir functions

values.

3.1 Factorized L-operators for classical Ruijsenaars-Schneider model

In this paragraph we propose factorized forms of L-operators for the rational RS model [69,

70].

Following [6] for the set of variables {qj}, j = 1 . . . N such that
N
∑

j=1
qj = 0 let us

introduce the matrix

Ξij(q, z) := (z + qj)
̺(i) , i, j = 1 . . . N , (3.1)

where

̺(i) =











i− 1 for 1 ≤ i ≤ N − 1,

i for i = N.

̺−1(i) =











i+ 1 for 0 ≤ i ≤ N − 2,

i for i = N.

(3.2)
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It has the property

det Ξ(q, z) = Nz
∏

1≥i>j≥N

(qi − qj) , (3.3)

i.e. the matrix is degenerated at z = 0. It can be also treated as the rational analogue

of the modification of bundles over elliptic curves used in [47] for the description of the

elliptic top.

Rational slN RS model with spectral parameter is defined by the following Lax

matrix:

LRS
ij (z, η) = η

(

1

qi − qj + η
−

1

Nz

)

epj/c
N
∏

k 6=j

qj − qk − η

qj − qk
. (3.4)

where
N
∑

k=1

qk =
N
∑

k=1

pk = 0 . (3.5)

The classical r-matrix structure was found in [12, 13].

Proposition 3.1 The Lax matrix (3.4) can be written in the following form:6

LRS(z, η) = D0(q) Ξ
−1(q, z) Ξ(q, z − η)D−1

0 (q) eP/c , (3.6)

where D0(q) is diagonal matrix (D0)ij = δij
N
∏

k 6=i

(qi − qk).

Let us also write the similar answer for7

Rational slN RS model without spectral parameter. The Lax matrix

LRS
ij =

η epj/c

qi − qj + η

N
∏

k 6=j

qj − qk − η

qj − qk
. (3.7)

is represented in the form:

LRS = D0(q)V
−1(q, z)V (q, z − η)D−1

0 (q) eP/c =

= D0(q)V
−1(q, z)C−η V (q, z)D−1

0 (q) eP/c ,
(3.8)

where

Vij(q, z) := (z + qj)
i−1 , i, j = 1 . . . N , (3.9)

and

(Cλ)ij =















(i− 1)!λi−j

(j − 1)!(i− j)!
, j ≤ i ,

0 , j > i .

(3.10)

6The prove is direct. See formulae in section 3.2 and appendix in [6].
7It is not used in the subsequent sections.
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It easy to verify that

Cλ = exp(λC0) , (C0)ij =

{

j , i = j + 1 , i = 2 , . . . , N,

0 , otherwise
(3.11)

and ∂zV = C0V . The limit to Calogero-Moser model is obtained as follows:

LCM
ij = lim

c→∞
c LRS

ij | η=ν/c − δij = P − νD0V
−1C0V D−1

0 . (3.12)

Notice that we can also define the Lax matrix as

L′ RS

ij =
η epj/c

qi − qj + η

N
∏

k 6=j

qj − qk + η

qj − qk
. (3.13)

It differs from (3.7) by the canonical map

epj/c −→ epj/c
∏

k 6=j

(

qj − qk + ξ

qj − qk − ξ

)a

(3.14)

with a = 1 and ξ = η. Then

L′ RS
= D−1

η (q)
(

V T
)

(q, z + η)
(

V T
)−1

(q, z)Dη(q) e
P/c =

= D−1
η (q)

(

V T
)

(q, z)CT
η

(

V T
)−1

(q, z)Dη(q) e
P/c , (Dλ)ij = δij

N
∏

k 6=i

(qi − qk + λ).

(3.15)

Let us mention that the transformation (3.9) was used in the classical [30] and the quan-

tum [27–29] IRF-Vertex transformations. In this way the (Jordanian) R-matrices of the

Cremmer-Gervais type were obtained.

3.2 Lax pair

Apply the gauge transformation g(z) = Ξ(q, z)D−1
0 (q) to the RS Lax matrix (3.4), (3.6)

with η := −η. Then it follows from (3.6) that

L̃η,c(z,q,p) := Ξ(q, z)D−1
0 (q)LRS

ij (z,−η)D0(q) Ξ
−1(q, z) =

= Ξ(q, z + η) eP/c Ξ−1(q, z) .
(3.16)

Let
N
∑

j=1
pj = 0. Then from (3.3) it follows that

det L̃η,c(z,q,p) =
z + η

z
. (3.17)

Our purpose now is to express this matrix in terms of its residue at z = 0. Set

S = N Res
z=0

L̃η,c(z,q,p) =
1

∏

1≥i>j≥N

(qi − qj)
Ξ(q, η) eP/c adj (Ξ(q, 0)) ,

(3.18)
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where the adjugate is transpose of the cofactor matrix. To find matrix components we

need the inverse of Ξ:

Ξ−1
kj (x) = (−1)̺(j)

σ̺(j)(x)
(

N
∑

s=1
xs

)

N
∏

s 6=k

(xk − xs)

− (−1)̺(j)
k
σ̺(j) (x)

N
∏

s 6=k

(xk − xs)

,
(3.19)

where xj = qj + z. Expansion in powers of z gives

Ξ−1
mj(z,q) =

1

Nz

(−1)̺(j)

N
∏

r 6=m

(qm − qr)

(

σ̺(j)(q) +

N−j
∑

s=1

zs

[

σs+j−1(q)

(

s+ j − 1

j − 1

)

−N
m
σs+j−2 (q)

(

s+ j − 2

j − 1

)]

− (N − j) zN−j+1 m
σN−1 (q)

(

N

j − 1

))

.

(3.20)

In (3.19) and (3.20) the elementary symmetric functions are used:

N
∏

k=1

(ζ − xk) =
N
∑

k=0

(−1)kζkσk(x) (3.21)

or

σN−d(x) = (−1)N
∑

1≤i1<i2...<id≤N

xi1xi2 . . . xid , d = 0, . . . , N (3.22)

and their derivatives

−
N
∏

m 6=k

(ζ − xm) =
N−1
∑

s=0

(−1)sζs
k
σs (x) . (3.23)

These functions satisfy the following set of identities:

m
σj (x) =

N−j−1
∑

c=0

(−xm)cσj+1+c(x) , (3.24)

m
σj (x) = −

j
∑

c=0

(−xm)−1−cσj−c(x) . (3.25)

From (3.19) we can easily find S from (3.18):

Sij = N Res
z=0

Ltop

ij (z) =
N
∑

m=1

(qm + η) ̺(i)epm/c

∏

k 6=m

(qm − qk)
(−1)̺(j) σ̺(j)(q) (3.26)

To take into account the light speed c in the quadratic brackets (2.20) one should put the

common factor 1/c in front of r.h.s. of (2.20). It is equivalent to redefinition of the classical

r-matrix r12(z) → r12(z)/c.
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Using (3.20)–(3.25) we can rewrite the Lax matrix (3.16) in terms of the variables

S (3.20). The computation gives:

Lη(z) = N L̃η,c(z,q,p) =
1

z

N
∑

i,j=1

Eij







̺(i)
∑

γ=0

zγ
(

̺(i)

γ

)

S̺−1(̺(i)−γ),j

−

̺(i)
∑

γ=0

zγ+N−j+1 (−1)̺(j)+N (N−j)

(

̺(i)

γ

)(

N

j−1

)

S̺−1(̺(i)−γ), N (3.27)

+

̺(i)
∑

γ=0

N−j
∑

s=1

zs+γ (−1)̺(j)+s+j−1

(

̺(i)

γ

)(

s+j−1

j−1

)

S̺−1(̺(i)−γ), ̺−1(s+j−1) −

−N

N−j
∑

s=1

̺(i)
∑

b=0

(−1)̺(j)+s+j−1 zs (z + η)b
(

s+j−2

j−1

)(

̺(i)

b

)

×



δ̺(i)−j−s−b+1≤ 0

N−s−j+1
∑

c=0

̺(i)−b+c
∑

p=0

(−η)p
(

̺(i)−b+c

p

)

S̺−1(̺(i)−b−p+c),̺−1(s+j+c−1)

−δ̺(i)−j−s−b+1> 0

s+j−2
∑

c=0

̺(i)−b−c−1
∑

p=0

(−η)p
(

̺(i)−b−c−1

p

)

S̺−1(̺(i)−b−p−c−1),̺−1(s+j−c−2)











(3.28)

+
1

z



zN ENN −
N
∑

j=1

zN−j+2(−1)̺(j)+N (N − j)N

(

N

j − 1

)

ENj

−N
N
∑

i,j=1

N−j
∑

s=1

̺(i)
∑

b=0

(−1)̺(j)+s+j−1 zs (z + η)b
(

s+j−2

j−1

)(

̺(i)

b

)

δp≤1 δ̺(i)−b−p−j−s+2 , 0 ×

(3.29)

̺(i)−b+N−s−j+1
∑

p=0

(−η)p
(

̺(i)− b+N− s− j + 1

p

)

Eij



×

×



−
1

N(−η)

N
∑

j=1

Sjj −
1

N2

N
∑

j=1

[

δ̺(j)≥1 ̺(j)S̺−1(̺(j)−1), ̺−1(j) + (−1)̺(j)+j j Sj,̺−1(j)

−N

̺(j)
∑

b=0

(−1)̺(j)+j+b

(

̺(j)

b

)N−j
∑

c=0

̺(j)−b+c
∑

p=0

(−η)p+b

(

̺(j)−b+c

p

)

S̺−1(̺(j)−b−p+c),̺−1(j+c)

]





(3.30)

Here and below we imply that the values of indices corresponding to the undefined argument

value (N − 1) of function ̺−1 (3.2) are skipped in the summations.

It is important to mention that the answer does not depend on the values of the Casimir

functions (2.22). As we know it is defined by only quantum R-matrix which is the subject

of the next section. Therefore, we can consider the obtained expression (3.27)–(3.30) as

independent definition of the Lax matrix for the generic rational relativistic top. The

case (3.16) which is gauge equivalent to the rational RS model appears for the particular
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values of the Casimir functions Ck (2.22). From (3.17) we conclude that the RS case

corresponds to:

RS : C−1 = η , C0 = 1 , Ck = 0 , k 6= −1 , 0 . (3.31)

In the non-relativistic limit this case corresponds to the rational top on the coadjoint orbit

of minimal dimension (2N − 2). In a general case the obtained model yields alternative

description of the spin RS model [39].

The quantum Lax matrix is obtained from (3.27)–(3.30) by substitution S → Ŝ.

In (3.26) it corresponds to pj := ~∂qj with the choice of normal ordering.

M-operator from non-relativistic limit. As it was shown in (2.33) the M -opera-

tor (2.29) coincides (up to minus) with the non-relativistic limit of the Lax matrix. Hence,

we can use the answer obtained in [6]:8

Mij(z) = −
1

z
× (3.32)

[ ̺(i)
∑

γ=0

zγ
(

̺(i)

γ

)

S̺−1(̺(i)−γ),j −

̺(i)
∑

γ=0

zγ+N−j+1 (−1)̺(j)+N (N−j)

(

̺(i)

γ

)(

N

j−1

)

S̺−1(̺(i)−γ), N

−N

̺(i)
∑

γ=0

N−j
∑

s=1

δ̺(i)−j+1≤s+γz
s+γ (−1)̺(j)+s+j−1

(

̺(i)

γ

)(

s+j−2

j−1

)N−s−j+1
∑

c=0

S̺−1(̺(i)−γ+c), ̺−1(s+j+c−1)

−N

̺(i)
∑

γ=0

N−j
∑

s=1

δ̺(i)−j+1>s+γz
s+γ (−1)̺(j)+s+j−2

(

̺(i)

γ

)(

s+j−2

j−1

) s+j−2
∑

c=0

S̺−1(̺(i)−γ−c−1), ̺−1(s+j−c−2)

+

̺(i)
∑

γ=0

N−j
∑

s=1

zs+γ (−1)̺(j)+s+j−1

(

̺(i)

γ

)(

s+j−1

j−1

)

S̺−1(̺(i)−γ), ̺−1(s+j−1)−
δi,j
N

N
∑

k=1

N−k−2
∑

c=0

Sk+c, k+c+1

]

Example: for N = 2 (3.27)–(3.30) yields the Lax matrix

Lη(z) =
1

z
S2×2 +

tr(S)

η
12×2 − (z + η)







S12 0

(S11 − S22) + (η2 + z2 + ηz)S12 −S12






(3.33)

with S2×2 =
(

S11 S12
S21 S22

)

and trS = S11+S22. The determinant defines the Casimir functions

detLη(z) =
1

z2
C0 +

(

1

zη
+

1

η2

)

C1 , (3.34)

C0 = detS = S11S22 − S12S21 , C1 = (S11 + S22 + η2S12)
2 − 4η2S12S22

of the Poisson structure (2.20) for gl2. The Hamiltonian S11 + S22 generates equations of

motion (2.26) with the M -operator (2.29):

M(z) = −
1

z







S11 − z2S12 S12

S21 − z2(S11 − S22)− z4S12 S22 + z2S12






(3.35)

8Notice that in [6] the answer is slN -valued. It differs from (2.33) by scalar matrix and factor −N .
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In N = 2 case r
(0)
12 from (2.13) vanishes. Hence, Jη(S) (2.27) is defined by only Lη,(0)

from (2.1):

Jη(S) = Lη,(0) = −







ηS12 0

η3S12 + η(S11 − S22) −ηS12






+

S11 + S22

η
12×2 . (3.36)

The last scalar term vanishes from the commutator in the equations (2.26): Ṡ = [S, Jη(S)].

3.3 Spin chains and Gaudin models

The Lax matrix (1.4), (3.27)–(3.30) allows to define a class of integrable glN spin chains

with the transfer-matrix

T̂n(z) = Lη(Ŝ1, z − z1) . . . L
η(Ŝn, z − zn) . (3.37)

on n sites with inhomogenuities zk. The underlying quantum algebra consists of n copies

of (2.7) with the quantum R-matrix (4.1)–(4.4). The non-relativistic limit gives rise to the

Gaudin model defined by the Lax operator

L̂G(z) =
n
∑

a=1

l(z − za, Ŝ
a) . (3.38)

Its Hamiltonians are computed as residues of tr
(

L̂G(z)
)2

:

ĥa =
n
∑

c 6=a

ha,c , ha,c = tr12

(

r12(za − zc)Ŝ
a
1 Ŝ

c
2

)

= tr
(

Ŝa l(za − zc, Ŝ
c)
)

. (3.39)

For example, in gl2 case the classical r-matrix (2.13) (classical limit of (1.27))

r12(z) =











1/z 0 0 0

−z 0 1/z 0

−z 1/z 0 0

−z3 z z 1/z











(3.40)

gives

ha,c =
tr(ŜaŜc)

za − zc
− (za − zc)

(

Ŝa
12(Ŝ

c
11 − Ŝc

22) + Ŝc
12(Ŝ

a
11 − Ŝa

22)
)

− (za − zc)
3 Ŝa

12Ŝ
c
12 .

(3.41)

In the limit (1.29) this formula reproduces the well-known rational Gaudin Hamiltonians

(the first term in (3.41)).

Let us also compute the quantum local Hamiltonian of the homogeneous (za = 0)

periodic spin chain on n sites. The quantum R-matrix

R̃η(z) = zηRη(z) (3.42)
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with R (1.27), satisfies

R̃η(0)12 = ηP12 . (3.43)

Therefore, we can calculate the local Hamiltonian using standard approach of [15, 40–45].

The answer is given by
n
∑

k=1

Hk,k+1, where Hk,k+1 = Pk,k+1
d
dz R̃

η
k,k+1(z) |z=0:

H local =
n
∑

k=1

Pk,k+1 − η2Ek
21 ⊗ (Ek+1

11 − Ek+1
22 )− η2(Ek

11 − Ek
22)⊗ Ek+1

21 − η4Ek
21 ⊗ Ek+1

21 ,

(3.44)

where En+1
ij = E1

ij . It is a deformation of the XXX spin chain9. The latter is described by

the only first term in (1.32):

HXXX =
n
∑

k=1

Pk,k+1 , Pk,k+1 = Ek
11 ⊗ Ek+1

11 + Ek
12 ⊗ Ek+1

21 + Ek
21 ⊗ Ek+1

12 + Ek
22 ⊗ Ek+1

22 .

(3.45)

The generators Eij , (Eij)ab = δiaδjb are dual to Ŝji = tr(EijŜ).

We describe this type of models and related soliton equations in our next publica-

tion [54].

4 Quantum rational R-matrix

The quantum non-dynamical R-matrix can be found by the standard procedure of the

IRF-Vertex Correspondence starting from the rational RS model. Here we use another

approach based on (1.9). Applying it to (3.27)–(3.30) we get

R~

12(z) =
N
∑

k,l=1

∂L~(z)

∂Skl

⊗ Elk =
1

z

N
∑

i,j=1

Eij ⊗







̺(i)
∑

γ=0

zγ
(

̺(i)

γ

)

Ej, ̺−1(̺(i)−γ)

−

̺(i)
∑

γ=0

zγ+N−j+1 (−1)̺(j)+N (N−j)

(

̺(i)

γ

)(

N

j−1

)

EN, ̺−1(̺(i)−γ) (4.1)

+

̺(i)
∑

γ=0

N−j
∑

s=1

zs+γ (−1)̺(j)+s+j−1

(

̺(i)

γ

)(

s+j−1

j−1

)

E̺−1(s+j−1), ̺−1(̺(i)−γ) −

−N

N−j
∑

s=1

̺(i)
∑

b=0

(−1)̺(j)+s+j−1 zs (z + ~)b
(

s+j−2

j−1

)(

̺(i)

b

)

×



δ̺(i)−j−s−b+1≤ 0

N−s−j+1
∑

c=0

̺(i)−b+c
∑

p=0

(−~)p
(

̺(i)−b+c

p

)

E̺−1(s+j+c−1), ̺−1(̺(i)−b−p+c)

−δ̺(i)−j−s−b+1> 0

s+j−2
∑

c=0

̺(i)−b−c−1
∑

p=0

(−~)p
(

̺(i)−b−c−1

p

)

E̺−1(s+j−c−2), ̺−1(̺(i)−b−p−c−1)











(4.2)

9Another deformation of the Heisenberg chain was found in [46]. It is interesting to find some relation

(if any) between two deformations.

– 21 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
2

+
1

z



zN ENN −
N
∑

j=1

zN−j+2(−1)̺(j)+N (N − j)N

(

N

j − 1

)

ENj

−N

N
∑

i,j=1

N−j
∑

s=1

̺(i)
∑

b=0

(−1)̺(j)+s+j−1 zs (z + ~)b
(

s+j−2

j−1

)(

̺(i)

b

)

δp≤1 δ̺(i)−b−p−j−s+2 , 0 × (4.3)

̺(i)−b+N−s−j+1
∑

p=0

(−~)p
(

̺(i)− b+N− s− j + 1

p

)

Eij



⊗

⊗



−
1

N(−~)

N
∑

j=1

Ejj −
1

N2

N
∑

j=1

[

δ̺(j)≥1 ̺(j) E̺−1(j), ̺−1(̺(j)−1) + (−1)̺(j)+j j E̺−1(j), j

−N

̺(j)
∑

b=0

(−1)̺(j)+j+b

(

̺(j)

b

)N−j
∑

c=0

̺(j)−b+c
∑

p=0

(−~)p+b

(

̺(j)−b+c

p

)

E̺−1(j+c), ̺−1(̺(j)−b−p+c)

]





(4.4)

As in (3.27)–(3.30) we imply that the values of indices corresponding to undefined argument

value N−1 of ̺−1 function are skipped in summations. Notice that the obtained R-matrix

is unitary (1.3) with f~(z) = 1
~2

− 1
z2
:

R~
12(z)R

~
21(−z) =

(

1

~2
−

1

z2

)

1⊗ 1 . (4.5)

By redefinition

R~
12(z, ǫ) = ǫRǫ ~

12(zǫ) (4.6)

we can treat the answer as deformation of the standard XXX R-matrix. Indeed, one can

verify that

lim
ǫ→0

R~
12(z, ǫ) = ~

−11⊗ 1 + z−1P12 . (4.7)

In the classical limit we get the rational skew-symmetric non-dynamical r-matrix from [6]:10

rtop(z) =
1

Nz
1⊗ 1 +

1

z

N
∑

i,j=1

Eij ⊗ (4.8)

[ ̺(i)
∑

γ=0

zγ
(

̺(i)

γ

)

E̺−1(̺(i)−γ),j −

̺(i)
∑

γ=0

zγ+N−j+1 (−1)̺(j)+N (N−j)

(

̺(i)

γ

)(

N

j−1

)

E̺−1(̺(i)−γ), N

−N

̺(i)
∑

γ=0

N−j
∑

s=1

δ̺(i)−j+1≤s+γz
s+γ (−1)̺(j)+s+j−1

(

̺(i)

γ

)(

s+j−2

j−1

)N−s−j+1
∑

c=0

E̺−1(̺(i)−γ+c), ̺−1(s+j+c−1)

−N

̺(i)
∑

γ=0

N−j
∑

s=1

δ̺(i)−j+1>s+γz
s+γ (−1)̺(j)+s+j−2

(

̺(i)

γ

)(

s+j−2

j−1

) s+j−2
∑

c=0

E̺−1(̺(i)−γ−c−1), ̺−1(s+j−c−2)

+

̺(i)
∑

γ=0

N−j
∑

s=1

zs+γ (−1)̺(j)+s+j−1

(

̺(i)

γ

)(

s+j−1

j−1

)

E̺−1(̺(i)−γ), ̺−1(s+j−1)−
δi,j
N

N
∑

k=1

N−k−2
∑

c=0

Ek+c, k+c+1

]

10Expression (4.8) differs from the one given in [6] by common factor N and scalar term 1⊗ 1/Nz.
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Example: 11-vertex R-matrix. In N = 2 case we obtain the 11-vertex R-matrix:

R~(z) =

















~
−1 + z−1 0 0 0

−~− z ~
−1 z−1 0

−~− z z−1
~
−1 0

−~
3 − 2 z~2 − 2 ~ z2 − z3 ~+ z ~+ z ~

−1 + z−1

















(4.9)

This R-matrix was obtained previously in [76] and later rediscovered in [74] by applying

special limiting procedure to the Baxter-Belavin elliptic R-matrix. Author of [74] suggested

the algorithm which allowed to get the answer using computer calculations. In this paper

we obtain explicit answer for glN case using different approach. It is based on the relations

to the classical RS model.

Example: rational gl3 R-matrix. In gl3 case (4.1)–(4.4) gives the following 9 × 9

quantum R-matrix:

R~(z) = (4.10)



















































~
−1 + z−1 0 0

1 ~
−1 0

2 ~2 + 3 z~+ 2 z2 −3 ~− 3 z ~
−1

−1 z−1 0

2 ~+ 2 z 0 0

2 z3 + 3 z~2 + 2 ~3 + 3 z2~ −3 ~2 − 3 z~− z2 1

−2 ~2 − 3 z~− 2 z2 −3 ~− 3 z z−1

2 z3 + 3 z~2 + 2 ~3 + 3 z2~ 3 z2 + 3 z~+ ~
2 −1

2 ~5 + 3 z4~+ 3 z2~3 + 2 z5 + 3 z~4 + 3 z3~2 3 z4 − 3 ~4 − 3 z~3 + 3 z3~ −z2 + ~
2

0 0 0 0 0 0

z−1 0 0 0 0 0

−3 ~− 3 z 3 0 z−1 0 0

~
−1 0 0 0 0 0

0 ~
−1 + z−1 0 0 0 0

−3 z~− 3 z2 − ~
2 0 ~

−1 1 z−1 0

−3 ~− 3 z −3 0 ~
−1 0 0

z2 + 3 ~2 + 3 z~ 0 z−1 −1 ~
−1 0

3 z~3 + 3 ~4 − 3 z3~− 3 z4 −6 ~3 − 6 z3 − 9 z~2 − 9 z2~ 3 z + 3 ~ −~
2 + z2 3 z + 3 ~ ~

−1 + z−1



















































Plugging it into (1.30) one gets gauge equivalent top-like form of 3-body rational RS model

while for generic variables S it can be considered as alternative description of the spin RS

model.
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5 Belavin’s R-matrix and elliptic models

5.1 Sklyanin algebra and relativistic elliptic tops

Belavin’s elliptic glN R-matrix [16]

R~
12(z) =

∑

a∈ZN×ZN

ϕ~
a(z)Ta ⊗ T−a (5.1)

is the central object of the section as well as related quantum L-operator:

L̂η(z)
(2.5)
= tr2

(

R η
12(z)Ŝ2

)

=
∑

a∈ZN×ZN

ϕη
a(z)Ta Ŝa . (5.2)

In (5.1) and (5.2) the basis of glN and corresponding functions are chosen as11

Ta = Ta1a2 = exp
(πı

N
a1a2

)

Qa1Λa2 , Qkl = δkl exp

(

2πi

N
k

)

, Λkl = δk−l+1=0modN ,

(5.3)

ϕη
a(z) = exp(2πız∂τωa)φ(z, ωa + η) , φ(z, u) =

ϑ′(0)ϑ(u+ z)

ϑ(z)ϑ(u)
, ωa =

a1 + a2τ

N
, (5.4)

where ϑ(z) is the odd theta function and a1 , a2 ∈ ZN .

The Sklyanin algebra (2.7) is defined by the local behavior of ϕη
a(z) near z = 0:

φ(z, u) =

(

1

z
+ E1(u) +

z

2
(E2

1(u)− ℘(u)) + . . .

)

, E1(z) = ∂z log ϑ(z) . (5.5)

Then
R

~,(0)
12 (z) =

∑

a∈ZN×ZN

E1(ωa + ~)Ta ⊗ T−a , (5.6)

and
L̂η,(0)(z) =

∑

a∈ZN×ZN

(E1(ωa + η) + 2πı∂τωa)Ta Ŝa . (5.7)

The last terms (2πı∂τωa) are canceled out in the final answers.

Sklyanin algebra ASkl

~,η for ~, η 6= 0 in components Ŝa = tr(Ŝ T−a) can be derived from

either (2.7) together with (5.6), (5.7) or directly — by plugging (5.1) and (5.2) into exchange

relations (1.1). The latter way requires identity

ϕη
a−c(z)ϕ

η
b+c(w)ϕ

~
c(z−w)−ϕη

b+c(z)ϕ
η
a−c(w)ϕ

~

a−b−c(z−w) = f(a, b, c|τ, ~, η)ϕη+~
a (z)ϕη−~

b (w) ,

where

f(a, b, c|τ, ~, η) = E1(ωc + ~)− E1(ωa−b−c + ~) + E1(ωa−c + η)− E1(ωb+c + η) . (5.8)

The quadratic relations ASkl
τ,~,η in the Ta ⊗ Tb component of (1.1) read as follows:

∑

c∈ZN×ZN

f(a, b, c|τ, ~, η)
(

Ŝa−c Ŝb+c κc,a−b − Ŝb+c Ŝa−c κa−b,c

)

= 0 , (5.9)

11See for example review [75].
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where κa,b = exp πı
N (a2b1 − a1b2) comes from Ta Tb = κa,b Ta+b. Notice that in the case

η = ~ and b = 0 one should consider the limit η → ~ in (5.8) which gives

ϕ~
a−c(z)ϕ

~

b+c(w)ϕ
~
c(z − w)− ϕ~

b+c(z)ϕ
~
a−c(w)ϕ

~

a−b−c(z − w) = f(a, 0, c|τ, ~, ~)ϕ2~
a (z) ,

f(a, 0, c|τ, ~, ~) = E2(ωc + ~)− E2(ωa − ωc + ~) .

(5.10)

The case η = ~ and N = 2 in (5.9) gives rise to the Sklyanin algebra in its original

form [72, 73].

It follows from (5.8) that the “structure constant” f(a, b, c|τ~, η) is double periodic

with respect to the shifts

~ → ~+ Z+ Zτ , η → η + Z+ Zτ .

Therefore, we can consider the pair (~, η) as points on two elliptic curves Στ = C/(Z+τZ).

Consider the upper half-plane H+ ⊂ C. The moduli space M of elliptic curves is the result

of the action of SL2(Z) on H+ by the Möbius transform

M = H+/SL2(Z) ,

(

τ →
ατ + β

γτ + δ

)

.

The modular transformations acts on the theta-function as

ϑ

(

v

α+ βτ
|
γ + δτ

α+ βτ

)

= ζ(α+ βτ)
1
2 exp

(

ıπαv2

α+ βτ

)

ϑ(v|τ) ,

where ζ8 = 1. Then we can find that f(a, b, c|τ, ~, η) is modular invariant, and therefore, it

is a well defined function on M. In this way the universal bundle

Eτ =

Στ × Στ

↓

M

(5.11)

plays the role of the moduli space of the algebra ASkl
τ,~,η. Then the moduli space is

Mod (ASkl
τ,~,η) = Eτ . (5.12)

Relation between ASkl

η 6=0 and ASkl

η=0. Following [23]12 let us clarify the relation between

η-dependent and η-independent L-operators discussed above (2.58). Two descriptions are

distinct from each other by quasiperiodic boundary conditions on the lattice C/Z+ Zτ :

Lη(z + 1) = Q−1Lη(z)Q , Lη(z + τ) = exp(−2πı η)Λ−1Lη(z)Λ , (5.13)

L(z + 1) = Q−1L(z)Q , L(z + τ) = Λ−1L(z)Λ , (5.14)

where Q and Λ are from (5.3). Notice that L(z) (5.14) is a section of EndV -bundle,

where V is the holomorphic vector bundle with the transition functions Q and Λ̃(z) =

12In that paper η = ~ was considered.
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exp(2πı( z
N + τ

2N ))Λ. In the same time Lη(z) should be considered as a map between V

and V ′, where V ′ is defined by the transition functions Q and Λ′(z) = exp(2πıη)Λ(z).

Set η0 = −η and gη(z) = 1/φ(z − η, η) in (2.58). Then

1

φ(z − η, η)
L̂η(z − η, ϕ(Ŝ)) = T0Ŝ0 +

∑

a 6=0

ϕ0
a(z)Ta Ŝa , (5.15)

where
ϕ(Ŝ) = T0Ŝ0 +

∑

a 6=0

ϕ0
a(η)Ta Ŝa , (5.16)

i.e. the η-independent description is given by

L(z, Ŝ) = T0Ŝ0 +
∑

a 6=0

ϕ0
a(z)Ta Ŝa = T0Ŝ0 + tr2(r12(z)Ŝ) , (5.17)

The underlying identity is very simple:

ϕη
a(z − η)/ϕη

0(z − η) = ϕ0
a(z)/ϕ

0
a(η) . (5.18)

The sum over a 6= 0 corresponds to slN part, i.e. Ŝ can be replaced with ˆ̄S in the r.h.s.

of (5.15) and (5.16) as in (2.57). The classical r-matrix (2.12) emerging in the η-independent

form (2.57) is the Belavin-Drinfeld slN r-matrix [17]:

r12(z) =
∑

a 6=0

ϕ0
a(z)Ta ⊗ T−a . (5.19)

The scalar term T0 ⊗ T0E1(z) is not important here.

Relativistic top appears in the quasi-classical limit. The Lax matrix (2.10)13

Lη(z) = tr2 (R
η
12(z)S2) =

∑

a∈ZN×ZN

ϕη
a(z)Ta Sa . (5.20)

together with M -matrix (2.29)

M(z) = −tr2 (r12(z)S2)
(5.19)
= −

∑

a 6=0

ϕ0
a(z)Ta Sa (5.21)

provides equations of motion (2.26) generated by the Hamiltonian H = S0:

∂t0 S = {S0, S} = [S, Jη(S)] , (5.22)

where the inverse inertia tensor Jη (2.27):

Jη(S) = tr2

((

R
η,(0)
12 − r

(0)
12

)

S2

)

= T0S0E1(η) +
∑

a 6=0

TaSa(E1(ωa + η)− E1(ωa)) =

= S E1(η) +
∑

a 6=0

TaSa(E1(ωa + η)− E1(ωa)− E1(η)) . (5.23)

The first (scalar) term T0S0E1(η) in the upper line of (5.23) vanishes from the commutator

in (5.22) as well as the first term SE1(η) in the lower line. To verify (5.22), (5.23) one

needs the following identity:

ϕη
a(z)ϕ

0
b(z) = ϕη

a+b(z) (E1(z) + E1(ωa + η) + E1(ωb)− E1(z + ωa+b + η)) . (5.24)

13In (2.10) J η
a,b (z) = δa+b ϕ

η
a(z).
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Non-relativistic limit η → 0 coincides with η-independent description at the level of

equations of motion because the Lax matrices (2.33) and (2.45) are the same up to the scalar

term S0 1. This is due to existence of bihamiltonian structure, i.e. any linear combination

of the linear and quadratic Poisson brackets are again some Poisson bracket (see [37] for

details).

The equations of motion (5.22) keep the same form in the limit with

J(S) = lim
η→0

η−1 Jη(S̄) = −
∑

a 6=0

TaSaE2(ωa) , E2(z) = −∂2
z log ϑ(z) , (5.25)

where S̄ is the slN part of S. The equations of motion Ṡ = [S, J(S)] are generated by the

Lax pair l(z) =
∑

a 6=0

ϕ0
a(z)Ta Sa and the M -matrix (2.54):

M(z) =
∑

a 6=0

fa(z)Ta Sa , fa(z) = ∂ηϕ
η
a(z) |η=0 . (5.26)

The underlying elliptic function identity is very well known [38]:

ϕ0
a(z)fb(z)− ϕ0

b(z)fa(z) = ϕ0
a+b(z)(E2(ωa)− E2(ωb)) = ϕ0

a+b(z)(℘(ωa)− ℘(ωb)) . (5.27)

This model was introduced in [47]. Its phase space is the coadjoint orbit of Lie group GLN .

When dimension of the orbit is minimal (2N − 2) the Lax matrix is gauge equivalent to

the one of elliptic Calogero-Moser model. More detailed description can be found in [75].

Higher rank Sklyanin algebras in the context of integrable systems were also discussed

in [18, 23, 37].

5.2 Poincaré invariance

The Poincaré Lie algebra for the relativistic integrable systems [69, 70] is defined as

{H,P} = 0 , {B,H} = P , {B,P} = H . (5.28)

The RS models can be obtained by symplectic (or the Poisson) reduction procedures from

the cotangent bundles to a certain loop groups [34, 35].14 For the top-like (elliptic) Lax

operators (1.19) a similar procedure was suggested in [18] and [23]. In all the description the

Lax matrix appears through reduction from the group element. It satisfies some moment

map constraint generated by the symmetries of the (co)adjoint action.

Let us show that the mentioned above reductions provide naturally the Poincaré Lie

algebra (5.28). As a preliminary, consider the finite-dimensional case, i.e. the cotangent

bundle T ∗G to G = GLN Lie group. Let g ∈ G and A ∈ gl∗N . The symplectic structure on

T ∗G is equal to

ω = d tr
(

Ag−1dg
)

. (5.29)

The corresponding Poisson brackets are of the form:

{A1, A2} = [P12, A2] , {g1, g2} = 0 , (5.30)

{A1, g2} = g1P12 , (5.31)

14See also example of the relativistic Toda systems [71] in [31, 32].
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Taking tr1 of (5.31) we get

{trA, g} = g . (5.32)

Therefore, {trA, g−1} = −g−1, and we have the following identification with (5.28):

H := tr
(

g + g−1
)

, P := tr
(

g − g−1
)

, B := trA . (5.33)

Notice that the variable dual to the boost B is log(det g)1/N . Indeed, it follows from (5.32)

that

{trA, det g} = N det g . (5.34)

After reduction by the action of the gauge group

g → f−1gf , A → f−1Af , f = f(A) (5.35)

the trivial Poisson brackets {g1, g2} = 0 become those quadratic of the r-matrix

form (1.18) [18]. The quantities H, P and B from (5.33) are gauge invariants. The Poisson

brackets (5.28) of the Poincaré Lie algebra keep the same form after reduction.

Similar reasoning is valid in more complicated cases. In [23] the classical Lax operator

L(z, S) (5.17) (where Ŝ → S) was derived starting from the affine space over the cotangent

bundle T ∗LL(G) to the two-loop group LL(G), G = GLN . Here we deal with the holo-

morphic bundle on the elliptic curve Στ (with moduli τ) given by transition functions Q

and Λ̃ = exp(2πı
(

− z
N − τ

2N

)

)Λ from (5.3). Ā — is the component of the dĀ connection on

Στ . In the Dolbeault description the holomorphic structure of the vector bundle is defined

by the operator

dĀ = ∂̄ + Ā : Ω(0,0)(Στ , gl(N,C)) → Ω(0,1)(Στ , gl(N,C))

Ā(z + 1, z̄ + 1) = QĀ(z, z̄)Q−1 , Ā(z + τ, z̄ + τ̄) = ΛĀ(z, z̄)Λ−1 .
(5.36)

A section ξ(z, z̄) is holomorphic if dĀξ(z, z̄) = 0. Two holomorphic structures dĀ and dĀ′

are equivalent if they are related by the gauge transformation of the gauge group G

Ā → f−1Āf + f−1∂̄f . (5.37)

The quotient of the space of generic connections A = {dĀ}
15 by the gauge group action

is the moduli space Bun(Στ ,GL(N,C)) = A/G of holomorphic bundles. The initial phase

space PΣτ is the Poisson algebra of holomorphic functionals on R. The Poisson brackets

are similar to (5.30), (5.31) (see [23]). The gauge transformations (5.37) along with

g → f−1gf , f ∈ Gs ⊂ G : f(z, z̄)|z=0 = 1 (5.38)

leads to the finite-dimensional reduced phase space Pred. The reduced Poisson algebra

coincides with (2.46) for the elliptic r-matrix (5.19), and

g(z, z̄)|Pred = L(z) = T0S0 + tr2(r12(z)S2) = T0S0 +
∑

α 6=0

ϕ0
α(z)TαSα . (5.39)

15We don’t discuss here the stability of the bundles, because we need only an open subset of A.
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From (5.37) it follows that

trĀ → trĀ+ tr(f−1∂̄f) . (5.40)

Since trĀ is double-periodic it can be gauge transformed to a constant a, i.e.

trĀ(z, z̄)|Pred = a . (5.41)

Using the arguments similar to (5.30)–(5.32) one can see that

{a,L(z)} = L(z) . (5.42)

and reproduce the Poincaré algebra (5.28) in the form of (5.33) with g = L(z). The variable

a extends the phase space of the top. The variable dual to a is the one which acts on the

top variables by dilatation S → λS. This action does not preserves the values of the

Casimir functions generated by det L(z, S). Therefore, the Poincaré symmetry emerges on

the top’s phase space extended by the two-dimensional space (a, λ) — cotangent bundle

to the one-dimensional center of the group.

5.3 Large N limit: 2d elliptic hydrodynamics

In this paragraph we consider the large N limit of the elliptic tops following and [37,

64] (see also [5]), where η-independent case was studied. This type of limit leads to 2d

hydrodynamics [8–10]. The idea is to replace the generators (5.3) of glN with

Ta :=
i

2πθ
exp

(

2πı
a1a2
2

θ
)

Ua1
1 Ua2

2 a ∈ Z
(2) = Z⊕ Z . (5.43)

While Q and Λ from (5.3) gives the finite-dimensional representation of the Heisenberg

group, the generators U1 and U2 satisfy commutation relation of the noncommutative

torus T 2
θ :

U1U2 = e−2πiθU2U1 , θ ∈ [0, 1) . (5.44)

A generic element from T 2
θ is X =

∑

a1,a2∈Z

ca1,a2U
a1
1 Ua2

2 , ca1,a2 ∈ C. This space is naturally

identified with smooth functions on the two-dimensional torus T 2 = {R2/Z⊕ Z}:

U1 → exp(2πıx1) , U2 → exp(2πıx2) , 0 < x1, x2 ≤ 1 (5.45)

with the Moyal multiplication

exp(2πıx1) ⋆ exp(2πıx2) = e−2πıθ exp(2πıx2) ⋆ exp(2πıx1) , (5.46)

or

(f ⋆ g)(x) := fg +
∞
∑

n=1

(ıπθ)n

(2πı)2nn!
εr1p1 . . . εrnpn (∂

n
xr1 ...xrn

f)(∂n
xp1 ...xpn

g) (5.47)

for functions

f(x) =
∑

a∈Z(2)

faTa(x) , Ta(x) =
ı

2πθ
exp

(

2πı
a1a2
2

θ
)

exp(2πıa1x1) exp(2πıa2x2) . (5.48)
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Then

U1f(x) = f(x− θ) , U2f(x) = exp(2πıx)f(x) . (5.49)

In other words, U1 and U2 are GL(∞) analogues of Q and Λ from (5.3). The finite-

dimensional relations TaTb = κa,bTa+b are saved in the infinite-dimensional case with

κθa,b = −2πıθ exp(πıθ a× b) , (a× b = a2b1 − a1b2) . (5.50)

Then we can introduce the following generalization of the Belavin’s R-matrix (5.1) [37]:

R~
12(z| θ, ǫ) =

∑

a∈Z×Z

ϕ~
a(z| θ, ǫ)Ta ⊗ T−a (5.51)

Here

ϕ~

a(z| θ, ǫ) = exp(2πıǫ2a2zθ)φ((ǫ1a1 + τǫ2a2)θ + ~, z) , (5.52)

ǫ = (ǫ1, ǫ2) , ǫaθ < 1 .

and Ta is the basis (5.43). It satisfies the Yang-Baxter equation (1.2). The related quantum

L-operator is similar to (5.2):

L̂η(z| θ, ǫ)
(2.5)
= tr2

(

R η
12(z)Ŝ2

)

=
∑

a∈ZN×ZN

ϕη
a(z| θ, ǫ)Ta Ŝa , (5.53)

where tr is defined as trace functional on T 2
θ :

〈X〉 = tr(X) = c00 , 〈1〉 = 1 , 〈XY 〉 = 〈Y X〉 . (5.54)

In the Moyal representation: trf = − 1
4π2

∫

T 2
θ
fdx1dx2 = f00.

The Lax operator (5.53) satisfies the quasi-periodicity conditions






Lη(z + 1) = U−ǫ2
1 Lη(z)U ǫ2

1 ,

Lη(z + τ) = exp(2πıη)U−ǫ1
2 Lη(z)U ǫ1

2 ,
(5.55)

Here ǫ1 and ǫ2 are arbitrary real numbers in the sense of (5.49). Conditions (5.55) mean

that Lη(z) is a section of the (twisted) Higgs bundle over elliptic curve Στ with the structure

group SINθ. The latter consists of invertible elements of T 2
θ (see e.g. [5]). The exchange

relations (1.1) provide the direct generalization of the Sklyanin algebra (2.7):

ASkl
τ,~,η,θ,ǫ :

P12 L
η,(0)(θ, ǫ)(Ŝ)1 Ŝ2 +R

~,(0)
12 (θ, ǫ) Ŝ1 Ŝ2 = Ŝ2 L

η,(0)(θ, ǫ)(Ŝ)1 P12 + Ŝ2 Ŝ1R
~,(0)
12 (θ, ǫ) .

(5.56)

with
R

~,(0)
12 (z| θ, ǫ) =

∑

a∈Z×Z

E1((ǫ1a1 + ǫ2a2τ)θ + ~)Ta ⊗ T−a , (5.57)

and
L̂η,(0)(z| θ, ǫ) =

∑

a∈Z×Z

E1((ǫ1a1 + ǫ2a2τ)θ + η)Ta Ŝa . (5.58)

Notice that this algebra depends on five parameters: ~, η, τ , θǫ1, θǫ2.
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Classical limit ~ → 0 leads to 2d elliptic hydrodynamics written in the Euler-Arnold

form [8–10]. First, mention that the parameters ǫ1,2 (5.52) allow to define the complex

structure on the noncommutative torus T 2
θ . For element X =

∑

a caTa define

∂̄ǫ,τX =
∑

a

(ǫ1a1 + ǫ2a2τ)caTa . (5.59)

The operator Jη (5.23) acts as the following pseudo-differential operator:

Jη(S)(x) = E1(η + θ∂̄ǫ,τ )S(x) . (5.60)

Consider analogue of the classical finite-dimensional Lax pair (5.20), (5.21):

Lη(z, S(x)) =
∑

a∈Z(2)

Saϕ
η
a(z| θ, ǫ)Ta , M(z, S(x)) =

∑

a∈Z(2)

Saϕ
0
a(z| θ, ǫ)Ta . (5.61)

Then the Lax equations provide equations of motion:

∂tS(x) = ad∗Jη(S)(x)S(x) = [S(x), Jη(S)(x)]θ , (5.62)

where

[f(x), g(x)]θ = θ−1(f ⋆ g − g ⋆ f) . (5.63)

In components we have:

∂tSα =
∑

γ∈Z(2)

Cθ(α, γ)SγSα−γ E1((ǫ1γ1 + ǫ2γ2τ)θ + η) ,

Cθ(α, β) =
1

πθ
sin(πθ(α× β)) .

(5.64)

The obtained equations (5.62) can be treated as hydrodynamical limit of the elliptic

spin Ruijsenaars-Schneider model. It is an interesting problem to find its relation to an-

other type of hydrodynamical limit [1, 2]. The latter approach leads to the quantum glN
Benjamin-Ono and KdV systems while our approach gives rise to the glN Sklyanin type

algebra (5.56) and classical equations (5.62), (5.63).

In the non-relativistic limit η → 0 we reproduce the answer from [37, 64]. Likewise

the RS model goes into CM one, the relativistic top goes to non-relativistic (5.25). In the

same way instead of Jη (5.60) we get

J(S)(x) = −E2(θ∂̄ǫ,τ )S(x) . (5.65)

In a similar way one can describe the dispersionless limit θ → 0, ǫ1,2 → ∞,

limθ→0(θǫ1,2) = ǫ′1,2 < 1. In the limit the Lie algebra sinθ of the group SINθ becomes the

Lie algebra Ham(T 2) of Hamiltonian vector fields on the two-dimensional torus.
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6 Conclusion

Let us briefly summarize the obtained results.

Theorem 1 Let L̂η(z) = tr2

(

R η
12(z)Ŝ2

)

, Ŝ = Res
z=0

L̂(z) be glN solution of the quantum

exchange relations (1.1) with the quantum non-dynamical R-matrix satisfying (1.2), (1.3)

and (2.3), (2.12). Then

1) The quantum exchange relations (1.1) define the following glN Sklyanin algebra:

ASkl

~,η : P12 L
η,(0)(Ŝ)1 Ŝ2 +R

~,(0)
12 Ŝ1 Ŝ2 = Ŝ2 L

η,(0)(Ŝ)1 P12 + Ŝ2 Ŝ1R
~,(0)
12 . (6.1)

2) The glN -valued Lax matrix

Lη(z) = tr2 (R
η
12(z)S2) , S = Res

z=0
L(z) (6.2)

defines the classical integrable system described by the Poisson structure

{Lη
1(z) , L

η
2(w)} = [Lη

1(z)L
η
2(w), r12(z − w)] ,

ASkl

~=0,η : {S1, S2} = [S1S2, r
(0)
12 ] + [Lη,(0)(S)1 S2, P12] .

(6.3)

3) The simplest Hamiltonian tr(S) generates top-like equations of motion

Ṡ = [S, Jη(S)] (6.4)

with the inverse inertia tensor

Jη(S) = tr2

((

R
η,(0)
12 − r

(0)
12

)

S2

)

, (6.5)

where R
η,(0)
12 and r

(0)
12 are the coefficients of the local expansion of the quantum R-

matrix (2.3) and the classical r-matrix (2.13) respectively.

4) Equations (6.4) are presented in the Lax form L̇η(z) = [Lη(z),M(z)] with the M -

operator given in terms of the classical r-matrix:

M(z) = −tr2 (r12(z)S2) . (6.6)

5) Alternatively, the relativistic top can be described in η-independent form as bihamil-

tonian system with the quadratic Poisson structure described in section 2.5 and the

linear Poisson structure given in section 2.4. The relation between η-dependent and

η-independent descriptions are given by (2.59).

Theorem 2 The classical Lax matrix (3.27)–(3.30) provides an example of relativistic

integrable top described in Theorem 1. If S is of rank one and detLη(z) = z+η
z then the

model is gauge equivalent to the rational slN RS model defined by the Lax matrix (3.4) with

the change of variables

Sij(p,q) =

N
∑

m=1

(qm + η) ̺(i)epm/c

∏

k 6=m

(qm − qk)
(−1)̺(j) σ̺(j)(q) . (6.7)
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Theorem 3 The quantum R-matrix (4.1)–(4.4) is a unitary solution of the Yang-Baxter

equation (1.2) with f~(z) = ~
−2 − z−2 from (1.3). It can be obtained from the Lax ma-

trix (3.27)–(3.30) as

R~
12(z) =

N
∑

k,l=1

∂L~(z)

∂Skl
⊗ Elk . (6.8)

In the limit (1.28)–(1.29) it gives the XXX R-matrix.

The latter statement can be obtained by the direct IRF-Vertex transformation starting

from the quantum R-matrix for the rational RS model. We will give this proof elsewhere.

The obtained rational R-matrix allows to define new type of spin chains and Gaudin

models. In the elliptic case, in addition to the relativistic top we describe the large N limit

as the elliptic hydrodynamics.

Remarks

• Relations between the Ruijsenaars-Schneider (RS) systems and quantum integrable

chains appeared recently in the context of the Quantum-Classical duality using the

Bethe ansatz approach [33] or the τ -function approach [3, 4]. This duality, in particu-

lar, implies the substitution η = ~ into the Lax matrix of the RS model and provides

an alternative (to the algebraic Bethe ansatz) method for computation of spectrum

of the quantum spin chains transfer-matrices.

The phenomenon of the Quantum-Classical duality type was also observed at the level

of gauge theories in the series of papers [58–62]. In this approach the Planck constant

(in quantum integrable system) was identified with the twisted mass parameter in

the N = 2∗ SUSY Yang-Mills theory. The latter mass parameter is related to the

action of the global U(1) group on the adjoint chiral multiplet field. It resembles

the appearance of the η parameter in the twisted boundary conditions for the Lax

operator (5.13), i.e. the twisted mass and the η play similar roles and can be closely

related.

A relation between the classical and quantum systems arises also in studies of the

spectral duality [55–57]. A general statement is that the spectral duality works in

the same way both at classical and quantum levels, or the properly defined classical

and quantum spectral curves for spin chains coincide. It also resembles the similarity

of the quantum R-matrices and the classical Lax operators.

• Expression (4.1)–(4.4) for the rational R-matrix is complicated. In the same time,

the computations of particular examples emerge a lot of cancellations. We hope that

the answer can be simplified. It is an interesting problem to find some elegant form

for the rational R-matrix of group-theoretical type.

• The classification of integrable systems of Hitchin type on elliptic curves can be

naturally made in terms of characteristic classes of underlying Higgs bundles [48–51,

75]. In particular, it allows one to obtain intermediate solutions of the quantum Yang-

Baxter equation (between pure dynamical for RS model and pure non-dynamical
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one) [52, 53]. In the rational case we deal with degenerated (and punctured) elliptic

curve y2 = z3. It is interesting to know whether elliptic classification survives in the

rational limit.

• In this paper we do not consider the trigonometric case. However, it would appear

reasonable that the obtained results are valid in this case as well. The correspond-

ing non-dynamical quantum R-matrix was obtained in [7] from the trigonometric

RS model via the IRF-Vertex transformation. It can be used for construction of

trigonometric top-like models.
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