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Abstract The covariant motion of a classical point particle
with magnetic moment in the presence of (external) elec-
tromagnetic fields is revisited. We are interested in under-
standing extensions to the Lorentz force involving point par-
ticle magnetic moment (Stern–Gerlach force) and how the
spin precession dynamics is modified for consistency. We
introduce spin as a classical particle property inherent to
Poincaré symmetry of space-time. We propose a covariant
formulation of the magnetic force based on a ‘magnetic’ 4-
potential and show how the point particle magnetic moment
relates to the Amperian (current loop) and Gilbertian (mag-
netic monopole) descriptions. We show that covariant spin
precession lacks a unique form and discuss the connection to
g − 2 anomaly. We consider the variational action principle
and find that a consistent extension of the Lorentz force to
include magnetic spin force is not straightforward. We look
at non-covariant particle dynamics, and present a short intro-
duction to the dynamics of (neutral) particles hit by a laser
pulse of arbitrary shape.

1 Introduction

The (relativistic) dynamics of the particle magnetic moment
μ, i.e. the proper time dynamics of spin sμ(τ), has not been
fully described before. Our interest in this topic originates in
a multitude of current research topics:

(i) the ongoing effort to understand the magnetic moment
anomaly of the muon [1,2];

(ii) questions regarding how elementary magnetic dipoles
(e.g. neutrons) interact with external fields [3,4];

(iii) particle dynamics in ultra strong magnetic fields cre-
ated in relativistic heavy ion collisions [5,6];

(iv) magnetars, stellar objects with extreme O(1011) T
magnetic fields [7,8];
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(v) the exploration of particle dynamics in laser generated
strong fields [9];

(vi) neutron beam guidance and neutron storage rings [10];
and

(vii) the finding of unusual quantum spin dynamics when
gyromagnetic ratio g �= 2 [11,12].

The results we present will further improve the understanding
of plasma physics in the presence of inhomogeneous mag-
netic fields, and improve formulation of radiation reaction
forces, and topics not further discussed in this presentation.

In the context of the electromagnetic (EM) Maxwell–
Lorentz theory we learn in the classroom that:

1. The magnetic moment μ has an interaction energy with
a magnetic field B

Em = −μ · B. (1)

The corresponding Stern–Gerlach force FSG has been
written in two formats

FSG ≡
{∇(μ · B), Amperian Model,

(μ · ∇)B, Gilbertian Model.
(2)

The name ‘Amperian’ relates to the loop current gener-
ating the force. The ‘Gilbertian’ model invokes a mag-
netic dipole made of two magnetic monopoles. These
two forces written here in the rest frame of a particle are
related [3,4]. We will show that an internal spin based
magnetic dipole appears naturally; it does not need to be
made of magnetic monopoles or current loops. We find
that both force expressions in Eq. (2) are equivalent; this
equivalence arises from covariant dynamics we develop
and requires additional terms in the particle rest frame
complementing those shown in Eq. (2).

2. The torque T that a magnetic field B exercises on a mag-
netic dipole μ tends to align the dipole with the direction
of a magnetic field B
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T ≡ ds
dt

= μ × B = gμB
s

h̄/2
× B, μB ≡ eh̄

2m
.

(3)

The magnetic moment is defined in general in terms of
the product of Bohr magneton μB with the gyromagnetic
ratio g, |μ| ≡ gμB. In Eq. (3) we used |s| = h̄/2 for
a spin-1/2 particle; a more general expression will be
introduced in Sect. 3.1.1.

We used the same coefficient μ to characterize both the
Stern–Gerlach force Eq. (2) and spin precession force Eq. (3).
However, there is no compelling argument to do so and we
will generalize this hypothesis – it is well known that Dirac
quantum dynamics of spin-1/2 particles predicts both the
magnitude g = 2 and identity of magnetic moments entering
Eqs. (2) and (3).

While the conservation of electrical charge is rooted
in gauge invariance symmetry, the magnitude of electrical
charge has remained a riddle. The situation is similar for the
case of the magnetic moment μ: spin properties are rooted in
the Poincaré symmetry of space-time, however, the strength
of spin interaction with magnetic field, Eqs. (1) and (3), is
arbitrary but unique for each type of (classical) particle. Intro-
ducing the gyromagnetic ratio g we in fact create an addi-
tional conserved particle quality. This becomes clearer when
we realize that the appearance of ‘e’ does not mean that par-
ticles we study need to be electrically charged.

First principle considerations of point particle relativistic
dynamics experience some difficulties in generating Eqs. (2)
and (3), as a rich literature on the subject shows – we will cite
only work that is directly relevant to our approach; for further
70+ references see the recent numerical study of spin effects
and radiation reaction in a strong electromagnetic field [9].

For what follows it is important to know that the spin
precession Eq. (3) is a result of spatial rotational invari-
ance which leads to angular and spin coupling, and thus spin
dynamics can be found without a new dynamical principle
as has been argued e.g. by Van Dam and Ruijgrok [13] and
Schwinger [14]. Similar physics content is seen in the work
of Skagerstam and Stern [15,16], who considered the context
of fiber bundle structure focusing on Thomas precession.

Covariant generalization of the spin precession Eq. (3)
is often attributed to the 1959 work by Bergmann–Michel–
Telegdi [17]. However we are reminded [18–20] that this
result was discovered already 33 years earlier by Thomas
[21,22] at the time when the story of the electron gyromag-
netic ratio g = 2 was unfolding. Following Jackson [18] we
call the corresponding equation TBMT. Frenkel, who pub-
lished [23,24] at the same time with L.H. Thomas explored
the covariant form of the Stern–Gerlach force, a task we com-
plete in this work.

There have been numerous attempts to improve the under-
standing of how spin motion back-reacts into the Lorentz
force, generating the Stern–Gerlach force. In the 1962 review
Nyborg [25] summarized efforts to formulate the covariant
theory of electromagnetic forces including particle intrinsic
magnetic moment. In 1972 Itzykson and Voros [26] proposed
a covariant variational action principle formulation introduc-
ing the inertia of spin I , seeking a consistent variational prin-
ciple but they found that no new dynamical insight resulted
in this formulation.

Our study relates most to the work of Van Dam and Ruij-
grok [13]. This work relies on an action principle and hence
there are in the Lorentz force inconsistent terms that violate
the constraint that the speed of light is constant, see e.g. their
Eq. 3.11 and remarks: ‘ The last two terms areO(e2) and will
be omitted in what follows.’ Other authors have proposed
mass modifications to compensate for terms, a step which is
equally unacceptable. For this reason our approach is intu-
itive, without insisting on ‘in principle there is an action’.
Once we have secured a consistent, unique covariant exten-
sion of the Lorentz force, we explore the natural variational
principle action. We find it is not consistent and we identify
the origin of the variational principle difficulties.

We develop the concept of the classical point particle spin
vector in the following Sect. 2. Our discussion relates to
Casimir invariants rooted in space-time symmetry transfor-
mations. Using Poincaré group generators and Casimir eigen-
values we construct the particle momentum pμ and particle
space-like spin pseudo-vector sμ. In Sect. 3 we present a con-
sistent picture of the Stern–Gerlach force (Sect. 3.1) and gen-
eralize the TBMT precession equation (Sect. 3.2) to be linear
in both, the EM field and EM field derivatives. We connect the
Amperian form of SG force (3.1.1) with the Gilbertian force
(3.1.2). We discuss non-uniqueness of spin dynamics (3.2.3)
with consideration of the impact on muon g−2 experiments.
We show in Sect. 4 that the natural choice of action for the
considered dynamical system does not lead to a consistent
set of equations; in this finding we align with all prior studies
of Stern–Gerlach extension to the Lorentz force.

In the final part of this work, Sect. 5, we show some of
the physical consequences of this theoretical framework. In
Sect. 5.1 we present a more detailed discussion of dynamical
equations for the case of a particle in motion with a given
β = v/c and E , B in the laboratory. In Sect. 5.2 we study
the solution of the dynamical equations for the case of an EM
light wave pulse hitting a neutral particle. We have obtained
exact solutions of this problem, details will follow under sep-
arate cover [27]. The concluding Sect. 6 is a brief summary
of our findings.

1.1 Notation

For most of our notation, see Ref. [28]. Here we note that we
use the SI unit system and the metric:
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diag gμν = {1, −1, −1, −1}, pμ pμ = gμν p
μ pν = E2

c2 − p 2,

We further recognize the totally antisymmetric covariant
pseudo-tensor ε:

εμναβ = √−g

{
(−1)perm, if all indices are distinct
0, otherwise,

where ‘perm’ is the signature of the permutation. It is impor-
tant to remember when transiting to non-covariant notation in
the laboratory frame of reference that the analog contravari-
ant pseudo-tensor due to the odd number of space-like dimen-
sions is negative for even permutations and positive for odd
permutations. The Appendix B of Ref. [29] presents an intro-
duction to ε.

We will introduce an elementary magnetic dipole charge
d – the limitations of the alphabet force us to adopt the letter
d otherwise used to describe the electric dipole to be the ele-
mentary magnetic dipole charge. The magnetic dipole charge
of a particle we call d converts the spin vector s to magnetic
dipole vector μ,

sdc = μ, d ≡ |μ|
c|s| . (4)

The factor c is needed in SI units since in the EM-tensor Fμν

has as elements E/c and B. It seems natural to introduce
also sμd = μμ, but this object can be confusing therefore
we will stick to the product sμd, however we always replace
sd → μ/c. Note that we place d to the right of pertinent
quantities to avoid confusion such as dx .

We cannot avoid the appearance in the same equation of
both magnetic moment μ and vacuum permeability μ0.

2 Spin vector

A classical intrinsic covariant spin has not been clearly
defined or even identified in prior work. In some work
addressing covariant dynamics of particles with intrinsic spin
and magnetic moment, particle spin is by implication solely a
quantum phenomenon. Therefore we describe the precise ori-
gin of classical spin conceptually and introduce it in explicit
terms in the following.

Considering the Poincaré group of space-time symmetry
transformations [30,31], it has been established that elemen-
tary particles have to be in a representation that is character-
ized by eigenvalues of two Casimir operators (a ‘bar’ marks
operators)

C̄1 ≡ p̄μ p̄
μ = p̄2 ≡ m2c2, C̄2 ≡ w̄αw̄α. (5)

All physical point ‘particles’ have fixed eigenvalues of
C1,C2. The quantities (with a bar) p̄μ and w̄α are differ-

ential operators constructed from generators of the symme-
try transformations of space-time; that is 10 generators of
the Poincaré group of symmetry transformations of 4-space-
time: p̄μ for translations, J for rotations and K for boosts.
Once we construct suitable operator valued quantities we
will transition to the physics of ‘c-number’ valued (without
bar) variables as used in classical dynamics where all quan-
tities will be normal numbers and rely on the eigenvalues of
Casimir operators C1,C2 for each type of particle.

In Eq. (5) the first of the space-time operators based on
generators of the four space-time translations pμ guaran-
tees that a point particle has a conserved inertial mass m
(with a value specific for any particle type). The second
Casimir operatorC2 is obtained from the square of the Pauli–
Lubański pseudo-4-vector

w̄α = M
�

αβ p̄
β, M

�

αβ ≡ 1

2
εαβμνM

μν
. (6)

Here M
μν

is the antisymmetric tensor (operator) created
from three Lorentz-boost generators K and three space rota-
tion generators J such that

1

2
MμνM

νμ = K
2 − J

2
,

1

4
M

�

μνM
μν = J · K . (7)

These relations help us see that

Fμν(ε/c → K ,B → J) = M
μν

.

The generators J, K of space-time transformations are rec-
ognized by their commutation relations. They are used in a
well known way to construct representations of the Lorentz
group.

In terms of the generator tensor M
νμ

the covariant defini-
tion of the particle spin (operator) vector is

s̄μ ≡ w̄μ√
C1

= M
�

μν

ūν

c
, ūμ ≡ c p̄μ

√
C1

= p̄μ

m
. (8)

According to Eq. (8), spin s̄μ is a pseudo-vector, as required
for angular dynamics. The dimension of s̄μ is the same as the
dimension of the generator of space rotations J . We further
find that s̄μ is orthogonal to the 4-velocity (operator) ūμ

cs̄ · ū = ūνM
�

νμū
μ = 0, (9)

by virtue of the antisymmetry of M
�

evident in the defini-
tion Eq. (6). The definition of the particle spin (operator) is
unique: no other space-like (space-like given the orthogo-
nality s̄ · ū = 0) pseudo-vector associated with the Poincaré
group describing space-time symmetry transformations can
be constructed.

We now transition to c-numbered quantities (dropping the
bar): an observer ‘(0)’ co-moving with a particle measures
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the 4-momentum and 4-spin sμ

pμ

(0) ≡ {√C1, 0, 0, 0}, sμ

(0) ≡ {0, 0, 0,
√|C2|/C1} (10)

where according to convention the ẑ-axis of the coordinate
system points in the direction of the intrinsic spin vector s.
In the particle rest frame we see that

0 = pμ

(0)s
(0)
μ = pμsμ|(0) = m(uμsμ)|any frame, (11)

is consistent with the operator equation Eq. (9); more gen-
erally, any space-like vector is normal to the time-like 4-
velocity vector. For the magnitude of the spin vector we
obtain

−s 2 ≡ sμ

(0)s
(0)
μ ≡ sμsμ|(0) = s2|any frame = −|C2|

C1
. (12)

We keep in mind that s2 must always be a constant of motion
in any frame of reference. Its value s · s = −s 2 is always
negative, appropriate for a space-like vector. Similarly

pμ

(0) p
(0)
μ = p2|any frame = C1 ≡ m2c2, (13)

must be a constant of motion in any frame of reference and
the value p2 is positive, appropriate for a time-like vector.

As long as forces are small in the sense discussed in
Ref. [28] we can act as if the rules of relativity apply to both
inertial and (weakly) accelerated frames of reference. This
allows us to explore the action of forces on particles in their
rest frame where Eq. (10) defines the state of a particle. By
writing the force laws in covariant fashion we can solve for
the dynamical evolution of pμ(τ), sμ(τ) as classical num-
bered variables.

3 Covariant dynamics

3.1 Generalized Lorentz force

3.1.1 Magnetic dipole potential and Amperian force

We have gone to great lengths in Sect. 2 to argue for the exis-
tence of particle intrinsic spin. For all massive particles this
implies the existence of a particle intrinsic magnetic dipole
moment, without need for magnetic monopoles to exist or
current loops. Spin naturally arises in the context of symme-
tries of Minkowski space-time, it is not a quantum property.

In view of the above it is appropriate to study classical
dynamics of particles that have both, an elementary electric
charge e, and an elementary magnetic dipole charge d. The
covariant dynamics beyond the Lorentz force needs to incor-
porate the Stern–Gerlach force. Thus the extension has to

contain the elementary magnetic moment of a particle con-
tributing to this force. To achieve a suitable generalization
we introduce the magnetic potential

Bμ(x , s) d ≡ F�
μν(x)s

ν d, F�
μν = 1

2
εμναβF

αβ. (14)

We use the dual pseudo-tensor since sμ is a pseudo-vector;
the product in Eq. (14) results in a polar 4-vector Bμ. We
note that the magnetic dipole potential Bμ by construction in
terms of the antisymmetric field pseudo-vector F�

μν satisfies

∂μB
μ = 0, s · B = 0,→ B · ds

dτ
= −s · dB

dτ
. (15)

The additional potential energy of a particle at rest placed
in this magnetic dipole potential is

U(0) ≡ B0 c d = cF�
0ν(x)s

νd = −|μ| B · s
|s| ≡ −μ · B.

(16)

This shows Eq. (14) describes the energy content seen in
Eq. (1); all factors are appropriate.

The explicit format of this new force is obtained when we
use Eq. (14) to define a new antisymmetric tensor

Gμν = ∂μBν − ∂νBμ = sα
[
∂μF� να − ∂νF�μα

]
. (17)

Equation (17) allows us to add to the Lorentz force

mu̇μ = Hμνuν, Hμν = eFμν + Gμν d. (18)

In the G-tensor we note the appearance in the force of the
derivative of EM fields which is required if we are to see the
Amperian model variant of the Stern–Gerlach force Eq. (2)
as a part of generalized Lorentz force.

The Amperian-Stern–Gerlach (ASG) force 4-vector is
obtained by multiplying uνd with the G-tensor Eq. (17).
Thus the total 4-force a particle of charge e and magnetic
dipole charge d experiences is

Fμ
ASG = eFμνuν − u · ∂ F�μνsν d + ∂μ(u · F� · s d).

(19)

In the particle rest frame we have

uν |RF = {c, 0}, csνd|RF = {0,μ}. (20)

We can use Eq. (20) to read-off from Eq. (18) the particle
rest frame force to be

Fμ
ASG|RF =

{
0, e E − 1

c2 μ × ∂ E
∂t

+ ∇(μ · B)

}
, (21)

123



Eur. Phys. J. C (2018) 78 :6 Page 5 of 12 6

where two contributions ∂(μ · B)/∂t to F0 cancel. Each of
the three terms originates in one of the covariant terms in the
sequence shown. The result is what one calls the Amperian
model originating in dipoles created by current loops. This is
however, not the last word in regard to the form of the force.

3.1.2 Gilbertian model Stern–Gerlach force

We restate the Stern–Gerlach–Lorentz force Eq. (18), show-
ing the derivative terms explicitly,

mu̇μ = eFμνuν + (
∂μ(u · F� · s) − sαu · ∂F�μα

)
d. (22)

Multiplying with sμ the last term vanishes due to antisym-
metry of F� and we obtain

s · u̇ = 1

m
s · (

eF − s · ∂ F� d
) · u. (23)

This equation suggests that we explore

eFμν → F̃μν ≡ eFμν − s · ∂ F�μν d , (24)

as the generalized Lorentz force replacing the usual field
tensor eF by F̃ in a somewhat simpler way compared to the
original Hμν Eq. (18) modification.

We demonstrate now that the field modification seen in
Eq. (24) leads to a different and fully equivalent format of
the force. We replace in the first term in Eq. (22) F → F̃ and
add the extra term from Eq. (24) to the two remainder terms.
Changing the index naming we can write symmetrically

mu̇μ = F̃μνuν

+ sα
(
∂αF�μβ + ∂μF� βα + ∂βF� αμ

)
uβ d. (25)

The tensor appearing in the parentheses in the 2nd line of
Eq. (25) is antisymmetric under any of the three exchanges
of the indices. It is therefore proportional to the totally anti-
symmetric tensor εαμβγ which must be contracted with some
4-vector Vγ containing a gradient of the EM dual field tensor,
there are two such available 4-vectors ∂κF�

κγ which vanishes
by virtue of Maxwell equations, and

Vγ = 1

2
εγ κηζ ∂

κF� ηζ = ∂κFκγ = μ0 jγ .

Thus we introduce the Gilbertian form of the 4-force

Fμ
GSG = F̃μνuν − μ0 j

γ εγαβνu
αsβgνμ d. (26)

Note that in our formulation the Amperian and the Gilbertian
4-forces are identical

Fμ
ASG = Fμ

GSG, (27)

they are just written differently.
In the rest frame of a particle, see Eq. (20) the Gilbertian

force Eq. (27) is

Fμ
GSG|RF = {0, e E + (μ · ∇)B + μ0μ × j}. (28)

It is interesting to see the mechanism by which the two for-
mats of the forces are equal to each other in the particle rest
frame. With

∇(μ · B) − (μ · ∇)B = μ × (∇ × B),

we show that the difference between Eqs. (21) and (28) van-
ishes

[FASG − FGSG]RF = μ×
(
− 1

c2

∂ E
∂t

+ ∇ × B − μ0 j
)

= 0.

(29)

The terms in parentheses cancel according to Maxwell equa-
tions confirming that both the Amperian and the Gilbertian
forces are equal taking as an example the instantaneous rest
frame. From now on we will use Gilbertian form of the force
and in later examples we will focus on particle motion in
vacuum, jμ = 0.

In this discussion of forces we kept the electrical charge e
and the elementary magnetic moment ‘charge’ d Eq. (4) as
independent qualities of a point particle. As noted in the intro-
duction it is common to set |μ| ≡ gμB, see above Eq. (3).
Hence we can have both, charged particles without magnetic
moment, or neutral particles with magnetic moment, aside
from particles that have both charge and magnetic moment.
For particles with both charge and magnetic moment we can
write, using Gilbertian format of force

mu̇μ = F̃μνuν = e

(
Fμν − (1 + a) λ̄

s · ∂

|s| F�μν

)
uν,

(30)

where a = (g − 2)/2 is the gyromagnetic ratio anomaly.
The Compton wavelength λ̄ = h̄/mc defines the scale at
which the spatial field inhomogeneity is relevant; note that
inhomogeneities of the field are boosted in size for a particle
in motion, a situation which will become more explicit in
Sect. 5.1.3.

3.2 Spin motion

3.2.1 Conventional TBMT

For particles withm �= 0 differentiating Eq. (11) with respect
to proper time we find

u̇ · s + u · ṡ = 0, (31)
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where we introduced proper time derivative ṡμ = dsμ/dτ .
Schwinger observed [14] that given Eq. (31) one can use the
covariant form of the dynamical Lorentz force equations for
duμ/dτ to obtain

uμ

(
dsμ

dτ
− e

m
Fμνsν

)
= 0. (32)

Here Fμν is the usual EM field tensor. Equation (32) has the
general TBMT solution

dsμ

dτ
= e

m
Fμνsν + ãe

m

(
Fμνsν − uμ

c2 (u · F · s)
)

, (33)

where we used the notation u · F · s ≡ uμFμνsν .
In Eq. (33) ã is an arbitrary constant considering that the

additional term multiplied with uμ vanishes. On the other
hand we can read off the magnetic moment entering Eq. (3):
the last term is higher order in 1/c2. Hence in the rest frame of
the particle we see that 2(1+ ã) = g i.e. Eq. (33) reproduces
Eq. (3) with the magnetic moment coefficient when ã = a.
Therefore, as introduced, ã = a is the g �= 2 anomaly.
However, in Eq. (33) we could for example use ã = (g2 −
4)/8 = a+a2/2, which classical limit of quantum dynamics
in certain specific conditions implies [12]. In this case ã → a
up to higher order corrections. This means that measurement
of ã as performed in experiments [1,2] depends on derivation
of the relation of ã with a obtained from quantum theory.
These remarks apply even before we study gradient in field
corrections.

3.2.2 Gradient corrections to TBMT

The arguments by Schwinger, see Eqs. (31)–(33), are ideally
positioned to obtain in a consistent way generalization of
the TBMT equations including the gradient of fields terms
required for consistency. We use Eq. (24) in Eq. (33) to obtain

dsμ

dτ
= 1 + ã

m

(
e Fμν − s · ∂ F�μν d

)
sν

+ ã

mc2

(
s ·eF · u − s · ∂ s · F∗· u d)

uμ. (34)

The dominant gradient of field correction arises for an
elementary particle from the 2nd term in the first line in
Eq. (34), considering the coefficient of the second line a =
α2/2π +· · · = 1.2×10−3. One should remember that given
the precision of the measurement [1,2] of ã, which is driven
by the first term in the second line in Eq. (34), we cannot in
general neglect the new 2nd term in first line in Eq. (34), even
if the characteristic length defining the gradient magnitude
is the Compton wavelength λ̄, see Eq. (30).

3.2.3 Non-uniqueness of gradient corrections to TBMT

It is not self-evident that the form Eq. (34) is unique. To see
that a family of possible extensions TBMT arises we recall
the tensor Eq. (18) Hμν made of the two potentials Aμ and
Bμ. We now consider the spin dynamics in terms of the two
field tensors, F and G replacing the usual EM-tensor Fμν in
the Schwinger solution, Eq. (33). In other words, we explore
the dynamics according to

dsμ

dτ
= 1

m
eFμνsν + ãe

m

(
Fμνsν − uμ

c2 (u · F · s)
)

+Gμνsν
d

m
+

(
Gμνsν − uμ

c2 (u · G · s)
)
b̃d

m
. (35)

Two different constants ã and b̃ are introduced now since
the two terms shown involving F and G tensors could be
included in Schwinger solution independently with differ-
ent constants. Intuition demands that ã = b̃. However, aside
from algebraic simplicity we do not find any compelling argu-
ment for this assumption.

We return now to the definition of the G tensor Eq. (17)
to obtain

Gμνsν = (
sνsα∂μF� να − s · ∂F�μαsα

)
= − s · ∂F�μνsν . (36)

The first term in the first line vanishes by antisymmetry of
F� tensor. We also have

u · G · s = −s · ∂u · F� · s. (37)

Using Eqs. (36) and (37) we can combine in Eq. (35) the first
two terms in both lines, and the last terms in both lines to
obtain

dsμ

dτ
=1 + ã

m

(
eFμν − 1 + b̃

1 + ã
s · ∂ F�μνd

)
sν

− ã
uμ

mc2

(
u ·

(
eF − b̃

ã
s · ∂ F�d

)
· s

)
. (38)

This equation agrees with Eq. (34) only when ã = b̃. How-
ever, this requirement is neither mathematically nor physi-
cally necessary. For example using Eq. (26) we easily check
s · u̇ + u · ṡ = 0 without any assumptions about ã, b̃.

As Eq. (35) shows the physical difference between fac-
tors ã and b̃ is related to the nature of the interaction: the
‘magnetic’ tensor G is related to b̃ only. Thus for a neutral
particle e → 0 we see in Eq. (38) that the torque depends
only on b̃. Conversely, when the effect of magnetic potential
is negligible Eq. (38) becomes the textbook spin dynamics
that depends on ã alone.
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To make further contact with textbook physics we note
that the coefficient of the first term in Eq. (38)

1 + ã

m
e = 2(1 + ã)

eh̄

2m

1

h̄
= g̃μB

1

h̄
, g̃ = 2(1 + ã), (39)

should reproduce in leading order the torque coefficient
in Eq. (3) as is expected from study of quantum corre-
spondence. However, quantum correspondence could mean
ã = a + a2/2, which follows comparing exact solutions
of the Dirac equation with spin precession for the case we
explored [12] and which is not exactly the motion of a muon
in a storage ring. However, this means that in order to com-
pare the measurement of magnetic moment of the muon car-
ried out on macroscopic scale [1,2] with quantum compu-
tations requires a further step, the establishment of quantum
correspondence at the level of precision at which the anomaly
is measured.

4 Search for variational principle action

At the beginning of earlier discussions of a covariant exten-
sion to the Lorentz force describing the Stern–Gerlach force
was always a well invented covariant action. However, the
Lorentz force itself is not a consistent complement of the
Maxwell equations. The existence of radiation means that
an accelerated particle experiences radiation friction. The
radiation-reaction force has not been incorporated into a vari-
ational principle [28,32]. Thus we should not expect that the
Stern–Gerlach force must originate in a simple action.

We seek a path xμ(τ) in space-time that a particle will
take considering an action that is a functional of the 4-
velocity uμ(τ) = dxμ/dτ and spin sμ(τ). Variational prin-
ciple requires an action I (u, x; s). When I respects space-
time symmetries, the magnitudes of particle mass and spin
are preserved in the presence of electromagnetic (EM) fields.
We also need to assure that u2 = c2 which constrains the
form of force and thus I that is allowed. Moreover, we want
to preserve gauge invariance of the resultant dynamics.

The component in the action that produced the LHS (iner-
tia part) of the Lorentz force remains in discussion. To gen-
erate the Lorentz force one choice of action is

ILz(u, x) = −
∫

dτ mc
√
u2 − e

∫
dτ u(τ ) · A(x(τ )). (40)

We note that reparametrization of τ → kτ considering u =
dx/dτ has no effect on the value of ILz.

Variation with respect to path leads to

d

dτ
mc

uμ

√
u2

= Lμ
Lz = uν∂

μeAν − d eAμ

dτ
, (41)

where the RHS produces upon differentiation of eAμ(x(τ ))

the usual Lorentz force

Lμ
Lz = e(∂μAν − ∂ν Aμ) uν = eFμνuν . (42)

Multiplying Eq. (41) with mcuμ/
√
u2 we establish by anti-

symmetry of the tensor Fμν Eq. (42) that the product
with the LHS in Eq. (41) also vanishes. This means that
(mcuν/

√
u2)2 = m2c2 ≡ p2 = Const. Henceforth

pμ ≡ mc
uμ

√
u2

. (43)

There is a problem when we supplement in Eq. (40) the
usual action ILz by a term Im based on our prior considera-
tion of Aμ → Aμ + Bμ, see Sect. 3.1.1. The problem one
encounters is that the quantity Bμ contains additional depen-
dence on sμ(τ) which adds another term to the force. Let us
look at the situation explicitly

I (u, x ; s) = ILz + Im, Im ≡ −
∫
dτ u · B(u, x ; s) d. (44)

Here the dependence on sμ(τ) is akin to a parameter depen-
dence; some additional consideration defines the behavior,
in our case this is the TBMT equations.

Varying with respect to the path the modified action
Eq. (44) we find the modified covariant force

dpμ

dτ
= Lμ

L + Lμ
S1 + Lμ

S2, (45)

with two new contributions

Lμ
S1 = (∂μBν − ∂νBμ)uν = Gμνuν, (46)

Lμ
S2 = −F�μν dsν

dτ
d. (47)

We applied here with A → B the result seen in Eq. (41),
and the additional term Lμ

S2 follows by remembering to take
proper time derivative of sμ. The first term Eq. (46) is as
we identified previously in Eq. (18). We note that another
additional term arises if and when an additional power of√
u2 accompanies u ·B as was done in [13]. In either case, an

unsolved problem is created by the torque-like term, Eq. (47).
If we replace in our thoughts dsν/dτ in Eq. (47) by the

TBMT equation Eq. (33) or as would be more appropriate by
its extended version Eq. (35), we see that the force Lμ

S2 would
be quadratic in the fields containing also field derivatives.
However, by assumption we modified the action limiting the
new term in Eq. (44) to be linear in the fields and derivatives.
Finding non linear terms we learn that this assumption was
not justified. However, if we add the quadratic in fields term
to the action we find following the chain of arguments just
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presented that a cubic term is also required and so on; with
derivatives of fields appearing at each iteration.

We have searched for some time for a form that avoids
this circular conundrum, but akin to previous authors we did
not find one. Clearly a ‘more’ first principle approach would
be needed to create a consistent variational principle based
equation system. On the other hand we have presented a for-
mulation of spin dynamics which does not require a varia-
tional principle in the study of particle dynamics: as is we
have obtained a dynamical equation system empirically. Our
failing in the search for an underlying action is not critical. A
precedent situation comes to mind here: the radiation emit-
ted by accelerated charges introduces a ‘radiation friction’
which must be studied [28,32] without an available action,
which is also based on empirical knowledge about the energy
loss arising for accelerated charges.

5 Experimental consequences

5.1 Non covariant form of dynamical equations

5.1.1 Laboratory frame

In most physical cases we create a particle guiding field which
is at rest in the laboratory. Particle motion occurs with respect
to this prescribed field and thus in nearly all situations it
is practical to study particle position zμ(τ) in the labora-
tory frame of reference. Employing the Lorentz-coordinate
transformations from the particle rest frame to the laboratory
frame we obtain

d zμ

dτ
≡ uμ|L = cγ {1,β}, β ≡ d z

d ct
= v

c
, (48)

sμ|L =
{
γβ · s,

(
γ

γ + 1
γ β · s

)
β + s

}
, (49)

where as usual γ = 1/
√

1 − β2 and where one often sees
the spin term written as γ 2/(γ + 1) = (γ − 1)/β2.

One easily checks that Eqs. (48) and (49) also satisfy
Eq. (11): uμsμ = 0. A classic result of TBMT reported
in textbooks is that the longitudinal polarization β̂ · s for
g � 2 and β → 1 is a constant of motion. This shows
that for a relativistic particle the magnitude of both time-like
and space-like components of the spin 4-vector Eq. (49) can
be arbitrarily large, even if the magnitude of the 4-vector is
bounded sμsμ = −s 2. This behavior parallels the behavior
of 4-velocity uμuμ = c2.

We remind that to obtain in the laboratory frame the usual
Lorentz force we use the 4-velocity with respect to the Lab-
oratory frame Eq. (48), with laboratory defined tensor F , i.e.
with laboratory given E, B EM-fields

d(muμ|L)

dτ
= (

eFμνuν

) |L = eFμν |L uν |L. (50)

Sometimes it is of advantage to transform Eq. (50) to the
particle rest frame. Such a transformation L with Lu|rest =
uL when used on the left hand side in Eq. (50) produces
proper time differentiation of the transformation operator,
see also [33]. Such transformation into a co-rotating frame of
reference originates the Thomas precession term in particle
rest frame for the torque equation. This term is naturally
present in the covariant formulation when we work in the
laboratory reference frame.

For the full force Eq. (26) we thus have

d(muμ|L)

dτ
= eFμν |Luν |L (51)

− d sα|L
(
∂αF�μν

) |L uν |L. (52)

We see that in the laboratory frame of reference a covariant
gradient of the fields is prescribed, i.e. that some apparatus
prescribes the magnitude

Qαμν |L ≡ ∂αF∗μν |L, (53)

which allows for a moving particle with uμ|L Eq. (48) and
sμ|L Eq. (49) to experience the Stern–Gerlach force Fμ

SG

Fμ
SG|L ≡ −d sα|LQαμν |Luν |L. (54)

We have gone to extraordinary length in arguing Eq. (54) to
make sure that the forthcoming finding of the Lorentz boost
of field inhomogeneity is not questioned.

5.1.2 Magnetic potential in the laboratory frame

We evaluate in the laboratory frame the form of Eq. (14).
The computation is particularly simple once we first recall
the laboratory format of the Lorentz force Fμ

L

Fμ
L |L = Fμν(x)uν |L = cγ {β · E/c, E/c + β × B} (55)

The magnetic part of the action will be evaluated (see second
line below) in analogy to above. We now consider

B · u|L = u · F� · s|L = −sμ|L (F�
μνu

ν)|L
= −sν |L cγ {−β · B, B − β × E/c}
= cγ

(
β · s β · B γ

γ + 1
− s · (B − β × E/c)

)

(56)

where we used in 2nd line (i) F�
μν follows from the usual

Fμν upon exchange of E/c ↔ B and (ii) flip β → −β to
account for contravariant and not covariant 4-velocity. In the
3rd line we used γ (γ /(γ + 1) − 1) = −γ /(γ + 1). Notable
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in Eq. (56) is the absence of the highest power γ 2 as all terms
cancel, the result is linear in (large) γ .

For the magnetic potential energy of a particle in the lab-
oratory frame we obtain

U ≡ B · u|Ld=γ
(
K β̂ · μ β̂ · B − μ · (B − β × E/c)

)
,

(57)

K = β2 γ

γ + 1
= 1 −

√
1 − β2 =

{ 1
2β2, for β → 0,

1, for β → 1.

Equation (57) extends the rest frame β = 0 Eq. (16) and
represents a covariant generalization of Eq. (1). In ultrarela-
tivistic limit all terms in Eq. (57) have the same magnitude.

5.1.3 Field to particle energy transfer

We now consider the energy gain by a particle per unit of
laboratory time, that is we study the zeroth component of
Eq. (26)

dE

dt
= c

dτ

dt

d(mu0|L)

dτ
= cγ −1 F̃0νuν |L

= e E · v + cd sα|L(∂α B)|L · v, (58)
dE

dt
= (e E + (μ · ∇)B) · v

+γβ · μ

(
∂ B
c∂t

+ γ

γ + 1
(β · ∇) B

)
· v, (59)

A further simplification is achieved considering

∂ B
c∂t

+ (β · ∇) B = ∂ B
c∂t

+
3∑

i=1

dxi
cdt

∂ B
∂xi

= d B
c dt

, (60)

where the total derivative with respect to time accounts for
both, the change in time of the laboratory given field B,
and the change due to change of position in the field by the
moving particle. We thus find two parts

dE

dt
= v ·

(
e E + (μ · ∇)B − K β̂ · μ (β̂ · ∇) B

)

+β · d B
dt

γ β · μ, (61)

where the 2nd line is of particular interest as it is proportional
to γ . Focusing our attention on this last term: we can use
β = c p/E and γβ = p/mc. Upon multiplication with E
and remembering that c2 pd p = EdE we obtain

p ·
(
d p
dt

− d B
dt

μ · p
mc2

)
= 0, (62)

which in qualitative terms implies an exponential response
of particle momentum as it crosses a magnetic field

| p| � mc e±(|B|−B0))|μ|/mc2
. (63)

However, even a magnetar magnetic field of up 1011T
will not suffice to impact electron momentum decisively
in view of the smallness of the electron magnetic moment
5.810−11 MeV/T. However, in ultrarelativistic heavy ion
collisions at the LHC 10,000 times stronger very non-
homogeneous B-fields arise.

5.2 Neutral particle hit by a light pulse

5.2.1 Properties of equations

The dynamical equations developed here have a consider-
ably more complex form compared to the Lorentz force
and TBMT spin precession in constant fields [33]. We need
field gradients in the Stern–Gerlach force, and in the related
correction in the TBMT equations. Since the new physics
appears only in the presence of a particle magnetic moment,
we simplify by considering neutral particles. We now show
that the external field described by a light wave (pulse) lends
itself to an analytical solution effort. This context could be
of practical relevance in the study of laser interaction with
magnetic atoms, molecules, the neutron and maybe neutri-
nos.

For e = 0 our Eqs. (26) and (38) read

u̇μ = − s · ∂F∗μνuν

d

m
, (64)

ṡμ = − s · ∂F∗μνsν
1 + b̃

m
d + uμu · (s · ∂)F∗ · s b̃ d

mc2 .

(65)

The external light wave field is a pulse with

Aμ = εμ f (ξ), ξ = k · x, k · ε = 0. (66)

The derivative of the dual EM tensor for linear fixed in space
pulse polarization εμ is

(s · ∂)F∗μν = (k · s)εμναβkαεβ f ′′(ξ), (67)

where prime ‘′’ indicates a derivative with respect to the
phase ξ .

Notice that if we contract Eq. (67) with kμ or εμ we get
zero because the Levi-Civita tensor εμναβ is totally antisym-
metric. Therefore contracting Eq. (64) with either kμ or εμ

we find

0 = k · u̇ → k · u = k · u(0), uμ(0) = uμ(τ0) (68)

0 = ε · u̇ → ε · u = ε · u(0). (69)

We further note that the argument of the light pulse Eq. (66)
satisfies

ξ = k · x → ξ̇ = k · ẋ = k · u = k · u(0), (70)
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where we used Eq. (68). Thus we conclude that the particle
follows the pulse such that

ξ = k · x = τ k · u(0) + ξ0, ξ0 = k · x(0). (71)

The two conservation laws Eqs. (68) and (69) along with
Eq. (70) make the light pulse an interesting example
amenable to an analytical solution.

We now evaluate several invariants in the laboratory frame
seeking understanding of their relevance. A particle moving
in the laboratory frame in consideration of Eq. (48) experi-
ences in its rest frame a plane wave with the Doppler shifted
frequency

k · u(0) = γ0(1 − n · β0)ω, (72)

which is unbounded as it grows with particle laboratory
Lorentz-γ0. However, k · s, the projection of spin onto plane
wave 4-momentum kμ, is bounded. To see this we recall the
constraint Eq. (11), which in the laboratory frame reads

S0
L − β · SL = 0. (73)

We thus obtain

k · s(τ ) = k · s(τ )|L = |k|
(
S0

L − n · SL

)
= |k|(β − n) · SL,

(74)

where we used Eq. (73) in the last equality. Since β and
n = k/|k| are unit-magnitude vectors we find

(k · s(τ ))2 ≤ 4k 2 S 2
L . (75)

The magnitude of the spin vector in the lab frame is con-
strained by Eq. (12)

−s 2 = S0 2
L − S 2

L = (β · SL)2 − S 2
L, (76)

where we again used Eq. (73). Combining Eqs. (75) and (76)
we see that except when the particle is moving exactly in the
direction of SL, the magnitude of (k · s(τ ))2 is bounded.

5.2.2 Invariant acceleration and spin precession

Even without knowing the explicit form for uμ(τ), sμ(τ)

we were able to obtain [27] the invariant acceleration

u̇2(τ ) = −
(
d

m
f ′′(ξ(τ )) k · s(τ ) k · u(0)

)2

. (77)

This result can be directly obtained by evaluating the square
of Eq. (64).

We see in Eq. (77) that the magnitude of the 4-force created
by a light pulse and acting on an ultrarelativistic particle is
dependent on the square of the product of the 2nd derivative of
the pulse function with respect to ξ , f ′′(ξ), with the Doppler
shifted frequency Eq. (72). The value Eq. (77) is negative
since acceleration is a space-like vector.

As we discussed below Eq. (76) the spin precession factor
k ·s seen in Eq. (77) is bounded. We were able to obtain a sol-
uble formulation of the spin precession dynamics described
by the dimensionless variable

y = k · s(τ )
b̃d

mc C1
, (78)

which satisfies the differential equation

(
d y(s)

d s

)2

= y2(1 − y2) s = (
f ′(ξ(τ )) − f ′(ξ0)

)
C1

(79)

obtained performing suitable manipulations of dynamical
equations prior to solving for uμ(τ), sμ(τ). We are seek-
ing bounded periodic solutions of the nonlinear Eq. (79) no
matter how large the constant C1 becomes, which is deter-
mined by the initial conditions

C1 ≡ b̃ d

mc
k · s(0) C2, C2 ≥ 1, (80)

C2 ≡
√

|(k · u)2|s2| − [(k · u)(ε · s)−(ε · u)(k · s)]2|
c2(k · s)2

∣∣∣∣∣∣
τ=0

.

(81)

C2 contains the initial particle Lorentz-γ factor. One can see
several possible solutions of interest of Eq. (79); for example
y = sin(φ(s)) satisfies all constraints. It leads to the pen-
dulum type differential equation and we recognize that high
intensity light pulses can flip particle spin. However, there
are other relevant solutions, e.g. y ∝ 1/ cosh z.

Upon solution of Eq. (79) k ·s(τ ) is known. Given Eq. (71)
we also know the dependence of Eq. (67) on proper time
τ . Hence Eq. (64) can be solved for uμ and Eq. (65) can
be solved for sμ resulting in an analytical solution of the
dynamics of a neutral magnetic dipole moment in the field
of a light pulse of arbitrary shape. The full description of
the dynamics exceeds in length this presentation and will
follow [27].
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6 Conclusions

The Stern–Gerlach covariant extension of the Lorentz force
has seen considerable interest as there are many immediate
applications listed in first paragraph. Here we have:

1. introduced in Eq. (10) the covariant classical 4-spin vec-
tor sμ in a way expected in the context of Poincaré sym-
metry of space-time;

2. presented a unique linear in fields form of the covariant
magnetic moment potential, Eq. (14), which leads to a
natural generalization of the Lorentz force;

3. shown that the resultant Amperian, Eq. (19), and Gilber-
tian, Eq. (26), forms of the magnetic moment force are
equivalent;

4. extended the TBMT torque dynamics, Eq. (35), making
these consistent with the modifications of the Lorentz
force;

5. demonstrated the need to connect the magnetic moment
magnitude entering the Stern–Gerlach force with the one
seen in the context of torque dynamics, Sect. 3.2.3;

6. shown that variational principle based dynamics has sys-
temic failings when both position and spin are addressed
within present day conceptual framework, see Sect. 4;

7. reduced the covariant dynamical equations to laboratory
frame of reference uncovering important features gov-
erning the coupled dynamics, see Sect. 5.1;

8. obtained work done by variations of magnetic field in
space-time on a particle, Eq. (61);

9. shown salient features of solutions of neutral particles
with non-zero magnetic moment hit by a laser pulse, see
Sect. 5.2.
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