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Abstract—We used more than 250 000 high-precision American and Russian radar observations of the
inner planets and spacecraft obtained in the period 1961–2003 to test the relativistic parameters and
to estimate the solar oblateness. Our analysis of the observations was based on the EPM ephemerides
of the Institute of Applied Astronomy, Russian Academy of Sciences, constructed by the simultaneous
numerical integration of the equations of motion for the nine major planets, the Sun, and the Moon
in the post-Newtonian approximation. The gravitational noise introduced by asteroids into the orbits of
the inner planets was reduced significantly by including 301 large asteroids and the perturbations from
the massive ring of small asteroids in the simultaneous integration of the equations of motion. Since
the post-Newtonian parameters and the solar oblateness produce various secular and periodic effects
in the orbital elements of all planets, these were estimated from the simultaneous solution: the post-
Newtonian parameters are β = 1.0000± 0.0001 and γ = 0.9999± 0.0002, the gravitational quadrupole
moment of the Sun is J2 = (1.9 ± 0.3) × 10−7, and the variation of the gravitational constant is Ġ/G =
(−2 ± 5) × 10−14 yr−1. The results obtained show a remarkable correspondence of the planetary motions
and the propagation of light to General Relativity and narrow significantly the range of possible values for
alternative theories of gravitation. c© 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Radar observations of planets began in 1961 and
have been widely used in astronomical practice ever
since. High-precision radar measurements spanning
a time interval of more than forty years allow not
only the orbital elements of the planets, but also
other constants of the planetary theory, including the
relativistic parameters, to be determined with a high
accuracy.

Of the three main tests of General Relativity in the
Solar system (the secular motions of the planetary
perihelia, the signal delay, and the deflection of light
in a gravitational field), the first two tests have been
performed using radar observations of planets and
spacecraft.

The main and best determined relativistic effect
in the Solar system is the secular motion of Mer-
cury’s perihelion that was discovered by Le Verrier
in 1859. For him, this was a major problem of the
discrepancy between theoretical predictions and ob-
servations, and it was explained in 1915 by Einstein’s
theory of General Relativity. However, the secular
motion of Mercury’s perihelion is known to depend
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on a linear combination of the post-Newtonian pa-
rameters (β, γ) and the gravitational quadrupole mo-
ment of the Sun (J2). Papers (see, e.g., Pireaux and
Rozelot 2003) arguing that only this combination
rather than the three parameters themselves could
be determined from current observations have ap-
peared in recent years. However, the post-Newtonian
parameters and the solar oblateness cause different
secular and periodic perturbations both for different
orbital elements (and not just for the perihelia) and for
different planets. In addition, the parameter γ can also
be determined from Shapiro’s effect, which allows all
three parameters to be estimated. Since these pa-
rameters can in most cases be obtained by analyzing
the secular variations of orbital elements, the errors
of their determination decrease with increasing time
interval of observations. At the same time, the errors
in the secular variation of the gravitational constant
(Ġ/G), one of the most interesting parameters, de-
crease even faster: as the square of the time inter-
val. This allows Ġ/G to be estimated, thereby basi-
cally verifying the strong equivalence principle, since
many theories of gravitation predict a variation of the
locally measured Newtonian gravitational constant
with time on the evolutionary scale of the Universe.

Some of the recent post-Newtonian-parameter
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determinations, e.g., γ = 1.000021 ±0.000023, from
Cassini radar observations (Bertotti et al. 2003)
reach a high accuracy. However, the improvement
in quality and the increase in the number of current
radar observations of planets and spacecraft as well
as the increase in the time interval of observations
have allowed not only γ, but also β, Ġ/G, and the
gravitational quadrupole moment of the Sun to be
estimated independently and from other data.

THE METHOD, EPM EPHEMERIDES
We used the following method to calculate the

relativistic parameters and the solar oblateness. First,
we constructed a numerical theory for the motion of
the planets and the Moon, EPM2004—Ephemerides
of Planets and the Moon (Pitjeva 2004, 2005),
by using more than 317 000 observations (1913–
2003) of various types. These included radiometric
measurements of planets and spacecraft, astrometric
CCD observations of the outer planets and their
satellites, and meridian and photographic observa-
tions. Apart from the planetary ephemerides, we
also constructed the ephemerides of the orbital and
rotational motion of the Moon that were improved
by processing the 1970–2003 LLR observations
(Krasinsky 2002). The ephemerides of the planets
and the Moon were constructed by the simultaneous
numerical integration of the equations of motion for
all planets, the Sun, the Moon, 301 largest asteroids,
rotation of the Earth and the Moon, including the
perturbations from the solar oblateness and the
asteroid ring that lies in the plane of the ecliptic
and consists of the remaining smaller asteroids. The
equations of motion for bodies were taken in the
post-Newtonian approximation in the Schwarzschild
gravitational field described by a three-parameter (α,
β, γ) metric in a harmonic coordinate system with α =
0; all versions of the ephemerides were constructed for
General Relativity: β = γ = 1. The general equations
of motion for bodies in a nonrotating barycentric
coordinate system are

r̈i = A + B + C + D,

where A are the Newtonian gravitational accelera-
tions, B are the relativistic terms (Newhall et al.
1983), C are the terms attributable to the solar
oblateness, and D are the terms attributable to the
asteroid ring (Krasinsky et al. 2002).

Below, we provide brief information about the
EPM2004 theory and its construction (Pitjeva 2005).

First, a physical model that includes all of the
significant factors and that adequately reflects the
actual planetary motions underlies this theory. In
particular, including the perturbations from the sev-
eral largest asteroids, as was done in previous ver-
sions of our EPM or Jet Propulsion Laboratory

(JPL) DE ephemerides, was shown (Krasinsky et al.
2001; Standish and Fienga 2002) to be insufficient.
In EPM2004, the gravitational perturbations that
are introduced into the orbits of the inner planets by
asteroids and that make it difficult to determine the
parameters were reduced significantly by including
301 large asteroids and the perturbations from the
massive ring of small asteroids in the simultaneous
integration of the equations of motion and by estimat-
ing their masses when processing the observations.

Second, the accuracy of the numerical integration
itself was checked by comparing the results of the
forth and back integrations on a hundred-year time
interval. The emerging errors were at least an order
of magnitude smaller than the observational errors.
Thus, the accuracy of the ephemerides is determined
mainly by the accuracy of the observations and their
reductions.

Third, producing the ephemerides is an iterative
process of comparing the constructed ephemerides
with observations, improving the parameters by the
least-squares method (LSM), introducing these in
the theory, and constructing a new version of the
ephemerides.

In the main improvement of the planetary part
of the EPM2004 ephemerides, we determined about
200 parameters: the orbital elements of all planets and
the 13 satellites of the outer planets the observations
of which were used to improve the orbits of these
planets; the astronomical unit in kilometers; three
orientation angles of the ephemerides relative to the
International Celestial Reference Frame (ICRF); the
rotation parameters of Mars (two orientation angles
of the equator of Mars relative to its orbit and their
secular variations, the velocity, and eight coefficients
of the seasonal rotation terms of the Martian axis)
and the coordinates of three landers on the Martian
surface; the masses of the bodies (Jupiter and the
six asteroids that perturb Mars most strongly), the
mean densities for three taxonomic classes of aster-
oids (C, S, M), the mass and radius of the asteroid
ring, the ratio of the Earth’s and Moon’s masses;
the gravitational quadrupole moment of the Sun (J2)
and twelve parameters of the solar corona for dif-
ferent conjunctions with the Sun; eight coefficients
of Mercury’s topography and the corrections to the
level surfaces of Venus and Mars relative to which
the topographies of these planets were calculated; five
parameters for calculating the additional phase effect
in the optical observations of the outer planets; and
the constant shifts for six groups of observations that
were interpreted as systematic errors or calibration
errors of the instrumentation.

Once the EPM2004 ephemerides were constructed
from all radar observations of the inner planets,
spacecraft passing by or orbiting these planets, and
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Martian landers, we improved the parameters, in-
cluding the relativistic ones (β, γ, Ġ/G, the secular
motions of the planetary perihelia), by the LSM.

The partial derivatives of the observed quantities
(e.g., the delay time τ ) with respect to the parameters

being improved, ∂τ(t)
∂q(t0) , must be known to determine

the parameters of the theory by the LSM. In this case,

the expression ∂τ(t)
∂s(t)

∂s(t)
∂q(t0) is commonly used, since

calculating the derivatives of the observed quantities
with respect to the coordinates and velocities or or-
bital elements of the object s(t) using the analytical
formulas of the two-body problem involves no dif-

ficulty. At the same time, the derivatives ∂s(t)
∂q(t0) are

calculated either analytically or by integrating the

variational equations. The derivative ∂τ(t)

∂Ġ/G
is calcu-

lated via the partial derivatives of τ with respect to
the differences and sums of the mean longitudes of
the observed object and the Earth. We derived expres-
sions for the partial derivatives of the orbital elements
with respect to the post-Newtonian parameters (β
and γ) using the analytical formulas for the relativistic
perturbations of the elements, including the secular
and principal periodic terms, given in the monograph

by Brumberg (1972). The derivative ∂τ(t)
∂γ calculated

from Shapiro’s effect should also be added for γ.

Thus, improving the parameters can be reduced to
the following:

(1) Numerical integration of the equations of mo-
tion for the planets and some of the partial derivatives;

(2) Computing the model observations (time de-
lays) from the produced ephemerides for each time
of observations, calculating the residuals and the re-
quired partial derivatives;

(3) Obtaining the values of the parameters being
determined and deriving the residuals of the observa-
tions after the improvement.

As experience shows, the formal accuracy of de-
termining the parameters by the LSM is overly op-
timistic. The actual accuracy could be an order of
magnitude lower due to the deviation of the distribu-
tion of observations from a Gaussian law and due to
the systematic errors in the observations, often of an
unknown nature. The actual accuracies of the param-
eters given below were estimated by comparing the
values obtained in dozens of different test LSM so-
lutions that differed by the sets of observations, their
weights, and the sets of parameters included in the
solution.

OBSERVATIONS, THEIR REDUCTION
AND ERRORS

We used all the available radar observations of
planets (58 116, 1961–1997), spacecraft and landers
(195 271, 1971–2003) that were retrieved from the
JPL database (http:/ssd.jpl.nasa.gov/iaucomm4/)
created and maintained by Dr. Standish and that were
supplemented by series of American and Russian
radar observations of planets in the period 1961–
1995 taken from different sources. The Russian radar
observations of planets together with references to
the sources are stored at the site of the Institute of
Applied Astronomy, Russian Academy of Sciences,
//www.ipa.nw.ru/ PAGE/DEPFUND/LEA/ENG/
englea.htm. A brief description of all astrometric
radar observations can be found in Table 2 from
Pitjeva (2005).

The accuracy of the first time-delay (τ ) measure-
ments for planets performed in 1961–1962 was 200–
500 µs. The accuracy of the 1964–1969 measure-
ments was higher (30 µs). The current accuracy of the
radar observations of planets and spacecraft reaches a
few hundredths of a microsecond, which corresponds
to an error of several meters.

The reductions of the radar observations, includ-
ing the relativistic corrections—the delay of radio
signals near the Sun (Shapiro’s effect) and the tran-
sition from the coordinate time, the argument of the
ephemerides, to the observer’s proper time as well as
the delay of radio signals in the Earth’s troposphere
and in the solar coronal plasma,—are well known and
were described, for example, by Standish (1990). The
observations of Mars and Venus were corrected for
topography using the currently available hypsometric
maps of the surfaces of these planets and the repre-
sentation of the topography as a decomposition into
spherical harmonics of degrees 16–18. Details on the
corrections for the topographies of Venus and Mars
can be found in our previous paper (Pitjeva 1996).
The topography of Mercury was represented as a
decomposition into spherical harmonics up to the
second order inclusive; the harmonic coefficients were
determined from Mercury’s radar observations (Pitje-
va 2000). The shortcomings of the reduction include
the inability to allow for the rapid change of the sur-
face relief using the harmonics of degrees 16–18 and
the limited size of the grid cell in the correction for the
surface topography using hypsometric maps. There-
fore, unfortunately, the topography errors remain in
the observations of planets and are ∼100 m. Ac-
cordingly, high-precision observations of spacecraft
orbiting planets and Martian landers, which are free
from these topography errors, are of particularly great
importance.

The time delay τ for the Viking-1 and-2 landers on
Mars were measured at JPL in the period 1976–1982.
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For 20 years, these measurements had been most
accurate (an a priori accuracy of 7 m) among the
positional observations of the major planets; in 1997,
the new Pathfinder Martian lander was observed for
three months. The differenced range dτ was measured
simultaneously with the time delay. P. Wimberly man-
aged to restore the differenced range for the Viking-
1 lander observations in 1976–1978. To compute the
lander positions on the Martian surface in the refer-
ence frame of the ephemerides, it was necessary to
use a theory of the Martian rotation that included not
only the precession and nutation of the Martian axis,
but also the seasonal terms in the Martian rotation
(Pitjeva 1999). The lander observations allowed not
only the orbital elements of the Earth and Mars to be
accurately determined, but also the Martian rotation
parameters and, in particular, such an important (for
understanding the geophysics of Mars) parameter as
the Martian precession rate. Since the orbit of Mars is
perturbed by Jupiter and asteroids, these observations
can also be used to improve the masses of Jupiter and
the largest asteroids.

The observations of Martian orbiters, Mariner-9
(1971–1972), Mars Global Surveyor (MGS, 1998–
2003), and Odyssey (2002–2003), are given in the
form of normal points of distances between the anten-
nae of observational stations and the Martian center
of mass and could contain systematic errors due to
the insufficiently accurate elimination of the space-
craft orbit when producing the normal points. These
systematic errors, which exceed the 2-m a priori
errors, were seen in the original MGS data; these
have now been reduced considerably. Unfortunately,
in contrast to the two-frequency Viking observations,
which made it possible to completely allow for the
delay in the solar corona, the Mariner-9 observations
as well as the MGS and Odyssey measurements were
performed in one band. Therefore, the effect of the so-
lar corona was significant, particularly near superior
conjunctions with the Sun. We used the following
model of the solar corona to reduce these observa-
tions:

Ne(r) =
A

r6
+

B + Ḃt

r2
,

where Ne(r) is the electron density; the parame-
ters B and Ḃ were determined from observations and
were different for different conjunctions. Although the
residuals in the observations decrease significantly
after this correction for the solar corona, the remain-
ing influence of the corona is still noticeable in them.
Moreover, the parameters of the corona correlate with
other parameters being determined and adversely af-
fect their determination.

In addition, for some of the series of observations,
it was necessary to introduce constant shifts that

were interpreted as systematic errors of an unknown
origin or calibration errors of the instrumentation. We
introduced the following constant shifts for six groups
of observations: 6.9 km for the Goldstone observa-
tions of Venus in 1964, 2.9 km for the Crimean ob-
servations of Venus in 1969, 7.3 km for the Crimean
observations of Mercury in 1986–1989, about 20 m
for the Viking-1 and -2 observations, and 2.5 m for
Odyssey. The possibility of such errors in the Crimean
observations of Venus in 1969 and the Viking-1, -2
and Odyssey observations was pointed out by the ob-
servers themselves; the existence of systematic errors
in the observations of Venus in 1964 in Goldstone
and of Mercury in 1986–1989 in Crimea follows from
a comparison with other radar measurements in the
same period.

All of the above errors reduce significantly the
accuracy of the parameters.

It should also be noted that in those cases where
additional information about any parameters could
not be obtained, the observations performed during
a day or within one session for MGS and Odyssey
were combined into normal points after applying all
the necessary corrections. During the combination,
we assigned a weight to all measurements according
to their a priori accuracy that is generally given in the
publications.

DETERMINING THE RELATIVISTIC
PARAMETERS AND THE SOLAR

OBLATENESS

The Secular Variation of the Gravitational Constant

Finding the possible secular variation of the gravi-
tational constant is of crucial importance, since, basi-
cally, the strong equivalence principle is verified. If the
cosmology of the Universe affects the local physical
processes, then one could expect the coupling coeffi-
cients between the various physical fields to vary with
cosmological time scale, and no single fundamental
natural clocks are possible; i.e., the gravitational and
atomic clocks are incommensurable. According to
Canuto et al. (1979), the secular difference between
the atomic time scale in which the observations are
performed and the dynamical time scale in which the
General Relativity equations of motion are valid can
be interpreted in terms of the variation of the grav-
itational constant G. The directly observed effect in
the planetary longitudes depends on the time interval
quadratically, and one might expect the error in Ġ/G
from the a priori errors to be ∼10−12 per year or
less. This is approximately the level at which the G
variability is expected, as implied by certain physi-
cal arguments, for example, by Dirac’s hypothesis of
large numbers.
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Table 1. Secular variation of the gravitational constant

Ġ/G (10−11 per year)

15 ± 9 Reasenberg and Shapiro (1978)

14 ± 2 Anderson et al. (1978)

0.2 ± 0.4 Hellings et al. (1983, 1989)

1.10 ± 1.07 Damour and Taylor (1991)

0.00 ± 0.11 Williams et al. (2002)

4.1 ± 0.8 Pitjeva (1986)

0.28 ± 0.32 Pitjeva (1993)

−0.002± 0.005 Pitjeva (this paper)

The parameter Ġ/G was improved simultaneously
with all the major parameters of the theory and
the additional parameters β, γ, Ġ/G, and J2 of the
Sun. In addition, we calculated the test versions
of the solutions where other unknowns or sets of
observations were included in or excluded from the
parameters to be determined. Just as Reasenberg
et al. (1979), we calculated the masking factor:
µ(Ġ/G) = σ(Ġ/G)/σ∗(Ġ/G), where σ and σ∗ are,
respectively, the standard deviations of the Ġ/G
estimates when all parameters are estimated simulta-
neously (σ) and when only one parameter is estimated
(σ∗). The closer the value of µ to unity, the more stable
the estimate of the parameter. In the case of a strong
correlation between the parameters, µ can reach large
values (several hundred). For µ(Ġ/G), we obtained
a value of 28, which shows the achieved stability
of the derived value (µ(Ġ/G) = 80 in the paper by
Reasenberg and Shapiro (1978)).

The possible variation of the gravitational constant
can in principle be determined by analyzing lunar
(including ancient) eclipses, lunar laser-ranging da-
ta, radar observations of planets and spacecraft, and
pulsar timing data. Table 1 gives the values of Ġ/G
obtained by different methods. The first two values
were independently obtained in 1978 by two groups
by analyzing radar observations of planets and space-
craft on a relatively short time interval; the accuracy
of the best observations was ∼1 µs at that time. A
zero Ġ/G was obtained when the 6-yr-long series
of much more accurate Viking lander observations
were included in the data analysis by Hellings et al.
in 1983 and confirmed in 1989. Williams et al. de-
termined Ġ/G in 2002 by processing the 1970–2000
lunar laser-ranging data. Damour and Taylor (1991)
derived Ġ/G by analyzing the rate of change in the
orbital period of the binary pulsar PSR 1913+16 and

assumed that the variation of the gravitational con-
stant could be determined most accurately only by
this method. However, it subsequently emerged that
the accuracy of this parameter is limited for pulsar
timing and depends on the equation of state for a neu-
tron star and the theory of gravitation in strong fields.
Our values obtained in different years by processing
radar observations of planets and spacecraft are given
at the bottom of Table 1. The nonzero Ġ/G in 1986
can probably be attributed to the systematic errors of
the earliest radar observations. Substantial progress
in the accuracy of estimating this parameter and a
decrease in the possible range of the Ġ/G variation
can be seen from Table 1.

Parameters of the PPN Formalism

The quantities β and γ are the parameters of the
PPN formalism that describe the metric theories of
gravitation; β represents the degree of nonlinearity
of gravitation, and γ characterizes the curvature of
space produced by the rest mass. In General Relativ-
ity, β = γ = 1. The two classical relativistic tests, the
deflection of light by the Sun and the delay of a signal
as it passes near the Sun, measure the same effect,
the propagation of photons in curved space near the
Sun, and depend on the parameter γ. This parameter
can be estimated with a high accuracy by measuring
the deflection of light during VLBI observations of
quasars. In Table 2, these are the values obtained by
Robertson et al. (1991), Lebach et al. (1995), and
Eubanks et al. (1997). The value of γ estimated by
Eubanks et al. (1997) was combined with the latest
values of Nordtvedt’s parameter from lunar laser-
ranging observations and the correction to the ad-
vance of Mercury’s perihelion from radar observations
of planets and spacecraft, which allowed them to also
estimate β and the solar oblateness. Froeschle et al.
(1997) estimated γ by analyzing optical Hipparcos
observations.

After Shapiro et al. discovered the theoretical ef-
fect of the delay of radio signals as they pass near
the Sun, in 1968, this effect has been measured sev-
eral times using radar observations of planets and
spacecraft: Anderson et al. (1975) (Mariner-6,7) and
Reasenberg et al. (1979) (Viking). The most recent
and accurate estimate (Bertotti et al. 2003) was ob-
tained by measuring the frequency shift of radio pho-
tons to and from the Cassini spacecraft.

The possibilities for estimating β are much fewer.
This parameter can be determined from Nordtvedt’s
effect (4β − γ − 3) when processing laser-ranging
observations (Williams et al. 2002) or from the anal-
ysis of radar observations of the inner planets and
spacecraft using the relativistic perturbations that
produce periodic and secular variations in the orbital
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Table 2. Parameters of the PPN formalism

γ − 1 β − 1

0.00 ± 0.03 Anderson et al. (1975)

0.000 ± 0.002 Reasenberg et al. (1979)

0.0002 ± 0.0010 Robertson et al. (1991)

−0.0004± 0.0017 Lebach et al. (1995)

−0.003 ± 0.003 Froeschle et al. (1997)

−0.00006± 0.00031 Eubanks et al. (1997) −0.00019± 0.00026 Eubanks et al. (1997)

0.002 ± 0.004 Williams et al. (2002) −0.001 ± 0.004 Williams et. al. (2002)

−0.0015± 0.0021 Anderson et al. (2002) −0.0010± 0.0012 Anderson et al. (2002)

0.000021± 0.000023 Bertotti et al. (2003)

−0.13 ± 0.06 Pitjeva (1986) 0.24 ± 0.12 Pitjeva (1986)

0.006 ± 0.037 Pitjeva (1993) 0.014 ± 0.070 Pitjeva (1993)

−0.0001± 0.0002 Pitjeva (this paper) 0.0000 ± 0.0001 Pitjeva (this paper)

elements of planets (Anderson et al. 2002); in par-
ticular, the relativistic secular motion of the perihelia
depends on (2 + 2γ − β)/3. In these cases, the two
parameters β and γ can be simultaneously estimated
by also taking into account Shapiro’s effect. It should
be noted, however, that the correlation between β
and γ is rather strong; it is 95% and 84% in the
papers by Williams et al. (2002) and Pitjeva (2005),
respectively.

Our estimates of β and γ obtained in different years
by processing radar observations of the inner planets
and spacecraft similar to Anderson et al. (2002) are
given at the bottom of Table 2. Compared to the
paper by Anderson et al. (2002), our 2005 results
were obtained by including a large number of high-
precision radar and VLBI observations of the MGS
and Odyssey spacecraft (1998–2003) and some of the
other series of observations, for example, the Russian
radar observations (1961–1995), in the data analysis.
In addition, the dynamic model of planetary motions
was improved significantly by including 301 large
asteroids and the perturbations from the asteroid ring
with their masses estimated from observations in the
simultaneous numerical integration; in this way, we
reduced significantly the asteroid noise that deteri-
orates the accuracy of the solution parameters. The
higher accuracy achieved in the last paper can proba-
bly be explained by these two factors.

The results show that the motions of the inner
planets are in excellent agreement with General Rel-
ativity and leave increasingly few possibilities for al-
ternative theories of gravitation.

The Secular Motions of Planetary Perihelia

Detecting the advance motions of planetary per-
ihelia and, subsequently, their explanation in terms
of General Relativity effects was one of the first rel-
ativistic tests. Indeed, the corrections to the motions
of planetary perihelia are clearly revealed from obser-
vations; the masking factor µ(∆δi) is only within the
range 1.1–1.8 when determining these parameters
from currently available observations.

The Schwarzschild advance of a planetary perihe-
lion in a century is (Brumberg 1972)

∆π =
3Rµn

a(1 − e2)
,

where Rµ and a are, respectively, the gravitational
radius of the Sun and the semimajor axis of the planet
in the same units; e is the eccentricity, n is the mean
motion of the planet in arcsecs per 100 yr. The rel-
ativistic advances of the perihelia ∆π estimated for
the inner planets are given in Table 3. However, the
orbital elements of the planets vary with time due to
the mutual perturbations of all objects in the Solar
system; therefore, the precise advances of the peri-
helia cannot be given. Standish (2000) determined
the mean secular relativistic advance of Mercury’s
perihelion, which is 42′′

.980 on the interval 1800–
2200, by comparing Mercury’s perihelia every 400
days in two ephemerides obtained by integration and
distinguished by the presence or absence (i.e., β =
γ = 0) of the relativistic terms of General Relativity
in the equations of motion for the planets.
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Table 3. Secular motions of the planetary perihelia (arcsecs per century)

Mercury Venus Earth Mars Source

42.98 8.62 3.84 1.35 Brumberg (1972)

0.11 ± 0.22 −3.03 ± 0.71 −0.12± 0.16 −0.35 ± 0.24 Pitjeva (1986)

−0.017± 0.052 – – – Pitjeva (1993)

−0.0036± 0.0050 0.53 ± 0.30 −0.0002± 0.0004 0.0001± 0.0005 Pitjeva (this paper)

For alternative theories of gravitation, the principal
term in the advance of the perihelion is

1
3
(2 + 2γ − β)∆π.

The second term for nonconservative theories of grav-
itation, which appears with the coefficient
M�Mp/(M� + Mp) (M� and Mp are the masses of
the Sun and the planet, respectively), is negligible for
the inner planets and is not considered below.

The situation is complicated by the fact that the
solar oblateness also causes the secular advance
of the planetary perihelia. Thus, the total advance
of the perihelia (δ) is a linear combination of the
post-Newtonian parameters and the gravitational
quadrupole moment of the Sun (J2):

δ = ∆π

[
1
3
(2 + 2γ − β)

− 1
2

R2
�

Rµa(1 − e2)
J2(3 sin2 i − 1)

]
,

where i is the orbital inclination of the planet.

By comparing the model observations computed
using the constructed ephemerides with actual obser-
vations, we can obtain the correction ∆δ that can be
interpreted as a correction to the combination of post-
Newtonian parameters 2 + 2γ − β or as a correction
to J2, or as a correction to both. The accuracy and
the number of existing observations in the 1960s–
1970s were not enough to determine the individual
parameters β, γ, and J2; only the correction ∆δ to
their linear combination and only for Mercury could
be determined. The actual corrections to the motions
of the perihelia of other planets could not be deter-
mined at that time. At present, as a test, we can
determine not β, γ, and J2, but the corrections to the
motions of the planetary perihelia, which allows us
to judge whether the values of β, γ, and J2 used to
construct the ephemerides are valid.

Table 3 gives our corrections to the secular mo-
tions of the planets obtained in different years. We
see from Table 3 that the accuracies of these parame-
ters for all the planets, except Venus, has increased

significantly due to the increase of the time inter-
val on which the planets are observed and owing to
the high-precision MGS and Odyssey observations.
Table 3 shows that the parameters β = 1, γ = 1,
and J2 = 2 × 10−7 used to construct the EPM2004
ephemerides are in excellent agreement with the ob-
servations. Although the correction to the advance
of Mercury’s perihelion is within the error limits, a
small negative correction to the combination δ may be
required. Assuming that β = 1 and γ = 1, we obtain
a new estimate of the solar oblateness, J2 = (1.7 ±
0.5)× 10−7. The solar oblateness is discussed in more
detail below.

The Gravitational Quadrupole Moment of the Sun

Determining the dynamical oblateness of the Sun
is of great importance, since the solar oblateness
serves as a check for the theories that describe the
interior structure of the Sun and its rotation and is
one of the parameters required to construct high-
precision theories of planetary and lunar motions. As
yet, there is no universally accepted and satisfactorily
determined value of the dynamical oblateness of the
Sun. This parameter can be determined indirectly
from various astrophysical observations of the Sun.
However, such observations involve many problems:
the rotation of the Sun around its axis is fairly com-
plex, the outer layers have different angular veloci-
ties at different latitudes, the information about the
rotation of inner layers is insufficient; the brightness
of the solar limb depends on the latitude as well
as on the solar cycle, the number of faculae, and
the number of sunspots; the calibration of ground-
based data for the atmosphere causes great difficul-
ties. The initial estimates of the solar oblateness (be-
fore approximately 1970) using heliometers and pho-
tographic plates were often erroneous, but using new
techniques, improving the theory of the solar interior
structure, and performing satellite observations allow
the gravitational quadrupole moment of the Sun (J2)
to be determined with a higher accuracy. Some of the
J2 values obtained from astrophysical observations
are given in the upper part of Table 4. The value by
Hill et al. (1982) was one of the most accurate for
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his time, and it was commonly used in celestial me-
chanics for various estimates. The table also gives the
recent and (probably) most accurate estimates ob-
tained from astrophysical observations (Paterno et al.
1996; Pijpers 1998; Godier and Rozelot 2000). A
good overview of all the available estimates of the
solar quadrupole moment was given by Pireaux and
Rozelot (2003).

The dynamic oblateness of the Sun can be de-
termined independently during the construction of a
theory for the motion of bodies in the Solar system
when determining the parameters of this theory from
observations. The solar oblateness produces secular
trends in all the elements of the planets, except their
semiaxes and eccentricities. The secular trends are
inversely proportional to the square of the semiaxes;
the largest secular trend due to the solar oblateness
arises in Mercury’s perihelion. According to Brum-
berg (1972), the rate of secular motion of the perihe-
lion is given by

dπS =
3
2

(
R�
a

)2 n

(1 − e2)2
J2.

In constructing the JPL versions of the DE405
ephemerides and our EPM2000 based on the esti-
mates by Duvall et al. (1984) and Brown et al. (1989)
obtained from helioseismometric measurements (un-
der certain additional assumptions) (see Table 4), a
nonzero solar oblateness, J2 = 2 × 10−7, has been
used for the first time in the integration.

In this case, the main problem lies in the small-
ness of the parameter J2 and in its separation from
the post-Newtonian parameters β and γ. This could
not be done before a large number of high-precision
MGS and Odyssey data appeared in recent years,
and the dynamic estimate of the solar oblateness was
obtained from the estimates of the motion of Mer-
cury’s perihelion that included a linear combination of
post-Newtonian parameters and the solar oblateness.
Some of these estimates are given in the middle part
of Table. 4. The estimate by Eubanks et al. (1997)
was obtained by combining the resent estimates of γ,
Nordtvedt’s parameter, and the advance of Mercury’s
perihelion.

In 1990, the dynamic oblateness of the Sun was
determined by the methods of celestial mechanics
from the analysis of radar and optical (1960–1986)
observations by Afanasieva et al. 1990. Unfortu-
nately, most of the modern high-precision American
radar observations of planets, spacecraft, and landers
was inaccessible at that time, and the accuracy of
the estimate obtained was not high enough. It has
become possible to simultaneously estimate all three
parameters J2, β, and γ only in recent years. These
determinations are given in the lower part of Table 4.

Table 4. The gravitational quadrupole moment of the Sun

J2 × 10−7

55 ± 13 Нill et al. (1982)

1.7 ± 0.4 Duvall et al. (1984)

1.7 ± 0.2 Brown et al. (1989)

2.08 ± 0.14 Paterno et al. (1996)

2.18 ± 0.06 Pijpers (1998)

2.0 ± 1.4 Godier and Rozelot (2000)

13.9 ± 24.7 Shapiro et al. (1972)

26.3 ± 16.5 Anderson et al. (1978)

12.3 ± 11.5 Anderson et al. (1992)

−1.8 ± 4.5 Eubanks et al. (1997)

−11.7 ± 9.5 Pitjeva (1986)

−1.3 ± 4.1 Pitjeva (1993)

2.4 ± 0.7 Pitjeva (2001)

6.6 ± 9.0 Afanasieva et al. (1990)

−5 ± 10 Williams et al. (2002)

2.3 ± 5.2 Anderson et al. (2002)

1.9 ± 0.3 Pitjeva (this paper)

The value by Williams et al. (2002) was obtained
from the analysis of lunar laser-ranging observations.
The estimates by Anderson et al. (1992) and our
estimates were obtained by analyzing radar observa-
tions of the inner planets and spacecraft (the masking
factor of the solar oblateness µ(J2) is 17). The last,
more accurate estimate agrees well with the estimate
deduced from the advance of Mercury’s perihelion in
the previous section.

A test version of the EPM ephemerides similar to
EPM2004, but with J2 = 6.52 × 10−7 deduced from
S. Lefevre’s figure theory, was constructed at the
request of the colleagues involved in preparing the
European BepiColombo mission to Mercury. Sub-
sequently, these ephemerides were improved using
observations with an improvement of all the param-
eters, except J2. As might be expected, the represen-
tation of the observations of Venus and Mars did not
change, because this parameter is small. Although
the usual accuracy of Mercury’s observations is only
about 1 km, a deterioration of Mercury’s representa-
tion in the test version is still noticeable: the rms error
of the residual of Mercury’s observations was 1228 m
compared to 1192 m for the main ephemerides, where
J2 = 2 × 10−7 was used for the integration. Improv-
ing the parameter J2 for the test version of the the-
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ory yielded J2 = 1.6 × 10−7, which again agrees with
the values obtained when improving the EPM2004
ephemerides.

Thus, we conclude that the gravitational
quadrupole moment of the Sun is probably close to
or slightly smaller than 2.0 × 10−7.

CONVERSION FROM THE EPHEMERIDES
IN THE TDB TIME SCALE

TO THE EPHEMERIDES IN THE TCB SCALE

According to IAU resolutions, the ICRS should be
considered as a four-dimensional coordinate system
with an independent variable—the TCB coordinate
time in the scale of which the planetary ephemerides
should be given. For comparison with the widely
used JPL DE ephemerides, our EPM ephemerides
have been constructed until the present time with
the TDB time scale (as an independent variable)
close to Teph (Standish 1998), which is used to con-
struct the DE ephemerides. Since, according to IAU
recommendations, the planetary ephemerides con-
structed in the TCB scale are required for the users
that process VLBI measurements and observations
of Earth satellites, we constructed an additional ver-
sion of the ЕРМ ephemerides in the TCB scale. The
following transformations should be made to make a
transition from the TDB scale to the TCB scale (see,
e.g., Brumberg and Groten 2001):

(1) The initial epoch of integration JD = 2448 800.5
TDB is expressed in terms of TCB:

date(TCB) = (date(TDB) − 2 443 144.5)
× LB + date(TDB),

(2) The coordinates are multiplied by (1 + LB):

xi(TCB) = xi(TDB) × (1 + LB),

(3) The masses are multiplied by (1 + LB):

GMi(TCB) = GMi(TDB) × (1 + LB),

(4) The round-trip light time of the radar observa-
tions calculated in the TCB scale should be expressed
in terms of the proper time, i.e., first

τTDB = τTCB × (1 − LB),

and then transformed to the proper time scale in a
standard way.

Since the ЕРМ ephemerides are close to DE405,
we used

LB = 1.55051976772 × 10−8,

obtained for the relationship between TCB and TDB
of the DE405 ephemerides.

The conversion to the TCB coordinate time scale
should not and did not cause the accuracy of the

ephemerides and the parameters being improved to
increase. The residuals in the observations are iden-
tical for these two versions of the ЕРМ ephemerides.
As might be expected, the formal standard accuracies
of all parameters and their values (except the orbital
elements of the planets) are equal within the formal
uncertainties.

CONCLUSIONS

The passage of photons and the motion of planets
in the gravitational field of the Sun allow the So-
lar system to be considered as a convenient labora-
tory for testing various theories of gravitation. The
currently available radar observations of planets and
spacecraft with a meter accuracy (a relative error of
10−11–10−12) make it possible to test the relativistic
effects and to estimate the solar oblateness. The un-
certainties in these parameters (see Tables 1–4) has
decreased significantly since 1993: by more than an
order of magnitude for the gravitational quadrupole
moment of the Sun and the advance of Mercury’s per-
ihelion and even by one and a half orders of magnitude
or more for the remaining parameters (β, γ, Ġ/G, the
advance of the perihelia of the Earth and Mars).

Substantial progress can be explained by several
factors: an increase in the accuracy of observational
data reduction procedures and dynamical models of
motion as well as an improvement in the quality of
observational data and an increase in their accuracy
and in the length of the time interval on which these
observations were obtained. As the uncertainties in
these parameters decrease, the domain of possible
values of the relativistic parameters narrows, impos-
ing increasingly stringent constraints on the theories
of gravitation alternative to General Relativity.

In conclusion, note that the numerical EPM2004
ephemerides of all planets and the Moon are available
via FTP: flp://quasar.ipa.nw.ru/incoming/ EPM2004
or via the web site of the Institute of Applied Astron-
omy, Russian Academy of Sciences.
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