Relativistic elasticity of rigid rods and strings

José Natário
(Instituto Superior Técnico, Lisbon)
Based on arXiv:1406.0634

Aveiro, July 2014

Outline

- Relativistic elasticity
- Rigid rods and strings
- Car and garage paradox
- Pushing a rigid rod
- Bell's spaceships paradox
- Fishing in black holes

Relativistic elasticity

- A continuous medium in General Relativity is described by:
- A spacetime (M, g);
- A Riemannian 3-manifold (Σ, δ) (relaxed configuration);
- A projection map $\pi: M \rightarrow \Sigma$ whose level sets are timelike curves (the worldlines of the medium particles).

- If we choose local coordinates ($\bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}$) on Σ then we can think of π as a set of three scalar fields.
- We can complete ($\bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}$) into coordinates ($\bar{t}, \bar{x}^{1}, \bar{x}^{2}, \bar{x}^{3}$) for (M, g) yielding the rest frame of any given worldline:

$$
g=-d \bar{t}^{2}+\gamma_{i j} d \bar{x}^{i} d \bar{x}^{j} \quad \text { (at that worldline). }
$$

- Note that

$$
\gamma=\gamma_{i j} d \bar{x}^{i} d \bar{x}^{j}
$$

is a (time-dependent) Riemannian metric on Σ, describing the local deformations of the medium along each worldline.

- We can compute the (inverse) metric γ from

$$
\gamma^{i j}=g^{\mu \nu} \frac{\partial \bar{x}^{i}}{\partial x^{\mu}} \frac{\partial \bar{x}^{j}}{\partial x^{\nu}}
$$

- We must choose a Lagrangian density \mathcal{L} for the action

$$
S=\int_{M} \mathcal{L} \sqrt{-g} d^{4} x
$$

- Assume $\mathcal{L}=\mathcal{L}\left(\bar{x}^{i}, \gamma^{i j}\right)$. The energy-momentum tensor is then

$$
T_{\mu \nu}=2 \frac{\partial \mathcal{L}}{\partial g^{\mu \nu}}-\mathcal{L} g_{\mu \nu}=2 \frac{\partial \mathcal{L}}{\partial \gamma^{i j}} \partial_{\mu} \bar{x}^{i} \partial_{\nu} \bar{x}^{j}-\mathcal{L} g_{\mu \nu}
$$

- Therefore

$$
\mathcal{L}=T_{\overline{0} \overline{0}}=\rho
$$

is the rest energy density.

- The choice of $\rho=\rho\left(\bar{x}^{i}, \gamma^{i j}\right)$ is called the elastic law.
- Isotropic materials: ρ depends only on $\left(s_{1}{ }^{2}, s_{2}{ }^{2}, s_{3}{ }^{2}\right)$, the eigenvalues of $\gamma_{i j}$ with respect to $\delta_{i j}$. Note that $\left(s_{1}, s_{2}, s_{3}\right)$ are the stretch factors along the principal directions.
- Assume that $\delta_{i j}$ is the Kronecker delta. In particular, we are assuming that the Riemannian 3 -manifold (Σ, δ) is flat.
- More convenient variables:

$$
\begin{aligned}
& \lambda_{0}=\operatorname{det}\left(\gamma^{i j}\right)=\frac{1}{\left(s_{1} s_{2} s_{3}\right)^{2}} \\
& \lambda_{1}=\operatorname{tr}\left(\gamma^{i j}\right)=\frac{1}{s_{1}^{2}}+\frac{1}{s_{2}^{2}}+\frac{1}{s_{3}^{2}} \\
& \lambda_{2}=\operatorname{trcof}\left(\gamma^{i j}\right)=\frac{1}{\left(s_{1} s_{2}\right)^{2}}+\frac{1}{\left(s_{2} s_{3}\right)^{2}}+\frac{1}{\left(s_{3} s_{1}\right)^{2}}
\end{aligned}
$$

- Examples:
- Perfect fluid: $\rho=\rho\left(\lambda_{0}\right)$, yielding $p=2 \lambda_{0} \frac{d \rho}{d \lambda_{0}}-\rho$.
- Dust: $\rho=\rho_{0} \sqrt{\lambda_{0}}$, yielding $p=0$.
- Rigid fluid: $\rho=\frac{\rho_{0}}{2}\left(\lambda_{0}+1\right)$, yielding $p=\rho-\rho_{0}$.
- Stiff fluid: $\rho=A \lambda_{0}$, yielding $p=\rho$.
- John quasi-Hookean materials: $\rho=f\left(\lambda_{0}\right)+g\left(\lambda_{0}\right) \lambda_{2}$.
- Karlovini-Samuelsson quasi-Hookean materials: $\rho=f\left(\lambda_{0}\right)+$ $g\left(\lambda_{0}\right) \lambda_{1} \lambda_{2}$.
- Stiff ultra-rigid equation of state: $\rho=A \lambda_{2}+B$.
- Brotas rigid solid: $\rho=\frac{\rho_{0}}{8}\left(\lambda_{0}+\lambda_{1}+\lambda_{2}+1\right)$.

Rigid rods and strings

- For one-dimensional elastic bodies in a two-dimensional spacetime (M, g) there is no difference between solids and fluids.
- Caution: these are not the strings of string theory - they have internal structure.
- The Lagrangian depends only on $\lambda_{0}=\gamma^{11}=\partial_{\alpha} \bar{x} \partial^{\alpha} \bar{x}$.
- For a rigid elastic body (speed of sound $=$ speed of light) we have $\rho=\frac{\rho_{0}}{2}\left(\lambda_{0}+1\right)$, yielding

$$
T_{\mu \nu}=\rho_{0}\left(\partial_{\mu} \bar{x} \partial_{\nu} \bar{x}-\frac{1}{2} \partial_{\alpha} \bar{x} \partial^{\alpha} \bar{x} g_{\mu \nu}-\frac{1}{2} g_{\mu \nu}\right) .
$$

- This is (essentially) just the energy-momentum tensor for a massless scalar field. So the equation of motion is just the wave equation:

$$
\nabla^{\mu} T_{\mu \nu}=0 \Leftrightarrow \square \bar{x}=0
$$

- We can always find a conjugated harmonic coordinate \bar{t} such that

$$
g=s^{2}\left(-d \bar{t}^{2}+d \bar{x}^{2}\right)
$$

This provides an an interesting interpretation for conformal coordinates in two-dimensional spacetimes.

- Static spacetimes:

$$
g=-e^{2 \phi(x)} d t^{2}+d x^{2}=e^{2 \phi(\bar{x})}\left(-d t^{2}+d \bar{x}^{2}\right)
$$

(e.g. hanging strings in the Schwarzschild spacetime).

- Cosmological spacetimes:

$$
g=-d t^{2}+a^{2}(t) d x^{2}=a^{2}(\bar{t})\left(-d \bar{t}^{2}+d x^{2}\right)
$$

(stretch factor equals the cosmological radius a).

Car and garage paradox

- Hitting a wall: before the collision

$$
\bar{x}=\gamma(x-v t)
$$

and so we have the initial-boundary value problem

$$
\begin{cases}\square \bar{x}=0 & (t>0, x<0) \\ \bar{x}(0, x)=\gamma x & (x<0) \\ \frac{\partial \bar{x}}{\partial t}(0, x)=-v \gamma & (x<0) \\ \bar{x}(t, 0)=0 & (t>0)\end{cases}
$$

- Solution (on any conformal coordinate system):

$$
\bar{x}(t, x)=f(x-t)+g(x+t)
$$

Pushing a rigid rod

- By changing frames we can reinterpret the solution above as describing a finite rod being pushed by a constant force.
- This offers a picture of how Lorentz contraction is attained in a physically realistic setting.

- If the force keeps acting then the rod will keep repeating these cycles of compression and rarefaction.
- If m_{0} is the rest mass of the relaxed rod, a is the average proper acceleration and v is the velocity of the rear end as it starts being pushed then the tension is

$$
p=m_{0} a \frac{\gamma v}{\operatorname{arctanh} v} .
$$

Bell's spaceships paradox

- Two identical spaceships connected by a string start moving simultaneously with the same acceleration profile. Does the string stretch?
- We can construct a solution modeling a rigid string initially at rest whose endpoints start moving with velocity v at time $t=0$.

Bell's spaceships paradox

- Two identical spaceships connected by a string start moving simultaneously with the same acceleration profile. Does the string stretch?
- Yes, because it must compensate length contraction.
- We can construct a solution modeling a rigid string initially at rest whose endpoints start moving with velocity v at time $t=0$.

Fishing in black holes

- Kruskal-Szekeres coordinates $(2 M=1)$:

$$
g=4 r^{-1} e^{-r}\left(-d t^{2}+d x^{2}\right), \quad x^{2}-t^{2}=(r-1) e^{r}
$$

- If the string is being held at $r=r_{0}$ then we must solve the following initial-boundary value problem:

$$
\begin{cases}\square \bar{x}=0 & \left(t>0,1<r<r_{0}\right) \\ \bar{x}(0, x)=\int_{0}^{x} 2 r^{-\frac{1}{2}} e^{-\frac{r}{2}} d x & \left(0<x<x_{0}\right) \\ \frac{\partial \bar{x}}{\partial t}(0, x)=0 & \left(0<x<x_{0}\right) \\ \bar{x}\left(x_{0} \sinh u, x_{0} \cosh u\right)=\int_{0}^{x_{0}} 2 r^{-\frac{1}{2}} e^{-\frac{r}{2}} d x & (u>0)\end{cases}
$$

- It is possible to compute an explicit exact solution. We find that:
- Eventually the whole string will cross the horizon.
- The force necessary to hold the string increases indefinitely.
- More generally, the tension of the string increases along any future-pointing causal direction, and indeed approaches $+\infty$.
- Although our mathematical model does not contemplate the string breaking, any physical string will certainly do so.

Conclusion and outlook

- Elastic models are useful tools to model extended bodies in general relativity.
- Many questions to explore:
- Motion of strings and other extended bodies in black hole backgrounds, and relation with cosmic censorship.
- Oscillations, stability and collapse of elastic (neutron) stars.
- Modeling supernovas through collapse of two-phase models: fluid atmosphere surrounding an elastic core.

