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Relativistic elasticity

e A continuous medium in General Relativity is described by:
— A spacetime (M, g);
— A Riemannian 3-manifold (X, d) (relaxed configuration);

— A projection map m : M — 2 whose level sets are timelike
curves (the worldlines of the medium particles).
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e If we choose local coordinates (z1,z2,z3) on ~ then we can
think of m as a set of three scalar fields.

e We can complete (z1,z2,73) into coordinates (7,z!,z2,z3)
for (M, g) yielding the rest frame of any given worldline:

g = —di* + ’yijdfidfj (at that worldline).

e Note that
Y = ’yzjda_jzd:fj

is a (time-dependent) Riemannian metric on X, describing
the local deformations of the medium along each worldline.



e We can compute the (inverse) metric v from
o0zt 0FJ
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e \We must choose a Lagrangian density £ for the action
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e Assume £ = L(Z',~Y). The energy-momentum tensor is then

—1



T herefore
L=1Tg55=1r

IS the rest energy density.

The choice of p = p(Z%,~¥) is called the elastic law.

Isotropic materials: p depends only on (s12,s52,s32), the
eigenvalues of v;; with respect to §;;. Note that (sq,s2,s3)
are the stretch factors along the principal directions.

Assume that 57;3- IS the Kronecker delta. In particular, we are
assuming that the Riemannian 3-manifold (3, 6) is flat.



e More convenient variables:

g 1
Ao = det(”") = )
(s15253)2
> 1 1 1
M =tr(y"Y) = — ;
1 () " + 32 + o~
> 1 1 1
A =trcof(hW’) = ——= + - :
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e Examples:
: o dp
— Perfect fluid: p = p(Ag), vielding p = QAOK — p.
0

— Dust: p = pgv/Ap, Yielding p = 0.



Rigid fluid: p = ’)2—0(/\0 + 1), yielding p = p — pg.
Stiff fluid: p = A)\g, vielding p = p.
John quasi-Hookean materials: p = f(Ag) + g(Ag) Ao.

Karlovini-Samuelsson quasi-Hookean materials: p = f(Ag)+
g(Ao)A1 2.

Stiff ultra-rigid equation of state: p = AX> + B.

Brotas rigid solid: p = %0(/\0 + A1+ X+ 1).



Rigid rods and strings

For one-dimensional elastic bodies in a two-dimensional space-
time (M, g) there is no difference between solids and fluids.

Caution: these are not the strings of string theory — they
have internal structure.

The Lagrangian depends only on \g = ~11 = 9,70°%.

For a rigid elastic body (speed of sound = speed of light)
we have p = 02_0()\0 + 1), yielding

A 1
THV = PO (8/,Lw 81/£U — Eaaw 8a$ g/ﬂ/ — Egluy> .



e This is (essentially) just the energy-momentum tensor for a
massless scalar field. So the equation of motion is just the
wave equation:

e \We can always find a conjugated harmonic coordinate ¢t such
that

g = s> (—de + d:EQ).

This provides an an interesting interpretation for conformal
coordinates in two-dimensional spacetimes.



e Static spacetimes:
g = —e22@ a2 4 422 = 2@ (—at? + dz?)

(e.g. hanging strings in the Schwarzschild spacetime).

e Cosmological spacetimes:
g = —dt® + a?(t)dz? = a? () (—dF? + dz?)

(stretch factor equals the cosmological radius a).



Car and garage paradox

e Hitting a wall: before the collision
x = v(x — vt)

and so we have the initial-boundary value problem

(07 =0 (t >0,z < 0)
EEO,J:) = yx (x < 0)
%(O,x) = —vy (x < 0)

|z(t,0) =0 (t >0)

e Solution (on any conformal coordinate system):

z(t,x) = f(z—1t) +g(z +1).
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Pushing a rigid rod

e By changing frames we can reinterpret the solution above as
describing a finite rod being pushed by a constant force.

e [ his offers a picture of how Lorentz contraction is attained
in a physically realistic setting.









e If the force keeps acting then the rod will keep repeating
these cycles of compression and rarefaction.

o If mg is the rest mass of the relaxed rod, a is the average
proper acceleration and v is the velocity of the rear end as it
starts being pushed then the tension is

YU
arctanhv

P = mopa



Bell’'s spaceships paradox

e [ wo identical spaceships connected by a string start moving
simultaneously with the same acceleration profile. Does the
string stretch?

e \We can construct a solution modeling a rigid string initially
at rest whose endpoints start moving with velocity v at time
t = 0.



Bell’'s spaceships paradox

e [ wo identical spaceships connected by a string start moving
simultaneously with the same acceleration profile. Does the
string stretch?

e Yes, because it must compensate length contraction.

e \We can construct a solution modeling a rigid string initially
at rest whose endpoints start moving with velocity v at time
t = 0.






Fishing in black holes

e Kruskal-Szekeres coordinates (2M = 1):

g=4r e " <—dt2 - d:cz), 22 —t2 = (r —1)e".

e If the string is being held at » = rg then we must solve the

following initial-boundary value problem:

2

[z =20
) g;O,w) = /5 QT_%e_%d:E
5:(0,x) =0
| Z(zgsinhu,zgcoshu) = f(i)ﬁo QT_%Q_%CZQZ

(t>0,1<r<rg)

(0 <z < x0)
(0 < x < x0)

(u > 0)






e It is possible to compute an explicit exact solution. We find
that:

— Eventually the whole string will cross the horizon.

— The force necessary to hold the string increases indefi-
nitely.

— More generally, the tension of the string increases along
any future-pointing causal direction, and indeed approaches

—+00.

e Although our mathematical model does not contemplate the
string breaking, any physical string will certainly do so.



Conclusion and outlook

e Elastic models are useful tools to model extended bodies in
general relativity.

e Many questions to explore:

— Motion of strings and other extended bodies in black hole
backgrounds, and relation with cosmic censorship.

— Oscillations, stability and collapse of elastic (neutron)
stars.

— Modeling supernovas through collapse of two-phase mod-
els: fluid atmosphere surrounding an elastic core.



