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PART I: ANALYTICAL EXAMINATION OF
ELECTROMAGNETIC BOUNDARY CONDITIONS

1. INTRODUCTION

As designated by Yeh [1], boundary conditions are the cornerstone for
classical electrodynamics. However, a literature survey can show that
electromagnetic boundary conditions are questioned from time to time
[1–4] , although their derivations are of standard textbook knowledge
[5]. The present study proposes an analytical examination of the e.m.
boundary conditions in an orthogonal curvilinear coordinate system
which conforms locally and instantaneously to the boundary surface
at a specified point on it. Subsequently, an original natural coordi-
nate system introduced conforming again locally and instantaneously
to the boundary surface at the same point on it; the latter removes
the uncertainty in the choice of the basis unit vectors of an orthogonal
curvilinear coordinate system, it reduces the number of the nonvanish-
ing discontinuity relations, and determines natural aspects of the e.m.
boundary conditions problem. The above mentioned natural coordi-
nate system will be especially useful for the treatment of the relativistic
e.m. boundary conditions which will be studied in Part II of this work.

2. MACROSCOPIC MAXWELL EQUATIONS

Maxwell equations governing the behavior of the time-varying elec-
tromagnetic fields are differential equations applying locally at each
space-time point (�x, t) ; specifically,
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�∇ · �D = 4π�
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, (1)

in Gaussian units. These equations take the following symmetric forms
in source-free regions of a medium [1, 6], where � = 0 and �J = 0 :

�∇ · �D = 0
�∇ · �B = 0

�∇× �H =
1
c

∂ �D

∂t

�∇× �E = −1
c

∂�B
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. (2)

According to these local and instantaneous differential equations, dis-
placement current term (1/c)(∂ �D/∂t) and its symmetric counterpart
−(1/c)(∂�B/∂t) in the third and fourth relations of Eq. (2) concern
only the source-free regions of the medium. This means that the dis-
placement current term and its symmetric counterpart vanish where
the sources are situated [7].

Let us consider also integral statements of the macroscopic Maxwell
equations applying again locally at each space-time point (�x, t) :

∮
S

�D · �n da = 4π
∫
V

� d3x
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)
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∫
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(
1
c

∂�B

∂t

)
· �n′ da




. (3)
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Figure 1(a). A perspective view of an orthogonal curvilinear coor-
dinate system, represented with the basis unit vectors �ex, �ey, �ez,
and conformed to a space-time point P (�x, t) on the boundary surface
carrying surface charge and current densities σ(�x, t) and �K(�x, t) .

In the first two relations of Eq. (3), V is an infinitesimal volume at a
space-time point (�x, t) and S is the closed surface bounding it; da is
an element of area on the surface S, and �n is the unit normal to the
surface at da, pointing outward from the enclosed volume V . In the
last two relations of Eq. (3), C is an infinitesimal closed contour at
the same space-time point (�x, t) and S′ is an open surface extending
across the contour; d�� is a line element on the contour C, da is
an area element on S′; and �n′ is the unit normal at da, pointing
in the direction given by the right-hand rule concerning the sense of
integration around the contour C.

As a continuation of the above discussion connected with Eq. (2),
the integral terms

∫
S′

(1/c)(∂ �D/∂t) ·�n′da and
∫
S′

(1/c)(∂�B/∂t) ·�n′da in

the third and fourth relations of Eq. (3), which are the integral con-
tributions of the displacement current and its symmetric counterpart,
must vanish also where the sources are situated; because they concern
again only the source-free regions of the medium [1].
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3. ELECTROMAGNETIC BOUNDARY CONDITIONS
IN AN ORTHOGONAL CURVILINEAR COORDINATE
SYSTEM

The integral statements of the macroscopic Maxwell equations given
in Eq. (3) are known to yield the discontinuity relations of the vari-
ous electromagnetic field components at a boundary surface between
two different media, assumed for example to carry surface charge and
current densities σ(�x, t) esu/cm 2 and �K(�x, t) esu/(cm.s), respectively.

The purpose of the present study is an analytical examination of
the e.m. boundary conditions problem in an orthogonal curvilinear
coordinate system which conforms locally and instantaneously to the
boundary surface at a specified point on it.

Let an orthogonal curvilinear coordinate system whose basis unit
vectors are �ex, �ey, �ez be locally and instantaneously joined to a spec-
ified space-time point P (�x, t) on the boundary surface (Fig. 1a) [1, 3],
assumed also to be well-behaved, that is, to have a smooth shape.
Let two of the basis unit vectors, for example �ex, �ey, be chosen to
lie on the tangential plane of the boundary surface at the specified
space-time point P ; and let the third one, that is �ez, be chosen to
be perpendicular to the boundary surface at the same point P . The
term “curvilinear,” which qualifies the coordinate system, means that
the directions of the basis unit vectors of the coordinate system vary
according to the topological properties of the boundary surface, from
a space-time point on it to another [3]. And, an orthogonal curvilinear
coordinate system belonging to any other point on the boundary sur-
face can be determined from the topological properties of the boundary,
with reference to the specified point P on it.

Let us begin with the surface charge and current densities σ(�x, t)
and �K(�x, t) at the space-time point P on the boundary; furthermore,
we let the surface current density �K(�x, t) have two components:

�K = Kx�ex +Ky�ey . (4)

Now, we can analyze e.m. boundary conditions in the local and in-
stantaneous vicinities of the space-time point P (�x, t) on the boundary
surface.

By applying the first two integral relations of Eq. (3) to the infinites-
imal Gaussian cylinder placed at the specified space-time point P and
illustrated in Fig. 1b, one can easily obtain following discontinuities in
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Figure 1(b). In an infinitesimal cross-sectional view of x = Constant
cut of the boundary surface, volume V is a small cylinder, half in one
medium and half in the other, with the unit normal �n//�ez to its top
pointing from Medium 1 into Medium 2, and with the cross-sectional
area ∆a.

the normal components of the e.m. fields:

D2z −D1z = 4πσ , (5)

B2z −B1z = 0 . (6)

Next, by taking also in consideration the vanishing of the integral con-
tributions of the displacement current and its symmetric counterpart
on the boundary carrying surface charge and current densities, appli-
cations of the last two integral relations of Eq. (3) to the infinitesimal
Stokesian rectangles placed at the specified space-time point P and
illustrated in Figs. 1c and 1d yield immediately the following disconti-
nuities in the tangential components of the e.m. fields: 1, 2

1, In comparison with our present problem, it is assumed that σ = 0 and �K = 0

in Yeh’s work [1]. When σ �= 0 and �K �= 0, Yeh’s proof still remains valid for the

fields �E and �B; but the independent traditional proofs of the boundary conditions

concerning the tangential components of the field �H and the normal component of

the field �D are again necessary.
2 Our present problem corresponds to take �Mf = 0 in the paper by Stahl and

Wolters [2].
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− (H2y −H1y) =
4π
c
Kx , (7)

− (E2y − E1y) = 0 ; (8)

and

H2x −H1x =
4π
c
Ky , (9)

E2x − E1x = 0 . (10)

Here, the minus sign is retained in Eq. (8) in order to maintain its
similarity with Eq. (7). The geometrical aspect implied in Eq. (7) and
(9) is illustrated in Fig. 2.

Here, the choice of the directions of the tangential basis unit vectors
�ex and �ey is uncertain, because there are infinite number orthogonal
directions on the tangential plane of the boundary surface at the spec-
ified space-time point P on it. But this will be removed by the defi-
nition of the natural coordinate system considered in Sec. 5. Still, the
decompositions obtained in Eqs. (5)–(10), related with Eq. (4), will be
especially useful to understand relativistic e.m. boundary conditions
which will be treated in Part II.

4. COMPARISON WITH STANDARD FORMALISM

Eqs. (5)–(10) are the explicit expressions of the local and instantaneous
e.m. field discontinuities at a specified space-time point P on an in-
terface between two different media. And, as one can show by vector
algebra from Eqs. (4), (7) and (8), and by referring to the vector di-
agram drawn in Fig. 2, the discontinuity in the tangential projection
vector of the field �H occurs at right angle in a clockwise direction with
respect to �K :

(�H2 − �H1)tan ⊥ �K . (11)

To compare with the standard formalism, it should be noted that
Eq. (7) and (9) can be combined in a single vector equation, by ac-
counting that the basis unit vector �ez represents unit normal �n of the
boundary surface, pointing from Medium 1 into Medium 2:

�n× (�H2 − �H1) =
4π
c
�K . (12)



114 Gür

Figure 1(c). In the same infinitesimal cross-sectional view with the
one illustrated in Fig. 1(b), contour C is a small rectangle, with its
long sides ∆� in either side of the boundary; plane of the contour C
is oriented to be perpendicular to the boundary surface, so that its
unit normal �n′ coincides with the local and instantaneous direction of
�ex on the boundary surface.

Figure 1(d). And, in an infinitesimal cross-sectional view of y = Con-
stant cut of the boundary surface, plane of a small rectangular contour
C is oriented to be perpendicular to the boundary surface, so that
its unit normal �n′ coincides with the other local and instantaneous
tangential direction of �ey on the boundary surface.
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Figure 2. Discontinuity in the tangential projection vector of the field
�H is drawn in an infinitesimal cross-sectional view of z = Constant
cut of the boundary surface.

similarly, Eqs. (8) and (10) can be also combined in another single
vector equation:

�n× (�E2 − �E1) = 0 ; (13)

where, it is implied the minus sign which has been retained in Eq. (8).
Here, one should note that Eq. (12) gives only the discontinuities in
the components of the tangential projection vector of the field �H; this
means that the discontinuity in the tangential projection vector itself
of the field �H can be only written by its components solved from
Eq. (12). And, Eq. (13) has a similar meaning with Eq. (12).

Furthermore, by taking cross products of Eqs. (12) and (13) from
right by the unit normal �n, these two equations can be expressed
in another useful form, giving directly, by their left-hand sides, the
discontinuities in the tangential projection vectors of the fields �H and
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Figure 3. Basis unit vectors �t, �n, �ν of the natural orthogonal curvi-
linear coordinate system and the discontinuity in the tangential pro-
jection vector of the field �H are drawn in the same cross-sectional
view with the one illustrated in Fig. 2.

�E :

(H2 −H1)tan ≡ [�n× (�H2 − �H1)]× �n =
4π
c
�K × �n , (14)

(�E2 − �E1)tan ≡ [�n× (�E2 − �E1)]× �n = 0 . (15)

In summary, by considering again that �ez//�n at the considered space-
time point P on the boundary surface, all the local and instantaneous
discontinuity relations, including also the ones in the normal compo-
nents of the fields �D and �B, can be collected in the standard vector
notation:

(�D2 − �D1) · �n = 4πσ

(�B2 − �B1) · �n = 0

�n× (�H2 − �H1) =
4π
c
�K

�n× (�E2 − �E1) = 0




. (16)
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5. NATURAL ORTHOGONAL CURVILINEAR
COORDINATE SYSTEM FOR THE ELECTRO-
MAGNETIC BOUNDARY CONDITIONS PROBLEM

From Eq. (16) and from Fig. 2, by taking also in consideration the
forms seen in Eqs. (14) and (15) of the discontinuities in the tangential
projection vectors of the fields �H and �E, it turns out that the e.m.
boundary conditions problem possesses three local and instantaneous
orthogonal directions, specifically, �K, �n and �K×�n. Thus, the surface
current density �K and the unit normal �n of the boundary surface give
the local and instantaneous defining directions of the problem.

By a borrowing from Michalski’s notation [3], as illustrated in Fig. 3,
three unit vectors �t, �n, �ν, forming the basis of a local and instan-
taneous orthogonal curvilinear coordinate system at a specified space-
time point P on the boundary surface, can be made respectively to
coincide with the three local and instantaneous orthogonal directions
�K, �n, �K×�n of the problem itself. Then this new coordinate system,
satisfying

�t× �n = �ν (with cyclic permutations) , (17)

can be named as the natural orthogonal curvilinear coordinate system
for the e.m. boundary conditions problem.

In this natural orthogonal curvilinear coordinate system, the sur-
face current density �K at the space-time point P on the boundary
becomes

�K = K�t ; (18)

and the discontinuity relations become consequently,

D2n −D1n = 4πσ
B2n −B1n = 0

H2ν −H1ν =
4π
c
K

H2t −H1t = 0
E2ν − E1ν = 0
E2t − E1t = 0




, (19)

which can be easily verified from Eq. (3) or from Eq. (16) by using
Eqs. (17) and (18) and by decomposing the e.m. fields in terms of the
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natural basis unit vectors �t, �n, �ν. Comparison of Eq. (19) with the
discontinuity relations already obtained in Eqs. (5) – (10) shows that
the number of the nonvanishing discontinuities is reduced by the use of
the natural orthogonal curvilinear coordinate system of the boundary
conditions problem itself. Also, as illustrated in Fig. 3, Eq. (19) de-
scribes simply the natural aspect of the boundary conditions problem
embodied in Eq. (11) and in Fig. 2.

Furthermore, the use of the natural orthogonal curvilinear coordi-
nate system has removed the uncertainty question encountered in the
choice of the tangential basis unit vectors of an orthogonal curvilinear
coordinate system joined conformally to a specified space-time point
P on the boundary surface, since one of the new tangential basis unit
vectors, that is �t, has been chosen in the direction of the surface cur-
rent density at the specified point P. And, the reduced form (19) of
the discontinuities will be especially useful in the examination of the
relativistic e.m. boundary conditions left to Part II.

6. SOME ADDITIONAL DISCUSSIONS

Once the natural orthogonal curvilinear coordinate system conform-
ing locally and instantaneously to a specified space-time point P (�x, t)
on a well-behaved boundary surface is determined, natural orthogonal
curvilinear coordinate system belonging to any other space-time point
on the boundary surface can be defined according to the topological
and electrical properties of the boundary surface, with reference to
the natural coordinates of the specified point P on it. At a different
space-time point on the boundary surface, the surface current density
can have two components in terms of the natural basis unit vectors of
the specified space-time point P :

�K = Kt�t+Kν�ν . (20)

And, the discontinuity relations in the local and instantaneous vicinity
of the new space-time point will have the forms equivalent to the ones
already obtained in Eq. (5)–(10), with the following correspondence
between the basis unit vectors used in Eqs. (5)–(10) and the natural
basis unit vectors of the reference point P of the problem:

�ex, �ey, �ez → �ν, �t, �n. (21)

In this description, it is also necessary to take in consideration direction
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variations of the unit normal �n, according to the topological properties
of the boundary surface.

As another point, we can make use of some idealizations. For ex-
ample, in most physical cases, encountered in nature or prepared in
laboratory, boundary surfaces are ideal planes; and boundary surface
charge and current densities are ideally uniform. Therefore, all points
throughout the boundary surface and orthogonal coordinate systems
belonging to them are identical. Hence, our original description (19)
based on the natural orthogonal curvilinear coordinate system con-
formed to a specified space-time point P on the boundary surface
becomes valid throughout the boundary.

PART II: RELATIVISTIC ELECTROMAGNETIC
BOUNDARY CONDITIONS

1. INTRODUCTION AND REVISION

In Part I, we had defined natural orthogonal curvilinear coordinate sys-
tem locally and instantaneously joined to a specified space-time point
P (�x, t) on a boundary surface being at rest between two media and car-
rying surface charge and current densities σ(�x, t) and �K(�x, t) . And,
our present study aims to deduce relativistic electromagnetic bound-
ary conditions concerning three distinct boundary surfaces, each hav-
ing separately a local and instantaneous velocity in one of the three
natural orthogonal directions at the same specified space-time point
P (�x, t) .

During the last almost twenty five years, moving electromagnetic
boundary conditions are studied from time to time [5, 8–12]. Differ-
ently from them, our present work will be based on the relativistic form
invariance or covariance of the Maxwell equations, as a fundamental
principle. Therefore, let us remember that, in spite of the independent
historical developments of the Electomagnetism (1873) [13] and the
Special Relativity (1905) [14], the latter is known to be implicit in the
covariance of Maxwell equations [15–17].

By the fundamental covariance principle of electromagnetism, mov-
ing boundary conditions must not be different from the ones at rest,
except for the different values of the surface charge and current densi-
ties because of the motion of the boundary surface. Indeed, there are
in both cases, a surface charge density and a surface current density
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on the interface which can be experimentally measured in both cases,
for example, by using the vacuum Lorentz forces acting on the test
charges being firstly at rest and moving then with a certain velocity in
the laboratory. Our other two principal ideas (from Part I) are that
we are again concerned with the evaluation of the integral forms of
the Maxwell equations at the boundary surface being the place where
the field sources are situated; and that the Maxwell equations are lo-
cal and instantaneous differential equations. Consequently, the source
densities σ′(�x, t) and �K ′(�x, t) , which are measured at a specified point
P (�x, t) having the local and instantaneous velocity �v of the moving
interface, must be the Lorentz transformed values of the ones σ(�x, t)
and �K(�x, t) which would be measured at the same specified point on
the interface, when it would be at rest. 1

2. RELATIVISTIC ELECTROMAGNETIC BOUNDARY
CONDITIONS

Let us begin with a boundary surface being at rest between two media
and carrying surface charge and current densities σ(�x, t) and �K(�x, t)
at a specified space-time point P (�x, t) on it. As already obtained in
Eq. (19) of Part I, discontinuity relations written in terms of the natural
orthogonal curvilinear coordinate system represented by the basis unit
vectors �t, �n, �ν which are locally and instantaneously joined to the
point P (�x, t) are the followings:

D2n −D1n = 4πσ
B2n −B1n = 0

H2ν −H1ν =
4π
c
K

H2t −H1t = 0
E2ν − E1ν = 0
E2t − E1t = 0




; (1)

where, following definition of the direction of the natural basis unit
vector �t is used:

�K = K�t . (2)

Now, let the boundary surface start to move with an arbitrary velocity,
so that our specified space-time point P (�x, t) on it has a local and

1 Footnotes can be found in Appendix II.
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instantaneous velocity �v, with the following decomposition in terms
of the natural orthogonal basis unit vectors:

�v = vt�t+ vn�n+ vν�ν = cβt�t+ cβn�n+ cβν�ν . (3)

Our present purpose is to examine what the discontinuity relations (1)
become at our specified space-time point P (�x, t) , but now taken on
the moving boundary surface. Let σ′(�x, t) and �K ′(�x, t) represent the
source densities on the moving interface. According to the covariance
principle of electromagnetism, revised in Section 1, these σ′ and �K ′

must be the Lorentz transformed values of the source densities σ and
�K on the boundary surface as if it were at rest.

And, to calculate these Lorentz transformed values σ′ and �K ′,
we must decide the sign of the Lorentz factor �β . To this aim, let
us remember that the “fixed point” 2 of the Lorentz transformations
is the point where the centers of the following spherical wave fronts
coincide with each other at the instant t = t′ = 0 [20–24]:

x2 + y2 + z2 = c2t2 (in rest frame),
x′2 + y′2 + z′2 = c2t′2 (in moving frame)

}
. (4)

For the present, from an intuitive view point 3 based on the above def-
inition of the fixed point of the Lorentz transformations, our boundary
surface carrying the source densities σ and �K constitutes a moving
interface, when it starts to move. Hence, this moving interface, with
the source densities σ and �K on it, constitutes also the rest frame
of the Lorentz transformations, where the fixed point of the transfor-
mations is placed. And, when observed from the rest frame of the
moving interface, our laboratory where our test charges are found will
constitute moving frame of the Lorentz transformations and will have
the velocity opposite to (3):

�v = −vt�t− vn�n− vν�ν = −cβt�t− cβn�n− cβν�ν. (5)

Thus, the rest and moving frames of the Lorentz transformations be-
come uniquely defined. And, the source densities σ′ and �K ′ measured
by the test charges being found in the laboratory will be the source
densities on the moving interface in the laboratory, because these test
charges observe the velocity (3) of the moving interface, consistently
with the physical reality.
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After our intuitive decision 3 on the sign of the Lorentz factor �β ,
we can continue our examination. At the beginning, we know that the
velocity direction of the moving frame gives a defining direction for
the Lorentz transformations. But, e.m. boundary conditions problem
has already its natural orthogonal defining directions represented by
the basis unit vectors �t, �n, �ν on the interface, when it is at rest (Sec.
5 of Part I). Therefore, it is necessary to treat three distinct Lorentz
transformations for each separate component of the velocity (5), by
leaving their combination, based on the method presented for example
by Misner, Thorne and Wheeler [25], to a future study. Consequently,
three distinct sets of discontinuity relations will be obtained, concern-
ing each a boundary surface moving with a local and instantaneous
velocity in one of the three natural orthogonal directions at our speci-
fied space-time point P (�x, t) on the interface.

Furthermore, without going to the combination of their Lorentz
transformations, these three sets of moving electromagnetic disconti-
nuity relations originally obtained in this work can be useful to treat
some ideal plane boundary surfaces (Sec. 6 of Part I), again ideally,
each moving with a uniform velocity in one of the three separate natu-
ral orthogonal directions, such as the one early treated by Noerdlinger
[8].

3. BOUNDARY SURFACE MOVING WITH A VELOCITY
�v = vt�t

Let the boundary surface be moving with the following local and in-
stantaneous velocity at our specified space-time point P (�x, t) on it:

�v = vt�t = cβt�t . (6)

For this velocity, we have the following Lorentz factors, convenient to
our intuitive decision 3 on the sign of the Lorentz factor �β :

�β = −βt�t and γ = γt = (1− β2
t )
−1/2. (7)

3.1 Surface Source Densities on the Moving Interface

Let us remember that the local and instantaneous surface current
density �K(�x, t) at our specified space-time point P (�x, t) on the rest
boundary surface had been used to define the natural basis unit vector
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�t (Sec. 5 of Part I), as also seen in Eq. (2). According to this definition,
surface current density �K(�x, t) is parallel to the velocity (6). Hence,
our interface carrying surface charge and current densities σ and �K is
also locally and instantaneously parallel to the local and instantaneous
velocity (6).

According to the elementary definition expressing that an electric
current is charge in motion [26], a surface charge constitutes a surface
current, when it moves parallelly to itself [27]. Thus, σ and �K are not
independent of each other; and, they compose following four-vector: 4

(cσ, �K) = (cσ,K�t) . (8)

And, the components of the corresponding four-vector belonging to the
moving interface can be found by using the Lorentz factors (7) in the
four-vector Lorentz transformations [28]:

cσ′ = γt [(cσ) + βtK]
K ′ = γt [K + βt(cσ)]
�K ′⊥ = �K⊥ = 0, from Eq. (8)


 . (9)

Then, the transformed sources four-vector has the following form:

(cσ′, �K ′) = (cσ′,K ′�t) ; (10)

and, the source densities on the moving interface can be obtained from
Eq. (9):

σ′ = γt

(
σ +

βt
c
K

)
�K ′ = K ′�t = γt(K + cβtσ)�t


 . (11)

3.2 Discontinuity Relations at the Moving Interface

Because of the fact that the transformed current density �K ′ , found
in Eq. (11), has again only one component in the direction of the
natural basis unit vector �t and because of the covariance principle
of electromagnetism, local and instantaneous discontinuity relations
at our specified space-time point P (�x, t) on the moving interface will
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have the same form with the ones given in Eq. (1):

D′2n −D′1n = 4πσ′

B′2n −B′1n = 0

H ′2ν −H ′1ν =
4π
c
K ′

H ′2t −H ′1t = 0
E′2ν − E′1ν = 0
E′2t − E′1t = 0




; (12)

where, the primed fields represent the fields measured in the laboratory,
on either side of the moving boundary surface. So, only the magnitudes
of the discontinuities are changed, because of the transformed values
(11) of the surface source densities belonging to the moving interface.

4. BOUNDARY SURFACE MOVING WITH A VELOCITY
�v = vn�n

For an interface moving with the following local and instantaneous
velocity

�v = vn�n = cβn�n , (13)

at our specified space-time point P (�x, t) on it, we have the following
Lorentz factors being convenient to our intuitive decision on the sign
of the Lorentz factor �β : 3

�β = −βn�n and γ = γn = (1− β2
n)
−1/2. (14)

4.1 Surface Source Densities on the Moving Interface

Now, differently from the precedent Section 3, our interface carry-
ing local and instantaneous surface charge and current densities σ and
�K = K�t is perpendicular to the local and instantaneous velocity (13).
Hence, the local and instantaneous motion of the boundary surface is
locally and instantaneously perpendicular to its surface. And, contrar-
ily to Section 3.1, surface charge and current densities σ and �K are
independent of each other, in the physical meaning that they do not
compose no longer a 4-vector. However, we can find again a sources
4-vector, but now, composed of the local and instantaneous volume
charge and current densities ρ and �J corresponding to the local and
instantaneous surface charge and current densities σ and �K ; and, we
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Figure 1. Three dimensional illustration of the boundary surface, with
an exaggerated section on it; where ρ and �J are the volume charge
and current densities corresponding to the surface charge and current
densities σ and �K on the boundary surface.

can treat its Lorentz transformations. Therefore, let us consider the
elementary definitions connecting surface and volume charge [29] and
current [8, 30] densities with each other:

σ = Lρ , (15)

and

�K = L�J, with �J = J�t [because of Eq. (2)] ; (16)

where, L is the local thickness of the boundary surface (Fig. 1). We
have then the following sources 4-vector:

(cρ, �J) = (cρ, J�t) . (17)

And, the components of the corresponding 4-vector belonging to the
moving interface can be obtained by using Lorentz factors (14) in the
4-vector Lorentz transformations [28]:

cρ′ = γn
[
(cρ)− (−βn�n) · (J�t)

]
J ′n = γn [Jn − (−βn)(cρ)] ; where, Jn = 0 from Eq. (17)
J ′t = Jt; where, Jt = J from Eq. (17)
J ′ν = Jν ; where, Jν = 0 from Eq. (17)


 ;

(18)
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from where,
cρ′ = γn(cρ) or ρ′ = γnρ
J ′n = γnβn(cρ)
J ′t = J
J ′ν = 0


 . (19)

Then, the transformed 4-vector has the following form:

(cρ′, �J ′) = (cρ′, J ′t�t+ J ′n�n) . (20)

Volume current density component J ′n seen in Eqs. (19) and (20) does
not cause to any discontinuity in the field �H ′, when the boundary
surface is crossed from the Medium 1 to the Medium 2. In fact, as easily
understood by the use of the Ampère’s law, the field �H ′ produced by
the current density J ′n will be in the direction of the natural basis unit
vector �t . Therefore, this field will remain within the local width of
the boundary surface, where, we do not make any field discontinuity
observation, because we cross the boundary surface in the direction
of the natural basis unit vector �n . Hence, the 4-vector (20) can be
considered as equivalent to the following reduced one:

(cρ′, �J ′) = (cρ′, J ′t�t) . (21)

Subsequently, we can find surface source densities σ′ and �K ′ on the
moving interface; let us begin again with the elementary definitions
similar to the ones seen in Eqs. (15) and (16):

σ′ = L′ρ′, (22)

and
�K ′ = L′�J ′, with �J ′ = J ′t�t from Eq. (21) ; (23)

where, L′ being the local thickness of the moving interface is the
Lorentz contracted value of the local proper thickness L of the interface
as if it were at rest:

L′ =
L

γn
; (24)

and, ρ′ and J ′t are recently calculated as seen in Eq. (19). Finally, we
can substitute Eqs. (19) and (24) into Eqs. (22) and (23), and we can
compare the results with Eqs. (15) and (16) to have the surface source
densities measured on the moving interface:

σ′ = σ , (25)
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and
�K ′ =

�K

γn
, or, by using Eq. (2), �K ′ =

K

γn
�t . (26)

4.2 Discontinuity Relations at the Moving Interface

Again, because of the fact that the transformed surface current den-
sity �K ′, found in Eq. (26) has again only one component in the di-
rection of the natural basis unit vector �t, local and instantaneous
discontinuity relations at our specified space-time point P (�x, t) on the
moving boundary surface will not be different from the ones written in
Eq. (12):

D′2n −D′1n = 4πσ′

B′2n −B′1n = 0

H ′2ν −H ′1ν =
4π
c
K ′

H ′2t −H ′1t = 0
E′2ν − E′1ν = 0
E′2t − E′1t = 0




; (27)

and the discussions related with Eq. (12) will be again valid without
change. 5

5. BOUNDARY SURFACE MOVING WITH A VELOCITY
�v = vν�ν

Let the interface be moving with the following local and instantaneous
velocity at our specified space-time point P (�x, t) on it:

�v = vν�ν = cβν�ν . (28)

For this velocity, we have the following Lorentz factors being convenient
to our intuitive decision on the sign of the Lorentz factor �β : 3

�β = −βν�ν and γ = γν =
(
1− β2

ν

)−1/2
. (29)

5.1 Surface Source Densities on the Moving Interface

Since our interface carrying local and instantaneous surface charge
and current densities σ and �K = K�t is again moving locally and
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instantaneously parallel to its surface, our present examination will be
similar to Section 3.1.

Let us start by considering the sources 4-vector (8) belonging to
the space-time point P (�x, t) on the boundary surface being at rest.
Components of the corresponding sources 4-vector (cσ′, �K ′) belonging
to the same point P , but having now the velocity (28) because of the
motion of the interface, can be found by using Eq. (29) in the 4-vector
Lorentz transformations [28]:

cσ′ = γν
[
(cσ)− (−βν�ν) · (K�t)

]
K ′ν = γν [Kν − (−βν)(cσ)] ; where, Kν = 0 from Eq. (8)
K ′t = Kt ; where, Kt = K from Eq. (8)
K ′n = Kn ; where, Kn = 0 from Eq. (8)


 ;

(30)
from where,

cσ′ = γν(cσ) or σ′ = γνσ
K ′ν = γνβν(cσ)
K ′t = K
K ′n = 0


 . (31)

Then, the transformed 4-vector has the following form:

(cσ′, �K ′) =
(
cσ′,K ′ν�ν +K ′t�t

)
. (32)

5.2 Discontinuity Relations at the Moving Interface

Now, differently from our precedent Sections 3.1 and 4.1, an addi-
tional surface current density component K ′ν�ν is occurred at our spec-
ified space-time point P (�x, t) on the moving boundary surface. And,
because of the covariance principle of electromagnetism, local and in-
stantaneous discontinuity relations at the point P (�x, t) on the moving
interface will have the same forms with the ones found in Eqs. (5)–(10)
of Part I:

D′2n −D′1n = 4πσ′

B′2n −B′1n = 0

H ′2ν −H ′1ν =
4π
c
K ′t

− (H ′2t −H ′1t) =
4π
c
K ′ν

E′2ν − E′1ν = 0
E′2t − E′1t = 0




; (33)
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where, the following correspondence is used between the earlier Eqs.
(5)–(10) and the present Eq. (33): 6

�ex,�ey,�ez → �ν,�t, �n ; (34)

and the primed fields represent again the fields measured in the lab-
oratory, in either side of the moving boundary surface. According to
Eq. (33), an additional discontinuity is occurred as seen in its fourth
line; and the discontinuity written in its third line is not changed, be-
cause of the unchanged value of K ′t found in the third line of Eq. (31).

6. CONCLUSIONS AND DISCUSSIONS

In this study, after the transformed values of the surface source den-
sities belonging to the moving boundary surface are originally calcu-
lated in three separate special cases, each concerning one of the three
boundary surfaces moving separately in one of the three local and in-
stantaneous natural orthogonal directions, relativistic form invariance
principle of electromagnetism is used to obtain three separate local and
instantaneous sets of relativistic boundary conditions. For a boundary
surface moving with a local and instantaneous velocity (3), combina-
tion of these three sets of moving e.m. boundary conditions is necessary.
This essential problem is left to a future study; where, the combination
of the three separate Lorentz transformed e.m. discontinuity relations
will be essayed on the basis founded by the method presented for ex-
ample by Misner, Thorne and Wheeler [25].

But, without going to the combination of their Lorentz transfor-
mations, these three sets of moving electromagnetic discontinuity re-
lations originally calculated in this study can be useful to treat some
ideal plane boundary surfaces (Sec. 6 of Part I), again ideally, each
moving with a uniform velocity in one of the three separate natural
orthogonal directions, such as the one early considered by Noerdlinger
[8].

As a further idealization, not stated before, three separate sets of
moving electromagnetic boundary conditions introduced by this work
can be perfectly valid at rigid plane boundary surfaces, being between
two rigid media, such as the ones being between two kinds of glass, and
moving with a uniform velocity in one of the three separate natural
orthogonal directions. In fact, an experiment of such kind can be
ideally designed for laboratory purposes.
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Figure 2a. A solenoid of nearly infinite length, placed in vacuum, with
its axis lying in the �ν direction, is moving with the velocity �v = vn�n .

APPENDIX I. LORENTZ TRANSFORMATION OF THE
MAGNETIC FIELD �B IN THE CASE OF A BOUNDARY
SURFACE MOVING WITH A VELOCITY �v = vn�n

Let us begin with a solenoid 7 placed in the vacuum, with its axis
lying in the �ν direction (Fig. 2a). If we assume that the solenoid is
of nearly infinite length, nearly uniform magnetic field inside it will be
the following:

�B = Bν�ν, with Bν =
4π
c

dQ

dt
N , (A.1)

in Gaussian units; here, (dQ/dt) = I is the current flowing in its turns,
and N is its number of turns per centimeter.

If the solenoid starts to move with the velocity (13), i.e., with a
velocity being perpendicular to its axis, following nearly uniform mag-
netic field will be observed inside it, 7 because of the fundamental
covariance principle:

�B′ = B′ν�ν, with B′ν =
4π
c

dQ′

dt′
N ′ . (A.2)

Our present aim is to find the transformation rule between the fields
�B and �B′ .



Electromagnetic boundary conditions 131

Figure 2b. An exaggerated illustration of a volume element dV =
A(dl) of the wire of the solenoid; this considered volume element is
chosen so as to its cross sectional area A be perpendicular to the
velocity �v = vn�n of the solenoid.

Let us start by examining elementary definition of dQ seen in
Eq. (A.1); dQ is the quantity of charge found in the volume element
dV = A(dl) of the wire of the solenoid:

dQ = ρA(dl) ; (A.3)

where, A is the cross sectional area of the wire, dl is its length element
and ρ is the volume charge density inside the wire (Fig. 2b).

At first, let us consider Lorentz transformation of dQ ; in Eq. (A.3),
ρ transform according to a similar rule found in Eq. (19):

ρ′ = γnρ ; (A.4)

cross section area A , being perpendicular to the velocity (13), trans-
forms without changing:

A′ = A ; (A.5)

and the proper length element dl , being parallel to the same velocity,
will be Lorentz contracted:

dl′ =
dl

γn
. (A.6)

Resultantly, by comparison also with Eq. (A.3), dQ transforms with-
out changing:

dQ′ = ρ′A′(dl′) = (γnρ)A
(
dl

γn

)
= ρA(dl) = dQ . (A.7)

Secondly, let us take into account time dilation of the proper time dt :

dt′ = γndt . (A.8)
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Next, let us find Lorentz transformation of the number of turns N per
centimeter of the solenoid; since the solenoid is lying perpendicular to
the velocity (13), its length remains the same under Lorentz transfor-
mation, and then, its number of turns per centimeter remains also the
same:

N ′ = N . (A.9)

Finally, substitutions of Eqs. (A.7)–(A.9) into Eq. (A.2) and then com-
parison with Eq. (A.1) lead to the following transformation rule:

B′ν =
Bν
γn

. (A.10)

Consequently, by a good comparison, we can indicate that Noerdlinger
[8] must have found that

B′ =
B0

γ
, (A.11)

instead of his Eq. (2).
Furthermore, in the problem studied by Noerdlinger [8], it is im-

possible to have any charge in his frame S′ , obtained by the Lorentz
transformations [28] of his sources 4-vector

(cρ, �J) = (cρ, J�ey) , with free volume charge
density satisfying ρ = 0 ; (A.12)

so that, there must not have been electric field �E′ , either. Therefore,
we must emphasize that Lorentz transformations of the electromag-
netic fields must be used with great care, by taking also in considera-
tion transformations of their sources. That is, Lorentz transformations
of the sources and the fields are not independent of each other; and,
if there are not the transformed sources, there will not be the corre-
sponding transformed fields, either. 1

APPENDIX II. FOOTNOTES

1 Verifying examples can be found in Section 6.7 of Ref. [18]. There,
two parallel plane sheets of surface charge, moving parallelly to their
surfaces, are considered to obtain Lorentz transformations of elec-
tromagnetic fields. From the wiev point of our present problem,
each one of these plane sheets can be considered as defining a mov-
ing boundary surface.
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In the first case treated there, these two parallel plane sheets are
moving with the velocity vo�ex . In comparison with our problem,
these moving surfaces are carrying surface charge and current den-
sities σ′ and �K ′ having respectively the values ±σ and ±σvo�ex
which are measured on the moving sheets in the laboratory. And,
by using Eq. (11.22) of Ref. [5], we can show that these surface
source densities σ′ and �K ′ are the Lorentz transforms of the ones
σ and �K , having respectively the values ±(σ/γo) and 0 which
would be measured on the same sheets when they would be at rest
in the laboratory. For more details, see our Sections 3.1, 5.1 and
Footnote 4.

2 Expression “fixed point” is borrowed from an essay by Ulam [19].
3 Our intuitive wiev point will be verified in Footnote 4.
4 Except that one spatial dimension is reduced, four-vector (cσ, �K) is

similar to the one written in Eq. (11.128) of Ref. [5]. Furthermore,
present dependence between σ and �K based on the motion of the
surface charge [27] provides a physical support to the mathematical
postulate concerning Eq. (11.128) of Ref. [5]. This means that the
surface charge and current densities, being both parallel to the ve-
locity of the surface carrying them, mix with each other under the
Lorentz transformations, just as the time and one space components
of the four-vector (ct,�x) mix with each other under similar Lorentz
transformations.

Again, let us consider the plane sheets treated in the Footnote 1.
4-vectors constituted by the surface charge and current densities on
these plane sheets are

(±cσ, �K) ≡
(
±c σ

γo
, 0

)
, (F.1)

and
(±cσ′, �K ′) ≡ (±cσ,±σvo�ex) , (F.2)

when the sheets are respectively at rest and moving with the velocity
vo�ex ; between these 4-vectors, convenient Lorentz factors are the
followings:

�βo = −vo
c
�ex and γo =

(
1− β2

o

)−1/2
. (F.3)

And, by using 4-vector Lorentz transformations [28], with the
Lorentz factors (F.3), we can show that the four-vector (F.2) is the
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Lorentz transform of the one (F.1); hence, the Lorentz factor �βo is
true. Therefore, our intuitive discussion on the sign of our Lorentz
factors �β is also verified, by the obtainment of the right signs in
the transformed sources 4-vector (F.2). In fact, if the surface charge
densities ±σ are the ones measured on the sheets moving with the
velocity vo�ex , they must be also physically equivalent to the surface
current densities ±σvo�ex , as also obtainable by the Lorentz trans-
formations, as recently indicated. Thus, the sign of the Lorentz
factor �β is uniquely defined; this means that the rest and moving
frames of the Lorentz transformations are uniquely determined, as
already expressed in Section 2.

This fact verifies also the mixing cited above between the com-
ponents cσ and �K of the 4-vector (cσ, �K) ; indeed, surface current
densities �K ′ = ±σvo�ex , which are measured on the moving sheets,
are occurred only because of the motion of the sheets; whereas, there
are not surface current densities on the rest sheets.

5 Transformation rule given in Noerdlinger [8]’s Eq. (2) must be re-
vised as seen in our Appendix I.

6 This correspondence is also used by Eq. (21), in Part I.
7 The use of a solenoid to obtain independent Lorentz transformation

of the magnetic field is inspired from Section 6.7, p. 237 of Ref. [18].

ACKNOWLEDGMENT

The author would like to thank the International Atomic Energy Agen-
cy, and UNESCO for hospitality at the International Center for Theo-
retical Physics, Trieste, Italy, where she studied partly this work during
her visits. She wishes to acknowledge also the Turkish Physics Foun-
dation at Ankara, Turkey, for supporting two of these visits.

REFERENCES

1. Yeh, C., “Boundary conditions in electromagnetics,” Phys. Rev.
E, Vol. 48, 1426–1427, 1993.

2. Stahl, A., and H. Wolters, “Electromagnetic boundary conditions
and surface-effects from a phenomenological point of view,” Z.
Physik, Sec. 1., Vol. 255, 227–239, 1972.

3. Michalski, K. A., “Missing boundary conditions of electromag-
netics,” Electron. Lett., Vol. 22, 921–922, 1986.



Electromagnetic boundary conditions 135

4. Idemen, M., and A. H. Serbest, “Boundary conditions of the
electromagnetic field,” Electron. Lett., Vol. 23, 704–705, 1987.

5. Jackson, J. D., Classical Electrodynamics, 2nd Ed., Sec. I.5., Wi-
ley, New York, 1975,

6. Purcell, E. M., Electricity and Magnetism, 2nd Ed., Berkeley
Physics Course, Sec. 9.3., Vol. 2, McGraw-Hill, New York, 1985.

7. Purcell, E. M., op. cit., Secs. 9.1 - 9.3.
8. Noerdlinger, P. D., “Boundary conditions for moving magnetic

fields and Lorentz transformation of surface currents,” Am J.
Phys., Vol. 39, 191–192, 1971.

9. Ostrovskii, L. A., “Some “moving boundaries paradoxes” in elec-
trodynamics,” Sov. Phys.-Usp., Vol. 18, 452–458, 1976.

10. Namias, V., “Discontinuity of the electromagnetic fields, poten-
tials, and currents at fixed and moving boundaries,” Am. J.
Phys., Vol. 56, 898–904, 1988.

11. Wilhelm, H. E., and M. A. Hasan, “Transformation method for
electromagnetic wave problems with moving boundary condi-
tions,” Arch. für Elektrotechnik, Vol. 72, 165–173, 1989.

12. Harfoush, F., A. Taflove, and G. A. Kriegsmann, “Numerical im-
plementation of relativistic electromagnetic boundary conditions
in a laboratory-frame grid,” J. Comput. Phys., Vol. 89, 80–94,
1990.

13. Maxwell, J. C., Treatise on Electricity and Magnetism, 3rd Ed.,
2 vols., reprint by Dover, New York, 1954.

14. Einstein, A., H. A. Lorentz, H. Minkowski, and H. Weyl, The
Principle of Relativity (Collected papers, with notes by A. Som-
merfeld), Dover, New York, 1952.

15. Jackson, J. D., op. cit., Secs. 11.1 and 11.9.
16. Rindler, W., Essential Relativity, Revised 2nd Ed., Secs. 1.11–

1.13 and 6.1, Springer-Verlag, New York, 1977.
17. Barut, A. O., Electrodynamics and Classical Theory of Fields and

Particles, 2nd Ed., Secs. I.1, I.6, and III.2, Dover, New York,
1980.

18. Purcell, E. M., Electricity and Magnetism, Berkeley Physics
Course, 2nd Ed., Vol. 2, McGraw-Hill, New York, 1985.

19. Ulam, S., “The applicability of mathematics,” The Mathemat-
ical Sciences; a Collection of Essays, Edited by the National
Research Council’s Committee on Support of Research in the
Mathematical Sciences (COSRIMS) with collaboration of A.W.
Boehm George, Sec. “The use of new ideas”, The M.I.T. Press,
Cambridge, 1969.



136 Gür

20. Kittel, C., W. D. Knight, and M. A. Ruderman, Mechanics, 2nd
Ed., Berkeley Physics Course, Vol. 1, Chap. 11, Sec. “Lorentz
transformations”, McGraw-Hill, New York, 1973.
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