Relativistic energies of the ground state of the hydrogen molecule

L. Wolniewicz
Institute of Physics, Nicholas Copernicus University 87-100 Torun, Poland
and Laboratory for Physical Chemistry ETH-Zentrum CH-8092 Zurich, Switzerland

(Received 15 February 1993; accepted 8 April 1993)

Abstract

Relativistic corrections, Born-Oppenheimer energies and adiabatic corrections are computed for $R \leqslant 12.0$ bohr for the electronic ground state of the hydrogen molecule. The Born-Oppenheimer potential is slightly lower than ever reported. The problem of linear dependencies in the basis set is removed and the same set is used for all internuclear distances which assures continuity of the results. The radiative corrections are evaluated approximately and-for that purpose-the polarizability of the molecule is also computed. Vibrational energies are computed andcorrected for nonadiabatic effects-compared with experiment for several isotopes. It is argued on the basis of the remaining discrepancies that an improvement in the ab initio nonadiabatic corrections is necessary.

I. INTRODUCTION

This work was undertaken in order to evaluate the relativistic corrections to the ground state potential energy curve of the hydrogen molecule with an accuracy comparable with that of the Born-Oppenheimer energies and in a wide range of internuclear distances. New results for these corrections are desirable both from the aesthetic and practical points of view. The existing results for the relativistic corrections, ${ }^{1}$ used in most comparisons of theoretical and experimental energies of the molecule (see e.g., Refs. 2 and 3), were calculated almost thirty years ago. The wave function employed then was not suitable for larger internuclear distances and the corrections were computed only for internuclear distances $R \leqslant 3.7$ a.u. and with an accuracy deteriorating with increasing R. Such a situation is certainly very unsatisfactory from the theoretical point of view and there is a demand for new, more reliable results.

The general outline of the computations is given in Sec. III A and more technical details in the appendices.

For the hydrogen molecule the lowest order relativistic corrections to the binding energy ${ }^{1}$ are not much larger than the lowest order radiative corrections. ${ }^{4}$ Therefore, for consistency, the latter must also be included in the theoretical energies. They can be estimated fairly accurately ${ }^{4,5}$ on the basis of the relativistic corrections, if some additional information is available. To get this information it is necessary ${ }^{5}$ to compute the adiabatic corrections and also the polarizabilities.

Finally, to compute all the corrections accurately one needs an electronic wave function that is both flexible and continuous with respect to the internuclear distance. In an attempt to find such a function, using the results of Ref. 3, we have constructed an algorithm that is free of discontinuities because the same basis set is used for all internuclear distances. The construction and the results of the Born-Oppenheimer computations are described in the subsequent section.

Atomic units are used throughout unless otherwise stated. When wave numbers are used the conversion factor is 1 hartree $=219474.631 \mathrm{~cm}^{-1}$.

II. THE BORN-OPPENHEIMER ELECTRONIC ENERGIES AND WAVE FUNCTIONS

The general form of the wave function used in this work is that developed in Ref. 6, i.e., the function is assumed in the form of an expansion in elliptic coordinates of the two electrons denoted below by 1 and 2 :

$$
\begin{equation*}
\Psi=\sum_{i} c_{i} G_{i}(1,2), \tag{1}
\end{equation*}
$$

where i stands for $v_{i}, r_{i}, s_{i}, \bar{r}_{i}, \bar{s}_{i}$ and

$$
\begin{align*}
G_{i}(1,2)=g_{i} & (1,2)+g_{i}(2,1), \tag{2}\\
g_{v, r, s, \bar{r}, 5}(1,2)= & \exp \left(-\alpha \xi_{1}-\bar{\alpha} \xi_{2}\right) \rho^{\nu} \xi_{1}^{r} \eta_{1}^{s} \bar{\xi}_{2}^{\bar{r}} \eta_{2}^{\bar{s}} \\
& \times\left\{\exp \left(\beta \eta_{1}+\bar{\beta} \eta_{2}\right)+(-1)^{s+\bar{s}}\right. \\
& \left.\times \exp \left(-\beta \eta_{1}-\bar{\beta} \eta_{2}\right)\right\}, \tag{3}
\end{align*}
$$

ξ_{j}, η_{j} are the elliptic coordinates of the two electrons, $\rho=2 r_{12} / R, r_{12}$ is the interelectronic distance and $c_{i}, \alpha, \bar{\alpha}$, $\beta, \bar{\beta}$ are variational parameters. Thus the basis set is defined by the set of exponents $v_{i}, r_{i}, s_{i}, \bar{r}_{i}, \bar{s}_{i}$.

The best energies and wave functions of the ground state published so far are those obtained by Kołos et al. ${ }^{3}$ who used a 249 term expansion of the form Eq. (1), with carefully selected terms, for 0.2 a.u. $\leqslant R \leqslant 4.8$ a.u. and a 72 term expansion for $4.8 \leqslant R \leqslant 12.0$. The shorter, 72 term basis contains 30 terms that are not present in the 249 term basis. This results in a slight discontinuity in the vicinity of $R=4.8$. To avoid this it is only natural to combine the two sets and diagonalize the Hamiltonian for all internuclear distances in the space spanned by the $N=279$ basis functions. However because of finite computer precision the dimension of the space spanned by the N function isfrom the numerical point of view - less than N and therefore the attempt made in Ref. 3 to use the augmented set failed because of numerical instabilities.

The policy adopted in this work is to use the whole space spanned by the 279 functions of Ref. 3, determine at each internuclear distance its dimension, $k(R)$, and then solve the eigenvalue problem in an orthonormal basis. This
goal can be achieved via a singular value decomposition (see, e.g., Ref. 7) of the overlap matrix \mathbf{S} with elements

$$
\begin{equation*}
S_{i k}=\left\langle G_{i} \mid G_{k}\right\rangle \tag{4}
\end{equation*}
$$

The decomposition is

$$
\begin{equation*}
\mathbf{S}=\mathbf{U D U}^{T} \tag{5}
\end{equation*}
$$

where \mathbf{D} is a diagonal matrix formed by the eigenvalues D_{j} of S and U is an orthogonal matrix whose columns are the eigenvectors of \mathbf{S}. In the following we will assume that the D_{j} are arranged in a descending order.

If the basis is almost linearly dependent a threshold, ε, must be introduced ${ }^{7}$ and the dimension of the space, k, is defined as the number of eigenvalues, D_{j}, satisfying $D_{j}>\varepsilon$. The orthonormal basis is

$$
\begin{equation*}
F_{s}=\left(1 / \sqrt{D_{s}}\right) \sum_{i=1}^{N} \dot{G}_{i} U_{i s}, \quad s=1, . ., k \tag{6}
\end{equation*}
$$

with $U_{i l}$ being matrix elcments of U .
Thus for each internuclear distance we perform the singular value decomposition Eq. (5), determine the dimension of the space $k(R)$ and construct a Hamiltonian matrix, H, in the orthonormal basis Eq. (6). The final eigenvalue problem

$$
\begin{equation*}
\mathbf{H a}=E \mathbf{a} \tag{7}
\end{equation*}
$$

can be solved by any standard library routine to yield the desired eigenvalue and the corresponding eigenfunction

$$
\begin{equation*}
\Psi=\sum_{s} a_{s} F_{s} \tag{8}
\end{equation*}
$$

Eq. (8) can then be transformed to the original basis, Eq. (1), with the aid of Eq. (6). The coefficients c_{i} are then given by

$$
\begin{equation*}
c_{i}=\sum_{s=1}^{k}\left(1 / \sqrt{D_{s}}\right) U_{i s} a_{s} \tag{9}
\end{equation*}
$$

The concrete value of the parameter ε depends somewhat on the problem and certainly on the accuracy of the numerical integration of the matrix elements of \mathbf{S} and \mathbf{H}. In this work the integrals were evaluated very accurately by the method described in Ref. 8. Previous experience has shown that too small an ε can result in a spurious eigenvalue of Eq. (7)-below the correct lowest eigenvalue. Therefore in the program a test for the spurious eigenvalue is performed. When a spurious eigenvalue occurs ε is multiplied by 4 , the dimension of the problem reduced accordingly, and the Hamiltonian diagonalized again. This process is repeated until the spurious eigenvalue disappears.

For the ground state computations this test was superfluous and all diagonalizations with $\varepsilon=10^{-12}$ were successful. Test computations performed with $\varepsilon=10^{-11}$ resulted in energies that were higher by amounts less than $0.001 \mathrm{~cm}^{-1}$.

The exponents $v_{i}, r_{i}, s_{i}, \bar{r}_{i}, \bar{s}_{i}$ of the 279 different basis functions are given in Ref. 3. These basis functions were used with one exception viz. the parameters ($\nu, r, s, \bar{r}, \bar{s}$) $=$ (13111) corresponding to the $i=102$ basis function in Ref. 3 were inadvertently replaced by ($\nu, r, s, \bar{r}, \bar{s})$ $=(03111)$ and this function was used in all computations.

TABLE I. Nonlinear parameters as defined by Eq. (3) optimized for large R.

R	α	$\bar{\alpha}$	β	$\bar{\beta}$
4.8^{a}	3.122	2.962	1.885	-0.121
6.0	3.803	3.456	2.87	-0.955
8.0	4.597	4.293	3.240	-1.949
12.0	5.968	5.971	4.254	$-5.590-$

${ }^{2}$ From Ref. 3.

The optimized nonlinear parameters for both the 249 and 72 term functions are also listed in Ref. 3 for all relevant internuclear distances. In the present computation we use these parameters for $R \leqslant 4.8$ a.u. For larger internuclear distances the parameters were reoptimized at $R=6,8$ and 12 a.u. but not very accurately, because with the full basis set used the optimization had a negligible effect on the energy; the improvement was $0.001-0.002 \mathrm{~cm}^{-1}$. In Table 1 the optimized parameters are listed together with the Kolos et al. ${ }^{3}$ values for $R=4.8$. These numbers were used as input for linear interpolation of the parameters for other internuclear distances $R>4.8$.

The final energies were computed at 670 different internuclear distances in the interval $0.2 \leqslant R \leqslant 12.0$ a.u. The complete listing of the results can be found in Ref. 9 and some of them, viz. those for the same internuclear distances as in Ref. 3, are listed in Table II. In column 5 a comparison with Ref. 3 is made and we list the improvement in the binding energy. As expected, the differences are small but systematic and reach the maximum at $R=4.8$, the point of discontinuity of the two functions used in Ref. 3. The irregularities in column 5 are of the order of $0.0001 \mathrm{~cm}^{-1}$ which proves high numerical accuracy of both computations.

The dimension of the space spanned by the 279 basis functions, $k(R)$, is also listed in the table. It shows how smoothly the singular value decomposition works. It should be kept in mind, however, that $k(R)$ is not uniquely defined. If a larger threshold, ε were used the resulting dimensions would be less than those given in the table.

When this computation was complete the author became aware of the most recent results obtained by Kołos and Rychlewski ${ }^{10}$ with a 155 term basis function for $3.2 \leqslant R \leqslant 7.2 \mathrm{a} . \mathrm{u}$. The present improvement over those results is shown in column 6. The 155 term function used in Ref. 10 contains 66 terms that are not included in our 279 term function. To estimate the accuracy of the present results these terms were added to our basis set yielding a 345 term basis and a few test computations were performed. For $R=1.4$ the energy improvement amounted to $0.0017 \mathrm{~cm}^{-1}$ and for $R=4.8$ a.u. to $0.003 \mathrm{~cm}^{-1}$. This shows that at some internuclear distances the present energies are still at least a few thousandths of a wave number above the exact eigenvalues.

The wave function described above was used for the Born-Oppenheimer energy computations only. All corrections to the energy were computed with slightly less accurate functions. Both the relativistic and also the adiabatic corrections require more primitive integrals than the en-

TABLE II. Born-Oppenhcimer total, E, and binding, D, energics.

${ }^{2}$ The threshold $\varepsilon=10^{-12}$.
ergy computations alone. Therefore to economize somehow the computations by reducing the number of integrals the basis set was slightly confined.

The decisive factor that determines the number of integrals is

$$
\begin{equation*}
K_{\max }=\max _{j}\left(v_{j}+\max \left(r_{j}, s_{j}, \bar{r}_{j}, \bar{s}_{j}\right)\right) \tag{10}
\end{equation*}
$$

In the 279 term basis there are 17 terms giving $K_{\max }$ $=6$. These terms were omitted which resulted in a 262 term basis. The energies obtained in this basis differ by thousandths of a wave number from those in Table II. Therefore one can claim that the wave function in the 262 term basis is almost as accurate as that in the 279 term basis.

III. CORRECTIONS TO THE BORN-OPPENHEIMER ENERGY

All corrections that we will briefly describe in this section were computed in the 262 term basis described at the end of the preceding section. The relativistic, adiabatic and radiative corrections are related in this work in two ways. First, the integrals necessary for the relativistic corrections allow also the construction of the relevant matrices in the adiabatic correction computations and in the energy computations in the extended, 279 term basis. Next, the approximate radiative corrections can be computed by a method originally given by Garcia ${ }^{4}$ if one uses as input, among others, some terms encountered either in the relativistic or in the adiabatic corrections. This computation can be made more reliable ${ }^{5}$ if one uses in addition the full information that one gets while computing the polarizability of the system. Therefore the polarizability was recomputed in this work.

A. Lowest order relativistic corrections to the electronic energy

The relativistic theory of two electrons in external fields is presented in great detail in Ref. 11, where it is shown that if Ψ and E are the solutions of the nonrelativistic Schrödinger equation

$$
\begin{equation*}
\left(-\frac{1}{2} \Delta_{1}-\frac{1}{2} \Delta_{2}+V-E\right) \Psi=0 \tag{11}
\end{equation*}
$$

then, for a singlet state and Ψ real, the relativistic corrections can be computed from the formulas

$$
\begin{equation*}
E_{\mathrm{rel}}=\epsilon_{1}+\epsilon_{2}+\epsilon_{4}+\epsilon_{5} \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
\epsilon_{1}= & \alpha^{2}\left\{\int\left(\Delta_{1} \Psi\right) \Delta_{2} \Psi d \tau-\frac{1}{2} E^{2}+E \int \Psi V \Psi d \tau\right. \\
& \left.-\frac{1}{2} \int \Psi V^{2} \Psi d \tau\right\} \tag{13}\\
\epsilon_{2}= & \frac{1}{2} \alpha^{2} \int \Psi r_{12}^{-1}\left[\nabla_{1} \nabla_{2}+r_{12}^{-2} \mathbf{r}_{12}\left(\mathbf{r}_{12} \nabla_{1}\right) \nabla_{2}\right] \Psi d \tau \tag{14}\\
\epsilon_{4}= & \frac{1}{8} \alpha^{2} \int \Psi\left[\Delta_{1} V+\Delta_{2} V\right] \Psi d \tau \tag{15}\\
\epsilon_{5}= & 2 \pi \alpha^{2} \int \Psi \delta^{(3)}\left(\mathbf{r}_{12}\right) \Psi d \tau \tag{16}
\end{align*}
$$

Above α is the fine structure constant and the indices at the various corrections ϵ_{i} correspond to the various parts of the Hamiltonian in Ref. 11. For the hydrogen molecule Eq. (15) reads

$$
\begin{equation*}
\epsilon_{4}=\pi \alpha^{2} \int \Psi\left[2 \delta^{(3)}\left(\mathbf{r}_{1 a}\right)-\delta^{(3)}\left(\mathbf{r}_{12}\right)\right] \Psi d \tau \tag{17}
\end{equation*}
$$

The difficult part is the evaluation of ϵ_{1} and ϵ_{2}. It is seen that the integrand in Eq. (14) behaves like r_{12}^{-1} when $r_{12} \rightarrow 0$ and so, because of the volume element, the region around $r_{12}=0$ gives no contribution to the integral. Still, with the function defined by Eqs. (1)-(3), Eq. (14) leads to primitive integrals with second and third inverse powers of r_{12}. The first and last terms of Eq. (13) produce also second inverse powers of the interelectronic distance and in these cases the integrand has a r_{12}^{-2} pole. Following Ref. 1 we transform such integrals by using the relation

$$
\begin{equation*}
\int r_{12}^{-2} f d \tau=\int r_{12}^{-2} \mathbf{r}_{12} \nabla_{1} f d \tau, \quad \mathbf{r}_{12}=\mathbf{r}_{2}-\mathbf{r}_{1} \tag{18}
\end{equation*}
$$

to a form with an r_{12}^{-1} singularity.
In addition to these integrals the last term in Eq. (13) leads to integrals with ${r_{1 a}^{-2}}^{-2}$ in the integrand. So in order to evaluate the relativistic corrections we need, beside the integrals needed for the nonrelativistic problem, three new types of integrals. When expressed in elliptic coordinates these integrals have the form

$$
\begin{align*}
I^{-\mu}= & \int \exp \left(-\alpha_{1} \xi_{1}-\alpha_{2} \xi_{2}+\beta_{1} \eta_{1}+\beta_{2} \eta_{2}\right) \\
& \times \rho^{-\mu} W^{\mu-1} d \xi_{1} d \xi_{2} d \eta_{1} d \eta_{2} d \varphi_{1} d \varphi_{2} \tag{19}
\end{align*}
$$

with $\mu=2,3$ and W^{μ} being polynomials in ξ_{i}, η_{i} satisfying

$$
\begin{equation*}
\lim _{r_{12 \rightarrow 0}} W^{\mu} r_{12}^{-\mu}<\infty \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
L^{\mu}= & \int \exp \left(-\alpha_{1} \xi_{1}-\alpha_{2} \xi_{2}+\beta_{1} \eta_{1}+\beta_{2} \eta_{2}\right) \\
& \times \frac{\rho^{\mu} \xi_{1}^{r} \eta_{1}^{s} \xi_{2}^{\bar{r}} \eta_{2}^{\bar{s}}}{\xi_{1}^{2}-\eta_{1}^{2}} d \xi_{1} d \xi_{2} d \eta_{1} d \eta_{2} d \varphi_{1} d \varphi_{2} \\
& \mu \geqslant-1 \tag{21}
\end{align*}
$$

To reduce the dimension of the integrals the generalized Neumann expansion ${ }^{12}$ is used

$$
\begin{align*}
\rho^{-2 p}= & \sum_{l=0}^{\infty} \sum_{m=0}^{l} d_{l m}(p)\left[\left(\xi_{1}^{2}-1\right)\left(\xi_{2}^{2}-1\right)\left(1-\eta_{1}^{2}\right)\right. \\
& \left.\times\left(1-\eta_{2}^{2}\right)\right]^{(m / 2)} D_{l-m}^{p+m}\left(\xi_{+}\right) C_{l-m}^{p+m}\left(\xi_{-}\right) C_{l-m}^{p+m}\left(\eta_{1}\right) \\
& \times C_{l-m}^{p+m}\left(\eta_{2}\right) C_{m}^{p-(1 / 2)}(\cos \varphi), \quad p>0 \tag{22}
\end{align*}
$$

where C_{l}^{v} are Gegenbauer polynomials (see, e.g., Ref. 13), $\varphi=\varphi_{1}-\varphi_{2}, \xi_{+}=\max \left(\xi_{1}, \xi_{2}\right), \xi_{-}=\min \left(\xi_{1}, \xi_{2}\right)$,

$$
\begin{equation*}
D_{n}^{v}(\xi)=C_{n}^{v}(\xi) \int_{\infty}^{\xi}\left(x^{2}-1\right)^{-v-(1 / 2)}\left[C_{n}^{v}(x)\right]^{-2} d x \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{l m}(p)=-2^{2 m+1} \frac{\Gamma(2 p-1)[\Gamma(p+m)]^{2}(l-m)!(l+p)(2 p+2 m-1)}{[\Gamma(p)]^{2} \Gamma(2 p+l+m)} \tag{24}
\end{equation*}
$$

Originally this expansion was derived for $p \neq 1 / 2$ but it is shown in Appendix A that for $p \rightarrow 1 / 2$ Eq. (22) goes over into the well known (see, e.g., Ref. 14) Neumann expansion and so it can be used for all $p>0$.

The integrals Eqs. (19) and (21) differ-from the computational point of view-essentially from their counterparts in Ref. 1 by the exponential η_{i} dependence of the integrands. The evaluation of the I integrals, detailed in Appendix B, is more involved but similar to what was done in Ref. 1. For the L integrals, however, an entirely new algorithm must be used to yield accurate results. It is described in Appendix C.

When the expansion Eq. (22) is used in Eq. (19) one gets a series

$$
\begin{equation*}
I=\sum_{l} I_{l} \tag{25}
\end{equation*}
$$

In some cases - depending on the form of W^{μ} - Eq. (25) is an alternating series and therefore, following Ref. 1, we write

$$
\begin{align*}
& s_{L}=\sum_{l=0}^{L} I_{l} \tag{26}\\
& I=\lim _{L \rightarrow \infty} s_{L} \approx \frac{1}{8}\left(s_{L_{\max }}+3 s_{L_{\max }+1}+3 s_{L_{\max }+2}+s_{L_{\max }+3}\right) \tag{27}
\end{align*}
$$

with $L_{\max }$ fixed. In this work we found that $L_{\max }=65$ assures sufficient accuracy. It should be pointed out, however, that the individual integrals Eq. (19) converge slowly with l and for some of them a definitely longer expansion would be required. Fortunately the expectation values Eqs. (13) and (14) are much less sensitive.

For several internuclear distances the corrections were computed additionally with $L_{\max }=85$ and it was found that the final results were affected by less than $0.001 \mathrm{~cm}^{-1}$. However for large $R \epsilon_{2}$ is sensitive to the expansion length but then it is so small that it has no effect on the final result.

The computed corrections are listed in Table III. A comparison with earlier work ${ }^{1}$ is made in column 3 where the differences, the present minus old results, are listed. The differences are indeed very small which shows that the corrections can be computed fairly accurately already with a not very long expansion because in Ref. 1 only 54 terms and one nonlinear parameter were used. This observation might be useful when corrections for other states will be computed.

B. Adiabatic corrections

All relevant formulas for the computation of adiabatic corrections for the hydrogen molecule are given in Ref. 1 and there is no need to repeat them here in any detail. The corrections are

$$
\begin{equation*}
E_{1}^{\prime}=-\frac{1}{2 \mu}\left\langle\Delta_{R}\right\rangle, \quad E_{2}^{\prime}=-\frac{1}{4 \mu}\left\langle\Delta_{1}+\nabla_{1} \nabla_{2}\right\rangle \tag{28}
\end{equation*}
$$

where μ is the reduced mass of the nuclci and the brackets denote expectation values computed with the electronic wave function.

The evaluation of E_{1}^{\prime} requires the first derivatives of the electronic function with respect to the internuclear distance R. As compared with the formulas in Ref. 1 these derivatives are slightly affected by the fact that in consequence of the singular value decomposition the coefficients c_{i} in Eq. (1) are not independent. It is easiest to compute the derivatives in the orthonormal basis and then transform to the original basis. While doing so we will assume, as in most earlier work, that for the purpose of computing the derivatives - at a given R - one can treat the nonlinear parameters as constants in the neighborhood of R. This is a reasonable assumption because infinitesimal changes in the nonlinear parameters can be absorbed by infinitesimal changes of the linear parameters. This was demonstrated already in Ref. 1 for a 54 term function and when the number of terms increases the absorption becomes even more complete.

With the above assumption the basis, when expressed in elliptic coordinates, is R independent and the only R dependence of the overlap matrix comes from the volume element. The \mathbf{S} and \mathbf{H} matrices can now be written in the neighborhood of R :

$$
\begin{align*}
& \mathbf{S}=\left(\frac{R}{2}\right)^{6} \mathbf{S}_{0}, \tag{29}\\
& \mathbf{H}=\left(\frac{R}{2}\right)^{6} \mathbf{H}_{0}=\left(\frac{R}{2}\right)^{6}\left(\frac{1}{R^{2}} \mathbf{T}_{0}+\frac{1}{R} \mathbf{v}_{0}\right) \tag{30}
\end{align*}
$$

with $\mathbf{S}_{0}, \mathbf{T}_{0}, \mathbf{V}_{0}$-constant matrices. If we omit the $(R / 2)^{6}$ factors in all matrices, the transformation to the orthonormal basis becomes R independent and the eigenvalue problem Eq. (7) now reads

$$
\begin{align*}
& \left(\mathbf{H}_{0}-E\right) \mathbf{a}=0 \tag{31}\\
& \mathbf{a} \cdot \mathbf{a}=\left(\frac{2}{R}\right)^{6} \tag{32}
\end{align*}
$$

By differentiating and using Eq. (30) we get the equations for the derivatives:

$$
\begin{equation*}
\left(\mathbf{H}_{0}-E\right) \frac{d \mathbf{a}}{d R}=\left(\frac{2 \mathbf{H}_{0}-\mathbf{V}_{0}}{R}+\frac{d E}{d R}\right) \mathbf{a} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{a} \cdot \frac{d \mathbf{a}}{d R}=-\frac{3}{R}\left(\frac{2}{R}\right)^{6} \tag{34}
\end{equation*}
$$

These equations yield the derivatives in the orthonormal basis. Those in the original basis, Eqs. (1)-(3), are given via the transformation Eq. (9):

$$
\begin{equation*}
\frac{d c_{i}}{d R}=\sum_{s=1}^{k}\left(1 / \sqrt{D_{s}}\right) U_{i s} \frac{d a_{i}}{d R} \tag{35}
\end{equation*}
$$

With the coefficients c_{i} and their derivatives given the adiabatic corrections can be computed in the original basis exactly as in Ref. 1. The results for the H_{2} molecule are

TABLE III. Lowest order relativistic corrections to the total energy, $E_{\text {rel }}$, and to the binding energy, $\Delta D_{\text {rel }}{ }^{\text {a }}$

${ }^{2} \epsilon_{i}$ in $\alpha^{2} \times$ (a.u.) $-11.68715 \mathrm{~cm}^{-1} . E_{\text {rel }}$ and $\Delta D_{\text {rel }}$ in cm^{-1}.
given in Table IV. We have also included in the table in column 5 the differences of the energies obtained in the 262 and 279 term bases to support the statement that the shorter basis is almost as accurate as the augmented one. In column 6 we give the difference of the present total correction $\left\langle H^{\prime}\right\rangle$ and the corresponding number, obtained with a less accurate function by Kolos and Rychlewski. ${ }^{10}$

In general the differences are smooth and very small. The discontinuities at $R=3.0$ and $R=7.2$ are certainly due to the fact that in Ref. 10 three different wavefunctions were used for small, intermediate and large internuclear distances. The large discrepancy at $R=5.6$ must be due to some typographical error because the inspection of second differences of the total correction in Ref. 10 shows irregu-

TABLE IV. Adiabatic corrections in cm^{-1} for $\mathrm{H}_{2}{ }^{\text {a }}$

R	E_{2}^{\prime}	E_{1}^{\prime}	$\left\langle H^{\prime}\right\rangle$	$E-E_{279}$	Δ_{KR}	ΔD	S^{-1}
0.20	166.871	18.183	185.054	0.014		-65.524	1.594555
0.30	154.574	25.998	180.572	0.009		-61.042	1.679684
0.40	142.653	31.029	173.682	0.005	-0.022	-54.152	1.778945
0.50	131.748	34.097	165.845	0.004		-46.315	1.887913
0.60	122.018	35.906	157.923	0.003	-0.005	-38.393	2.003853
0.80	105.878	37.498	143.376	0.002	-0.002	-23.847	2.249981
0.90	99.248	37.790	137.037	0.002		-17.507	2.377907
1.00	93.420	37.937	131.357	0.002	-0.001	-11.827	2.507944
1.10	88.291	38.021	126.312	0.003	-0.001	-6.783	2.639395
1.20	83.770	38.095	121.865	0.003	-0.001	-2.336	2.771619
1.30	79.779	38.193	117.973	0.003	-0.001	1.557	2.904004
1.35	77.962	38.259	116.221	0.003	-0.002	3.309	2.970069
1.40	76.253	38.338	114.591	0.003	-0.001	4.938	3.035948
1.45	74.647	38.434	113.080	0.003	-0.002	6.450	3.101564
1.50	73.136	38.546	111.681	0.003	-0.002	7.848	3.166839
1.60	70.379	38.827	109.206	0.002	-0.001	10.323	3.296045
1.70	67.945	39.189	107.134	0.002		12.396	3.422917
1.80	65.799	39.635	105.434	0.002	-0.001	14.096	3.546775
2.00	62.260	40.795	103.055	0.002	-0.001	16.475	3.782599
2.20	59.578	42.313	101.891	0.002	-0.001	17.639	3.997627
2.40	57.616	44.167	101.782	0.002	-0.001	17.747	4.185881
2.60	56.263	46.303	102.566	0.001	-0.001	16.964	4.341801
2.80	55.428	48.627	104.055	0.001	-0.001	15.475	4.460983
3.00	55.023	51.007	106.031	0.002	0.000	13.499	4.541041
3.20	54.967	53.286	108.253	0.002	-0.003	11.276	4.582355
3.40	55.175	55.312	110.487	0.002	-0.003	9.043	4.588380
3.60	55.562	56.975	112.537	0.002	-0.003	6.993	4.565305
3.80	56.054	58.227	114.280	0.002	-0.003	5.249	4.521053
4.00	56.586	59.086	115.672	0.001	-0.002	3.858	4.463919
4.20	57.109	59.619	116.728	0.001	-0.002	2.802	4.401333
4.40	57.590	59.911	117.502	0.001	-0.002	2.028	4.339075
4.60	58.015	60.042	118.057	0.000	-0.002	1.473	4.281023
4.80	58.375	60.078	118.452	0.001	-0.003	1.077	4.229339
5.00	58.672	60.062	118.734	0.000	-0.002	0.795	4.184872
5.20	58.913	60.023	118.937	0.000	-0.001	0.593	4.147580
5.40	59.106	59.978	119.084	0.000	-0.001	0.446	4.116908
5.60	59.257	59.935	119.192	0.000	0.006	0.338	4.092055
5.80	59.375	59.897	119.272	0.000	0.000	0.258	4.072144
6.00	59.465	59.866	119.331	0.000	-0.001	0.198	4.056337
6.20	59.536	59.840	119.376	0.000	0.000	0.153	4.043876
6.40	59.590	59.821	119.410	0.000	0.000	0.119	4.034105
6.60	59.631	59.805	119.436	0.000	0.000	0.093	4.026480
6.80	59.662	59.794	119.456	0.000	0.001	0.074	4.020548
7.00	59.686	59.785	119.471	0.000	0.002	0.058	4.015947
7.20	59.704	59.779	119.483	0.000	0.002	0.047	4.012384
7.40	59.718	59.774	119.492	0.000	-0.002	0.038	4.009629
7.60	59.728	59.771	119.499	0.000	-0.002	0.031	4.007503
7.80	59.736	59.768	119.505	0.000	-0.002	0.025	4.005861
8.00	59.742	59.766	119.509	0.000	-0.001	0.021	4.004593
8.50	59.752	59.764	119.516	0.000	-0.002	0.013	4.002543
9.00	59.757	59.763	119.521	0.000	-0.001	0.009	4.001456
9.50	59.761	59.763	119.524	0.000	-0.002	0.006	4.000869
10.00	59.762	59.763	119.525	0.000	-0.003	0.004	4.000544
11.00	59.763	59.764	119.527	0.000		0.002	4.000245
12.00	59.764	59.764	119.528	0.000	-0.002	0.001	4.000129
∞	59.766	59.766	119.532				4.0

${ }^{2} S_{-1}$ in a.u.
larities in the vicinity of $R=5.6$. In the last column of the table the expectation values $S_{-1}=4 / 3\left\langle x_{1} x_{2}+z_{1} z_{2}+r_{1}^{2}\right\rangle$ are included. These will be used to estimate the radiative corrections.

C. Polarizability

All the relevant formulas concerning the evaluation of the components of the polarizability tensor for the hydro-
gen molecule are given in detail in Refs. 15 and 16. Here we give only the definitions to facilitate the discussion.

If the z axis of the coordinate system coincides with the internuclear axis, $\mu=\mathbf{r}_{1}+\mathbf{r}_{2}$ is the electronic electric dipole moment operator and \mathbf{H}, Ψ and E the clamped nuclei Hamiltonian and solution of the unperturbed Schrödinger equation then the components of the polarizability tensor are given by the equations

TABLE V. Polarizabilities for \mathbf{H}_{2} in a.u.

$$
\begin{equation*}
\alpha_{i}=-\frac{1}{2} \int \Psi^{\prime} \mu_{i} \Psi d \tau \tag{36}
\end{equation*}
$$

for $i=x, y, z$ and Ψ^{\prime} satisfying

$$
\begin{equation*}
(H-E) \Psi^{\prime}=\mu_{i} \Psi \tag{37}
\end{equation*}
$$

In this work Ψ was the solution obtained in the 262 term basis as discussed at the end of section II and - as in Ref. 14 -the solution of Eq. (36) was sought in the form of an expansion similar to Eq. (1) but of appropriate symmetry: Σ_{u} and Π_{u} for the parallel and perpendicular components, respectively. The computation was thus a straightforward extension of Ref. 15. The nonlinear parameters in the expansions for Ψ^{\prime} were identical with those in Ψ and the basis set was selected at the equilibrium separation $R=1.4$ a.u. To get a reasonably accurate approximation for Ψ^{\prime} terms were added to the bases used in Ref. 15. For each symmetry about 400 terms were tested and finally 81 terms of Σ_{u} and 70 of Π_{u} symmetry were chosen for the final computations. The results are given in Table V. In the last two columns we list

$$
\begin{equation*}
S_{-2}=\frac{1}{3}\left(2 \alpha_{\perp}+\alpha_{\|}\right) \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{-3}=\frac{2}{3}\left[2\left\langle\Psi_{1}^{\prime} \mid \Psi_{1}^{\prime}\right\rangle+\left\langle\Psi_{\|}^{\prime} \mid \Psi_{\|}^{\prime}\right\rangle\right] . \tag{39}
\end{equation*}
$$

The parallel and perpendicular components correspond, respectively, to $i=z$ and $i=x$ in Eqs. (36) and (37), and in the third and fifth columns the differences of the present results and those of Ref. 16 are given. The present polar-
izability computations were undertaken in order to get an estimate of S_{-3} and highest accuracy was not required. Therefore it is possible that the bases for Ψ^{\prime} could be chosen better. However, the convergence of the polarizabilities with the expansion length in Ψ^{\prime} is rather fast. The best results obtained in this work for $R=1.4$ with 120 and 199 term expansions for Ψ_{\perp}^{\prime} and $\Psi_{\|}^{\prime}$, respectively were α_{\perp} $=4.5765$ and $\alpha_{\|}=6.3874$. Therefore we believe that the discrepancies $\Delta_{\text {Rych }}$ seen in Table V are mainly due to the fact that in Ref. 16 a less accurate zero order function, Ψ, was used.

D. Radiative corrections

The radiative corrections to the electronic ground state energy of the hydrogen molecule, when expressed in atomic units, read ${ }^{11,4}$
$E_{\mathrm{rad}}=E_{L}+E_{L}^{\prime}$,
$E_{L}=\frac{8}{3} \alpha^{3}\langle 0| \delta\left(\mathbf{r}_{1 a}\right)+\delta\left(\mathbf{r}_{1 b}\right)|0\rangle\left[\ln \frac{c^{2}}{K_{0}}+\frac{19}{30}-\ln 2\right]$,
$E_{L}^{\prime}=\frac{14}{3} \alpha^{3}\langle 0| \delta\left(\mathbf{r}_{12}\right)|0\rangle \ln \alpha$,
$\ln \left(K_{0} /\right.$ a.u. $)$

$$
\begin{equation*}
=\frac{\left.\Sigma_{n}|\langle 0| \mathbf{p}| n\right\rangle\left.\right|^{2}\left(E_{n}-E_{0}\right) \ln \left[\left(E_{n}-E_{0}\right) / \text { a.u. }\right]}{\left.\Sigma_{n}|\langle 0| \mathbf{p}| n\right\rangle\left.\right|^{2}\left(E_{n}-E_{0}\right)}, \tag{43}
\end{equation*}
$$

where \mathbf{p} is the total momentum operator of the two electrons, α the fine structure constant and c the velocity of
light. Unfortunately, so far no effective method exists for the evaluation of the Bethe logarithm Eq. (43) for the hydrogen molecule and we are forced to use an approximate method following Garcia ${ }^{4}$ and Bishop and Cheung. ${ }^{17}$ The method is based on the observation that if one defines

$$
\begin{align*}
& S_{p}=\sum_{j} f_{0 j}\left(E_{j}-E_{0}\right)^{p} \tag{44}\\
& \left.f_{0 j}=\frac{2}{3}\left(E_{j}-E_{0}\right)|\langle 0| \mathbf{r}| j\right\rangle\left.\right|^{2}, \quad \mathbf{r}=\mathbf{r}_{1}+\mathbf{r}_{2} \tag{45}
\end{align*}
$$

then

$$
\begin{equation*}
\ln K_{0}=\left[\frac{d}{d p} \ln S_{p}\right]_{p=2} \tag{46}
\end{equation*}
$$

Thus if a functional form of S_{p} is given the logarithm can be readily obtained. This form is determined by fitting an analytical expression to a few known values of the moments S_{p}. For the ground state of the H_{2} molecule these values are

$$
\begin{align*}
& S_{p} \rightarrow \infty \quad \text { for } p \rightarrow 2.5 \\
& S_{2}=\frac{16}{3} \pi\langle 0| \delta\left(\mathbf{r}_{1 a}\right)|0\rangle \\
& S_{1}=-\frac{4}{3}\langle 0| \Delta_{1}+\nabla_{1} \nabla_{2}|0\rangle \tag{47}\\
& S_{0}=2 \\
& S_{-1}=\frac{4}{3}\langle 0| 2 x_{1} x_{2}+z_{1} z_{2}+r_{1}^{2}|0\rangle
\end{align*}
$$

and S_{-2} and S_{-3} are given by Eqs. (38) and (39). S_{2} is easily obtained from Table III, and S_{1} and S_{-1} from Table IV.

To get an analytical expression Garcia ${ }^{4}$ used the form

$$
\begin{align*}
S_{p}= & f_{01}\left(E_{1}-E_{0}\right)^{p}+f_{02}\left(E_{2}-E_{0}\right)^{p} \\
& +\left(E_{I}\right)^{p}\left(\sum_{i=0}^{k} b_{i} p^{i}+\frac{d_{1}}{2.5-p}+\frac{d_{2}}{3-p}+\frac{d_{3}}{3.5-p}\right) \tag{48}
\end{align*}
$$

with $E_{I}=0.5669$ a.u. being the ionization potential, E_{1}, E_{2} - energies of the first excited $B^{1} \Sigma_{u}^{+}$and $C^{1} \Pi_{u}$ states and f_{01}, f_{02} the corresponding oscillator strengths.

Bishop and Cheung ${ }^{17}$ advocate the ansatz:

$$
\begin{align*}
S_{p}= & f_{01}\left(E_{1}-E_{0}\right)^{p}+f_{02}\left(E_{2}-E_{0}\right)^{p}+\sum_{i=0}^{n} b_{i} p^{i} \\
& +\frac{d_{0}}{(2.5-p)^{q}}, \quad q \text { fixed } \tag{49}
\end{align*}
$$

and they suggest $q=1.6$ as best suited for the H_{2} molecule. The limits of summation, k in Eq. (48) and n in Eq. (49), depend on the number of available moments S_{p} and the b_{i} and d_{i} are determined by requiring that Eqs. (48) and (49) reproduce the given moments.

Since it is difficult to decide a priori which form is more reliable, we used both Eq. (48) and Eq. (49) to compute $\ln K_{0}$ and $E_{\text {rad }}$ in the whole range $0.4 \leqslant R \leqslant 12.0$. The energies E_{1} and E_{2} were taken from Ref. 18 and the corresponding transition moments from Ref. 19. Where necessary, the input data were interpolated to 0.4 using in the
interpolation the values for the He atom as the $R=0$ asymptotic. The computations were performed twice. In one computation all six moments for $p=-3,-2, \ldots, 2$ were used to yield the correction E_{rad}^{1}. Then S_{-3} was omitted and the computation repeated with the remaining five moments as input to get $E_{\text {rad }}^{2}$. Thus the effect of using S_{-3} in the fit is

$$
\begin{equation*}
\Delta\left(S_{-3}\right)=E_{\mathrm{rad}}^{1}-E_{\mathrm{rad}}^{2} \tag{50}
\end{equation*}
$$

It turns out that $\Delta\left(S_{-3}\right)$ is definitely smaller if Eq. (48) rather than Eq. (49) is used. This suggests that Eq. (48) provides a better fit of the data. But even in this case $\Delta\left(S_{-3}\right)$ is not negligible and it is not possible to say which of the two sets E_{rad}^{1} or E_{rad}^{2} is more reliable. Therefore the final results for the Bethe logarithm were obtained as an average, i.e., we have

$$
\begin{equation*}
E_{\mathrm{rad}}=\frac{1}{2}\left(E_{\mathrm{rad}}^{1}+E_{\mathrm{rad}}^{2}\right) . \tag{51}
\end{equation*}
$$

The final corrections are listed in Table VI. The results obtained with the aid of Eq. (49) are given for comparison in columns 5 and 6.

It is very difficult to give an estimate of the accuracy of the corrections. However, a similar computation for the H_{2}^{+}ion ${ }^{5}$ when compared with the very accurate result of Bukowski et al. ${ }^{20}$ shows that the error in the vibrational levels due to the approximate evaluation of the radiative corrections is less than $0.003 \mathrm{~cm}^{-1}$. One can expect therefore that the present radiative corrections are accurate to about $0.01 \mathrm{~cm}^{-1}$ or better and if relative positions of the levels are considered the error should be still smaller.

IV. VIBRATIONAL AND ROTATIONAL LEVELS

A. Adiabatic energies

It has been found during the vibrational computations that if accuracy of better than $0.01 \mathrm{~cm}^{-1}$ is required in the vibrational levels then the Born-Oppenheimer energies $E(R)$ and their derivatives $d E / d R$ must be computed at a fine grid. The interpolation of the unperturbed potential needed for the vibrational equation must be accurate to about 9 decimal figures and it is impossible to have such an accuracy if the input energies in the most important region are given at intervals $\Delta R=0.1$ and 0.2 . Therefore the electronic energies were computed at 670 internuclear separations in the interval $0.2 \leqslant R \leqslant 12.0$. For $0.2 \leqslant R$ $\leqslant 0.7$ the energies are far above the dissociation limit and therefore $\Delta R=0.1$ was used. In the most important region, from $R=0.75$ to $R=6.0-\Delta R=0.01$ was used. Then up to $R=8-\Delta R=0.02$, up to $R=9-\Delta R$ $=0.05$ and up to $R=10-\Delta R=0.1$. Finally for up to $R=12-\Delta R=0.2$ was used.

The interpolation of the adiabatic, relativistic and radiative corrections creates no such problems because a five figure accuracy is sufficient. So the corrections were interpolated by cubic splines from the data given in Tables III, IV, and VI and extrapolated to $R=0$ using the helium atom data. ${ }^{11,5}$ The Born-Oppenheimer energies were interpolated by cubic polynomials fitted to the energies and their derivatives at two adjacent input points. The correc-

TABLE VI. Radiative corrections in cm^{-1}.

tions were added to the unperturbed potential and the resulting corrected potential, U, was extrapolated to $R_{\max }$ assuming for $R>12: U(R)=U(12) \times(12 / R)^{6}$. In all computations, except the T_{2} isotope, $R_{\max }=20$ was used. For T_{2}, in order to get the $v=26$ level, $R_{\max }$ was increased to 40 . This, however, had no effect on the $v \leqslant 25 \mathrm{~T}_{2}$ levels. The vibrational equation was solved numerically by the Cooley method ${ }^{21}$ for each total angular momentum for all
bound vibrational states. The computations were performed twice with integration steps $h=0.005$ and $h=0.002$ and the energies were then extrapolated to $h=0$ assuming that the truncation error is proportional to h^{4}. However, at this fine grid the extrapolation had a very small effect on the results. The nuclear masses for H, D and T were taken as $1836.1527,3670.4831$, and 5496.920 , respectively.

On output the program yielded the relativistic, adia-

TABLE VII. Dissociation energies from the $J=0$ levels in cm^{-1}.

v	H_{2}	$\Delta_{\text {KR }}$	HD	$\Delta_{\text {KR }}$	HT	D_{2}	$\Delta_{\text {KR }}$	DT	T
0	36118.060	0.011	36405.774	0.011	36512.154	36748.355	0.010	36881.278	37028.489
1	31956.893	0.010	32773.620	0.011	33077.307	33754.746	0.011	34137.953	34563.992
2	28031.051	0.012	29318.903	0.013	29800.542	30880.244	0,012	31494.204	32179.468
3	24335.649	0.009	26038.142	0.011	26678.854	28122.761	0.014	28948.386	29873.694
4	20867.662	0.012	22928.874	0.012	23710.026	25480.643	0.012	26499.149	27645.634
5	17626.087	0.007	19989.722	0.010	20892,691	22952.702	0.014	24145.466	25494.454
6	14612.226	0.010	17220.502	0.009	18226.394	20538.234	0.012	21886.634	23419.524
7	11830.072	0.007	14622.373	0.011	15711.705	18237.070	0.011	19722.310	21420.435
8	9286.866	0.007	12198.044	0.008	13350.350	16049.620	0.012	17652.529	19497.008
9	6993.869	0.000	9952.044	0.009	11145.397	13976.947	0.012	15677.751	17649.316
10	4967.458	-0.003	7891.091	0.004	9101.488	12020.851	0.009	13798.899	15877.703
11	3230.690	-0.002	6024.580	-0.002	7225.159	10183.974	0.010	12017.422	14182.814
12	1815.577	0.007	4365.260	-0.002	5525.255	8469.948	0.005	10335.363	12565.623
13	766.455	0.014	2930.147	0.000	4013.490	6883.562	0.000	8755.451	11027.477
14	144.599	0.017	1741.808	0.007	2705.206	5430.997	-0.001	7281.207	9570.141
15			830.172	0.015	1620.415	4120.114	-0.003	5917.089	8195.858
16			234.923	0.017	785.239	2960.837	0.000	4668.665 .	6907.421
17			3.588	0.045	233.755	1965.657	0.005	3542.834	5708.259
18					6.514	1150.303	0.012	2548.115	4602.547
19						534.608	0.015	1695.015	3595.339
20						143.381	0.017	996.511	2692.737
21						1.643	0.057	468.643	1902.105
22					\cdots			131.004	1232.332
23								2.725	694.169
24									300.581
25									66.689
26									0.063

batic vibrational-rotational energies $E_{v, j}^{\mathrm{ad}}$ and the expectation values of the vibrational kinetic energy,

$$
\begin{equation*}
K E=\left\langle\frac{1}{2 \mu} \frac{d^{2}}{d R^{2}}\right\rangle . \tag{52}
\end{equation*}
$$

B. Nonadiabatic corrections

At the present time the best estimate of the nonadiabatic corrections to the vibrational-rotational levels for various isotopes is due to Schwartz and LeRoy ${ }^{2}$ whousing the existing $a b$ initio results ${ }^{22}$ - were able to construct a scaling and extrapolation procedure that allows the direct computation of the corrections. The corrections are expressed as simple combinations of the kinetic energy, KE , the rotational quantum number, J , nuclear masses and some coefficients tabulated in Ref. 2. In this work the kinetic energy, KE, was computed for each level and the corrections evaluated exactly as described in Ref. 2. Then the corrections were added to the adiabatic results for all levels except the lowest $v=J=0$ levels of $\mathrm{H}_{2}, \mathrm{HD}$ and D_{2}. For those three levels the $a b$ initio 22 results were used because we believe these results to be reliable for the lowest levels. As compared with Ref. 2 the ab initio results increase the $\mathrm{H}_{2}, \mathrm{HD}$ and D_{2} dissociation energies by 0.018 $\mathrm{cm}^{-1}, 0.008 \mathrm{~cm}^{-1}$, and $0.001 \mathrm{~cm}^{-1}$, respectively.

The results for the rotationless states are given in Table VII. Tables containing energies for all levels with $J \leqslant 10$ can be found in Ref. 9. The nonadiabatic corrections used in this work are different from those used by Kolos and Rychlewski ${ }^{10}$ who used for all levels the $a b$ initio results. ${ }^{22}$

Therefore to make the comparison more meaningful as far as the relativistic potential energy curves are concerned in Table VII we list Δ_{KR} which gives the differences of the relativistic, adiabatic energies, i.e., energies not corrected for nonadiabatic effects.

V. COMPARISON WITH EXPERIMENT AND CONCLUSIONS

Several very accurate experimental results have been reported in the last decade. Here we will use some of them to estimate the accuracy of the present computations. The relevant results are listed in Tables VII-XV. The discrep-

TABLE VIII. Comparison with experiment of $\Delta G(\dot{v}+1 / 2)$ for H_{2}.

$=v$	Expt. $^{\text {a }}$	Theory	Δ
0	4161.14	4161.167	0.027
1	3925.79	3925.842	0.052
2	3695.43	3695.401	-0.029
3	3467.95	3467.987	0.037
4	3241.61	3241.574	-0.036
5	3013.86	3013.861	0.001
6	2782.13	2782.154	0.024
7	2543.25	2543.207	-0.043
8	2292.93	2292.997	0.067
9	2026.38	2026.410	0.030
10	1736.66	1736.768	0.108
11	1415.07	1415.113	0.043
12	1049.16	1049.122	-0.038
13	622.02	621.856	-0.164

${ }^{\text {a }}$ From Ref. 23.

TABLE IX. H_{2} lines. Comparison with experiment.

J	S_{0}			O_{1}		Q_{1}		
	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {b }}$	Theory	$\Delta^{\text {a }}$	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {c }}$
0	$354.392^{\text {d }}$	0.027	0.019		*	4161.167	-0.033	
1	587.032	-0.055	0.000			4155.236	-0.045	-0.013
2	814.425	-0.031	0.000	3806.775	-0.084	4143.449	-0.044	-0.012
3	1034.672	-0.026	0.002	3568.204	-0.035	4125.857	-0.046	-0.011
4	1246.101	0.019	0.003	3329.024	-0.120	4102.568	-0.024	-0.010
5	1447.282	0.035	0.003	3091.185	0.044	4073.719	0.021	-0.020
6	1637.047			2856.467		4039.480	0.029	
		S_{1}					Q_{2}	
J	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {c }}$			Theory	Δ^{2}	$\Delta^{\text {c }}$
0	4497.841	-0.007	0.007			8087.009	-0.021	
1	4712.889	-0.049	-0.011			8075.295	0.012	-0.004
2	4916.993	-0.039	-0.010			8051.977	0.013	-0.003
3	5108.391	-0.024	-0.008			8017.175	0.007	0.000
4	5285.581	-0.051				7971.094		
5	5447.328	-0.709				7914.005		
6	5592.679					7846.232		

${ }^{2}$ From Ref. 24.

${ }^{6}$ From Ref. 25.
${ }^{\text {c From Ref. }} 26$.
${ }^{\mathrm{d}}$ See text.

TABLE X. D_{2} lines. Comparison with experiment.

J	S_{0}			O_{1}		
	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {b }}$	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {b }}$
0	179.069	-0.039	0.002			
1	297.534	0.024	0.000			
2	414.648	0.038	0.000	2814.539	-0.031	-0.006
3	529.900	0.090	0.000	2693.963	-0.147	-0.009
4	642.807	0.097	0.001	2572.635	0.135	-0.008
5	752.921	0.011	0.002	2451.079	0.029	
6	859.833	0.073	0.001	2329.798		
7	963.180	0.020		2209.263	0.033	
8	1062.645	0.075		2089.917		
9	1157.958			1972.158		
	Q_{1}			S_{1}		
J	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {c }}$	Theory	$\Delta^{\text {a }}$	$\Delta^{\text {c }}$
0	2993.608	0.008		3166.352		-0.008
1	2991.497	-0.003	-0.007	3278.513		-0.009
2	2987.283	0.083	-0.013	3387.253	0.033	-0.008
3	2980.979	-0.021	-0.009	3492.084	0.054	-0.007
4	2972.605	0.105	-0.008	3592.557		
5	2962.184	-0.016		3688.259	-0.101	
6	2949.750	0.050		3778.827		
7	2935.338	0.138		3863.943	0.123	
8	2918.994	0.194		3943.343		
9	2900.763	0.163		4016.812		

[^0]TABLE XI. HT S and Q transitions.

	Expt. $^{\mathbf{a}}$	Theory	Δ
$S_{0}(0)$	237.866	237.871	0.005
$S_{0}(1)$	394.800	394.840	0.040
$S_{0}(2)$	549.267	549.426	0.159
$Q_{1}(0)$	3434.806	3434.846	0.040
$Q_{1}(1)$	3431.568	3431.609	0.041
$Q_{1}(2)$	3425.103	3425.147	0.044
$Q_{1}(3)$	3415.438	3415.487	0.049
$Q_{1}(4)$	3402.599	3402.668	0.069

${ }^{2}$ From Ref. 29.

TABLE XIII. HD and HT $P_{v}(J)$ and $R_{v}(J)$ lines.

${ }^{3}$ From Ref. 29.

TABLE XIV. Ground state dissociation energies for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} in cm^{-1}.

	H_{2}	HD	D_{2}
This work	36118.060	36405.774	36748.355
Ref. 10	36118.049	36405.763	36748.345
Present-Ref. 10	0.011	0.011	0.010
Experiment	36118.11 ± 0.08	36406.2 ± 0.4	36748.3 ± 0.1
	(Ref. 30$)$	(Ref. 31)	(Ref. 32)
Expt.-Theory	0.05 ± 0.08	0.4 ± 0.4	-0.1 ± 0.1

TABLE XV. Ionization potentials for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} in cm^{-1}.

	H_{2}	HD	D_{2}
This work	124417.482	124568.476	124745.387
Ref. 10	124417.471	124568.465	124745.377
Experiment—Ref. 32	124417.484 ± 0.017		124745.353 ± 0.024
Expt.-Theory	0.002 ± 0.017		-0.034 ± 0.024
Experiment-Ref. 33	124417.507 ± 0.012	124568.481 ± 0.012	
Expt.-Theory	0.026 ± 0.012	0.005 ± 0.012	

ancies Δ are always computed as the difference: present result minus experiment.

Let us first discuss the H_{2} molecule. Here a comment is needed concerning the $S_{0}(0)$ theoretical transition in Table X which is somehow inconsistent with other quoted numbers because for the $v=J=0$ level the nonadiabatic correction was computed differently than for other states. If the smoothed correction of Ref. 2 were used, the theoretical number would be smaller by $0.018 \mathrm{~cm}^{-1}$ making the agreement with Ref. 25 almost excellent. In general the agreement with Refs. 25 and 26 is much better than with Ref. 24, and all these data are somehow contradictory to Ref. 23. From Table VIII it follows that the theoretical $v=1$ and $v=2$ levels are too high by 0.027 and $0.079 \mathrm{~cm}^{-1}$, respectively, while the data in Table X suggest that the $v=1$ vibrational level is too low and the next higher about right.

For D_{2} the comparison is similarly indecisive. The situation is different for the heteronuclear isotopes, Tables XI-XIII. Here the agreement is definitely better for HD than for HT. It seems almost certain that the relatively poor agreement in the case of HT is due to nonadiabatic effects. In Ref. 2 the nonadiabatic corrections for heteronuclear isotopes were extrapolated from the HD data and no other data were available to fit the interpolating polynomial. It is therefore not surprising that the interpolation is less reliable. We fully agree on this point with the conclusions of Chuang and Zare ${ }^{29}$ that ab initio results for the nonadiabatic corrections for HT are necessary for an accurate comparison of theoretical and experimental results.

The dissociation energies of $\mathrm{H}_{2}, \mathrm{HD}$ and D_{2} are compared with experiment and Ref. 10 in Table XIV. The present dissociation energies are about $0.01 \mathrm{~cm}^{-1}$ larger than those obtained by Kolos and Rychlewski ${ }^{10}$ and in consequence the corresponding ionization energies are increased by the same amount. These are listed in Table XV. The agreement with experiment in the case of H_{2} and HD is indeed very satisfactory. Nevertheless one should keep in mind that improvement in the accuracy of the theoretical results is still possible. First, as was mentioned in Sec. II, the Born-Oppenheimer energies could still be lowered by a few thousandths of a wave number. Next, as we discussed above, the lowest order radiative corrections estimated in this work may differ slightly from the exact results. Finally, the nonadiabatic corrections are based on $a b$ initio results ${ }^{22}$ obtained a decade ago. A more accurate computation would certainly change these corrections.

The first two sources of inaccuracies in the theoretical energies, viz. the truncation error in the BornOppenheimer energies and possible errors in the radiative corrections, can influence the comparisons in Tables XIV and XV, but they can hardly affect Tables VIII-XIII. The improvement in the Born-Oppenheimer curve due to those two effects would certainly be smooth and most probably almost independent of R. Therefore the relative positions of the vibrational levels would be changed by negligible amounts.

The nonadiabatic corrections seem to be the most important source of errors. For homonuclear isotopes and

HD the inaccuracies in the present corrections may be of the order of $0.01 \mathrm{~cm}^{-1}$. For HT and DT the inaccuracies are probably larger. Also, more accurate corrections will influence individual levels independently of each other and therefore all the comparisons in Tables VIII-XV will be affected.

In conclusion we believe-in agreement with Ref. 29that for the refinement of the theoretical predictions new $a b$ initio nonadiabatic corrections are needed in the first place. It would be also desirable to get the radiative corrections more accurately. However, these will have probably little effect on the overall agreement with experiment.

ACKNOWLEDGMENTS

I am very much indebted to Professor K. Dressler for many valuable comments concerning in particular the evaluation of experimental data. I am also indebted to Professor W. Kołos for making the results of Ref. 10 available prior to publication. This work was supported by a Polish KBN Grant No. 203999101 and by the Swiss National Science Foundation by a Guest appointment at the Swiss Federal Institute of Technology (ETH Zurich).

APPENDIX A: THE $P \rightarrow 1 / 2$ LIMIT OF THE $\rho^{-2 P}$ EXPANSION

To perform the transformation of Eq. (22) for $p \rightarrow 1 / 2$ we note that one can replace p by $1 / 2$ everywhere except in the product

$$
\begin{equation*}
d_{l m}(p) C_{m}^{p-(1 / 2)}(\cos \varphi) \tag{A1}
\end{equation*}
$$

The Gegenbauer polynomials $C_{n}^{x}(\cos \varphi)$ satisfy ${ }^{13}$

$$
\begin{equation*}
C_{0}^{\alpha}=1 \tag{A2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha} C_{n}^{\alpha}(\cos \varphi)=C_{n}^{0}(\cos \varphi)=\frac{2}{n} \cos (n \varphi), \quad n \neq 0 \tag{A3}
\end{equation*}
$$

Thus, if $m=0$ there is no singularity while for $m \neq 0$ we get
$\Gamma(2 p-1)(2 p+2 m-1) C_{m}^{p-(1 / 2)}(\cos \varphi)$

$$
\begin{equation*}
=\frac{\Gamma(2 p)(2 p+2 m-1)}{2[p-(1 / 2)]} C_{m}^{p-(1 / 2)}(\cos \varphi) \rightarrow 2 \cos (m \varphi) \tag{A4}
\end{equation*}
$$

Hence

$$
\begin{align*}
& d_{l m}(p) C_{m}^{p-(1 / 2)}(\cos \varphi) \\
& \quad \rightarrow-\left(2-\delta_{m, 0}\right)(2 l+1) \\
& \quad \times[(2 m-1)!!]^{2} \frac{(l-m)!}{(l+m)!} \cos (m \varphi) \tag{A5}
\end{align*}
$$

Further we have

$$
\begin{equation*}
C_{l-m}^{m+(1 / 2)}(x)=\frac{1}{(2 m-1)!!} \frac{d^{m} P_{l}}{d x^{m}} \tag{A6}
\end{equation*}
$$

and if we use the phases of the associated Legendre functions as in Ref. 14, i.e.,

$$
\begin{align*}
P_{l}^{m}(x)= & \left|1-x^{2}\right|^{1 / 2} \frac{d^{m} P_{l}}{d x^{m}} \tag{A7}\\
Q_{l}^{m}(\xi)= & (-1)^{m+1} \frac{(l+m)!}{(l-m)!} P_{l}^{m}(\xi) \\
& \times \int_{\infty}^{\xi}\left(x^{2}-1\right)^{-1}\left[P_{l}^{m}(x)\right]^{-2} d x \tag{A8}
\end{align*}
$$

we finally obtain

$$
\begin{align*}
\rho^{-1}= & \sum_{l=0}^{\infty} \sum_{m=0}^{l}(-1)^{m}\left(2-\delta_{m, 0}\right)\left[\frac{(l-m)!}{(l+m)!}\right]^{2} \\
& \times Q_{l}^{m}\left(\xi_{+}\right) P_{l}^{m}\left(\xi_{-}\right) P_{l}^{m}\left(\eta_{1}\right) P_{l}^{m}\left(\eta_{2}\right) \cos (m \varphi) \tag{A9}
\end{align*}
$$

which coincides with the Neumann expansion as given in Ref. 14.

APPENDIX B: EVALUATION OF THE $I^{-\mu}$ INTEGRALS

When Eq. (22) is substituted into Eq. (19) the inte$\operatorname{gral} I^{-\mu}$ is expressed as a sum of terms labeled by l and m :

$$
\begin{equation*}
I^{-\mu}=\sum_{l=0}^{\infty} \sum_{m=0}^{l} I_{l, m} \tag{B1}
\end{equation*}
$$

Since W^{μ} are polynomials in ξ_{i}, η_{i} each $I_{l, m}$ is given as a linear combination of products

$$
\begin{equation*}
J_{l, m}^{r, q}\left(\alpha_{1}, \alpha_{2}\right) B_{l, m}^{k}\left(\beta_{1}\right) B_{l, m}^{s}\left(\beta_{2}\right) A_{m} \tag{B2}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{m}=\int_{0}^{2 \pi} C_{m}^{p-(1 / 2)}(\cos \varphi) d \varphi \\
& =\left\{\begin{array}{l}
2 \pi\left[\frac{\Gamma[p+(m-1 / 2)]}{\Gamma[p-(1 / 2)](m / 2)!}\right]^{2} \text { if } m \text { even } \\
0 \quad \text { if } m \text { odd }
\end{array}\right. \tag{B3}\\
& B_{l, m}^{k, s}(\beta)=\int_{-1}^{1} \exp (\beta x) x^{k}\left(1-x^{2}\right)^{s / 2} C_{l-m}^{p+m}(x) d x \tag{B4}\\
& J_{l, m}^{J_{l}, q}\left(\alpha_{1}, \alpha_{2}\right)=\int_{1}^{\infty} \int_{1}^{\infty} g_{1}^{r, m}\left(\xi_{1}\right) g_{2}^{q, m}\left(\xi_{2}\right) \\
& \tag{B5}\\
& \times D_{l-m}^{p+m}\left(\xi_{+}\right) C_{l-m}^{p+m}\left(\xi_{-}\right) d \xi_{1} d \xi_{2}
\end{align*}
$$

and the functions $g_{i}^{k, m}$ have the form

$$
\begin{equation*}
g_{i}^{k, m}(\xi)=\exp \left(-\alpha_{i} \xi\right) \xi^{k}\left(\xi^{2}-1\right)^{m / 2} \tag{B6}
\end{equation*}
$$

Both the B and J integrals can be computed accurately if use is made of the properties of the Gegenbauer polynomials C_{n}^{\prime}. When applied to $C_{l-m}^{p+m}(x)$, the standard recurrence relation and the differential equation read

$$
\begin{align*}
& (l-m+2) C_{l-m+2}^{p+m}-2(l+p+1) x C_{l-m+1}^{p+m} \\
& \quad+(2 p+l+m) C_{l-m}^{p+m}=0 \tag{B7}\\
& \left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} C_{l-m}^{p+m}-(2 m+2 p+1) x \frac{d}{d x} C_{l-m}^{p+m} \\
& \quad+(l-m)(l+m+2 p) C_{l-m}^{p+m}=0 \tag{B8}
\end{align*}
$$

We also have ${ }^{13}$

$$
\begin{equation*}
\frac{d}{d x} C_{l-m}^{p+m}=2(p+m) C_{l-m-1}^{p+m+1} \tag{B9}
\end{equation*}
$$

In consequence of Eq. (B3) only even m must be considered and so this will be assumed throughout this section.

In the following subsections we give details of the evaluation of the B and J integrals.

1. Evaluation of $B_{l, m}^{k, m}(\beta)$

Since

$$
\begin{equation*}
B_{l, m}^{k, s}(-\beta)=(-1)^{l+k+m} B_{l, m}^{k, s}(\beta) \tag{B10}
\end{equation*}
$$

we assume in the following $\beta>0$ and expand Eq. (B4) as

$$
\begin{equation*}
B_{l, m}^{k, s}(\beta)=\sum_{j=0}^{\infty} \frac{\beta^{j}}{j!} B_{l, m}^{k, s}(0) \tag{B11}
\end{equation*}
$$

For $s=m$ and with the definition

$$
\begin{equation*}
b_{l, m}^{k}=B_{l, m}^{k, m}(0) \tag{B12}
\end{equation*}
$$

using Eq. (B7) we get the relation

$$
\begin{equation*}
b_{l, m}^{k+1}=\frac{l-m+1}{2(l+p)} b_{l+1, m}^{k}+\frac{2 p+l+m+1}{2(l+p)} b_{l-1, m}^{k} \tag{B13}
\end{equation*}
$$

and with the aid of the above equation all b integrals can be computed from the $b_{n, m}^{0}$ integrals. To get the latter we note that

$$
\begin{align*}
\int_{-1}^{1} & \left(1-x^{2}\right)^{m / 2} x \frac{d}{d x} C_{l-m}^{p+m} d x \\
& =\int_{-1}^{1}\left(1-x^{2}\right)^{(m+2) / 2} \frac{d^{2}}{d x^{2}} C_{l-m}^{p+m} d x \tag{B14}
\end{align*}
$$

make use of Eqs. (B8) and (B9) and obtain the recurrence relation

$$
\begin{align*}
& b_{l, m-2}^{0}=\frac{4(p+m-2)(p+m-1)(2 p+m-3)}{m(l-m+2)(l+m+2 p-2)} b_{l, m}^{0} \tag{B15}\\
& b_{l, l}^{0}=\int_{-1}^{1}\left(1-x^{2}\right)^{l / 2} d x=\frac{\Gamma[(l+2) / 2] \Gamma(1 / 2)}{\Gamma[(l+3) / 2]} \tag{B16}
\end{align*}
$$

Thus, since m must be even, starting from Eq. (B16) and using Eq. (B15) we get $b_{l, m}^{0}$ for $l=0,2, \ldots, l_{\max }$ and $m=0,2, \ldots, l$ and subsequently $b_{l, m}^{k}$ from Eq. (B13). Finally, $B_{l, m}^{k, m}(\beta)$ are computed with the aid of Eq. (B11). There is no cancellation of significant figures in this algorithm and the integrals can be computed with-in principlearbitrary accuracy.

2. Evaluation of $J_{i, m}^{i ; q}$

The integral $J_{l, m}^{r q}$ can be transformed ${ }^{12}$ to a simpler form by a method originally given by Rüdenberg. ${ }^{14}$ For that purpose we write

$$
\begin{align*}
J= & \int_{1}^{\infty} d \xi g_{1}(\xi) D_{n}^{v}(\xi) \int_{1}^{\xi} d x g_{2}(x) C_{n}^{v}(x) \\
& +\int_{1}^{\infty} d \xi g_{1}(\xi) C_{n}^{v}(\xi) \int_{\xi}^{\infty} d x g_{2}(x) D_{n}^{v}(x) \tag{B17}
\end{align*}
$$

where we used the notation $n=l-m$ and $v=p+m$ and omitted other indices for simplicity. It is obvious from Eq. (23) that $\dot{D}_{n}^{\nu}(\xi)$ has a $(\xi-1)^{-v+(1 / 2)}$ singularity for $\xi \rightarrow 1$. Therefore in view of Eq. (B5) it follows that the integrals in Eq. (B13) exist if $p<5 / 2$. With this assumption the second term on the right-hand side can be transformed by an integration by parts to yield

$$
\begin{align*}
J= & \int_{1}^{\infty} d \xi D_{n}^{v}(\xi)\left[C_{n}^{v}(\xi)\right]^{-1} \frac{d}{d \xi}\left\{\int_{1}^{\xi} g_{2}(x) C_{n}^{v}(x) d x\right. \\
& \left.\times \int_{1}^{\xi} g_{1}(y) C_{n}^{v}(y) d y\right\} \tag{B18}
\end{align*}
$$

Now the definition of D_{n}^{ν}, Eq. (23), gives

$$
\begin{equation*}
\frac{d}{d \xi} D_{n}^{v}(\xi)\left[C_{n}^{v}(\xi)\right]^{-1}=\left(\xi^{2}-1\right)^{-v-(1 / 2)}\left[C_{n}^{v}(\xi)\right]^{-2} \tag{B19}
\end{equation*}
$$

and one more integration by parts leads to

$$
\begin{equation*}
J=-\int_{1}^{\infty}\left(\xi^{2}-1\right)^{-v-(1 / 2)} G_{1}^{r, m}(\xi) G_{2}^{q, m}(\xi) d \xi \tag{B20}
\end{equation*}
$$

where, with the indices written explicitly,

$$
\begin{align*}
& G_{i}^{k, s}(\xi)= {\left[C_{l-m}^{p+m}(\xi)\right]^{-1} \int_{1}^{\xi} g_{i}^{k, s}(x) C_{l-m}^{p+m}(x) d x, } \\
& i=1,2 . \tag{B21}
\end{align*}
$$

To get the integral J from Eq. (B20) any numerical method can be used if G_{i} are given. In this work the integral was transformed with the substitution $\xi=t^{-1}$ and the resulting $[0,1]$ interval was divided into up to $N=40$ intervals of equal length. Then in each interval an 8 -point Gauss quadrature was used. The functions G_{i} were computed essentially analytically by the following procedure.

First, we define a slightly more general integral

$$
\begin{align*}
F_{s, k}^{b m}(\xi, \alpha)= & \int_{1}^{\xi}\left(x^{2}-1\right)^{s} x^{k} C_{l-m}^{p+m}(x) \\
& \times \exp (-\alpha x) d x, \quad l, m, s, k \geqslant 0 . \tag{B22}
\end{align*}
$$

The differential equation (B8) together with Eq. (B9) give a recurrence relation

$$
\begin{align*}
C_{l-m}^{p+m}(x)= & \frac{2(p+m)}{(l-m)(l+m+2 p)}\{(2 m+2 p+1) \\
& \times x C_{l-m-1}^{p+m+1}(x)+2(p+m+1) \\
& \left.\times\left(x^{2}-1\right) C_{l-m-2}^{p+m+2}(x)\right\} \tag{B23}
\end{align*}
$$

i.e., we get

$$
\begin{align*}
F_{s, k}^{l, m}= & \frac{2(p+m)}{(l-m)(l+m+2 p)}\left\{(2 m+2 p+1) F_{s, k+1}^{l m+1}\right. \\
& \left.+2(p+m+1) F_{s+1, k}^{l m+2}\right\} . \tag{B24}
\end{align*}
$$

Since $C_{0}^{v}=1$ and $C_{1}^{\nu}(x)=2 v x$,

$$
\begin{equation*}
F_{s, k}^{l, l-1}=2(p+l-1) F_{s, k+1}^{l l} \tag{B25}
\end{equation*}
$$

and it suffices to find $F_{s, k}^{l, l}$ to start the downward recurrence Eq. (B24). Let us now introduce an auxiliary integral

$$
\begin{equation*}
K_{s, r, k}=\int_{1}^{\xi}(x-1)^{s}(x+1)^{r} x^{k} \exp (-\alpha x) d x . \tag{B26}
\end{equation*}
$$

We have $F_{s, k}^{l l}=K_{s, s, k}$ and

$$
\begin{align*}
& K_{s, r, k}=K_{s+1, r-1, k}+2 K_{s, r-1, k} \tag{B27}\\
& K_{s, 0, k}=K_{s+1,0, k-1}+2 K_{s, 0, k-1} \tag{B28}\\
& K_{k, 0,0}=\alpha^{-k-1} \exp (-\alpha) \int_{0}^{\alpha(\xi-1)} x^{k} \exp (-x) d x \tag{B29}
\end{align*}
$$

The right-hand side of Eq. (B29) can be computed easily by various methods. In this work the integral

$$
\begin{equation*}
\int_{0}^{z} x^{k} \exp (-x) d x \tag{B30}
\end{equation*}
$$

was computed for $z \leqslant 1$ and $k=k_{\text {max }}$ by a Taylor expansion of $\exp (-x)$ and then a downward recurrence for smaller k was performed. For larger z the formula

$$
\begin{align*}
\int_{0}^{n+\varepsilon} & x^{k} \exp (-x) d x \\
\quad= & \int_{0}^{n} x^{k} \exp (-x) d x+\exp (-n) \\
& \times \sum_{j=0}^{k}\binom{k}{j} \int_{0}^{\varepsilon} x^{j} \exp (-x) d x \tag{B31}
\end{align*}
$$

was used repeatedly. Thus, using Eqs. (B29)-(B24) backwards, we get $F_{s, k}^{l, m}$, and the functions G_{i}, Eq. (B21), are

$$
\begin{equation*}
G_{i}^{k, m}=F_{(m / 2), k}^{l m}\left(\alpha_{i}, \xi\right)\left[C_{l-m}^{p+m}(\xi)\right]^{-1} . \tag{B32}
\end{equation*}
$$

This completes the evaluation of the integrands in Eq. (B20) because for $\xi \geqslant 1$ the Gegenbauer polynomials $C_{n}^{v}(\xi)$ can be readily obtained from Eq. (B23).

APPENDIX C: EVALUATION OF THE L^{μ} INTEGRALS

When ρ is expressed in elliptic coordinates one gets for even powers:

$$
\begin{align*}
\rho^{2 n}= & \sum_{k=0}^{n} w_{k}\left[\left(\xi_{1}^{2}-1\right)\left(\xi_{2}^{2}-1\right)\left(1-\eta_{1}^{2}\right)\right. \\
& \left.\times\left(1-\eta_{2}^{2}\right)\right]^{k / 2} \cos (k \varphi), \tag{C1}
\end{align*}
$$

with w_{k} being polynomials in ξ_{i}, η_{i}. Therefore, for $\mu-$ even the only term in Eq. (C1) that contributes to Eq. (21) is w_{0} and for μ-odd one can use Eq. (C1) and the expansion

Eq. (22) for ρ^{-1}, i.e., for $p=1 / 2 . C_{m}^{p-(1 / 2)}(\cos \varphi)$ reduces to $\cos (m \varphi)$ which makes the φ integration trivial and $L^{2 n-1}$ is expressed as

$$
\begin{equation*}
L^{2 n-1}=\sum_{l=0}^{\infty} \sum_{m=0}^{n} L_{l, m} . \tag{C2}
\end{equation*}
$$

Because of the denominator in Eq. (21) the η_{1} integration cannot be factored out and the $L_{l, m}$ integrals are more complex than $I_{l, m}$ in Eq. (B1). However, transformations similar to Eqs. (B17)-(B20) can be carried out and $L_{l, m}$ are expressible as linear combinations of products

$$
\begin{equation*}
\bar{J}_{l, m}^{i, j}\left(\alpha_{1}, \alpha_{2}, \beta_{1}\right) B_{l, m}^{k, 2 m}\left(\beta_{2}\right) \tag{C3}
\end{equation*}
$$

with the B integral defined by Eq. (B4) and

$$
\begin{equation*}
\bar{J}_{l, m}^{i, j}\left(\alpha_{1}, \alpha_{2}, \beta_{1}\right)=-\int_{1}^{\infty}\left(\xi^{2}-1\right)^{-m-1} \bar{G}_{1}^{r, i, m}(\xi) G_{2}^{j, 2 m}(\xi) d \xi \tag{C4}
\end{equation*}
$$

$\bar{G}_{1}^{k, i s}(\xi)=\left[C_{l-m}^{m+(1 / 2)}(\xi)\right]^{-1} \int_{1}^{\xi} g_{1}^{k, 2 s}(x) h_{m, i}(x)$

$$
\begin{equation*}
\times C_{l-m}^{n+(1 / 2)}(x) d x \tag{C5}
\end{equation*}
$$

$h_{m, i}(x)=\int_{-1}^{1} \frac{f_{m, i}(y) d y}{x^{2}-y^{2}}$,
$f_{m, i}(y)=\exp \left(\beta_{1} y\right) y^{i}\left(1-y^{2}\right)^{m} C_{l-m}^{m+(1 / 2)}(y)$.
The B integrals for $p=1 / 2$ and $\beta=0$ can be computed analytically ${ }^{34}$

$$
\begin{align*}
& B_{l, m}^{k, 2 m}(0) \\
& \quad=\left\{\begin{array}{l}
\frac{2(l+m)!k!}{(l-m)!(k+l+m+1)!!(k-l+m)!(2 m-1)!!} \\
\text { if } k \geqslant l-m \text { and } k+l+m=\text { even }, \\
0 \text { otherwise. }
\end{array}\right. \tag{C8}
\end{align*}
$$

The \bar{J} integrals must be computed with some care because of the logarithmic singularity of the integrand. In this work the following computational scheme was developed. First, the function $f_{m, i}$, Eq. (C7), was approximated by a Chebyshev expansion, i.e., $h_{m, i}$ was written as

$$
\begin{align*}
h_{m, i}(x) & =\sum_{n} a_{2 n}^{m, i} \int_{-1}^{1} \frac{T_{2 n}(y) d y}{x^{2}-y^{2}} \\
& =\sum_{n} a_{2 n}^{m, i} \frac{1}{x} \int_{-1}^{1} \frac{T_{2 n}(y) d y}{x-y} \tag{C9}
\end{align*}
$$

and then the integrals with the Chebyshev polynomials were evaluated for $x>2$ by expanding the denominator in the geometric series and for $2 \geqslant x>1$ by using the Darboux formula ${ }^{13}$
$\frac{T_{n+1}(x) T_{n}(y)-T_{n}(x) T_{n+1}(y)}{x-y}=1+2 \sum_{k=1}^{n} T_{k}(x) T_{k}(y)$.
Since only even Chebyshev polynomials need be considered we use Eq. (C10) twice and write

$$
\begin{align*}
& T_{2 n+2}(x) \int_{-1}^{1} \frac{T_{2 n}(y) d y}{x-y} \\
& \quad=T_{2 n}(x) \int_{-1}^{1} \frac{T_{2 n+2}(y) d y}{x-y} \\
& \quad+4 x\left[1-2 \sum_{k=1}^{n} \frac{T_{2 k}(x)}{4 k^{2}-1}\right], \quad x>1 . \tag{C11}
\end{align*}
$$

The downward recurrence is always stable but one must start with a high n if x is very close to 1 . However, in such a case the forward recurrence is also stable. Therefore for $x<1.004$ we used Eq. (C11) for increasing n. Otherwise, the downward recurrence was started at $n=n_{\text {max }}$ assuming vanishing of the integral for $n=n_{\max }+2$.

To avoid inaccuracies due to the logarithmic singularity in \bar{G}, Eq. (C5), we split $h_{m, i}$ in two parts:

$$
\begin{equation*}
h_{m, i}(x)=h_{m, i}^{0}(x)-\frac{1}{x} f_{m, i}(x) \log (x-1) \tag{C12}
\end{equation*}
$$

$h_{m, i}^{0}$ is regular and the contribution of the second term in Eq. (C12) to the integral in Eq. (C5) can be evaluated according to the scheme:

$$
\begin{align*}
& \int_{1}^{\xi} \log (x-1) \Phi(x) d x \\
& \quad=\log (x-1) \int_{1}^{\xi} \Phi(x) d x-\int_{1}^{\xi} \frac{d y}{y-1} \int_{1}^{y} \Phi(x) d x \tag{C13}
\end{align*}
$$

In consequence the integral \bar{J}, Eq. (C4), has the general form
$\bar{J}_{l, m}^{i, j}=-\int_{1}^{\infty} \frac{G_{2}^{j, 2 m}}{\left(\xi^{2}-1\right)^{m+1}}\left[\log (\xi-1) G_{11}(\xi)+G_{12}(\xi)\right] d \xi$
with both G_{11} and G_{12} being regular at $\xi=1$. The final integration was performed independently in the $\left[1, z_{0}\right]$ and $\left[z_{0}, \infty\right)$ intervals. In the latter case the transformation $\xi=t^{-1}$ was performed to make the interval finite and all integrals were evaluated by Simpson's rule; for the singular part the quadrature formula contained the appropriate weight.

In the final computations $z_{0}=1.4$ and up to 160 integration points in each interval were used.

[^1]${ }^{10}$ W. Kolos and J. Rychlewski, J. Chem. Phys. 98, 3960 (1993).
${ }^{11}$ H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and TwoElectron Atoms (Springer-Verlag, Berlin, 1957).
${ }^{12}$ L. Wolniewicz, Acta Phys. Polon. XXII, 3 (1962).
${ }^{13}$ M. Abramowitz and A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
${ }^{14}$ K. Rüdenberg, J. Chem. Phys. 19, 1459 (1951).
${ }^{15}$ W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967).
${ }^{16}$ J. Rychlewski, Mol. Phys. 41, 833 (1980).
${ }^{17}$ D.M. Bishop and L.M. Cheung, J. Chem. Phys. 69, 1881 (1978).
${ }^{18}$ L. Wolniewicz and K. Dressler, J. Chem. Phys. 88, 3861 (1988).
${ }^{19}$ K. Dressler and L. Wolniewicz, J. Chem. Phys. 82, 4720 (1985).
${ }^{20}$ R. Bukowski, B. Jeziorski, R. Muszyíski, and W. Kołos, Int. J. Quantum Chem. 42, 287 (1992).
${ }^{21}$ J.W. Cooley, Math. Comput. 15, 363 (1961).
${ }^{22}$ L. Wolniewicz, J.Chem. Phys. 78, 6173 (1983).
${ }^{23}$ I, Dabrowski, Can. J. Phys. 62, 1639 (1984).
${ }^{24}$ D.K. Veirs and G.M. Rosenblatt, J. Mol. Spectrosc. 121, 401 (1987).
${ }^{25}$ D.E.Jennings and J.W. Brault, J. Mol. Spectrosc. 102, 265 (1983).
${ }^{26}$ S.L. Bragg, J.W. Brault, and W.H. Smith, Astrophys. J. 263, 999 (1982).
${ }^{27}$ D.E.Jennings, A. Weber, and J.W. Brault, Appl. Opt. 25, 284 (1986).
${ }^{28}$ A.R.W. McKellar and T. Oka, Can. J. Phys. 56, 1315 (1978).
${ }^{29}$ Mei-Chen Chuang and R.N. Zare, J. Mol. Spectrose. 121, 380 (1987).
${ }^{30}$ A. Balakrishnan, V. Smith, and B.P. Stoicheff, Phys.Rev.Lett. 68, 2149 (1992).
${ }^{31}$ W.C. Stwalley, Chem. Phys.Lett. 6, 241 (1970).
${ }^{32}$ C. Jungen, I. Dabrowski, G. Herzberg, and M. Vervloet, J. Mol. Spectrosc. 153, 11 (1992).
${ }^{33}$ J.M. Gilligan and E.E. Eyler, Phys. Rev. 46, 3676 (1992).
${ }^{34}$ I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1980).

[^0]: ${ }^{2}$ From Ref. 24.
 ${ }^{b}$ From Ref. 27.
 ${ }^{\text {ch }}$ From Ref. 28.

[^1]: ${ }^{1}$ W. Kolos and L. Wolniewicz, J.Chem. Phys. 41, 3663 (1964).
 ${ }^{2}$ C. Schwartz and R.J. Le Roy, J. Mol. Spectrosc. 121, 420 (1987).
 ${ }^{3}$ W. Kolos, K. Szalewicz, and H.J. Monkhorst, J. Chem. Phys. 84, 3278 (1986).
 ${ }^{4}$ J.D. Garcia, Phys. Rev. 14, 66 (1966).
 ${ }^{5}$ D.M. Bishop and L.M. Cheung, J. Phys. B 11, 3133 (1978).
 ${ }^{6}$ W. Kolos and L. Wolniewicz, J. Chem. Phys. 45, 509 (1966).
 ${ }^{7}$ W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, England, 1986).
 ${ }^{8}$ L. Wolniewicz and K. Dressler, J. Chem. Phys. 82, 3292 (1985).
 ${ }^{9}$ See AIP document no. PAPS JCPSA-99-1851-21 for 21 pages of tables. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 500 Sunnyside Boulevard, Woodbury, New York 11797-2999. The price is $\$ 1.50$ for each microfiche (60 pages) or $\$ 5.00$ for photocopies of up to 30 pages, and $\$ 0.15$ for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.

