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Relativistic corrections, Born-Oppenheimer energies and adiabatic corrections are computed for 
R < 12.0 bohr for the electronic ground state of the hydrogen molecule. The Born-Oppenheimer 
potential is slightly lower than ever reported. The problem of linear dependencies in the basis set 
is removed and the same set is used for all internuclear distances which assures continuity of the 
results. The radiative corrections are evaluated approximately and-for that purpose-the 
polarizability of the molecule is also computed. Vibrational energies are computed and- 
corrected for nonadiabatic effects-compared with experiment for several isotopes. It is argued 
on the basis of the remaining discrepancies that an improvement in the ab initio nonadiabatic 
corrections is necessary. 

I. INTRODUCTION 

This work was undertaken in order to evaluate the 

relativistic corrections to the ground state potential energy 

curve of the hydrogen molecule with an accuracy compa- 

rable with that of the Born-Oppenheimer energies and in a 

wide range of internuclear distances. New results for these 

corrections are desirable both from the aesthetic and prac- 
tical points of view. The existing results for the relativistic 

corrections,’ used in most comparisons of theoretical and 

experimental energies of the molecule (see e.g., Refs. 2 and 

3 ) , were calculated almost thirty years ago. The wave func- 

tion employed then was not suitable for larger internuclear 

distances and the corrections were computed only for in- 

ternuclear distances R < 3.7 a.u. and with an accuracy 
deteriorating with increasing R. Such a situation is cer- 
tainly very unsatisfactory from the theoretical point of 

view and there is a demand for new, more reliable results. 

The general outline of the computations is given in Sec. 
III A and more technical details in the appendices. 

For the hydrogen molecule the lowest order relativistic 
corrections to the binding energy’ are not much larger than 
the lowest order radiative corrections.4 Therefore, for con- 

sistency, the latter must also be included in the theoretical 
energies. They can be estimated fairly accurately4J5 on the 
basis of the relativistic corrections, if some additional in- 
formation is available. To get this information it is neces- 

sa$ to compute the adiabatic corrections and also the 

polarizabilities. 
Finally, to compute all the corrections accurately one 

needs an electronic wave function that is both flexible and 

continuous with respect to the internuclear distance. In an 
attempt to find such a function, using the results of Ref. 3, 
we have constructed an algorithm that is free of disconti- 
nuities because the same basis set is used for all intemu- 
clear distances. The construction and the results of the 
Born-Oppenheimer computations are described in the sub- 
sequent section. 

Atomic units are used throughout unless otherwise 
stated. When wave numbers are used the conversion factor 

is 1 hartree=219 474.631 cm-‘. 

II. THE BORN-OPPENHEIMER ELECTRONIC 
ENERGIES AND WAVE FUNCTIONS 

The general form of the wave function used in this 
work is that developed in Ref. 6, i.e., the function is as- 
sumed in the form of an expansion in elliptic coordinates of 
the two electrons denoted below by 1 and 2: 

Y= &,Gj(l,2), (1) 
i 

where i stands for vi, ri, si, 5, q and 

G$i 192) =gi( 132) +gi(%l), (2) 

g v,r,s,~d 12 I= exp ( -ah - Gi) ~Yh%2rlS; 

X{exp(~~l+$~z)+(-l)S+” 

Xew(-Prll-h)l, (3) 

cj,qj are the elliptic coordinates of the two electrons, 
p=-2rl,/R, r12 is the interelectronic distance and ci, o, c??, 
fl, p are variational parameters. Thus the basis set is de- 
fined by the set of exponents vi, ri, Sip 5, q. 

The best energies and wave functions of the ground 
state published so far are those obtained by Kolos et aL3 
who used a 249 term expansion of the form Eq. ( 1) , with 
carefully selected terms, for 0.2 a.u. < R < 4.8 a.u. and a 
72 term expansion for 4.8 < R < 12.0. The shorter, 72 term 
basis contains 30 terms that are not present in the 249 term 
basis. This results in a slight discontinuity in the vicinity of 
R =4.8. To avoid this it is only natural to combine the two 
sets and diagonalize the Hamiltonian for all internuclear 
distances in the space spanned by the N=279 basis func- 
tions. However because of finite computer precision the 
dimension of the space spanned by the N function is- 
from the numerical point of view - less than N and there- 
fore the attempt made in Ref. 3 to use the augmented set 
failed because of numerical instabilities. 

The policy adopted in this work is to use the whole 
space spanned by the 279 functions of Ref. 3, determine at 
each internuclear distance its dimension, k(R), and then 

solve the eigenvalue problem in an orthonormal basis. This 
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goal can be achieved via a singular value decomposition 
(see, e.g., Ref. 7) of the overlap matrix S with elements 

sik=(Gil G/c)* (4) 

The decomposition is 

S=UDUT (5) 

where D is a diagonal matrix formed by the eigenvalues 
Dj of S and U is an orthogonal matrix whose columns are 
the eigenvectors of S. In the following we will assume that 
the Dj are arranged in a descending order. 

If the basis is almost linearly dependent a threshold, 
E, must be introduced’ and the dimension of the space, k, 

is defined as the number of eigenvalues, Dj, satisfying 
Dj > E. The orthonormal basis is 

Fs=( l/ @s) 2 Giuis, s= l,.Y,k (6) 
i=l 

with Vi* being matrix elements of U. 
Thus for each internuclear distance we perform the 

singular value decomposition Eq. (5), determine the di- 
mension of the space k(R) and construct a Hamiltonian 
matrix, II, in the orthonormal basis Eq. (6). The final 
eigenvalue problem 

Ha=Ea (7) 

can be solved by any standard library routine to yield the 
desired eigenvalue and the corresponding eigenfunction 

Y= C Us. 

Eq. (8) can then be transformed to the original basis, Eq. 
( l), with the aid of Eq. (6). The coefficients ci are then 
given by 

k 

Cj= 2 (l/a) vi@s* 
s=l 

(9) 

The concrete value of the parameter E depends somewhat 
on the problem and certainly on the accuracy of the nu- 
merical integration of the matrix elements of S and H. In 
this work the integrals were evaluated very accurately by 
the method described in Ref. 8. Previous experience has 
shown that too small an E can result in a spurious eigen- 
value of Eq. (7)-below the correct lowest eigenvalue. 
Therefore in the program a test for the spurious eigenvalue 
is performed. When a spurious eigenvalue occurs E is mul- 
tiplied by 4, the dimension of the problem reduced accord- 
ingly, and the Hamiltonian diagonalized again. This pro- 
cess is repeated until the spurious eigenvalue disappears. 

For the ground state computations this test was super- 
fluous and all diagonalizations with E = lo-l2 were suc- 
cessful. Test computations performed with E = lo- ” re- 
sulted in energies that were higher by amounts less than 
0.001 cm-‘. 

The exponents vi, ri, Si, 3, & of the 279 different basis 
functions are given in Ref. 3. These basis functions were 
used with one exception viz. the parameters (v,r,s,C$ 
= (13111) corresponding to the i= 102 basis function in 
Ref. 3 were inadvertently replaced -by (v,r,s,Cfl 
= (03 111) and this function was used in all computations. 

TABLE I. Nonlinear parameters as defined by Eq. (3) optimized for 

large R. 

R a a s D 

4.8’ 3.122 2.962 1.885 -0.121 
6.0 3.803 3.456 2.821 -0.955 
8.0 4.597 4.293 3.240 - 1.949 

12.0 5.968 5.971 4.254 -5.590- 

aFrom Ref. 3. 

The optimized nonlinear parameters for both the 249 and 
72 term functions are also listed in Ref.. 3 for all relevant 
internuclear distances. In the present computation we use 
these parameters for R < 4.8 a.u. For larger internuclear 
distances the parameters were reoptimized at R=6, 8 and 
12 a.u. but not very accurately, because with the full basis 
set used the optimization had a negligible effect on the 
energy; the improvement was 0.001 - 0.002 cm-‘. In Table 
1 the optimized parameters are listed together with the 
Kolos et aL3 values for R=4.8. These numbers were used 
as input for linear interpolation of the parameters for other 
internuclear distances R > 4.8. 

The final energies were computed at 670 different in- 
ternuclear distances in the interval 0.2 < R g 12.0 a.u. The 
complete listing of the results can be found in Ref. 9 and 
some of them, viz. those for the same internuclear dis- 
tances as in Ref. 3, are listed in Table II. In column 5 a 
comparison with Ref. 3 is made and we list the improve- 
ment in the binding energy. As expected, the differences 
are small but systematic and reach the maximum at 
R=4.8, the point of discontinuity of the two functions 
used in Ref. 3. The irregularities in column 5 are of the 
order of 0.0001 cm:’ which proves high numerical accu- 
racy of both computations. 

The dimension of the space spanned by the 279 basis 
functions, k(R), is also listed in the table. It shows how 
smoothly the singular value decomposition works. It 
should be kept in mind, however, that k(R) is not uniquely 
defined. If a larger threshold, E were used the resulting 
dimensions would be less than those given in the table. 

When this computation was complete the author be- 
came aware of the most recent results obtained by Kofos 
and Rychlewski” with a 155 term basis function for 
3.2 < R < 7.2 a.u. The present improvement over those 
results is shown in column 6. The 155 term function used 
in Ref. 10 contains 66 terms that are not included in our 
279 term function. To estimate the accuracy of the present 
results these terms were added to our basis set yielding a 
345 term basis and a few test computations were per- 
formed. For R = 1.4 the energy improvement amounted to 
0.0017 cm-’ and for R=4.8 a.u. to 0.003 cm-‘. This 
shows that at some internuclear distances the present en- 
ergies are still at least a few thousandths of a wave num.ber 
above the exact eigenvalues. 

The wave function described above was used for the 
Born-Oppenheimer energy computations only. All correc- 
tions to the energy were computed with slightly less accu- 
rate functions. Both the relativistic and also the adiabatic 
corrections require more primitive integrals than the en- 
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TABLE II. Born-Oppenheimer total, E, and binding , D, energies. 

R E (ax.) dE/dR D (cm-‘) AKSM AKR WY 

0.20 2.197803500 
0.30 0.619241793 

0.40 -0.120230242 
0.50 -0.526638671 
0.60 -0.769635353 

0.80 - 1.020056603 

0.90 -1.083643180 
1.00 - 1.124539664 
1.10 - 1.150057316 

1.20 -1.164935195 
1.30 - 1.172347104 
1.35 - 1.173963683 
1.40 -1.174475671 

1.45 - 1.174057029 
1.50 - 1.172855038 
1.60 - 1.168583333 

1.70 - 1.162458688 

1.80 - 1.155068699 

2.M) -1.138132919 
2.20 - 1.120132079 

2.40 - 1.102422568 

2.60 - 1.085791199 
2.80 - 1.070683196 

3.00 - 1.057326233 

3.20 - 1.045799627 

3.40 - 1.036075361 
3.60 - 1.028046276 

3.80 - 1.021549766 

4.00 - 1.016390228 

4.20 - 1.012359938 
4.40 - 1.009256497 

4.60 - 1.006895204 

4.80 - 1.005115986 
5.00 - 1.003785643 
5.20 - 1.002796804 

5.40 - 1.002065047 
5.60 - 1.001525243 
5.80 -1.OQ1127874 

6.00 - l.OCO835702 
6.20 - 1.000620961 
6.40 - l.OCO463077 
6.60 - 1.000346878 
6.80 - 1.000261213 

7.00 - 1.000197911 
7.20 -1.cCO150992 

7.443 - 1.cOO116086 
7.60 - 1.OOOo9ooo1 
7.80 - l.cO3070408 
8.00 - 1.000055603 
8.50 - 1.000032170 

9.00 - l.OQOO19780 
9.50 - l.oooO12855 

10.00 - 1.OOCQO8754 
11.00 - 1.000004506 
12.00 - l.OOOW2546 

-24.180197887 
- 10.187637040 

-5.305861648 
- 3.077056097 

- - 1.896166679 
. . -0.783390022 

-0.507358751 
-0.322465093 
-0.195627390 
-0.107128301 

-0.044692489 
-0.020655973 
-0.000401370 

0.016657780 
0.03 1005965 
0.053112570 
0.068410937 
0.078666877 

6.088792883 
0.090118877 

0.086338578 

0.079613967 
0.071281882 
0.062224970 

0.053066758 

0.044267199 
0.036161105 
0.028968843 ’ 

0.022801202 

0.017671470 
0.013517480 
0.010229046 

0.007674072 
0.005718654 
0.004239826- 

0.003131734 
0.002307305 
0.001697195 
O&U247477 
0.000916928 
0.000674438 
0.000496757 
0.000366631 

O.ooO271323 
0.cOO201473 
0.000150220 
0.000112546 
O.OCOO84791 
O.WOO64284 
0.000033217 

O.COOO18095 
0.000010435 
0.000006370 
O.OOOOO2750 
O.OQOOO1366 

-701836.743 0.0018 
-355382.495 O.OQll 

- 193087.143 o.OcKl9 
- 103890.803 0.0007 
-50559.196 o.ooo9 

-4401.916 0.0011 
18357.556 o.om9 

27333.297 0.0009 
32933.774 0.0009 
36199.091 o.cm9 
37825.817 o.ooo9 
38180.615 0.0011 
38292.984 0.0007 
38201.102 o.OcO7 

37937.296 o.ooo9 
36999.765 0.0007 
35655.561 0.0009 
34033.645 ~o.ooo9 
30316.671 0.0013 
26365.944 I 0~0022 
22479.155 0.0033 

18828.992 0.0050 
15513.168 0.0081 
12581.654 0.0127 
10051.856 0.0184 

7917.627 0.0270 
6155.446 0.0364 
4729.627 0.0481 

I 3597.239 0.0608 
2712.693 0.0724 
2031.566 0.0856 
1513.322 0.0996 

1122.829 0.1126 
830.853 0.0963 
613.828 0.0799 

453.225 0.0658 
334.752 0.0542 
247.540 0.0446 
183.415 0.0367 
136.285 0.0298 
101.634 0.0244 
76.131 0.0198 
57.330 0.0160 
43.436 0.0129 
33.139 0.0105 
25.478 0.0086 
19.753 0.0068 
15.453 0.0057~ 

12.203 0.0046 
7.060 o.od29 
4.341 0.0015 
2.821 O.CKlO9 
1.921 o.cOO2 
0.989 0.0002 
0.559’ O.OOiM 

274 
274 

276 

274 
276 
276 

276 

276 
276 
276 

277 
277 
277 
277 
277 

277 
277 

277 

277 
278 
278 

278 

278 
278 

0.014 278 

0.012 278 
0.010 278 
0.008 278 
0.006 278 
0.005 278 
0.004 278 
0.002 278 

0.001 278 
0.002 278 
0.002 278 
0.002 278 
0.003 278 
0.004 278 
0.004 277 
0.005 278 
0.007 277 
0.007 277 
0.008 275 
0.008 277 
0.009 275 

272 
272 
271 
266 
265 
253 
249 
223 
216 
201 

‘The threshold E= 10-l’. 

ergy computations alone. Therefore to economize some- 
how the computations by reducing the number of integrals 
the basis set was slightly confined. 

The decisive factor that determines the number of in- 
tegrals is 

K,,=maxi(Yi+max(ri,s,~~,s7i)). (10) 

In the 279 term basis there are 17 terms giving K,, 
= 6. These terms were omitted which resulted in a 262 

term basis. The energies obtained in this basis differ by 
thousandths of a wave number from those in Table II. 
Therefore one can claim that the wave function in the 262 
term basis is almost as accurate as that in the 279 term 
basis. 
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III. CORRECTIONS TO THE BORN-OPPENHEIMER 
ENERGY 

All corrections that we will briefly describe in this sec- 
tion were computed in the 262 term basis described at the 
end of the preceding section. The relativistic, adiabatic and 
radiative corrections are related in this work in two ways. 
First, the integrals necessary for the relativistic corrections 
allow also the construction of the relevant matrices in the 
adiabatic correction computations and in the energy com- 
putations in the extended, 279 term basis. Next, the ap- 
proximate radiative corrections can be computed by a 
method originally given by Garcia4 if one uses as input, 
among others, some terms encountered either in the rela- 
tivistic or in the adiabatic corrections. This computation 
can be made more reliable’ if one uses in addition the full 
information that one gets while computing the polarizabil- 
ity of the system. Therefore the polarizability was recom- 
puted in this work. 

A. Lowest order relativistic corrections to the 
electronic energy 

The relativistic theory of two electrons in external 
fields is presented in great detail in Ref. 11, where it is 
shown that if Y and E are the solutions of the nonrelativ- 
istic Schrijdinger equation 

(-f A&AZ+ V-E)Y=O (11) 

then, for a singlet state and Y real, the relativistic correc- 
tions can be computed from the formulas 

&el=E1+E2+%+% (12) 

with 

El =a2 

II 

(A1Y)A2Y d+2+E~ YVY do. 

-;J YPY dr\, (13) 

1 
E2=- a2 

2 I 
Yr~‘[V~V2+~~zr~2(r~2v~)V21~ dr, (14) 

1 
E4=- a2 

8 s 
Y[AlV+A2V]Y dr, (15) 

es = 2rra2 
s 

YS(3)(r,2)Y d7. (16) 

Above a is the fine structure constant and the indices at the 
various corrections ei correspond to the various parts of the 
Hamiltonian in Ref. 11. For the hydrogen molecule Eq. 
(15) reads 

e4=?ra2 
J- 

Y[2S(3)(rl,)--6(3)(r12)]Y dr. (17) 

I 

The difficult part is the evaluation of e1 and e2. It is 
seen that the integrand in Eq. ( 14) behaves like rG* when 

r12 + 0 and so, because of the volume element, the region 
around r12 = 0 gives no contribution to the integral. Still, 
with the function defined by Eqs. (l)-(3), Eq. (14) leads 
to primitive integrals with second and third inverse powers 
of r12. The first and last terms of Eq. (13) produce also 
second inverse powers of the interelectronic distance and in 
these cases the integrand has a rG2 pole. Following Ref. 1 
we transform such integrals by using the relation 

s rz2j dT= I r;i2rlzV1fd 7, r12=r2-rl, (18) 

to a form with an rG’ singularity. 
In addition to these integrals the last term in Eq. (13) 

leads to integrals with rG2 in the integrand. So in order to 
evaluate the relativistic corrections we need, beside the in- 
tegrals needed for the nonrelativistic problem, three new 
types of integrals. When expressed in elliptic coordinates 
these integrals have the form 

I-+= 
I 

exP( --al~l-a2~2+Plrll+P2r/2) 

xP‘wI”-‘dh ds; drll drlz dm +a (19) 

with p = 2,3 and v being polynomials in ci,qi satisfying 

lim vrGP< CO, (201 
r12+0 

and 

Jy= 
s exp(--al~l--2~2+fPlrll+Pz?l2) 

x 
PTmF2rlF2 

gi-rlT dCl db drll ha da dm 

/Q-l. (21) 

To reduce the dimension of the integrals the generalized 
Neumann expansion” is used 

x~~~~~z~c,~-~*‘~~(cosQ)~, p>o, (22) 

where q are Gegenbauer polynomials (see, e.g., Ref. 13), 

9 = 91 - 92, iZ+ = maxGd22), L = minG1,C2‘2), 

D;(lJ=q(g) j-’ (x2-l)-“--(1’2)[c(x)]-2dx, 
cn 

(23) 

and 

r(2p- 1) [lT(p+m) 12(z-mu+p) (@+2m- 1) 
d[,(p) = -22m+1 

[r@)12r(2p+l+nd (24) 
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Originally this expansion was derived for p#1/2 but it is 
shown in Appendix A that for p- l/2 Eq. (22) goes over 
into the well known (see, e.g., Ref. 14) Neumann expan- 
sion and so it can be used for all p > 0. 

The integrals Eqs. ( 19) and (21) differ-from the 
computational point of view-essentially from their coun- 
terparts in Ref. 1 by the exponential Ti dependence of the 
integrands. The evaluation of the I integrals, detailed in 
Appendix B, is more involved but similar to what was done 
in Ref. 1. For the L integrals, however, an entirely new 
algorithm must be used to yield accurate results. It is de- 
scribed in Appendix C. 

When the expansion Eq. (22) is used in Eq. (19) one 
gets a series 

I= x1;. (25) 
l 

In some cases - depending on the form of w” - Eq. (25) 
is an alternating series and therefore, following Ref. 1, we 
write 

St= &s (26) 

I= lim SL~~(SL,,+~SL,,+~+~SL,,,+~+SL,~+~) 
L-00 

(27) 

with L,, fixed. In this work we found that L,,=65 

assures sufficient accuracy. It should be pointed out, how- 
ever, that the individual integrals Eq. (19) converge slowly 
with I and for some of them a definitely longer expansion 
would be required. Fortunately the expectation values Eqs. 
(13) and (14) are much less sensitive. 

For several internuclear distances the corrections were 
computed additionally with L,,,=85 and it was found 
that the final results were affected by less than 0.001 cm-‘. 
However for large R e2 is sensitive to the expansion length 
but then it is so small that it has no effect on the final 
result. 

The computed corrections are listed in Table III. A 
comparison with earlier work’ is made in column 3 where 
the differences, the present minus old results, are listed. 
The differences are indeed very small which shows that the 
corrections can be computed fairly accurately already with 
a not very long expansion because in Ref. 1 only 54 terms 
and one nonlinear parameter were used. This observation 
might be useful when corrections for other states will be 
computed. 

B. Adiabatic corrections 

All relevant formulas for the computation of adiabatic 
corrections for the hydrogen molecule are given in Ref. 1 
and there is no need to repeat them here in any detail. The 
corrections are 

E;= -&,L E;= -&,+v,VA (28) 

where p is the reduced mass of the nuclei and the brackets 
denote expectation values computed with the electronic 
wave function. 

The evaluation of Ei requires the first derivatives of the 
electronic function with respect to the internuclear dis- 
tance R. As compared with the formulas in Ref. 1 these 
derivatives are slightly affected by the fact that in conse- 
quence of the singular value decomposition the coefficients 
Ci in Eq. ( 1) are not independent. It is easiest to compute 
the derivatives in the orthonormal basis and then trans- 
form to the original basis. While doing so we will assume, 
as in most earlier work, that for the purpose of computing 
the derivatives - at a given R - one can treat the non- 
linear parameters as constants in the neighborhood of R. 

This is a reasonable assumption because infinitesimal 
changes in the nonlinear parameters can be absorbed by 
infinitesimal changes of the linear parameters. This was 
demonstrated already in Ref. 1 for a 54 term function and 
when the number of terms increases the absorption be- 
comes even more complete. 

With the above assumption the basis, when expressed 
in elliptic coordinates, is R independent and the only R 

dependence of the overlap matrix comes from the volume 
element. The S and H matrices can now be written in the 
neighborhood of R: 

/a\‘3 
s=[J so, 

(30) 

with So, To, Vs-constant matrices. If we omit the 
(R/2)6 factors in all matrices, the transformation to the 
orthonormal basis becomes R independent and the eigen- 
value problem Eq. (7) now reads 

(Ha-E)a=O, (31) 

/-\6 

(32) 

By differentiating and using Eq. (30) we get the equations 
for the derivatives: 

and 

da 326 
a-z=-z x . 

0 
(34) 

These equations yield the derivatives in the orthonormal 
basis. Those in the original basis, Eqs. (l)-(3), are given 
via the transformation Eq. (9): 

g= s$l (l/Jz)tik2. (35) 

With the coefficients ci and their derivatives given the 
adiabatic corrections can be computed in the original basis 
exactly as in Ref. 1. The results for the Hz molecule are 
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TABLE III. Lowest order relativistic corrqctiqns to the total energy, Era, and to the binding energy, AD,,, .a 

R E rel A old WeI El E2 E4 Es 

0.20 -15.1951 
0.30 - 11.7233 
0.40 -9.1548 
0.50 -7.3012 
0.60 -5.9559 
0.80 -4.2463 
0.90 -3.7027 
1.00 -3.2915 
1.10 -2.9772 

1.20 -2.7356 
1.30 -2.5490 
1.35 -2.4721 
1.40 -2.4046 
1.45 -2.3452 
1.50 -2.2932 
1.60 -2.2080 
1.70 -2.1438 
1.80 -2.0969 
2.00 -2.0436 
2.20 -2.0317 
2.ql -2.0507 
2.60 -2.0932 

2.80 -2.1536 
3.00 - 2.2270 
3.20 -2.3083 
3.40 -2.3925 
3.60 -2.4753 

3.80 -2.5528 
4.00 -2.6225 
4.20 -2.6829 

4.40 -2.7335 
4.60 -2.7749 
4.80 -2.8080 
5.00 -2.8340 
5.20 -2.8543 
5.40 -2.8699 
5.60 -2.8818 
5.80 -2.8910 

6.00 -2.8979 
6.20 -2.9032 
6.40 - 2.9072 
6.60 -2.9102 
6.80 -2s9126 
7.00 -2.9143 
7.20 -2.9157 
7.40 -2.9168 
7.60 -2.9176 
7.80 -2.9182 
8.00 -2.9187 
8.50 -2.9196 
9.00 -2.9198 
9.50 -2.9198 

10.00 -2.9201 
11.00 -2.9201 
12.00 -2.9208 
co -2.9218 

-0.043 
-0.021 

-0.014 

lo.010 
-0;OOS 
-0.007 
-0.007 
-0.006 
-0.005 
,0.005 

-0.004 
-0.003 
-0.003 
-0.cQ3 

0.027 

12.2731 
8.8013 
6.2328 
4.3792 
3.0339 
1.3243 
0.7807 
0.3695 
0.0552 

-0.1864 
-0.3730 
-0.4499 
-0.5174 
-0.5768 
-0.6288 
-0.7140 
-0.7782 
-0.8251 
-0.8784 
-0.8903 
-9.8713 
-0.8288 
-0.7684 
-0.6950 
-0.6137 
-0.5295 
-0.4467 
-0.3692 
-0.2995 
-0.2391 
-0.1885~ 
-0.1471 
-0.1140 
-0.0880 
-0.0677 
-0.0521 
-0.0402 
-0.0310 
-0.0241 
-0.0188 
-0.0148 
-0.0118 
-0.0094 
-0.0077 
-0.0063 
-0.0052 
-0.0044 
-0.0038 
-0.0033 
-0.0024 
-0.0022 
- 0.0022 
-0.0019 
-0.0019 
-0.0012 

i 

-8.639009 -0.128035 6.891930 0.574957 
-6.903827 -0.118897 5.517251 0.502379 
-5.616234 -0.109180 4.508715 0.433379 
-4.656698 -0.100415 3.760294 0.372096 

-3.932214 -0.091868 3.195053 0.319420 
-2.944129 -0.077003 2.420760 0.237045 
- 2.60248 1 -0.070758 2.151164 0.205255 
-2.329146 -0.065149 1.934270 0.178395 
-2.107976 -0.060099 1.757713 0.155617 
- 1.927258 -0.055542 1.612498 0.136230 
- 1.778361 -0.051413 1.492029 0.119645 
- 1.713768 LO.049496 1.439484 0.112254 
- 1.654850 -0.047666 1.391376 0.105394 
- 1.601041 -0.045918 1.347272 0.099019 
- 1.551848 -0.044247 1.306791 0.093087 
- 1.465621 -0.041116 1.235406 0.082410 
- 1.393279 -0.038240 1.174980 0.073104 . 
- 1.332552 -0.035581 1.123761 0.064954 
-1.239131 -0.030821 1.043636 0.051459 
-1.174835 -0.026669 0.986810 0.040856 
-1.132669 -0.022989 0.947786 0.032409 
-1.107720 -0.019684 0.922695 0.025604 
-1.096302 -0.016685 0.908630 0.020085 
-1.095399 -0.013980 0.903224 0.015600 
-1.102360 -0.011533 0.904418 0.011965 
-1.114762 -0.009338 0.910336 0.009049 
-1.130395 -0.007417 0.919273 0.006740 
-1.147363 -0.005769 0.929755 0.004946 
-1.164166 -0.004395 0.940590 0.003579 
-1.179765 -0.003272 0.950923 0.002557 
-1.193556 -0.002372 0.960233 0.001807 
-1.205300 -0.001673 0.968278 0.001266 
-1.215012 -0.001139 0.975009 0.000881 
-1.222862 -0.000738 0.980498 O.ooO61O 
- i.229099 -o&Q445 0.984898 0.00042 1 
- 1.233987 -0.ooO234 0.988373 0.000289 
- 1.237778 -0.000088 0.991084 0.000199 
- 1.240695 0.000015 0.993182 0.000136 
- 1.242925 O.COC082 0.994792 o.OOoO93 
->.244623 0.000125 0.996026 0.000064 
- 1.245912 o.OGO151 0.996967 0.000044 
- 1.246888 O.coO166 0.997680 o.oooo3o 
- 1.247626 o.ooo171 0.998224 o.WOO20 
- 1.248184 O.&O171 0.998636 0.000014 
- 1.248605 0.000167 0.998948 0.c0OO10 
- 1.248924 0.000161 0.999186 o.OfPxo7 
- 1.249165 0.000155 0.999365 o.OOOOO4 
- 1.249348 0.000148 0.999502 o.OOQoO3 
- 1.249488 @00142 0.999606 o.OOcCo2 
- 1.249710 O.ooO125 0.999773 0.000001 
- 1.249830 0.000129 0.999874 O.OQCQOfJ 
- 1.249898 o.Oco13o 0.999934 O.CQOOOQ 
- 1.249928 0.000131 0.999943 0.000000 
- 1.249966 o.OoC137 0.999977 0.000000 
- 1.249981 O.OCOO81 0.999988 0.000000 
- 1.25 0.0 1.0 0.0 

?siin a% (a.u.)=11.687 15 cm-‘. Erd and AD,, in cm-‘. 

given in Table IV. We have also included in the table in In general the differences are smooth and very small. The 
column 5 the differences of the energies obtained in the 262 discontinuities at R =3.0 and R =7.2 are certainly due to 
and 279 term bases to support the statement that the the fact that in Ref. 10 three different wavefunctions were 
shorter basis is almost as accurate as the augmented one. used for small, intermediate and large internuclear dis- 
In column 6 we give the difference of the present total tances. The large discrepancy at R=5.6 must be due to 
correction (H’) and the corresponding number, obtained some typographical error because the inspection of second 
with a less accurate function by Kolos and Rychlewski.‘” differences of the total correction in Ref. 10 shows irregu- 
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TABLE IV. Adiabatic corrections in cm-’ for H,.’ 

R G E; (H’) E--Em A KR AD s-1 

0.20 166.871 18.183 185.054 
0.30 154.574 25.998 180.572 
0.40 142.653 31.029 173.682 
0.50 131.748 34.097 165.845 
0.60 122.018 35.906 157.923 
0.80 105.878 37.498 143.376 
0.90 99.248 37.790 137.037 
1.00 93.420 37.937 131.357 
1.10 88.291 38.021 126.312 
1.20 83.770 38.095 121.865 
1.30 79.779 38.193 117.973 
1.35 11.962 38.259 116.221 
1.40 76.253 38.338 114.591 
1.45 74.647 38.434 113.080 
1.50 73.136 38.546 111.681 
1.60 70.379 38.821 109.206 
1.70 67.945 39.189 107.134 
1.80 65.799 39.635 105.434 
2.00 62.260 40.795 103.055 
2.20 59.578 42.313 101.891 
2.40 57.616 44.167 101.782 
2.60 56.263 46.303 102.566 
2.80 55.428 48.627 104.055 
3.00 55.023 51.007 106.03 1 
3.20 54.967 53.286 108.253 
3.40 55.175 55.312 110.487 
3.60 55.562 56.975 112.537 
3.80 56.054 58.227 114.280 
4.00 56.586 59.086 115.672 
4.20 57.109 59.619 116.728 
4.40 57.590 59.911 117.502 
4.60 58.015 60.042 118.057 
4.80 58.375 60.078 118.452 
5.00 58.672 60.062 118.734 
5.20 58.913 60.023 118.937 
5.40 59.106 59.978 119.084 
5.60 59.251 59.935 119.192 
5.80 59.375 59.897 119.272 
6.00 59.465 59.866 119.331 
6.20 59.536 59.840 119.376 
6.40 59.590 59.821 119.410 
6.60 59.631 59.805 119.436 
6.80 59.662 59.794 119.456 
7.00 59.686 59.785 119.471 
7.20 59.704 59.779 119.483 
7.40 59.718 59.774 119.492 
7.60 59.728 59.771 119.499 
7.80 59.736 59.768 119.505 
8.00 59.742 59.766 119.509 
8.50 59.752 59.764 119.516 
9.00 59.757 59.763 119.521 
9.50 59.761 59.763 119.524 

10.00 59.762 59.763 119.525 
11.00 59.763 59.764 119.527 
12.00 59.764 59.764 119.528 
00 59.766 59.766 119.532 

0.014 
0.009 
0.005 
0.004 
OS?03 
0.002 
0.002 
0.002 

0.003 
0.003 
0.003 
0.003 
0.003 
o.od3 
0.003 
0.002 
o.cQ2 
0.002 
0.002 
0.002 
0.002 
0.001 
0.001 
0.002 
0.002 
0.002 
0.002 
0.002 
O.OQl 
0.001 
0.001 
0.000 
0.001 
0.000 
O.CKMJ 
0.000 
0.000 
0.000 
0.000 
O.OOil 
0.000 
0.000 
0.000 
O.COO 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.009 
O.OMl 
O.ooO 
O.OCHl 

-0.022 

-0.005 
-0.002 

-O.OQl 
-0.001 
-0.001 
-0.001 
-0.002 
-0.001 
-0.002 
-0.002 
-0.001 

-0.001 

-0.001 
-0.001 
-0.001 
-0.001 
-0.001 

0.000 
-0.003 
-0.003 
-0.003 
-0.003 
-0.002 
-0.002 
-0.002 
-0.002 
-0.003 
-0.002 
-O.OQl 
-0.001 

0.006 
0.000 

-O.COl 
0.000 
O.ooO 
O.CQO 
O.c!Ol 
0.002 
0.002 

-0.002 
-0.002 
-0.002 
-0.001 
-0.002 
-0.001 
-0.OQ2 
-0.003 

-0.002 

-65.524 
-61.042 
-54.152 
-46.315 
-38.393 
-23.847 
- 17.507 
-11.827 

-6.783 
-2.336 

1.557 
3.309 
4.938 
6.450 
7.848 

10.323 
12.396 
14.096 
16.475 
17.639 
17.747 
16.964 
15.475 
13.499 
11.276 
9.043 
6.993 
5.249 
3.858 
2.802 
2.028 
1.473 
1.077 
0.795 
0.593 
0.446 
0.338 
0.258 
0.198 
0.153 
0.119 
0.093 
0.074 
0.058 
0.047 
0.038 
0.031 
0.025 
0.021 
0.013 
0.009 
0.006 
0.004 
ok2 
0.001 

1.594555 
1.679684 
1.778945 
1.887913 
2.003853 
2.249981 
2.377907 
2.507944 
2.639395 
2.771619 
2.904004 
2.970069 
3.035948 
3.101564 
3.166839 
3.296045 
3.422917 
3.546775 
3.782599 
3.991627 
4.185881 
4.341801 
4.460983 
4.541041 
4.582355 
4.588380 
4.565305 
4.521053 
4.463919 
4.401333 
4.339075 
4.281023 
4.229339 
4.184872 
4.147580 
4.116908 
4.092055 
4.072144 
4.056337 
4.043876 
4.034105 
4.026480 
4.020548 
4.015947 
4.012384 
4.009629 
4.007503 
4.005861 
4.004593 
4.002543 
4.001456 
4.OCO869 
4.oc0544 
4.000245 
hlC0129 
4.0 

TV1 in a.u. 

larities in the vicinity of R = 5.6. In the last column of the gen molecule are given in detail in Refs. 15 and 16. Here 
table the expectation values S- i = 4/3 (xix2 +zlzZ + 6) are we give only the definitions to facilitate the discussion. 
included. These will be used to estimate the radiative cor- If the z axis of the coordinate system coincides with the 
rections. internuclear axis, p=rl +r, is the electronic electric dipole 

C. Polarizability 
moment operator and H, Y and E the clamped nuclei 

Hamiltonian and solution of the unperturbed Schriidinger 

All the relevant formulas concerning the evaluation of equation then the components of the polarizability tensor 

the components of the polarizability tensor for the hydro- are given by the equations 
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TABLE V. Polarizabilities for H2 in a.u. 

R al 

0.40 1.8517 
0.60 2.2823 
0.80 2.7823 
1.00 3.3405 
1.20 3.9430 

1.40 4.5764 
1.60 5.2260 

1.80 5.8760 
2.00 6.5095 

2.20 7.1088 
2.40 7.6566 

2.60 8.1371 

2.80 8.5377 
3.00 8.8509 
3.20 9.0763 
3.40 9.2194 

3.60 9.2918 
3.80 9.3092 

4.00 9.2878 
4.50 9.1599 
5.00 9.0368 
6.00 8.9224 
7.00 8.9163 
8.00 8.9319 
9.00 8.9485 

10.00 8.9612 
11.00 8.9703 

12.00 8.9769 

m 9.0 

A Rych 

-0.0023 
-0.0045 
-0.0018 
-0.0035 

-0.0022 
-0.0031 

-0.0034 
-0.0038 

-0.0040 
-0.0039 

-0.0044 

- 0.0053 
-0.0072 
-0.0084 
-0.0094 

-0.0101 
-0.0128 

-0.0159 
-0.0233 
-0.0222 
-0.0048 

0.0038 
0.003 1 
0.0015 
O.OGOl 

alI 
A Rych s-2 s-3 

1.9366 1.8800 2.18038 
2.4922 -0.0013 2.3523 3.01615 
3.2078 -0.0032 2.9241 4.12321 
4.0919 -0.m9 3.5910 5.54390 
5.1510 -0.cHlo7 4.3457 7.30593 

6.3860 -0.0013 5.1796 9.43 114 
7.7876 -0.c0O1 6.0799 11.92720 .~ 
9.3311 -0.0012 7.0271 14.77537 

10.9730 -0.0001 7.9973 17.92420 

12.6478 0.0022 8.9551 21.27252 
14.2697 0.0035 9.8610 24.67266 

15.7374 0.0027 10.6705 27.92882 

16.9460 0.0&o 11.3405 30.81636 
17.8048 0.0052 11.8355 33.11943 

0.0069 12.1363 34.67830 18.?563 
18.2909 ogl75 12.2432 35.41919 

17.9490 0.0085 12.1775 35.37695 
17.3124 0.0056 11.9769 34.68572 

16.4829 0.0059 11.6862 33.53179 
14.1826 -0.0027 10.8341 29.87322 
12.2712 -0.0043 10.1149 26.65049 
10.2021 0.0046 9.3490 23.13932 
9.4749 0.0055 9.1025 21.99492 
9.2262 0.0049 9.0300 21.64863 
9.1312 o.cQ12 9.0094 21.54706 
9.0877 0.0W6 9.0034 21.51671 
9.0636 9.OQ14 21.50704 

9.0482 9.0007 21.50353 

9.0 9.0 21.5 

for i = x,y,z and Y’ satisfying 

(H--E)Y’=,u~Y. (37) 

In this work Y was the solution obtained in the 262 term 
basis as discussed at the end of section II and - as in Ref. 
14-the solution of Eq. (36) was sought in the form of an 
expansion similar to Eq. (1) but of appropriate symmetry: 
8, and II, for the parallel and perpendicular components, 
respectively. The computation was thus a straightforward 
extension of Ref. 15. The nonlinear parameters in the ex- 
pansions for Y’ were identical with those in Y and the 
basis set was selected at the equilibrium separation R = 1.4 
a.u. To get a reasonably accurate approximation for Y’ 
terms were added to the bases used in Ref. 15. For each 
symmetry about 400 terms were tested and finally 8 1 terms 
of 8, and 70 of III, symmetry were chosen for the final 
computations. The results are given in Table V. In the last 
two columns we list 

S4=5mq fq > 

and 

(38) 

K3=3P~‘u; Iv; >+(J$ pq >I. _ (39) 

The parallel and perpendicular components correspond, 
respectively, to i=z and i=x in Eqs. (36) and (37), and in 
the third and fifth columns the differences of the present 
results and those of Ref. 16 are given. The present polar- 

izability computations were undertaken in order to get an 
estimate of S-s and highest accuracy was not required. 
Therefore it is possible that the bases for Y’ could be cho- 
sen better. However, the convergence of the polarizabilities 
with the expansion length in Y’ is rather fast. The best 
results obtained in this work for R = 1.4 with 120 and 199 
term expansions for Y; and Yi , respectively were aI 

- 6.3874. Therefore we believe that the 
;s;;~;;;J~fJli - 

aych seen in Table V are mainly due to the 
fact that in Ref. 16 a less accurate zero order function, Y, 
was used. 

D. Radiative corrections 

The radiative corrections to the electronic ground state 
energy of the hydrogen molecule, when expressed in 
atomic units, readill 

Erad=E~fEi, (40) 

EL=~a3(01S(rlo)+S(r~b)10) 
1 
l,$+g--ln2 3 1 (41) 

0 

Ei=$%3(016(r12) (O)hm, 

ln(&/a.u.) 

(42) 

2,( (Olpln) 12(E,-Eo)ln[(E,--Eo)/a.u.l = 
%I @lpld 12U%-~o) ’ (43) 

where p is the total momentum operator of the two elec- 
trons, (Y the fine structure constant and c the velocity of 
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light. Unfortunately, so far no effective method exists for 
the evaluation of the Bethe logarithm Eq. (43) for the 
hydrogen molecule and we are forced to use an approxi- 
mate method following Garcia4 and Bishop and Cheung.” 
The method is based on the observation that if one defines 

Sp= C foj(Ej-&)‘, 
i 

fcj=$(Ej--Eo) I(0lrl-i) I21 r=rl+r2, 

. then 

(4-4) 

(45) 

d 
In&j= dplnSp p=2. 1 1 

Thus if a functional form of S, is given the logarithm can 
be readily obtained. This form is determined by fitting an 
analytical expression to a few known values of the mo- 
ments SP. For the ground state of the H2 molecule these 
values are 

Sp- CO for ~‘2.5, 

S2=? 40 1 Nq,) 1 O>, 

S,=--$ (OIAI+VIV~IO), 

s,=2, 

(47) 

s-,=; (op.qx2+zlz2+4/o), 

and Se2 and Sm3 are given by Eqs. (38) and (39). S2 is 
easily obtained from Table III, and S1 and S- 1 from Table 
IV. 

To get an analytical expression Garcia4 used the form 

Sp=fo1(E~-Eo)P+fo2(E2-E~)P 

k 
4 4 

c hip’+- - 
4 

- 
isO 

2.5-p+&&.5-p 

(48) 

with EI = 0.5669 a.u. being the ionization potential, 

4 ,E2- energies of the first excited B ‘Zz and C ‘III, 
states and fol,fo2 the corresponding oscillator strengths. 

Bishop and Cheung” advocate the ansatz: 

do 
+(2.5-p)4’ q fixed 

and they suggest q= 1.6 as best suited for the H2 molecule. 
The limits of summation, k in Eq. (48) and n in Eq. (49), 
depend on the number of available moments Sp and the 
bi and di are determined by requiring that Eqs. (48) and 
(49) reproduce the given moments. 

Since it is difficult to decide a priori which form is more 
reliable, we used both Eq. (48) and Eq. (49) to compute 
In K. and Erad in the whole range 0.4 Q R < 12.0. The 
energies E1 and E2 were taken from Ref. 18 and the cor- 
responding transition moments from Ref. 19. Where nec- 

essary, the input data were interpolated to 0.4 using in the 

interpolation the values for the He atom as the R=O as- 
ymptotic, The computations were performed twice. In one 
computation all six moments for p= -3, - 2,...,2 were 
used to yield the correction E&,. Then Sm3 was omitted 
and the computation repeated with the remaining five mo- 
ments as input to get E:ad. Thus the effect of using Sm3 in 
the fit is 

A(S-3) =Efaa-E&a (50) 

It turns out that A (Se3) is definitely smaller if Eq. 
(48) rather than Eq. (49) is used. This suggests that Eq. 
(48) provides a better fit of the data. But even in this case 
A(Sm3) is not negligible and it is not possible to say which 
of the two sets E&, or Ekd is more reliable. Therefore the 
final results for the Bethe logarithm were obtained as an 
average, i.e., we have 

Era,=f(Ef,,+E:&J. (51) 

The final corrections are listed in Table VI. The results 
obtained with the aid of Eq. (49) are given for comparison 
in columns 5 and 6. 

It is very difficult to give an estimate of the accuracy of 
the corrections. However, a similar computation for the 
Hc ion5 when compared with the very accurate result of 
Bukowski et aL2’ shows that the error in the vibrational 
levels due to the approximate evaluation of the radiative 
corrections is less than 0.003 cm-‘. One can expect there- 
fore that the present radiative corrections are accurate to 
about 0.01 cm-’ or better and if relative positions of the 
levels are considered the error should be still smaller. 

IV. VIBRATIONAL AND ROTATIONAL LEVELS 

A. Adiabatic energies 

It has been found during the vibrational computations 
that if accuracy of better than 0.01 cm-’ is required in the 
vibrational levels then the Born-Oppenheimer energies 
E(R) and their derivatives dE/dR must be computed at a 
fine grid. The interpolation of the unperturbed potential 
needed for the vibrational equation must be accurate to 
about 9 decimal figures and it is impossible to have such an 
accuracy if the input energies in the most important region 
ark given at intervals AR = 0.1 and 0.2. Therefore the 
electronic energies were computed at 670 internuclear sep- 
arations in the interval 0.2 < R ( 12.0. For 0.2 < R 

< 0.7 the energies are far above the dissociation limit and 
therefore AR = 0.1 was used. In the most important re- 
gion, from R=0.75 to R=6.0 - AR = 0.01 was used. 
Then up to R=8 - AR = 0.02, up to R=9 - AR 

= 0.05 and up to R=lO- AR = 0.1. Finally for up to 
R=12 - AR = 0.2 was used. 

The interpolation of the adiabatic, relativistic and ra- 
diative corrections creates no such problems because a five 
figure accuracy is sufficient. So the corrections were inter- 
polated by cubic splines from the data given in Tables III, 
IV, and VI and extrapolated to R =0 using the helium 
atom data. * lP5 The Born-Oppenheimer energies were inter- 
polated by cubic polynomials fitted to the energies and 

their derivatives at two adjacent input points. The correc- 
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TABLE VI. Radiative corrections in cm-‘. 

R 

0.400 

0.500 
0.600 

O.SCKl 

0.9M) 
1.000 
1.100 
1.200 
1.300 
1.350 
1.400 

1.450 
1.500 

1.600 
1.700 

1.800 

2.ooo 
2.200 

2.400 
2.600 

2.800 

3.000 

3.200 
3.400 

3.600 
3.800 
4.000 

4.200 
4.400 

4.600 
4.800 

5.000 
5.200 

5.400 
5.600 

5.800 

6.ooO 
6.200 

6.400 
6.600 

6.800 

7.000 
7.200 
7.400 

7.600 
7.800 

s.oca 
8.500 

9.ooo 
9.500 

lO.ooo 
11.000 

12.000 

00 

NW . . 

25.46 

2,449 
2.376 

2.315 

2.308 
2.305 

2.307 
2.310 

2.313 
2.314 
2.314 

2.314 
2.314 
2.312 
2.309 

2.306 
2.295 

2.283 
2.271 

2.259 

2.249 
2.243 

2.238 
2.234 

2.232 
2.228 
2.225 

2.224 
2.216 

2.209 
2.208 

2.267 
2.208 

2.207 
-2.206 
2.204 
2.201 

2.195 
2.188 
2.183 

2.180 
2.176 
2.172 

2.168 
2.164 

2.161 
2.158 
2.152 
2.149 
2.148 
2.149 
2.158 

2.175 

2.291 

E rad AW-,) 

2.339 

1.978 
1.698~ ; 

1.298 

1.155 
1.039 

0.944 
0.866 

O:SOl- 
0.773 

0.747 

0.724 
0.702 
0.664 
0.632 

0.605 
0.563 

0.534 
0.514 

0.5oI 

0.494~ 
0.492 

0.493 
0.497 

0.502 
0.508 

-0.514 

0.520 
0.526 

0.530 
0.534 

0.537 
0.540 

0.542 
0.543 

0.544 
0.546 
0.547 
0.548 
0.548 

0.549 
0.549 
0.550 

0.550 
0.551 
0.551 

0.551 
0.552 
0.552 
0.552 
0.552 
-0.552 
0.550 
0.542 

0.006 

0.001 
-0.001 

-0.003 
~0.003 

-0.003 
-0.003 
-0.003 
-0.003 
-0.002 
-0.002 

-0.001 
-0.002 

-0.001 
-0.001 

O.OCCl 
O..O!jl 

0.002 
0.003 

0.004 

0.004 
0.005 

0.005 
0.005 

0.005 

0.006. 
0.006~ 
0.006 
0.007 

0.007 

0.008 

i 0,008 
0.009 
0.010 
0.010 

6.011 
0.012 
0.013 

0.014 
0.015 
0.016 
0.016 

0.017 
0.018 

0.019 
0.019 
0.019 
0.021 

0.021 
0.021 

0.021 
0.020 
01016 

2.266 

1.919 
1.650 

1.269 
1.132 

1.022 
0.931 
0.855 

0.793 
0.765 

0.740 
0.717 
0.697 

0.660 
0.629 

0.603 
0.562 

0.535 
0.516 

0.505 

0.499 

0.497 

0.498 
0.502 
0.507 
0.513 

0.520 
0.527 

0.533 
0.538 
0.543 

.0.547 

0.55 1 
0.554 
0.556 

0.559 
0.561 

0.563 
0.565 
0.566 
0.567 

0.569 
0.570 
0.571 

0.571 
0.572 
0.573 
0.574 

0.574 
0.574 
0.574 
0.571 

-0.567 

0.009 

0.006 

0.005 

0.003 
0.002 
0.003 

0.003 
0.003 

0.004 
0.004 
0.005 
0.005 
0.007 
0.008 

0.010 

0.012 
0.014 

0.019 

0.021 

0.024 
0.026 

0.026 
0.027 

0.027 
0.027 
0.028 

0.030 
0.032 

0.033 
0.035 

0.037 

0.039 
0.041 
0.044 
0.045 

0.048 
0.050 

0.052 
0.054 
0.055 

0.057 
0.059 

0.060 
0.062 
0.062 
0.063 

0.064 
0.066 
0.066 
0.066 
0.065 
0.061 
0.054 

tions were added to the unperturbed potential and the re- 
sulting corrected potential, U, was extrapolated to R,,, 

assuming for R > 12 : U(R) = U(12) X (12/R)6. In all 
computations, except the T2 isotope, R,, = 20 was used. 
For T2 , in order to get the u=26 level, R,, was increased 
to 40. This, however, had no effect on the u Q 25 T2 levels. 
The vibrational equation was solved numerically by. the 
Cooley method21 for each total angular momentum for all 

bound vibrational states. The computations were per- 
formed twice with integration steps h =0.005 and h =0.002 
and the energies were then extrapolated to h=O assuming 
that the truncation error is proportional to h4. However, at 
this fine grid the extrapolation had a very small effect on 
the results. The nuclear masses for H, D and T were taken 
as 1836.1527, 3670.4831, and 5496.920, respectively. 

On output the program yielded the relativistic, adia- 
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TABLE VII. Dissociation energies from the J=O levels in cm-‘. 

V H2 *KR HD *KR HT DZ *KR DT T2 

0 

1 

2 

3 

4 
5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 
I6 

17 

18 

19 
20 

21 

22 

23 
24 

25 

26 

36118.060 0.011 

31956.893 0.010 

28031.051 0.012 

24335.649 0.009 
20867.662 0.012 

17626.087 0.007 

14612.226 0.010 

11830.072 0.007 

9286.866 0.001 

6993.869 0.000 

4967.458 -0.003 

3230.690 -0.002 

1815.577 0.007 

766.455 0.014 

144.599 0.017 

36405.774 ; 0.011 

32773.620 0.011 

29318.903 0.013 

26038.142 0.011 
22928.874 0.012 

19989.722 0.010 

17220.502 0.009 

14622.373 0.011 
12198.044 - 0.008 

9952.044 0.009 

7891.091 0.004 

6024.580 -0.002 

4365.260 -0.002 

2930.147 o.ooa . 

1741.808 0.007 

830.172 0.015 

234.923 0.017 
3.588 0.045 

36512.154 
33077.307 

29800.542 

26678.854 

23710.026 
20892,691 

18226.394 

15711.705 
13350.350 

11145.397 

9101.488 

7225.159 

5525.255 

4013.490 

2705.206 

1620.415 

785.239 

233.755 

6.514 

^. 

36748.355 0.010 
33754.746 0.011 

30880.244 0,012 
28122.761 0.014 

25480.643 0.012 
22952.702 0.014 

20538.234 0.012 

18237.070 ‘0.011 

16049.620 -01012 

13976.947 0.012 

12020.851 0.009 

10183.974 go10 

8469.948 0.005 

6883.562 O.OQO 
5430.997 -O.@l 

4120.114 -0.003 

2960.837 

i965.657 

o.ooo 

0.005 
1150.303 0.012 

534.608 0.015 

143.381 0.017 
1.643 0.057 

36881.278 
34137.953 

3 1494.204 

28948.386~ 

26499.149 
24145.466 

21886.634 

19722.310 

17652.329 

15677.75 1 

13798.899 

12017.422 

10335.363 

8755.45 1 

728 1.207 

5917.089 

4668.665. 

3542.834 
2548.115 

1695.015 

996.511 

468.643 
131.004 

2.725 

37028.489 

34563.992 
32179.468 

29873.694 

27645.634 

25494.454 
23419.524 

21420.435 

19497.008 

17649.316 

15877.703 

14182.814 

12565.623 

11027.477 

9570.141 

8195.858 

6907.421 

5708.259 
4602.547 

3595.339 

2692.737 

1902.105 
.1232.332 

694.169 

300.581 

66.689 

0.063 

batic vibrational-rotational energies I$$ and the expecta- 
tion values of the vibrational kinetic energy, 

(52) 

6. Nonadiabatic corrections 

At the present time the best estimate of the nonadia- 
batic corrections to the vibrational-rotational levels for 
various isotopes is due to Schwartz and LeRoy2 who- 
using the existing ab initio results22 - were able to con- 
struct a scaling and extrapolation procedure that allows 
the direct computation of the corrections. The corrections 
are expressed as simple combinations of the kinetic energy, 
KE, the rotational quantum number, J, nuclear masses and 
some coefficients tabulated in Ref. 2. In this work the ki- 
netic energy, KE, was computed for each level and the 
corrections evaluated exactly as described in Ref. 2. Then 
the corrections were added to the adiabatic results for all 
levels except the lowest v=J=O levels of HZ, HD and D2. 
For those three levels the a& initio22 results were used be- 
cause we believe these results to be reliable for the lowest 
levels. As compared with Ref. 2 the ab initio results in- 
crease the Hz, HD and D2 dissociation energies by 0.018 
cm-i, 0.008 cm-‘, and 0.001 cm-i, respectively. 

The results for the rotationless states are given in Table 
VII. Tables containing energies for all levels with J < 10 
can be found in Ref. 9. The nonadiabatic corrections used 
in this work are different from those used by Kolos and 
Rychlewski” who used for all levels the a& initio results.22 

Therefore to make the comparison more meaningful as far 
as the relativistic potential energy curves are concerned in 
Table VII we list AKR which gives the differences of the 
relativistic, adiabatic energies, i.e., energies not corrected 
for nonadiabatic effects. 

V. COMPARISON WITH EXPERIMENT AND 
CONCLUSIONS 

Several very accurate experimental results have been 
reported in the last decade. Here we will use some of them 
to estimate the accuracy of the present computations. The 
relevant results are listed in Tables VII-XV. The discrep- 

TAgLE VIII. Comparison with experiment of AG( ti+ l/2) for Hz. 

V Expt.’ Theory A 

0 4161.14 4161.167 

1 3925.79 3925.842 

2 3695.43 3695.401 

3 3467.95 3467.987 

4 3241.61 3241.574 
5 3013.86 3013.861 

6 2782.13 2782.154 
7 2543.25 2543.207 

8 2292.93 2292.997 

9 2026.38 2026.410 

10 1736.66 1736.768 

11 1415.07 1415.113 

12 1049.16 1049.122 
13 622.02 621.856 

0.052 

-0.029 

0.037 
-0.036 

0.001 
0.024 

-0.043 

0.067 
0.030 

0.108 

0.043 
-0.0X 
-0.164 

‘From Ref. 23. 
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TABLE IX. H2 lines. Comparison with experiment. 

J Theory 

0 354.392d 

1 587.032 

2 814.425 

3 1034.672 

4 1246.101 

5 1447.282 

6 1637.047 

J Theory 

SO 

AB 

0.027 

-0.055 

-0.031 

-0.026 

0.019 

0.035 

SI 

A= 

Ab 

0.019 

0.000 

O.OCG 

0.002 

0.003 

0.003 

A” 

0, Q, 
- 

Theory A” Theory Aa AC 

4161.167 -0.033 

4155.236 -0.045 -0.013 

3806.775 -0.084 4143.449 -0.044 -0.012 

3568.204 -0.035 4125.857 -0.046 -0.011 

3329.024 -0.120 4102.568 -0.024 -0.010 

3091.185 0.044 4073.719 0.021 -0.020 

2856.467 4039.480 0.029 

QZ 
._ 

Theory- A” AC 

0 4497.841 -0.007 0.007 8087.009 -0.021 

1 4712.889 - 0.049 -0.011 8075.295 0.012 -0.004 

2 49 16.993 -0.039 -O.OJO 8051.977 0.013 -0.003 

3 5108.391 -0.024 -0.008 8017.175 0.007 0.000 

4 5285.581 -0.051 7971.094 

5 5447.328 -0.709 7914.005 

6 5592.679 7846.232 

aFrom Ref. 24. 
bFrom Ref. 25. 
‘From Ref. 26. 
dSee text. 

TABLE X. D, lines. Comparison with experiment. 

SO 

J Theory Aa Ab Theory 

01 

A” Lib 

0 179.069 

1 297.534 

2 414.648 

3 529.900 

4 642.807 

5 752.921 

6 859.833 

7 963.180 

8 1062.645 

9 1157.958 

-0.039 

0.024 

0.038 

0.090 

0.097 

0.011 

0.073 

0.020 

0.075 

0.002 

0.000 

0.000 2814.539 -0.031 -0.006 

0.000 2693.963 -0.147 -0.009 

0.001 2572.635 0.135 -0.008 

0.002 245 1.079 0.029 

0.001. 2329.798 

2209.263 .:0.033 

2089.917 

1972.158 

Ql Sl 

J Theory A” A” Theory A” AC 

0 2993.608 0.008 3166.352 -0.008 

1 2991.497 -0.003 -0.007 3278.513 -0.oQ9 

2 2987.283 0.083 -0.013 3387.253 0.033 -0.008 

3 2980.979 -0.021 -0.009 3492.084 0.054 -0.007 

4 2972.605 0.105 -0.008 3592.557 

5 2962.184 -0.016 3688.259 zo.101 

6 2949.750 0.050 3778.827 

~~ 7 2935.338 0.138 3863.943 0.123 

8 29 18.994 0.194 3943.343 

9 2900.763 0.163 4016.812 

“From Ref. 24. 
bFrom Ref. 27. 
‘From Ref. 28. 
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TABLE XI. HT S and Q transitions. TABLE XII. HD AG(u+ l/2). 

So(O) 237.866 

So(l) 394.800 

So@) 549.267 

Q,(O) 3434.806 

QI(~) 3431.568 

Q1CU 3425.103 

Q,(3) 3415.438 

Q1(4) 3402.599 

Expt.” Theory A 

237.871 0.005 

394.840 0.040 
549.426 0.159 

3434.846 0.040 

3431.609 0.041 

3425.147 0.044 
3415.487 0.049 

3402.668 0.069m 

V Expt. Theory 

0 3632.152 3632.154 

1 3454.735 34.54.717 

2 3280.721 3280.760 
3 3 l-69.264 3109.268 

4 2939.149 2939.152 

5 2769.199 2769.220 

A 

0.002 

-0.018 

0.039 
o.cQ4 

0.003 

0.021 

‘From Ref. 29. 

‘From Ref. 29. 

TABLE XIII. HD and HT P,(J) and R,(J) lines. 

Expt.’ 

HD 

Theory A 

A.._- _~ 

Expt. 

HT __ _..,. - 

Theory A 

Pl(3) 3355.361 3355.368 0.007 

9(2) 3450.463 3450.460 -0.003 3273.140 3273.201 0.061 

P*(l) 3542.932 3542.929 -0.003 3355.355 3355.405 0.050 
R,(O) 3717.532 3717.529 -0.003 3511.020 3511.073 0.053 

R,(l) 3798.455 3798.449 -0.006 3583.530 3583.577 0.047 

RI(~) 3874.357 3874.352 -0.005 3651.870 3651.920 0.050 
R,(3) 3944.720 3944.719 -0.001 3715.630 3715.686 0.056 

R,(4) 4009.088 4009.088 0.00 3774.450 3774.498 0.048 

P,(P) 13283.993 13284.042 0.049 
P,(l) 13387.646 13387.694 0.048 12722.515 12722.707 0.192 

R4CJ) 13551.065 13551.111 0.046 12868.786 12868.978 0.192 

R4(1) 13609.664 13609.712 0.048 12922.534 12922.724 0.190 

R,(2) 13652.215 13652.257 0.042 12962.825 12963.019 0.194 

R,(3) 13678.322 13678.368 0.046 12989.369 12989.557 0.188 

R,(4) 13001.917 13002.098 0.181 

P,(2) 16219.473 16219.515 0.042 15445.118 15445.358 0.240 

5(l) 16326.791 16326.840 0.049 15539.796 15540.039 0.243 
R,(O) 16486.537 16486.584 0.047 15682.984 15683.230 0.246 
R,(l) 16537.816 16537.856 0.040 15730.589 15730.826 0.237 

RsW 16569.404 16569.441 0.037 15761.691 15761.924 0.233 
R,(3) 16581.008 16581.003 -0.005 15776.009 15776.247 0.238 

‘From Ref. 29. 

TABLE XIV. Ground state dissociation energies for H,, HD, and D, in cm-‘. 

This work 
Ref. 10 

Present-Ref. 10 

Experiment 

Expt.-Theory 

HZ 

36118.060 
36118.049 

0.011 

36118.11*0.08 
(Ref. 30) 

0.05 ho.08 

HD 

36405.774 
36405.763 

0.011 

36406.2 *to.4 
(Ref. 31) 

0.4*0.4 

D2 

36748.355 
36748.345 

0.010 

36748.3AO.l 
(Ref. 32) 

-0.iko.i 

TABLE XV. Ionization potentials for Hz, HD, and D2 in cm-‘. 

HZ HD Q 

This work 124417.482 124568.476 124745.387 
Ref. 10 124417.471 124568.465 124745.377 

Experiment-Ref. 32 124417.484*0.017 124745.353 bO.024 

Expt.-Theory 0.002*0.017 -0.034*0.024 

Experiment-Ref. 33 124417.507*0.012 124568.481 AO.012 

Expt.-Theory 0.026*0.012 0.005 *to.012 
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3 J 

ancies A are always computed as the difference: present 
result minus experiment. . 

Let us first discuss the H2 molecule. Here a comment is 
needed concerning the Se( 0) theoretical transition in Table 
X which is somehow inconsistent with other quoted num- 
bers because for the u = J= 0 level the nonadiabatic correc- 
tion was computed differently than for other states. If the 
smoothed correction of Ref. 2 were used, the theoretical 
number would be smaller by 0.0 18 cm- ’ making the agree- 
ment with Ref. 25 almost excellent. In general the agree- 
ment with Refs. 25 and 26 is much better than with Ref. 
24, and all these data are somehow contradictory to Ref. 
23. From Table VIII it follows that the theoretical U= 1 
and v=2 levels are too high by 0.027 and 0.079 cm-‘, 
respectively, while the data in Table X suggest that the 
v= 1 vibrational level is too low and the next higher about 
right. 

For Dz the comparison is similarly indecisive. The sit- 
uation is different for the heteronuclear isotopes, Tables 
XI-XIII. Here the agreement is definitely better for HD 
than for HT. It seems almost certain that the relatively 
poor agreement in the case of HT is due to nonadiabatic 
effects. In Ref. 2 the nonadiabatic corrections for hetero- 
nuclear isotopes were extrapolated from the HD data and 
no other data were available to fit the interpolating poly- 
nomial. It is therefore not surprising that the interpolation 
is less reliable. We fully agree on this point with the con- 
clusions of Chuang and Zare” that ab initio results for the 
nonadiabatic corrections for HT are necessary for an ac- 
curate comparison of theoretical and experimental results, 

The dissociation energies of Hz, HD and D2 are com- 
pared with experiment and Ref. 10 in Table XIV. The 
present dissociation energies are about 0.01 cm-’ larger 
than those obtained by Kolos and Rychlewski” and in 
consequence the corresponding ionization energies are in- 
creased by the same amount. These are listed in Table XV. 
The agreement with experiment in the case of H2 and HD 
is indeed very satisfactory. Nevertheless one should keep in 
mind that improvement in the accuracy of the theoretical 
results is still possible. First, as was mentioned in Sec. II, 
the Born-Oppenheimer energies could still be lowered by a 
few thousandths of a wave number. Next, as we discussed 
above, the lowest order radiative corrections estimated in 
this work may differ slightly from the exact results. Fi- 
nally, the nonadiabatic corrections are based on ab initio 

results22 obtained a decade ago. A more accurate compu- 
tation would certainly change these corrections. 

The first two sources of inaccuracies in the theoretical 
energies, viz. the truncation error in the Born- 
Oppenheimer energies and possible errors in the radiative 
corrections, can influence the comparisons in Tables XIV 
and XV, but they can hardly affect Tables VIII-XIII. The 
improvement in the Born-Oppenheimer curve due to those 
two effects would certainly be smooth and most probably 
almost independent of R. Therefore the relative positions 
of the vibrational levels would be changed by negligible 
amounts. 

The nonadiabatic corrections seem to be the most im- 
portant source of errors. For homonuclear isotopes and 

HD the inaccuracies in the present corrections may be of 
the order of 0.01 cm- ‘. For HT and DT the inaccuracies 
are probably larger. Also, more accurate corrections will 
influence individual levels independently of each other and 
therefore all the comparisons in Tables VIII-XV will be 
affected. 

In conclusion we believe-in agreement with Ref. 29- 
that for the refinement of the theoretical predictions new 
ab initio nonadiabatic corrections are needed in the first 
place. It would be also desirable to get the radiative cor- 
rections more accurately. However, these will have proba- 
bly little effect on the overall agreement with experiment. 
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APPENDIX A: THE P+ l/2 LIMIT OF THE p-2’ 
EXPANSION 

To perform the transformation of Eq. (22) for p+ l/2 
we note that one can replacep by l/2 everywhere except in 
the product 

d~,(p)cy2)(cos q). (AlI 

The Gegenbauer polynomials G( cos p,) satisfy I3 

c+l 

and 

(AZ) 

lim ; C(cos 9) =co,(cos cp) =; COSQZ~), n#O. 
a-0 

(A3) 

Thus, if m =0 there is no singularity while for m#O we get 

IY(2p-l)(2p+2m-l)~(“2)(cos~) 

lWp)GQ+2m--1) 
= 2[p-(l/2)] m 

O-(““)(cos 9,) -2 cos(mq7). 

Hence 

(A4) 

cz~m@)&-(l~2~(cos p) 

- - w&,0) (21-t 1) 

(l-m)! 
X[(2m-1)!!12----- 

U+m)! 
cos(mq.7). 

Further we have 

(A5) 
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q$“2’(x) = 
1 d”P* 

(2m-l)!! dx” _ - (A61 

and if we use the phases of the associated Legendre func- 
tions as in Ref. 14, i.e., 

d”P/ 
qx>= 1 1-x2 jr’2--@, (A7) 

. 

X 
s 

,’ (x2-l)-1[pr;t(x)]-2dx, (As) 

we finally obtain 

I 
(Z-m)! 2 

P--l= /to ,;, b-ww--s,,,) - 1 I U+ml! 

(A9) 

which coincides with the Neumann expansion as given in 
Ref. 14. 

APPENDIX B: EVALUATION OF THE I-’ INTEGRALS 

When Eq. (22) is substituted into Eq. ( 19) the inte- 
gral I--P is expressed as a sum of terms labeled by I and m: 

I-F= g i I,,,. 
I=0 m=O 

031) 

Since P are polynomials in ~i,rli each Il,m is given as a 

linear combination of products 

~~(alYaz)B~~(p*)~,,(a)A,, 

where 

032) 

s 

27r 

A,= 
0 

cp,-(1’2)(cos cp)dq 

I 
r[P+(m- l/2)1 2 

27r = F[p-(l/2)] (m/2)! I 

if m even 
, 

0 ifmodd, 

B$@) = J;, exp(px)xk( 1 -x2)s’2q?l(x)dx, 

qzzkw4 = Im SI lm ‘em(mg;m(!g2) 

x~~+,“G+)~?;(U&, dii; 
and the functions &” have the form 

&“(c> =exp( -&>&~2- l)m’2. 

(B3) 

(B4) 

(B5) 

036) 

Both the B and J integrals can be computed accurately if 
use is made of the properties of the Gegenbauer polynomi- 
als c. When applied to q?:(x), the standard recurrence 

relation and the differential equation read 

(Z-m+2)Cf?m m+2-2(z+P+ l)XCfTE+l 

+ (2p+Z+m)CfTm=0 m 9 

1665 

(B7) 

(l-x2> -$CfTz- (2m+2p+ 1)x %?+, 
dx 1-m 

+ (Z-m> (Z+m+2p)q_f,m=O. 

We also haveI 

038) 

In consequence of Eq. (B3) only even m must be consid- 
ered and so this will be assumed throughout this section. 

In the following subsections we give details of the eval- 
uation of the B and J integrals. 

1. Evaluation of B;l;n”cp> 

Since 

B$ -/?) = (- l)‘+k+mB$;((p) (BlO) 

we assume in the following P > 0 and expand Eq. (B4) as 

q;(B) = jzo 5 B:;(O). (Bll) 

For s=m and with the definition 

b~m=Bgw), 

using Eq. (B7) we get the relation 

0312) 

bfjp= 
Z-m+1 

bf+ I,m+ 
2p+Z+m+ 1 

2(l+p) N+p) 
bL,,m (Bl3) 

and with the aid of the above equation all b integrals can be 
computed from the b:,, 

that 
integrals. To get the latter we note 

s 

1 

(1 -X2)m’2xz @“dx 
-1 dx l-m 

s 

1 
= 

-1 
(1 -x2,(m+2)‘2$ q2;dx, (B14) 

make use of Eqs. (B8) and (B9) and obtain the recurrence 
relation 

bymv2= -7 
4(p+m--2) (p+m- 1)m(2p+m--3) 

m(Z-m+2) (Z+m+2p-2) @,m, 

(B15) 

$I= s l (1 -x2)‘/2dx= 
U(Z+2)/2]r( l/2) 

-1 rr(z+3)/2] * 

0316) 

Thus, since m must be even, starting from Eq. (B16) and 
using Eq. (Bl5) we get b” 

m=02 l/pm 
for 1=0,2,...,1,,, and 

, ,..., Z and subsequently b,, from Eq. (B 13). Finally, 
B:J (8) are computed with the aid of Eq. (B 11) . There is 
no cancellation of significant figures in this algorithm and 
the integrals can be computed - with-in principle- 
arbitrary accuracy. 
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Y 

2 . Evaluation of J$$ 

The integral 4;: can be transformed12 to a simpler 
form by a method originally given by Rt.idenberg.i4 For 
that purpose we write 

J= Jim GglG)JZ(O j-l’d~gdx)~(x) 

+ J; dCglG)CXO j-; dxg2(x)D;(x), 0317) 

where we used the notation n=Z-m and v = p + m and 
omitted other indices for simplicity. It is obvious from Eq. 
(23) that b;(g) has a (6 - 1)-y+(1’2) singularity for 
g --) 1. Therefore in view of Eq. (B5) it follows that the 
integrals in Eq. (B13) exist if p < 5/2. With this assump- 
tion the second term on the right-hand side can be trans- 
formed by an integration by parts to yield 

J= I,” dC W5) CC&5)I -’ $1 ~l~g,(x)cWdx 

J 
c 

X sl(~Wy)& . 
I 

u318) 
1 

Now the definition of DE, Eq. (23)) gives 

~~~(E)[~(~,l-1=cP-1,-‘~(*‘2)[~(~)l-2 

(Bl9) 
and one more integration by parts leads to 

J=- 
J 

lm ($-1,-“-‘1’2’G~m(~)~m(~)d~, (B20) 

where, with the indices written explicitly, 

‘$70 = #?,“CO I-’ ,f &Wcff,“Wx, 

i= 1,2. 0321) 

To get the integral J from Eq. (B20) any numerical 
method can be used if Gi are given. In this work the inte- 
gral was transformed with the substitution c = t-’ and the 
resulting [O,l] interval was divided into up to N=40 inter- 
vals of equal length. Then in each interval an 8-point 
Gauss quadrature was used. The functions Gi were com- 
puted essentially analytically by the following procedure. 

First, we define a slightly more general integral 

F$X,a) = 
J 

g (x2- l)“XkCpt,“(X) 
1 

xexp( -ax)dx, Z,m,s,k>O. (B22) 

The differential equation (B8) together with Eq. (B9) give 
a recurrence relation 

x (x2c2-1)cy~~?;(x)3 , W3) 

i.e., we get 

Since q = 1 and q(x) = 2vx, 

F$‘=2(p+z- l)t$+, (3325) 

and it suffices to find F:i to start the downward recurrence 
Eq. (B24). Let us now’ introduce an auxiliary integral 

K s,r,k= 
J 

’ (x- l)‘(x+ l)‘xk exp( -ax)dx. (B26) 
1 

We have F$ = K& and 

Ks,r,k=&++l,k+2&-I,k, W7) 

Ks,o,k=Ks+ l,O,k- I+ %,o,k- 1, (B28) 

d&l) 
K k,O,O = (y: -k-1 exp( -a) 

J 
xk exp( -x)dx. 

0 

W9) 

The right-hand side of Eq. (B29) can be computed easily 
by various methods. In this work the integral 

J 
’ k x exp( -x)dx 

0 
U330) 

was computed for z < 1 and k = k,, by a Taylor expan- 
sion of exp( -x) and then a downward recurrence for 
smaller k was performed. For larger z the formula 

J 

n+E 
xk exp( -x)dx 

0 

= J :xk exp( -x)dx+exp( -n) 

kk& 
XC OJ j=Oj 0 

x jexp( -x)dx 0331) 

was used repeatedly. Thus, using Eqs. (B29)-(B24) back- 
wards, we get F1*m s,k , and the functions Gi, Eq. (B21), are 

Gf”=F&), k(ai,&? [qZt<{) I-‘. 0332) 

This completes the evaluation of the integrands in 
Eq. (B20) because for g > 1 the Gegenbauer polynomials 
q(c) can be readily obtained from Eq. (B23). 

APPENDIX c: EVALUATION OF THE Lp INTEGRALS 

When p is expressed in elliptic coordinates one gets for 

even powers: 

n 

p2n= k~owk[(~~-1)(~~-1)(1-9:) 

x (1-&]k’2 costkrp), (Cl) 

with wk being polynomials in gi;.,vi. Therefore, for p - even 
the only term in Eq. (Cl ) that contributes to Eq. (21) is 
we and for p - odd one can use Eq. (Cl ) and the expansion 
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Eq. (22) for p-l, i.e., forp= l/2. ~m-(t’2)(cos 9) reduces 

to cos(m9) which makes the 9 integration trivial and 
L2n--1 is ex P ressed as 

L2n-l= i i L,,,. ((3) 
I=0 m=O 

Because of the denominator in Eq. (21) the Q integration 
cannot be factored out and the L,, integrals are more 
complex than II,~ in Eq. (Bl ). However, transformations 
similar to Eqs. (B17)-(B20) can be carried out and L,, 
are expressible as linear combinations of products 

q$‘(crl ,az,P1) Bgm(P2) (C3) 

with the B integral defined by Eq. (B4) and 

$;~(al,a&l) = - J lm (~2-1)-m-1~i~m(~)@2m(~)d~, 

(C4) 

(C5) 

hm,jlx) = J ’ fm,i(Y)dy 
-1 x2-3 ’ 

fm,iti) =exp(PIyW( 1 -Y2)mC;f_+,(1’2)CY)- (C7) 

The B integrals for p= l/2 and p=O can be computed 
analytically34 

B~:“W 

= 

1 

2(Z+m)!k! 

(I-m)!(k+Z+m+ l)!!(k-Z+m)!!(2m- l)!!’ 

if k>Z-m and k+Z+m=even, 

0 otherwise. 

(C8) 

The .? integrals must be computed with some care be- 
cause of the logarithmic singularity of the integrand. In 
this work the following computational scheme was devel- 
oped. First, the function fm,i, Eq. (C7), was approximated 
by a Chebyshev expansion, i.e., hm,i was written as 

cc91 

and then the integrals with the Chebyshev polynomials 
were evaluated for x > 2 by expanding the denominator in 
the geometric series and for 2 > x > 1 by using the Dar- 
boux formulai 

T,+,(x)T,(y)--T,(x)T,+l(y) 
X-Y =l+2 k$l Tk(X)Tk(y). 

(Cl01 
Since only even Chebyshev polynomials need be considered 
we use Eq. (ClO) twice and write 

T2n+2b) J ’ T&h-& 
-1 X-Y 

= 7’2nb) 
J 

l Tzn+z(y)dy 

-1 X-Y 

The downward recurrence is always stable but one must 
start with a high n if x is very close to 1. However, in such 
a case the forward recurrence is also stable. Therefore for 
x < 1.004 we used Eq. (C 11) for increasing n. Otherwise, 
the downward recurrence was started at n = n,, assum- 
ing vanishing of the integral for n = nmax + 2. 

To avoid inaccuracies due to the logarithmic singular- 
ity in G, Eq. (C5), we split hm,i in two parts: 

hm,i(x> =hO,,i(x> -k fm,i(X>lOg(X- 1) * (Cl21 

hL,i is regular and the contribution of the second term in 
Eq. (C12) to the integral in Eq. (C5) can be evaluated 
according to the scheme: 

J 
E 

log(x- l)@(x)dx 
1 

J 
6 

=log(x- 1) 
1 

Q>(x)dx- J16s 1 @(x)dx. 

(C13) 

In consequence the integral 7, Eq. (C4), has the general 
form 

jW = _ Lm J 
m 

@‘2m [log(~--1)Gll(‘s)+G12(~)ld~ 1 (p- 1y+’ 

(C14) 

with both Gil and G12 being regular at LJ= 1. The final 
integration was performed independently in the [l,zc] and 
[zc,co ) intervals. In the latter case the transformation 
{= t-l was performed to make the interval finite and all 
integrals were evaluated by Simpson’s rule; for the singular 
part the quadrature formula contained the appropriate 
weight. 

In the final computations z. = 1.4 and up to 160 inte- 
gration points in each interval were-used. _ _ _ 
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