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The empirical relativistic density-dependent, point-coupling energy density functional, adjusted exclusively

to experimental binding energies of a large set of deformed nuclei with A ≈ 150–180 and A ≈ 230–250, is

tested with spectroscopic data for 166Er and 240Pu. Starting from constrained self-consistent triaxial relativistic

Hartree-Bogoliubov calculations of binding energy maps as functions of the quadrupole deformation in the

β-γ plane, excitation spectra and E2 transition probabilities are calculated as solutions of the corresponding

microscopic collective Hamiltonian in five dimensions for quadrupole vibrational and rotational degrees of

freedom and compared with available data on low-energy collective states.
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I. INTRODUCTION

The framework of nuclear energy density functionals

(NEDFs) provides, at present, the most complete microscopic

approach to the rich variety of structure phenomena in

medium-heavy and heavy complex nuclei, including regions

of the nuclide chart far from the valley of β stability [1,2]. By

employing global functionals parametrized by a set of ≈10

coupling constants, the current generation of EDF-based mod-

els has achieved a high level of accuracy in the description of

ground states and properties of excited states, exotic unstable

nuclei, and even nuclear systems at the nucleon drip lines.

The exact energy density functional, which in principle

includes all higher-order correlations, is approximated by a

functional of powers and gradients of ground-state nucleon

densities and currents, representing distributions of matter,

spins, momentum, and kinetic energy. Although it models

the effective interaction between nucleons, a general density

functional is not necessarily related to any given NN potential

and, in fact, some of the most successful modern functionals

are entirely empirical. However, it would clearly be desirable

to have a fully microscopic foundation for a universal EDF

framework, starting from a Hamiltonian that describes two-

nucleon and few-body scattering and bound-state observables.

Important advances in this direction have been made in recent

years and, for the framework of nonrelativistic EDFs, we

refer the reader to the recent review of Ref. [3]. Relativistic

microscopic EDFs were developed based on a perturbative

chiral effective field theory approach to nuclear matter [4,5],

thus establishing connections with chiral dynamics and the

symmetry-breaking pattern of low-energy QCD.

However, even if a fully microscopic energy density func-

tional is eventually developed, the parameters of that functional

would still have to be fine-tuned to structure data of finite

nuclei. This is because data on nucleon-nucleon scattering and

few-nucleon systems, or gross properties of infinite nuclear

matter, cannot determine the density functional to the level of

accuracy necessary for a quantitative description of medium-

heavy and heavy nuclei. Most empirical and semimicroscopic

functionals have been adjusted to a relatively small set of

spherical closed-shell nuclei, because these systems are easy to

calculate and can simply be included in multiparameter least-

squares fits. It should be noted, however, that ground-state

data of closed-shell nuclei include long-range correlations that

cannot be absorbed into global functionals. It is well known

that energy density functionals, or, at the level of practical

application, self-consistent mean-field models, provide a much

better description of deformed, open-shell nuclei. Therefore, in

a recent work [6], we took a different approach and adjusted an

empirical relativistic density functional directly to experimen-

tal binding energies of a large set of axially deformed nuclei.

Starting from microscopic nucleon self-energies in nuclear

matter, and empirical global properties of the nuclear matter

equation of state, the coupling parameters of the functional

were determined in a careful comparison of the predicted

binding energies with data, for a set of 64 axially deformed nu-

clei in the mass regions A ≈ 150–180 and A ≈ 230–250. The

resulting functional, which we denote DD-PC1 (for density-

dependent, point-coupling), was further tested in a series of il-

lustrative calculations of properties of spherical and deformed

medium-heavy and heavy nuclei, including binding energies,

charge radii, deformation parameters, neutron skin thickness,

and excitation energies of giant multipole resonances.

Relativistic energy density functionals, in particular, have

mostly been applied at the self-consistent mean-field level. For

EDF-based models to make detailed predictions of excitation

spectra and electromagnetic transition rates, symmetries bro-

ken by the static nuclear mean field (translational, rotational,

and particle number) must be restored, and fluctuations around

the mean-field minimum must be taken into account. This

can only be achieved in a consistent framework in which

symmetry restoration and configuration mixing calculations

are performed. While most of these “beyond mean-field

methods” have routinely been applied with nonrelativistic
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density functionals for many years, it is only more recently

that multireference calculations have been reported using rel-

ativistic density functionals [7–10]. The relativistic functional

DD-PC1 was adjusted only to experimental binding energies

in two mass regions and tested in mean-field calculations

of ground-state nuclear properties. It would, therefore, be

important to further test this functional in comparison with

spectroscopic data. In this work we take a first step in this

direction and calculate low-energy collective excitation spectra

and E2 transition probabilities for two nuclei in the same mass

regions in which the parameters of DD-PC1 have been adjusted

to binding energies: 166Er and 240Pu.

In Sec. II we include a brief outline of the relativistic

energy density functional DD-PC1. Section III describes

our theoretical framework: the three-dimensional relativistic

Hartree-Bogoliubov model with a separable pairing force that

is used to map the energy surface as a function of quadrupole

deformation, and the model for the solution of a collective

Hamiltonian in five dimensions for quadrupole vibrational and

rotational degrees of freedom. The positive-parity low-energy

collective states of 240Pu and 166Er are calculated and compared

with available data in Sec. IV. Section V summarizes the

results and presents an outlook for future studies.

II. THE RELATIVISTIC DENSITY FUNCTIONAL DD-PC1

The basic building blocks of a relativistic nuclear energy

density functional are the densities and currents bilinear in

the Dirac spinor field ψ of the nucleon: ψ̄OτŴψ , with

Oτ ∈ {1, τi} and Ŵ ∈ {1, γµ, γ5, γ5γµ, σµν}. Here τi are the

isospin Pauli matrices and Ŵ generically denotes the Dirac

matrices. The nuclear ground-state density and energy are

determined by the self-consistent solution of linear relativis-

tic single-nucleon Kohn-Sham equations. To derive those

equations it is useful to construct an interaction Lagrangian

with four-fermion (contact) interaction terms in the various

isospace-space channels: isoscalar-scalar (ψ̄ψ)2, isoscalar-

vector (ψ̄γµψ)(ψ̄γ µψ), isovector-scalar (ψ̄ �τψ) · (ψ̄ �τψ), and

isovector-vector (ψ̄ �τγµψ) · (ψ̄ �τγ µψ). A general Lagrangian

can be written as a power series in the currents ψ̄OτŴψ

and their derivatives, with higher-order terms representing

in-medium many-body correlations. The Lagrangian that

corresponds to the functional DD-PC1 [6] includes second-

order interaction terms, with many-body correlations (short-

distance correlations, as well as intermediate and long-

range dynamics), encoded in density-dependent coupling

functions:

L = ψ̄(iγ · ∂ − m)ψ − 1

2
αS(ρ̂v)(ψ̄ψ)(ψ̄ψ)

− 1

2
αV (ρ̂v)(ψ̄γ µψ)(ψ̄γµψ) − 1

2
αT V (ρ̂v)(ψ̄ �τγ µψ)

× (ψ̄ �τγµψ) − 1

2
δS(∂νψ̄ψ)(∂νψ̄ψ)

− eψ̄γ · A
(1 − τ3)

2
ψ. (1)

In addition to the free-nucleon Lagrangian and the point-

coupling interaction terms, when applied to nuclei, the model

must include the coupling of the protons to the electromagnetic

field. The derivative term in Eq. (1) accounts for leading effects

of finite-range interactions that are crucial for a quantitative

description of nuclear density distribution (e.g., nuclear radii).

Equation (1) includes only one isovector term (i.e., the

isovector-vector interaction) because, although the isovector

strength has a relatively well-defined value, the distribution

between the scalar and vector channels is not determined by

ground-state data.

The strength parameters of the interaction terms in Eq. (1)

are, in general, functions of
√

jµjµ, with the nucleon four-

current: jµ = ψ̄γ µψ = ρ̂vu
µ. The four-velocity uµ is defined

as (1 − u2)−1/2(1, u). However, at velocities relevant for

this investigation, u ≈ 0 in the nuclear rest frame and thus

the parameters depend only on the baryon density ρ̂v = ψ†ψ .

The single-nucleon Dirac equation, the relativistic analog of

the Kohn-Sham equation, is obtained from the variation of the

Lagrangian with respect to ψ̄ ,

[

γµ

(

i∂µ − �µ − �
µ

R

)

− (m + �S)
]

ψ = 0, (2)

with the nucleon self-energies defined by the following

relations:

�µ = αV (ρv)jµ + e
(1 − τ3)

2
Aµ, (3)

�
µ

R = 1

2

jµ

ρv

{

∂αS

∂ρ
ρ2

s + ∂αV

∂ρ
jµjµ + ∂αT V

∂ρ
�jµ

�jµ

}

, (4)

�S = αS(ρv)ρs − δS�ρs, (5)

�
µ

T V = αT V (ρv) �jµ. (6)

In addition to the contributions of the isoscalar-vector four-

fermion interaction and the electromagnetic interaction, the

isoscalar-vector self-energy �µ includes the “rearrangement”

terms �
µ

R , arising from the variation of the vertex functionals

αS , αV , and αT V with respect to the nucleon fields in the vector

density operator ρ̂v .

On the mean-field level, the nuclear ground state |φ0〉
is represented by the self-consistent solution of the system

of equations (2)–(6), with the isoscalar and isovector four-

currents and scalar density:

jµ = 〈φ0|ψ̄γµψ |φ0〉 =
N

∑

k=1

v2
k ψ̄kγµψk, (7)

�jµ = 〈φ0|ψ̄γµ�τψ |φ0〉 =
N

∑

k=1

v2
k ψ̄kγµ�τψk, (8)

ρs = 〈φ0|ψ̄ψ |φ0〉 =
N

∑

k=1

v2
k ψ̄kψk, (9)

where ψk are Dirac spinors, and the sum runs over occupied

positive-energy single-nucleon orbitals, including the corre-

sponding occupation factors v2
k . The single-nucleon Dirac

equations are solved self-consistently in the “no-sea” approx-

imation that omits the explicit contribution of negative-energy

solutions of the relativistic equations to the densities and

currents.
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TABLE I. Parameters of the relativistic energy

density functional DD-PC1 [cf. Eq. (10)].a

Parameter Value

aS (fm2) −10.0462

bS (fm2) −9.1504

cS (fm2) −6.4273

dS 1.3724

aV (fm2) 5.9195

bV (fm2) 8.8637

dV 0.6584

bT V (fm2) 1.8360

dT V 0.6403

δS (fm4) −0.8149

aThe nucleon mass is m = 939 MeV.

The strength and density dependence of the interaction

terms of the Lagrangian Eq. (1) are parametrized as follows [6]:

αS(ρ) = aS + (bS + cSx)e−dSx,

αV (ρ) = aV + bV e−dV x, (10)

αT V (ρ) = bT V e−dT V x,

where x = ρ/ρsat, and ρsat denotes the nucleon density at

saturation in symmetric nuclear matter. The set of 10 param-

eters was adjusted in a multistep parameter fit exclusively

to the experimental masses of 64 axially deformed nuclei

in the mass regions A ≈ 150–180 and A ≈ 230–250. The

resulting functional DD-PC1 was further tested in calculations

of binding energies, charge radii, deformation parameters,

neutron skin thickness, and excitation energies of giant

monopole and dipole resonances. The nuclear matter equation

of state, corresponding to DD-PC1, is characterized by the

following properties at the saturation point: nucleon density

ρsat = 0.152 fm−3, volume energy av = −16.06 MeV, surface

energy as = 17.498 MeV, symmetry energy a4 = 33 MeV, and

the nuclear matter compression modulus Knm = 230 MeV. The

parameters of DD-PC1 are given in Table I.

III. THEORETICAL FRAMEWORK: COLLECTIVE

HAMILTONIAN IN FIVE DIMENSIONS

A. Three-dimensional relativistic Hartee-Bogoliubov model

with a separable pairing interaction

The relativistic Hartee-Bogoliubov (RHB) model [11–13]

provides a unified description of particle-hole (ph) and

particle-particle (pp) correlations on a mean-field level by

combining two average potentials: the self-consistent mean

field that encloses all the long-range ph correlations, and a

pairing field �̂ which sums up the pp correlations. In the

present analysis the mean-field potential is determined by the

relativistic density functional DD-PC1 [6] in the ph channel,

and a new separable pairing interaction, recently introduced in

Refs. [14–16], is used in the pp channel.

In the RHB framework, the nuclear single-reference state

is described by a generalized Slater determinant |�〉 that

represents the vacuum with respect to independent quasipar-

ticles. The quasiparticle operators are defined by the unitary

Bogoliubov transformation, and the corresponding Hartree-

Bogoliubov wave functions U and V are determined by the

solution of the RHB equation. In coordinate representation,
(

hD − m − λ �

−�∗ −h∗
D + m + λ

) (

Uk(r)

Vk(r)

)

= Ek

(

Uk(r)

Vk(r)

)

(11)

In the relativistic case the self-consistent mean field corre-

sponds to the single-nucleon Dirac Hamiltonian ĥD of Eq. (2);

U and V are Dirac spinors.

The pairing force is separable in momentum space:

〈k|V 1S0 |k′〉 = −Gp(k)p(k′) [14–16]. By assuming a simple

Gaussian ansatz p(k) = e−a2k2

, the two parameters G and a

were adjusted to reproduce the density dependence of the gap

at the Fermi surface in nuclear matter, calculated with a Gogny

force. For the D1S parametrization of the Gogny force [17], the

corresponding parameters of the separable pairing interaction

take the following values: G = −728 MeV fm3 and a =
0.644 fm. When transformed from momentum to coordinate

space, the force takes the form

V (r1, r2, r
′
1, r

′
2) = Gδ(R − R

′)P (r)P (r
′) 1

2
(1 − P σ ), (12)

where R = 1
2
(r1 + r2) and r = r1 − r2 denote the center-of-

mass and the relative coordinates, and P (r) is the Fourier

transform of p(k):

P (r) = 1

(4πa2)3/2
e−r 2/4a2

. (13)

The pairing force is of finite range and, because of the

presence of the factor δ(R − R
′), it preserves translational

invariance. Even though δ(R − R
′) implies that this force is not

completely separable in coordinate space, the corresponding

pp matrix elements can be represented as a sum of a finite

number of separable terms in the basis of a three-dimensional

(3D) harmonic oscillator. The force Eq. (12) reproduces

pairing properties of spherical and axially deformed nuclei

calculated with the original Gogny force, but with the

important advantage that the computational cost is greatly

reduced.

To describe nuclei with general triaxial shapes, the Dirac-

Hartree-Bogoliubov equations (11) are solved by expanding

the nucleon spinors in the basis of a 3D harmonic oscillator

in Cartesian coordinates. In the present calculation the basis

includes Nmax
f = 14 major oscillator shells for the nucleus

166Er, and Nmax
f = 16 for 240Pu. The map of the energy

surface as a function of the quadrupole deformation is

obtained by imposing constraints on the axial and triaxial

quadrupole moments. The method of quadratic constraint uses

an unrestricted variation of the function

〈Ĥ 〉 +
∑

µ=0,2

C2µ(〈Q̂2µ〉 − q2µ)2, (14)

where 〈Ĥ 〉 is the total energy, and 〈Q̂2µ〉 denotes the

expectation value of the mass quadrupole operators:

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2. (15)

The variable q2µ is the constrained value of the multipole

moment, and C2µ is the corresponding stiffness constant [18].
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B. Collective Hamiltonian in five dimensions

The self-consistent solutions of the constrained triaxial

RHB equations (i.e., the single-quasiparticle energies and

wave functions for the entire energy surface as functions of

the quadrupole deformation), provide the microscopic input

for the parameters of a collective Hamiltonian for quadrupole

vibrational and rotational degrees of freedom [9]. The five

quadrupole collective coordinates are parametrized in terms of

two deformation parameters β and γ , and three Euler angles

(φ, θ, ψ) ≡ �, which define the orientation of the intrinsic

principal axes in the laboratory frame:

Ĥ = T̂vib + T̂rot + Vcoll, (16)

with the vibrational kinetic energy

T̂vib = − h̄2

2
√

wr

[

1

β4

(

∂

∂β

√

r

w
β4Bγ γ

∂

∂β

− ∂

∂β

√

r

w
β3Bβγ

∂

∂γ

)

+ 1

β sin 3γ

(

− ∂

∂γ

√

r

w
sin 3γBβγ

∂

∂β

+ 1

β

∂

∂γ

√

r

w
sin 3γBββ

∂

∂γ

)]

, (17)

rotational kinetic energy

T̂rot = 1

2

3
∑

k=1

Ĵ 2
k

Ik

, (18)

and Vcoll is the collective potential. The variable Ĵk denotes the

components of the angular momentum in the body-fixed frame

of a nucleus, and the mass parameters Bββ , Bβγ , and Bγ γ , as

well as the moments of inertia Ik , depend on the quadrupole

deformation variables β and γ :

Ik = 4Bkβ
2 sin2(γ − 2kπ/3). (19)

Two additional quantities that appear in the expression for

the vibrational energy, r = B1B2B3 and w = BββBγ γ − B2
βγ ,

determine the volume element in the collective space.

The dynamics of the collective Hamiltonian is governed

by the seven functions of the intrinsic deformations β and γ :

the collective potential, the three mass parameters Bββ , Bβγ ,

Bγ γ , and the three moments of inertia, Ik . These functions

are determined by the microscopic nuclear energy density

functional and the effective interaction in the pp channel.

The moments of inertia are calculated from the Inglis-Belyaev

formula:

Ik =
∑

i,j

|〈ij |Ĵk|�〉|2
Ei + Ej

k = 1, 2, 3, (20)

where k denotes the axis of rotation, the summation runs over

proton and neutron quasiparticle states |ij 〉 = β
†
i β

†
j |�〉, and

|�〉 represents the quasiparticle vacuum. The mass parameters

associated with the two quadrupole collective coordinates

q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 are calculated in the cranking

approximation:

Bµν(q0, q2) = h̄2

2

[

M−1
(1)M(3)M

−1
(1)

]

µν
, (21)

with

M(n),µν(q0, q2) =
∑

i,j

|〈�|Q̂2µ|ij 〉〈ij |Q̂2ν |�〉|
(Ei + Ej )n

. (22)

Finally, the potential Vcoll in the collective Hamiltonian

Eq. (16) is obtained by subtracting the zero-point energy

corrections from the total energy that corresponds to the

solution of constrained RHB equations, at each point on the

triaxial deformation plane [9].

The Hamiltonian Eq. (16) describes quadrupole vibrations,

rotations, and the coupling of these collective modes. The cor-

responding eigenvalue problem is solved using an expansion

of eigenfunctions in terms of a complete set of basis functions

that depend on the deformation variables β and γ , and the Euler

angles φ, θ , and ψ [9]. The diagonalization of the Hamiltonian

yields the excitation energies and collective wave functions:

�IM
α (β, γ,�) =

∑

K∈�I

ψ I
αK (β, γ )�I

MK (�). (23)

The angular part corresponds to linear combinations of Wigner

functions

�I
MK (�) =

√

2I + 1

16π2(1 + δK0)

[

DI∗
MK (�) + (−1)IDI∗

M−K (�)
]

,

(24)

and the summation in Eq. (23) is over the allowed set of K

values:

�I =
{

0, 2, . . . , I for I mod 2 = 0,

2, 4, . . . , I − 1 for I mod 2 = 1.
(25)

Using the collective wave functions of Eq. (23), various

observables can be calculated and compared with experimental

results. For instance, the quadrupole E2 reduced transition

probability is

B(E2; αI → α′I ′) = 1

2I + 1
|〈α′I ′||M̂(E2)||αI 〉|2 , (26)

where M̂(E2) is the electric quadrupole operator. For the

M̂(E2) matrix elements, the current implementation of the

model uses a local expression in the collective deformation

variables [19]. This approximation is justified in the case

of large overlaps between different vibrational amplitudes

[20], but it may be less suited for transitions between states

with a rather small overlap (e.g., for transitions between

superdeformed bands and bands at normal deformation).

IV. TEST OF DD-PC1 IN TWO MASS REGIONS

A. 240Pu at normal and superdeformation

The structure of the nucleus 240Pu and its double-humped

fission barrier has become a standard benchmark for models

based on the self-consistent mean-field approach and the

corresponding effective interactions or density functionals.
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Numerous theoretical studies of this nucleus are reported in the

literature; here we only mention the most recent ones that are

also relevant for the present analysis. In their review of self-

consistent mean-field models for nuclear structure [1], which

also contains an extensive list of references to previous studies

of fission barriers using mean-field-based models, Bender

et al. compared paths in the deformation energy landscape of
240Pu obtained with various Skyrme, Gogny, and relativistic

mean-field (RMF) interactions. In general, relaxing constraints

on symmetries lowers the fission barriers. The predicted shapes

are triaxial and reflection symmetric at the first barrier around

β ≈ 0.6, and they are axial and reflection asymmetric at the

second barrier, located around β ≈ 1.3. The systematics of

axially symmetric fission barriers in Th, U, Pu, Cm, and

Cf nuclei, as well as for superheavy elements Z = 108–120,

using several Skyrme and RMF interactions, was investigated

in Ref. [21]. The fission barriers of 26 even-Z nuclei with

Z = 90–102, up to and beyond the second saddle point, were

calculated in Ref. [22] with the constrained Hartree-Fock

approach based on the Skyrme effective interaction SkM∗.

The fission barriers of 240Pu beyond the second saddle point

were also explored using the axially quadrupole constrained

RMF model with the PK1 effective interaction [23].

A number of studies were also reported that include

beyond mean-field methods (i.e., multireference calculations

that explored the effects of symmetry restoration and config-

uration mixing). Among the more recent, in Ref. [24] π = +
collective quadrupole levels and π = ± two-quasiparticle

(2qp) excitations in even-even Th, U, Pu, and Cm isotopes

were investigated at normal and superdeformed shapes in

microscopic calculations based on the Gogny force. Collective

levels were obtained from axial and triaxial constrained

Hartree-Fock-Bogoliubov (HFB) and configuration mixing

calculations, whereas blocking calculations were performed

for 2qp states. Starting from axially constrained Hartree-Fock

+ BCS wave functions obtained with the Skyrme interactions

Sly4 and Sly6, the study of Ref. [25] examined the influence of

exact angular momentum projection and configuration mixing

on the structure (the deformation energy curve, and properties

of rotational bands at normal and superdeformation) of 240Pu.

An extensive analysis of structure properties of 55 even-even

actinides at normal and isomeric potential deformations was

carried out in Ref. [26]. Based on HFB calculations with

the Gogny D1S force, with constraints on axial and triaxial

quadrupole deformations, shape isomers and π = + vibrations

were obtained as solutions of the five-dimensional collective

Hamiltonian, and spin isomers were analyzed in the blocking

approximation. Model predictions were shown to be in very

good agreement with data on multipole moments, moments

of inertia, spin and shape isomers, inner and outer potential

barrier heights, and shape isomer lifetimes. Properties of

collective quadrupole states of transactinide nuclei and, in par-

ticular, superdeformed collective states in the second minimum

of 240Pu were recently studied using a five-dimensional collec-

tive Hamiltonian based on the adiabatic time-dependent HFB

approach with the Skyrme forces SkM∗, SIII, and SLy4 [27].

In Fig. 1 we display the RHB triaxial quadrupole binding

energy map of 240Pu in the β-γ plane (0 � γ � 60◦), cal-

culated with the DD-PC1 energy density functional plus the

FIG. 1. (Color online) Self-consistent RHB triaxial quadrupole

binding energy maps of 240Pu in the β-γ plane (0 � γ � 60◦). All

energies are normalized with respect to the binding energy of the

absolute minimum. The contours join points on the surface with the

same energy (in MeV).

pairing interaction Eq. (12). The calculation was carried out on

a mesh of quadrupole deformation parameters with �β = 0.05

and �γ = 6◦. All energies are normalized with respect to the

binding energy of the absolute minimum, and the contours

join points on the surface with the same energy (in MeV).

Because the present implementation of the model does not

include reflection-asymmetric shapes, the potential energy

surface (PES) is calculated only up to β � 1.3. For larger

deformations (i.e., in the region of the second barrier), octupole

deformations should be taken into account. The absolute

minimum is calculated at β = 0.28, γ = 0◦, and a second

(superdeformed) valley is predicted around β ≈ 0.9. The

axially symmetric barrier at β ≈ 0.5 is bypassed through the

triaxial region, bringing the height of the barrier much closer to

the empirical value. This is shown more clearly in Fig. 2, where

we plot the deformation energy curves and the inner barrier

of 240Pu as functions of the axial deformation β. The two

curves correspond to the axially symmetric RHB calculation

(solid curve), and to the projection on the β-axis of the

triaxial PES (dashed curve). The experimental values for the

ground-state deformation, the barrier height, and the energy of

the second minimum are taken from Refs. [28–31]. One might

notice a very good agreement between theory and available

data. In particular, the inclusion of triaxial shapes lowers the

inner barrier by ≈2 MeV. Similar results were also obtained

in constrained self-consistent mean-field calculations using

Skyrme functionals [1], and in the HFB + Gogny analysis of

the actinide region [26] it was shown that the inner barriers

of the actinides were systematically lowered by up to 4 MeV

when calculations included triaxial shapes.

Starting from constrained self-consistent solutions of the

RHB equations (i.e., employing single-quasiparticle energies

and wave functions that correspond to each point on the energy

surface shown in Fig. 1), the parameters that determine the col-

lective Hamiltonian—the mass parameters Bββ , Bβγ , and Bγ γ ,

the three moments of inertiaIk , as well as the zero-point energy

corrections—are calculated as functions of the deformations
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FIG. 2. (Color online) Deformation energy curves and the inner

barrier of 240Pu as functions of the axial deformation β. The two

curves correspond to the axially symmetric RHB calculation (solid

line) and to the projection on the β axis of the triaxial PES (dashed

line), calculated with the functional DD-PC1. The experimental

values for the ground-state deformation, the barrier height, and the

energy of the second minimum are indicated with an arrow, a symbol

with error bars, and three lines indicating the value and its errors,

respectively. The data are taken from Refs. [28–31].

β and γ . The excitation spectrum of collective states is

obtained by diagonalization of the resulting Hamiltonian. In

Fig. 3 the calculated low-energy spectrum of 240Pu is compared

to data for the three lowest positive-parity bands at normal

deformation, and the lowest π = + superdeformed band.

In addition to the yrast ground-state band, in deformed and

transitional nuclei, excited states are also assigned to (quasi) β

and γ bands. This is done according to the distribution of the

projection K of the angular momentum I on the z axis of the

body-fixed frame:

NK = 6

∫ π/3

0

∫ ∞

0

|ψ I
α,K (β, γ )|2β4| sin 3γ | dβ dγ , (27)

where the components ψ I
α,K (β, γ ) are defined in Eq. (23).

For large deformations, the K quantum number is to a

good approximation conserved. Consequently, only one of the

integrals of Eq. (27) will give a value close to 1. A broader

distribution of NK values in the state |αI 〉 provides a measure

of the mixing of intrinsic configurations. Excited states with

predominant K = 2 components in the wave function are

assigned to the γ band, whereas the β band comprises the states

above the yrast characterized by dominant K = 0 components.

States K = 0 are assigned to the superdeformed band based on

the calculated average value of the deformation parameter β:

〈β〉Iα =
√

〈β2〉Iα, where 〈β2〉Iα =
〈

�I
α

∣

∣β2
∣

∣�I
α

〉

. (28)

We also verified that the rate of the E0 transition from

the superdeformed band to the ground state is four orders

of magnitude smaller than the rate of the corresponding

transition from the bandhead of the β band.

For the moments of inertia of the collective Hamiltonian, we

multiplied the Inglis-Belyaev (IB) values from Eq. (20) with

a common factor determined in such a way that the calculated

energy of the 2+
1 state coincides with the experimental value.

The additional scale parameter is necessary because of the

FIG. 3. (Color online) (left) Low-energy spectrum of 240Pu calculated with the DD-PC1 relativistic density functional, compared with

(right) data for the three lowest positive-parity bands at normal deformation, and the lowest π = + superdeformed band.
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well-known fact that the IB formula (20) predicts effective

moments of inertia that are smaller than empirical values.

More realistic values are only obtained if one uses the

Thouless-Valatin (TV) formula. Here we rather follow the

prescription of Ref. [20] where, by comparing the TV and IB

moments of inertia as functions of the axial deformation for

superdeformed bands in the A = 190–198 mass region, it was

shown that the Thouless-Valatin correction to the perturbative

expression IB is almost independent of deformation and does

not include significant new structures in the moments of inertia.

It was thus suggested that the moments of inertia to be used

in the collective Hamiltonian can be simply related to the IB

values through the minimal prescription Ik(q) = I IB
k (q)(1 +

α), where q denotes the generic deformation parameter and α

is a constant that can be determined in a comparison with data.

In the present study, α = 0.32 for 240Pu.

When the IB effective moment of inertia is renormalized to

the empirical value, the excitation spectrum of the collective

Hamiltonian determined by the functional DD-PC1 is in very

good agreement with the available data for the ground-state

band, β and γ bands, and even the lowest superdeformed

band SD-1. Compared to the corresponding experimental

sequence, the position of the γ band is predicted at somewhat

lower excitation energy, and this might indicate that the

theoretical PES is probably too soft in γ . The β band is

calculated at slightly higher energy compared to experiment,

and the predicted position of SD-1 is within the experimental

error bounds. Very few data are available on electromagnetic

transition rates in 240Pu. In fact, except for the lifetime

of the 2+
1 state, only lifetimes of K isomers have been

measured, but these include configurations not contained in our

collective model space. Therefore, in Fig. 3 we only display

the calculated B(E2) values, in Weisskopf units (W.u.), for

the transition 2+
1 → 0+

1 and from the bandheads of the β

and γ bands to the ground-state band. We emphasize that,

in addition to the renormalization of the moment of inertia,

the calculation is completely parameter-free; that is, by using

structure models based on self-consistent mean-field single-

particle solutions, physical observables, such as transition

probabilities and spectroscopic quadrupole moments, are

calculated in the full configuration space and there is no need

for effective charges. Using the bare value of the proton charge

in the electric quadrupole operator M̂(E2), the transition

probabilities between eigenstates of the collective Hamiltonian

can be directly compared to data.

B. γ -Vibrational bands in 166Er

166Er presents one of the best studied cases of mixing

between the ground-state band and a low-lying γ band [32]. A

marked feature of the excitation spectra of nuclei in this mass

region is a low-energy Kπ = 2+ sequence of states, connected

to the ground-state band by rather strong E2 transitions. It is

interpreted as a γ -vibrational band, and the low excitation

energy at which it occurs indicates a softness of the potential

with respect to γ deformations.

The PES of 166Er, obtained by constrained triaxial RHB

calculations using the DD-PC1 energy density functional plus

FIG. 4. (Color online) Same as described in the caption of Fig. 1

but for the nucleus 166Er.

the pairing interaction Eq. (12), is shown in Fig. 4. The

minimum is calculated at β = 0.35 and γ = 6◦ (i.e., the

calculation predicts a slight deviation from axial symmetry,

at least on the mean-field level). In the region of the minimum

one might also notice that the calculated PES is soft in the γ

direction but, as shown below, not soft enough to quantitatively

reproduce the excitation of γ vibrations. The microscopic

PES determines the deformation-dependent parameters of the

quadrupole collective Hamiltonian, and the resulting low-

energy spectrum is shown in Fig. 5 in comparison with data

[33] for the ground-state band, the γ band, and the two-phonon

γ -vibrational states Kπ = 4+ and 0+. Namely, if the lowest

Kπ = 2+ sequence is interpreted as a rotational band arising

from the excitation of a quadrupole collective one-phonon γ

vibration, one also expects to observe bands based on double

(two-phonon) γ vibrations. Two intrinsic Kπ = 2+ quanta

can be aligned parallel (Kπ = 4+) or antiparallel (Kπ = 0+).

The observation of two-phonon vibrational states in deformed

nuclei is more difficult than in spherical nuclei, also because

of possible mixing with noncollective two-quasiparticle states

and the resulting fragmentation of the vibrational strength.

Nevertheless, evidence for two-phonon vibrational states in

this region of well-deformed nuclei was reported in a number

of experiments and, in particular for 166Er, the Kπ = 4+

and Kπ = 0+ double γ -vibrational states were identified

at 2028 and 1943 keV, respectively [34,35]. The measured

B(E2) values from these states to the bandhead of the

γ band, B(E2; 4+
γ γ → 2+

γ ) = 8(3) W.u. and B(E2; 0+
γ γ →

2+
γ ) = 21(7) W.u. [33], show evidence of collective

enhancement.

The relative position of two-phonon γ -vibrational states

with respect to the corresponding one-phonon state provides

information about the γ dependence of the potential [36], that

is, whether the observed oscillation of the nuclear shape is

with respect to an axially symmetric equilibrium, or if the

nuclear equilibrium shape deviates from axial symmetry. In

the former case (i.e., for harmonic γ vibrations around an

axially symmetric shape), the Kπ = 4+ and Kπ = 0+ double

γ -vibrational bandheads should occur at an energy of about
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LI, NIKŠIĆ, VRETENAR, RING, AND MENG PHYSICAL REVIEW C 81, 064321 (2010)

FIG. 5. (Color online) (left) Low-energy spectrum of 166Er calculated with the DD-PC1 relativistic density functional compared with (right)

data for the ground-state band, the γ band, and the two-phonon γ -vibrational states Kπ = 4+ and 0+.

2h̄ω = 2E2+
γ
. In the case of 166Er, however,

RK=4 ≡ E(I = 4+,K = 4)

E(I = 2+,K = 2)
= 2.58 and

RK=0 ≡ E(I = 0+,K = 0)

E(I = 2+,K = 2)
= 2.47

show significant deviation from harmonic vibrations and

indicate that the potential surface might have a minimum for

γ = 0.

After adjusting the Inglis-Belyaev moments of inertia to

reproduce the energy of the first excited 2+ state (α = 0.07), as

described in the previous subsection, we find a fair agreement

between theory and experiment for the spectrum of 166Er,

especially the ground-state band and the γ band. In particular,

the calculation reproduces the empirical E2 decay pattern, for

both interband and intraband transitions, thus supporting the

interpretation of the sequence of states built on the 2+ state

at 786 keV as a rotational band based on the one-phonon

γ -vibrational state (see also Table II). One might notice that,

with increasing angular momentum, the calculated B(E2)

values for transitions within the ground-state band and the

γ band are systematically larger than the experimental values.

This is because the theoretical states are purely collective,

whereas experimental states in general include quasiparticle

configurations and this mixing, not taken into account in

our model space, reduces the collective enhancement of

quadrupole transitions. The model also predicts rotational

bands based on the double γ vibration: Kπ = 4+ and Kπ =
0+. The calculated B(E2) for the transitions to the bandhead

of the γ band, B(E2; 4+
γ γ → 2+

γ ) = 8.1 W.u., is in excellent

agreement with the experimental value of 8(3) W.u., and the

predicted B(E2; 0+
γ γ → 2+

γ ) = 4.3 W.u. is approximately five

times smaller than the measured value of 21(7) W.u.

An obvious deficiency of the calculated excitation spectrum

is the predicted positions of the γ bandhead at 1.14 MeV,

that is, more than 300 keV above the experimental excitation

energy of the state 2+
γ and, correspondingly, the bandheads of

the two-phonon γ bands: Kπ = 4+ at 2.75 MeV and Kπ = 0+

at 2.50 MeV. The γ -vibrational states are predicted at too-high

excitation energies, and this might indicate that the theoretical

PES is too stiff in γ and/or it could be a consequence of the

cranking approximation used in the calculation of the mass

parameters (vibrational inertial functions) [cf. Eqs. (21) and

(22)]. Namely, as explained in the previous subsection, the

missing Thouless-Valatin dynamical rearrangement contribu-

tions are approximately included in the moments of inertia

by scaling the Inglis-Belyaev values by a common factor.

The situation is considerably more complicated in the case

of mass parameters [37,38], for which there are no simple

estimates of the Thouless-Valatin correction, especially for

nuclei with γ -soft potential energy surfaces. Some authors

[38] have argued that, to approximately take into account

the Thouless-Valatin correction, all inertial functions, and not

only the moments of inertia, should be rescaled by a constant

multiplicative factor. Because in the present analysis we are

more interested in testing the predictions of the DD-PC1

energy density functional than in adjusting parameters to fit

experimental spectra, such a rescaling of mass parameters

was not attempted. It is worth noting, however, that the

predicted ratios of excitation energies of two-phonon to one-

phonon states, RK=4 = 2.42 and RK=0 = 2.20, correspond to

anharmonic γ vibrations, as expected from the PES shown

in Fig. 4. The corresponding empirical values, 2.58 and 2.47,

respectively, are larger and show that γ anharmonicities in
166Er are more pronounced.

The calculation also predicts a collective β band con-

nected with large E2 transitions to the ground-state band:

B(E2; 0+
β → 2+

1 ) = 20 W.u. and B(E2; 2+
β → 4+

1 ) = 11 W.u.

The B(E2) values for transitions within the β band are

almost identical to those in the ground-state band. On the

experimental side, the first and second excited 0+ states,

0+
2 at 1460 keV and 0+

3 at 1713 keV, have small B(E2)

values for both the ground-state band and the γ band. In

064321-8



RELATIVISTIC ENERGY DENSITY FUNCTIONALS: LOW- . . . PHYSICAL REVIEW C 81, 064321 (2010)

TABLE II. B(E2) values (in Weisskopf units) for transitions between low-energy states in 166Er. Values calculated using the functionals

DD-PC1 and PC-F1 are compared with available data [33].

J π
i J π

f DD-PC1 PC-F1 Expt. J π
i J π

f DD-PC1 PC-F1 Expt.

2+
g.s. 0+

g.s. 252 253 217(5) 8+
γ 6+

g.s. 0.16 0.001 0.52(5)

4+
g.s. 2+

g.s. 362 367 312(11) 8+
g.s. 7.9 12.1 8.5(9)

6+
g.s. 4+

g.s. 403 413 370(20) 10+
g.s. 1.6 0.5 ∼1.5

8+
g.s. 6+

g.s. 427 444 373(14) 6+
γ 361 359 250(23)

10+
g.s. 8+

g.s. 445 470 390(17) 9+
γ 7+

γ 384 385 370(150)

12+
g.s. 10+

g.s. 459 493 372(21)

4+
γ γ,4 2+

γ 8.1 7.5 8(3)

2+
γ 0+

g.s. 3.04 3.36 5.17(21) 3+
γ 2.8 9.6

2+
g.s. 5.9 8.0 9.6(6) 4+

γ 1.3 5.6

4+
g.s. 0.4 0.4 5+

γ 1.8 0.2

3+
γ 2+

g.s. 5.5 6.4 6+
γ 0.7 0.1

4+
g.s. 3.9 5.4 4.8(9) 5+

γ γ,4 3+
γ 6.4 3.2

2+
γ 444 414 4+

γ 1.4 9.7

4+
γ 2+

g.s. 1.08 0.77 1.98(12) 5+
γ 1.1 8.1

4+
g.s. 7.3 10.4 11.1(7) 6+

γ 3.3 1.4

6+
g.s. 1.03 0.78 2.01(14) 7+

γ 3.1 0.1

2+
γ 149 141 138(9) 4+

γ γ,4 335 315

3+
γ 331 310 370(30)

5+
γ 4+

g.s. 7.3 4.3 8.9(11) 0+
β 2+

g.s. 20.1 30.9 8.8(9)

6+
g.s. 5.6 7.5 12.4(15) 2+

β 4+
g.s. 11.2 18.7

3+
γ 240 230 300(40) 0+

β 255 245

4+
γ 239 222 310(40) 4+

β 2+
β 368 359

6+
γ 4+

g.s. 0.45 0.14 0.88(6) 6+
β 4+

β 414 411

6+
g.s. 7.7 11.4 9.9(7)

8+
g.s. 1.4 0.7 1.9(3) 0+

γ γ,0 2+
γ 4.3 10.7 21(7)

4+
γ 296 288 225(16) 2+

γ γ,0 0+
γ γ,0 233 174

7+
γ 6+

g.s. 3.0 3.0 3.4(7) 4+
γ γ,0 2+

γ γ,0 328 251

8+
g.s. 6.7 8.9 8.0(16)

5+
γ 335 329 220(40)

addition, these two states are relatively strongly populated in

two-neutron transfer reactions and, therefore, are identified as

predominantly pair-type excitations. For the 0+
4 at 1934 keV,

the measured B(E2) value for the transition 0+
4 → 2+

1 is 8.8 (9)

W.u. and, together with its population in two-neutron transfer,

suggests that it can be identified as a β-vibrational state [39].

Therefore, the only excited 0+ state that displays a collective

enhancement of the decay to the ground-state band is located

far above the predicted position of the β-vibrational band.

Qualitatively, this can be understood as owing to the mixing

with other excited 0+ states, not included in the model space.

The excited 0+ states are also very sensitive to the coupling of

nuclear shape oscillations to pairing vibrations (i.e., vibrations

of the pairing density), but this effect is not considered in our

model of quadrupole dynamics.

To examine quantitatively how the softness of microscopic

potentials affects γ vibrations, we performed another set of

constrained RHB plus collective Hamiltonian calculations,

using a different energy density functional: PC-F1 [40]. The

FIG. 6. (Color online) Same as described in the caption of Fig. 1

but for the binding energy map of the nucleus 166Er calculated using

the energy density functional PC-F1.
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FIG. 7. (Color online) (a) Self-consistent RHB binding energy

curves and (b) cranking mass parameters Bγ γ of 166Er at the axial

deformation β = 0.35, calculated with the energy density functionals

DD-PC1 and PC-F1, as functions of the deformation parameter γ .

relativistic functional PC-F1 was adjusted to ground-state

observables (binding energies, charge radii, diffraction radii,

and surface thickness) of spherical nuclei and tested in

the analysis of the equation of state of symmetric nuclear

matter and neutron matter, binding energies and form

factors, and ground-state properties of several isotopic

and isotonic chains. We also used this functional in our

previous multireference calculations, including the generator

coordinate method in Refs. [7,8] and the five-dimensional

collective Hamiltonian [9,41–43]. Figure 6 displays the triaxial

PES of 166Er, calculated in the RHB model using the energy

density functional PC-F1 plus the pairing interaction Eq. (12).

Comparing with the corresponding PES calculated with

DD-PC1 (cf. Fig. 4) one notes that in this case the minimum is

on the prolate axis: β ≈ 0.35 and γ = 0, and that the potential

is softer with respect to γ deformations. This is shown more

clearly in Fig. 7(a), where we plot the γ dependence of the two

PESs in the region of the prolate minimum (i.e., the DD-PC1

and PC-F1 binding energy curves at the axial deformation

β = 0.35), as functions of the deformation parameter γ .

The minimum of the DD-PC1 PES is at γ = 6◦, whereas

PC-F1 predicts an axially symmetric mean-field minimum.

The PES calculated with PC-F1 is considerably softer in the

γ direction. The two functionals also predict different inertia

parameters. Figure 7(b) displays the γ dependence of the

corresponding mass parameters Bγ γ , calculated at the axial

deformation β = 0.35. Both functionals predict an oscillatory

γ dependence of Bγ γ , but the amplitudes and the average

value calculated with DD-PC1 are considerably larger. The

differences in the PES and mass parameters are reflected in

the corresponding spectrum, as shown in Fig. 8.

The excitation spectrum predicted by the PC-F1 energy

density functional is not very different from the one obtained

with DD-PC1 (cf. Fig. 5) but, because the PES is slightly

softer with respect to γ deformation, the one-phonon and two-

phonon γ bands are calculated at lower energies, apparently in

FIG. 8. (Color online) Same as described in the caption of Fig. 5 but the collective spectrum of 166Er is calculated using the energy density

functional PC-F1.
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better agreement with experiment. The state 2+
γ is lowered by

≈100 keV, and the two-phonon states are lowered by as much

as 500 keV. One might also notice that the calculated 4+
γ γ and

0+
γ γ are almost degenerate, in accord with the corresponding

experimental levels. However, because the PES of PC-F1 is

harmonic in γ in the region of the prolate minimum, the

resulting excitation spectrum is much closer to the harmonic

limit; that is, RK=4 = 2.11 and RK=0 = 2.06. Thus, the stiff

and γ -anharmonic PES of DD-PC1 predicts a γ -vibrational

spectrum that has too-large h̄ω but displays an anharmonicity

close to the empirical one, whereas the softer and γ -harmonic

PES of PC-F1 leads to an almost harmonic γ -vibrational

spectrum with a more realistic h̄ω. We also note that the

BE(2) values calculated with PC-F1 are on the same level

of agreement with data as those obtained with DD-PC1 (cf.

Table II) and, in some cases, even better. For instance, PC-F1

predicts the value B(E2; 0+
γ γ → 2+

γ ) = 10.7 W.u., closer to the

empirical value of 21(7) W.u., and the same is true for virtually

all transitions from the γ band to the ground-state band.

Finally, the level of mixing of K = 0 and K = 2 compo-

nents in the wave functions is reflected in the staggering in

energy between odd- and even-spin states in the γ band. The

staggering can be quantified by considering the differential

quantity [44]

S(J )

=
{E[J+

γ ] − E[(J − 1)+γ ]}− {E[(J − 1)+γ ] − E[(J − 2)+γ ]}
E[2+

1 ]
,

(29)

which characterizes the displacement of the (J − 1)+γ level

relative to the average of its neighbors, J+
γ and (J − 2)+γ ,

normalized to the energy of the first excited state of the

ground-state band, 2+
1 . For a spectrum of a pure rotor, S(J )

is constant, that is, 0.333. In Fig. 9 we plot the angular

momentum dependence of S(J ) calculated with the functionals

DD-PC1 and PC-F1 (cf. Figs. 5 and 8) in comparison with

FIG. 9. (Color online) Staggering S(J ) defined in Eq. (29) for the

γ band of 166Er. The results calculated with the density functionals

DD-PC1 and PC-F1 are compared with data.

the experimental values. The calculation with DD-PC1 nicely

reproduces the almost constant empirical behavior of S(J )

in 166Er, whereas PC-F1 predicts a pronounced staggering

with smaller values for even-spin states and larger values for

odd-spin states, and the magnitude increases with spin. This

behavior is characteristic for a transitional γ -soft potential [45]

but, obviously, is not in agreement with data.

V. CONCLUSIONS

Prompted by a wealth of new experimental results in exotic

nuclei far from β stability, and by theoretical developments in

related fields, important advances have been made in recent

years in building the framework of NEDFs, the tool of choice

for a consistent microscopic description of medium-heavy and

heavy nuclei.

Different approaches, some complementary, have charac-

terized the development of NEDFs, with the result that at

present many global functionals, in both nonrelativistic and

relativistic frameworks, are used in nuclear structure studies.

This means, however, that it is often difficult to compare results

obtained with different models, also because they include

different subsets of terms from a general functional that can

be expressed in terms of powers and gradients of ground-state

nucleon densities and currents. It is, therefore, important to

perform detailed tests of the predictions of various functionals

in comparison with spectroscopic data. Most modern energy

density functionals, and in particular the relativistic ones, have

only been used in single-reference calculations (i.e., in self-

consistent mean-field calculations of ground-state properties)

and, eventually, in studies of giant resonances using the

(quasiparticle) random-phase approximation. However, to be

able to make detailed predictions for excitation spectra and

electromagnetic transition probabilities, correlations beyond

the static mean field must be included through restoration of

broken symmetries, and configuration mixing of symmetry-

breaking product states must be taken into account.

In this work we presented a study of low-energy col-

lective spectra of two nuclei, 166Er and 240Pu, using the

recently introduced relativistic density functional DD-PC1.

Starting from microscopic nucleon self-energies in nuclear

matter, the parameters of this functional were determined

exclusively from a fit to binding energies of a set of 64

axially deformed nuclei in the mass regions A ≈ 150–180 and

A ≈ 230–250. DD-PC1 was previously tested in calculations

of ground-state properties and excitation energies of giant

multipole resonances, but this is the first application in a

study of low-energy excitation spectra. The framework used

in the present study includes the three-dimensional relativistic

Hartree-Bogoliubov model with a separable pairing force and

the model for the solution of a collective Hamiltonian in five

dimensions for quadrupole vibrational and rotational degrees

of freedom.

The relativistic Hartree-Bogoliubov model, with the func-

tional DD-PC1 in the particle-hole channel and a separable

pairing force in the particle-particle channel, is used to perform

constrained self-consistent triaxial calculations of binding

energy maps as functions of quadrupole deformation in the β-γ
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plane. The resulting single-quasiparticle energies and wave

functions provide the microscopic input for the parameters

of the collective Hamiltonian for vibrations and rotations: the

mass parameters, the moments of inertia, and the collective

potential. The solution of the corresponding eigenvalue prob-

lem yields the excitation spectra and collective wave functions

that are used in the calculation of electromagnetic transition

probabilities.

The nuclei 166Er and 240Pu were chosen as representative

of the two mass regions in which the parameters of DD-PC1

have been adjusted to binding energies. For both systems, the

present study showed good agreement with data on low-energy

positive-parity collective states. In the case of 240Pu, the

RHB calculation reproduces the experimental values for the

ground-state deformation, the barrier height, and the excitation

energy of the second minimum. The inclusion of triaxial

shapes, in particular, lowers the inner barrier by ≈2 MeV, in

agreement with data. The excitation spectrum of the collective

Hamiltonian determined by the functional DD-PC1 reproduces

the available data for the ground-state band, β and γ bands,

and the lowest superdeformed band SD-1. 166Er presents a nice

example for studies of the mixing between the ground-state

band and a low-lying γ band, and available data on two-phonon

γ -vibrational states provide information about the stiffness and

anharmonicity of the collective potential energy surface. The

results of the diagonalization of the collective Hamiltonian are

in good agreement with experiment, especially the spectra of

the ground-state band and the γ band, the staggering of the γ

band, and the pattern of E2 interband and intraband transitions.

The model also predicts rotational bands based on the double

γ vibration and reproduces the B(E2) values for transitions to

the bandhead of the γ band. It seems, however, that DD-PC1

predicts a collective potential that is too stiff with respect to

γ deformation, with the result that the calculated one- and

two-phonon states are located at higher excitation energies

compared with the corresponding experimental levels. The

DD-PC1 PES of 166Er has a minimum at γ = 0, and this leads

to a γ -anharmonic spectrum with a level of anharmonicity

close to the empirical one.

The tests performed in Ref. [6] and the present investigation

have shown that the relativistic energy density functional

DD-PC1, adjusted exclusively to masses of axially deformed

heavy nuclei, not only reproduces ground-state properties

and excitation energies of giant resonances in “mean-field

level” calculations but, when used as a microscopic input

for the collective Hamiltonian, also provides a quantitative

description of complex excitation spectra and electromagnetic

transition patterns. Therefore, we plan to employ DD-PC1

in systematic studies of low-energy collective spectroscopy,

especially shape coexistence and shape transition phenomena

in medium-heavy and heavy nuclei, using either the generator

coordinate method for configuration mixing of angular mo-

mentum projected triaxial mean-field wave functions [10,46],

or the collective Hamiltonian in five dimensions for quadrupole

vibrational and rotational degrees of freedom [9]. It must be

emphasized, however, that those correlations that we wish to

treat explicitly as, for instance, rotational energy corrections

and quadrupole fluctuations should not already be included

in the energy functional in an implicit way. This is, of

course, the case with all modern functionals, including also

DD-PC1, that have been adjusted directly to experimental

masses and/or radii. The solution would be to readjust a given

functional to pseudodata, obtained by subtracting correlation

effects from data (experimental masses and, eventually, radii).

Approximate methods for the calculation of correlations have

been developed [47] that will enable a systematic evaluation

of correlation energies for the nuclear mass table. In the

case of DD-PC1, the subtraction of correlation energies from

experimental masses leads to a fine tuning of the coupling

constants but, of course, we do not expect significant changes

in the parameters.

A very important additional test of this framework is a

detailed investigation of the structure of even-even nuclei at

normal deformation, in comparison with results obtained in

the recent global study based on the nonrelativistic Hartree-

Fock-Bogoliubov framework with the Gogny interaction D1S

and mapped onto a five-dimensional collective quadrupole

Hamiltonian [48]. Finally, it would be equally important to

connect the semiempirical DD-PC1 more directly with energy

density functionals based on a fully microscopic approach to

symmetric and asymmetric nucleonic matter [4,5].
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