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In this paper, the Lorentz transformations of entangled Bell states with general mo-
mentum not necessarily orthogonal to the boost direction and spin are studied. We extend
quantum correlations and Bell’s inequality to the relativistic regime by considering nor-
malized relativistic observables. It is shown that quantum information along the direction
perpendicular to the boost is eventually lost, and Bell’s inequality is not always violated
for entangled states in special relativity. This could impose restrictions on certain quantum
information processing, such as quantum cryptography using massive particles.

§1. Introduction

Relativistic quantum information processing is of growing interest not only for
the logical completeness but also with regard to new features, such as the physi-
cal bounds on information transfer, processing and the errors provided by the full
relativistic treatments.) 1Y) There is also an important question whether Bell’s
inequality is always violated for entangled states for observers in different Lorentz
frames. Violation of Bell’s inequality is perhaps the most drastic feature distin-
guishing quantum theory from classical physics.'? Bell’s proof that there are states
of two-quantum-particle systems that do not satisfy Bell’s inequality derived from
Einstein’s assumptions'® of the principle of local causes has changed our tradi-
tional viewpoint of Nature quite significantly. Specifically, it was shown that all
non-product states, otherwise known as entangled states, always violate the Bell
inequality when special relativity is not taken into account.!® Therefore, it is an in-
teresting question to whether the above mentioned condition changes if one considers
special relativity.

Under the Lorentz transformation, the Hilbert space vectors representing the
quantum states undergo unitary transformations.!® On the other hand, the Pauli
matrices are not Lorentz covariant, and therefore as a need to find relativistically
invariant operators corresponding to the spin in order to investigate Bell’s inequality
within special relativity.'®) Sometime ago, Fleming!”) showed that a covariant spin-
vector operator that reduces to the ordinary spin operator in the non-relativistic
limit, can be derived from the Pauli-Lubanski pseudo vector, and Czachor!) showed
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that the degree of violation of Bell’s inequality depends on the velocity of the pair
of spln— particles with respect to the laboratory. A unitary transformation corre-
spondmg a Lorentz boost of the quantum states was not considered in those works.

In a previous work,%) we calculated Bell observables for entangled states in the
rest frame with both momentum vector and the spin in the z-direction, as seen by
an observer moving in the x-direction, and showed that the entangled states satisfy
Bell’s inequality when the boost speed approaches the speed of light. Also, we showed
that average of the Bell observable for Lorentz transformed entangled states becomes

(**56):(@6) (a@V)+ (@ @b) — (@ @)
\/mlJm/l—ﬂ? (1)

where @ and b are the relativistic spin observables for Alice and Bob, respectively,
v

related to the Pauli-Lubanski pseudo vector, and 3 = 7 is the ratio of the boost
speed and the speed of light.

In this paper, we derive the transformation for the relativistic entanglement of
spin 1/2 particles with case the general momentum is not necessarily perpendicular
to the boost direction. We also calculate the average of the Bell observable for the
momentum-conserved entangled Bell states for spin—— particles and show that the
universal relation given by Eq. (1) still holds in general.

§2. Relativistic entanglements

A multi-particle state vector is denoted by

Upo1iproa;.. = a+(ﬁla Ul)a+(ﬁ27 02) ... ¥, (2)

where p; labels the four-momentum, o; is the spin z component, a*(p;, ;) is the
creation operator, which adds a particle with momentum p; and spin o;, and ¥ is
the Lorentz invariant vacuum state. The Lorentz transformation A induces a unitary
transformation on vectors in the Hilbert space as

v —UA)Y, (3)
and the operators U satisfis the composition rule

UAU(A) = U(AA), (4)

while the creation operator has the transformation rule!®

vt Gova = U S D w6

Here, W (A, p) is Wigner’s little group element, given by
W(A,p) - L_l(Ap)AL(p), (6)
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with DU) (W) the representation of W for spin j,p* = (7,p°), (Ap)* = (Fa, (Ap)?)
with ©=1,2,3,0, and L(p) is the Lorentz transformation such that

Pt = Lk, (7)

where k¥ = (0,0,0,m) is the four-momentum taken in the particle’s rest frame. One
can also use the conventional ket-notation to represent the quantum states as

Uy o = at(p,0)®o
= |p, o)
= [p) ® |o). (8)

The Wigner representation of the Lorentz group for spin—% becomes:%)

DY (W (4,p))

1 0 o O U ¢ S A
" 100+ m)(Ap)0 + m)] 72 {0+ m) cosh 5+ (7€) sinh 5 — isinh 55+ (7x &)}
Q- .
:cos7p+isin7p(5’-ﬁ), 9)
with 5 5
0- cosh = cosh = + sinh = sinh —(é-p)
cos —L = 2 2 2 2 (10)
2 o1 1 12
[5 + 3 cosh acosh § + 3 sinh avsinh §(é ﬁ)]
and 5
0- sinh = sinh 2 (& x p)
sin = = 2 2 (11)

11 1 /2’
[— + —coshacoshd + — sinh asinh §(é - A)]
2 2 2
where coshd = % We note that Eq. (9) indicates that the Lorentz group can be
represented by a pure rotation about the axis n = € x p for the two-component
spinor.

We define the momentum-conserved entangled Bell states for spin-% particles in
the rest frame as

1 1 1 1 1
Uoo=—=<a" [p,=)at | —p, = g —=)at (=P, —= )+ & 12
00 \/i{a ( ;2>a < p72> +a (p, 2>a b, 2 05 ( a)
1

el () () o (5D ()
vyl ) (-t e () (o) o
one e () (o) o (s (o) o
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where ¥ is the Lorentz invariant vacuum state.
For an observer in another reference frame S’ described by an arbitrary boost

A, the transformed Bell states are given by

Wij — U(A)&i;. (13)
For example, from Eqs. (5) and (12a), U(A)%yo becomes
[ (1Y e NS N
Uina = = {uiaa® (7.3 ) U vt (<55 ) v

1

+UMNa™ (P, ——> U Y (AU (A)a™ (—5, —§> U—l(A)} U(A)%,

V2 & o

[ DR W (4, P (s 0)a (s
+/CEED W) i)

x <f£7];%°D§?_%<w<A,Pp>>a+<m,a>a+<—m,a’>}% (14

and so on.

2.1. The case that momentum and boost vectors are in the same plane

We assume that p'is in the  — 2z plane, p'= (psiné,0, pcos @), and the boost A
is in z-direction. In this case, we have

0 0
Qs cosh @ cosh — &+ sinh @ sinh — sin 6
cos D — 2 2 2 2 ’ (15)
2 1 1 1/2
[5 + 3 cosh o cosh § = sinh « sinh 6 sin 9]
. a0
Qs (F9) sinh — sinh — cos
sin —Lhy = 2 2 , (16)
2 1 1 1 1/2
— + —cosh «cosh § = = sinh o sinh § sin 0
2 2 2
and
2= 2>
DY2(W (A, p)) = cos 7p — iy sin 7]0
2= 2=
cos 7’7 —sin 7’7
= 0 , (17)
sin -2 cos —2

2 2
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0_5 0_5

DY2(W (A, Pp)) = cos + 0y sin

where Ny = Fg. Then from Egs. (17), (18) and (14), we obtain

) 2+ 1 f L1\ L o1
U(A)¥y = 0 Ccos 5 NG a \Pasgy)a pas 5

1 o1
+at <pA,—§> at (—pA, —§> } I

(Ap)° . e+ Q51 [ (. 1\ L . 1
- po sSim 9 \/5 a ba, 2 a —PA, _2

~ (4p)° L L 25+02_51 (|11 11
=0 DA, —PA) @ < cos 5 A tl-373
(4p)° . %+ 0251 (|11 11
PP @ 4 sin————5 | 5.5 2'9
Ap)° Qs+ 2_5 Q5+ 0_3
= (p}(?]) {cos p—; Py, — sin %W{l}, (19a)

where % represents the Bell states in the moving frame S’ whose momenta are
transformed as P’ — pa, —p — —pa. Similarly, we have

_Mp)® =Ry 1 [ 1N ]
U(A) ¥y = 0 cos 5 NG a’ (P35 |a pas g

1 1

+ > - +(_= =

+a (pA, 5 a ( pA,2)
C(4Ap)? L Q;—02_5;1 (|11 11
- p[) |p/17 pA> ® COs 2 \/5 27 2 27 2
A° L 25-02.5;1 (|1 1 11
+ po ‘p/lv p/l>® S11 2 \/5 27 2 + 272

(Ap)°

Qz— 0 5 Qz— 0 5
= 0 {cos 4 Pyl, + sin u@{o}, (19b)
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(Ap)° Q5= 5 1 o1 o1
Ny = e T P
U(A)¥o 0Ty B Py )t (g

o 1 . 1
e () ()

A0 . 25— 0
zp—olpm—m)@ cos ———

(4p)°, - . 25— 0 5 1 1 1
0 |DA, —P4) ® { sin 5 523) |33

Ap)° 25— 5 25— (2
:( ];) {cos d 5 Py, — sin
p

and

25+ 0 _5 2= 2_= 2= 2_=
cos% :COSTPCOSTP —sinfsinTp

h % cosh 2 T b & sinh O i
COS 2 COS 2 Sin 2 Sin 2
1

1 2 2
(— + Ecoshacosh5> — <§ sinhasinhésin&) ]

, (20a)

=

2
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25— 2_5 2> N 2> 2_-
o S A— —cos—pcos—p +sm—ps1n—p

[0 (s [0 (s

T, (20b)
11 2 1 27 2
(— + 3 Coshacosh5> - (5 sinhasinhdsin@) ]

2
Qﬁ-l- Q,ﬁ 2 2_= (9 Q,p

: P 4 P
sin ————— = sin —- cos —— + sin — sin —~
2 2 2 2 2

2 cosh @ cosh é sinh é sinh é cosf

1 1 S _ N2
—+§coshozcosh5 - §Slnhas1nh581n9

SIS

2
05— 25 05 0y 25 . 0y

Sil’l——Sll’l—COS——Sll’l—Sll’l—
2 2 2 2 2

a6\,
— [ sinh 5 sinh 3 sin 20
= - (20d)

1 1 2 1 272
(— + §coshacosh5> — (5 sinhasinh&sin@) ]

2

2.2. The case that the momentum and boost vectors are not in the same plane

We consider the general case of a momentum vector out of plane,
P = (psinf cos ¢, psin O sin ¢, pcos#), and a boost in the z-direction. In this case, we
have

0 0
o cosh = cosh 2 + sinh = sinh - sin § cos ¢
p _ 2 2 2 2
cos = — , (21)
2 11 1 12
3 + 3 cosh awcosh § + 3 sinh « sinh § sin 6 cosh qﬁ]
' 5
Qi M4 sinh d sinh —
sin 2y = — 2 2 . (22)
2 1 1 1 1/2
3 + 3 cosh acosh § & 3 sinh «sinh § sin @ cos ¢
and
25 2z
DY2(W(A,p)) = 0057 + isin 7100 (=g cosn + Zsinn)
25 25 . 25
cos7+281n751nn —sin —= cos)
2z 2z 2z

sin = cosn cos —£ — isin =2 sinn
2 2 2



226 Y. H. Moon, S. W. Hwang and D. Ahn

2_z 02_z
DY2(W (A, Pp)) = cos —isin 2pa - (=g cosn + Zsinn)
2_5 2_z 2_z
cos —2 — jsin — L siny sin —2 cos 7
= , (24
2_p Ly o 2
cos +28in 5 sinn
where ny = +(—gcosn + Zsinpy), cosn = Cofe, sinnp = M’
r= \/sin2981n2<;5+ cos? 0.
Let 5= 200 A, — Yol

Then, from Eqs (23) ( 4) and (14), we obtain

(/119)0

1 1 1
/1 !p — .Q AQ - + = _ + . _
U(A)¥oo = (cos 2 cos® 1) + cos 5sin 77)\/§ {a (pA, 2) a ( DA, 2>

(b))
) sin 25 cosn\}§ {a+ (ﬁA, %) a’ (—;5}1, —%)
~a* (m, ~3) et ()
(/22)0 sin A!Zﬁsi]an\/i§ {a+ <ﬁA, %) a’ <—ﬁA, %)
e ()
(AZ)O(—COS Q5 + cos AL25) sinncosn% {a+ <ﬁ/1, %) a® <—15’A, —%)

. 1 L1
+a’t <p/1, —§> at <—pA, 5) } %%

_ (4p)° 5 2 . 9
= DA, —Da) @ {(cos 25 cos” n + cos Af2zsin” 1)

pO
11
2’ 2
(Ap)° .- 1 /1 1 11
_ _ - |z 2N _ |2 2
p° [P, =pa) @  sin pcosn\/ﬁ 27 2 2’2
(Ap)° : N A
+1 0 DA, —PA) ® smAstmn\/i 57 575
{

Ap)° ~
z( Z) (—cos £25 + cos Af25)

+1

.

i

’ﬁ/l? _ﬁ/l> ®

- AN
sinncosn—|{ |z, —= -, =
WIS\ 12072 272
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Ap)° ~ ~
= ( p];) {(cos 25cos® 1 + cos Af2sin® n)¥, — sin 25 cos NPy,
+ i sin Af2gzsin ¥, — i(— cos 27 + cos AL25) sinn cos n¥y, }, (25a)

where W/ represents the Bell states in the moving frame S’ whose momenta are
transformed as p'— pu, —p — —ﬁ 1. Similarly, we have

_ (Ap)O 1N L 1
U)Wy = 0 cos Af2; \/_ o (Fag ) a Pirg
L1 L1
—a”t (pA, —5) a’ (—pA,—§> } %
(4p)° V[ (. 1\ of - 1
pO SIHAQP COS’I’]\/§ a ba, 2 a ba, 2
. 1 L1
+a” (pA, —5) a® (—pA, 5) } U2
.(Ap)U . . 1 (- 1 n 1
+1 0 sin Af25 smn\/§ a® | pa, 5 at [ —pa, .
. 1 . 1
(4p)° . . 11 1 1
= - A_Q~— S O
po |p/17 p/l> Ccos \/, 373 5 5
(4p)° . . 1 /|1 1 11
0 DA, —Pa) ® SlnAQpCOSUﬂ 530|503
(4p)° : .1 /|11 1 1
+1 0 DA, —Pa) ® SurlA_stmn\/§ 55 + ~5"%

A 0
= ( p];) {cos AQ];W(H + sin Af2;cos 77@{0 + i sin Af25sin nllléo}, (25D)

_'_

Ap)°® ~ 1 1 1
U(A)¥y = ( ]())) (cos IZI;Sm2 7+ cos Aﬂﬁcos2 77)% {a+ (ﬁA, 5) at (—ﬁA, —5)

g ) ()

1 1 1
sin Af2; cosn\/§ { + (ﬁA, 5) at (-ﬁA, 5)

(Ap . A . 1 — ]' ond 1
o s1nQﬁsmnﬁ at pA,§ at —PAa—§

. 1 L 1
—a® (pA, —5) at (—pA, 5) } Yy
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. 1 . 1
+ CL+ (pA7 _§> CL+ <_p/17 _5) } Wo

0
= (/]1)]())) DA, —pA>®{(cosﬂﬁsinQU—i—COSAQﬁCOSQn)
L (Lby
a5 2 2’2
(Ap

LT - A O
0 DA, —Da) ® smAQpcosn\/5 53 5 5
(/119) s 1 f]1 1\ |11

—pA) ® 81n(2psm77—\/§ 5 3 55

DA, —Pa) ® {(cos Q5 — cos AL2;)

y . 1 11 n 1 1
inn — | |=, = .
cosnsinn VAR 573

Ap)? ~
= ( p]())) {(cos Qﬁsin2 1 + cos AQﬁcos2 n)¥1o — sin A2z cos ¥,

(Ap)°
0

+ i sin 25sin n¥;; — i(cos 25 — cos Af2z) cosnsin ¥}, (25¢)

and

(Ap)° at (7 Ly + 7 1
U = L cos 7 Parg Jat | =P =5
1 1
+ (7, T g, = V/
(52D (-5 2)
(A4p)° . 4 1 +(- L) + -1
25 — - - =
+ 0 sin pcosn\/ﬁ a pA,2 a ]U/h2
+at (Pa ! at ( —pa . Yo
9 2 ? 2
(Ap)° o1 1N o 1
AN - - - _ _Z
+1 0 sin psmn\/§ a pA,2 a pba, 9
1 1
+ (7, = +( _p, =
+a (pA, 2>a <pA,2>}%

(A4p)° { (‘
=P~y @ { cos 2 ( |2
p° | ) PV2

1

2

(4p)?° . { . 1 (
,— ® < sin 25 cosn—
po ’p/l ]7/1> 7 77\/5

(Ap)° ., L= 1 1 1 11
+1 0 |DA, —DA) @ Slnﬂﬁsmnﬁ 373 + -3

Ap)? ~ ~ _
= ( p];) {cos 2501, + sin 25 cos NP + i sin 25 sin nP}}. (25d)

If we regard ¥, representing Bell states in the moving frame S’, then to an
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observer in S, the effects of the Lorentz transformation on entangled Bell states
among themselves should appear as rotations of Bell states in the frame S’.

§3. Bell’s inequality

We are now ready to check whether the Lorentz transformed Bell states always
violate Bell’s inequality in special relativity.

One of the most essential features of quantum mechanics that distinguishes it
from classical physics is that the expectation value, or the quantum correlation of the
measurement of the observables @ - 1 and s - & for a two-particle system, where
o1 and &y are the Pauli spin matrices pertaining to the two particles and some unit
vectors @ and @ given by'®)

(G - G100 - Go) = —d1 - Og (26)

for the singlet state, is always stronger than the classical correlations. The original
Bell’s inequality was derived for any physical system with dichotomic observables,
whose possible values are +1. Because any Hermitian operator defines observables,
one could extend Bell’s inequality to the relativistic regime for any normalized rela-
tivistic observables.

It is known'® that neither the rest frame spin & nor the Dirac spin operator
X , which is associated with the spin of a moving particle as seen by a stationary
observer, can be a relativistic spin operator. Another plausible candidate is the Pauli-
Lubanski pseudovector W#, which itself is a Casimir operator satisfying WHW, =
m?s(s + 1), where m and s are the mass and spin of the particle, respectively, and
WH = (p°(€- 3)é+ me(5— (€- 3)é),p’v - 5/c?) for the observer in the moving frame
with boost velocity #.1:17:19) Here § is the spin vector in the rest frame, € is the
unit vector in the Lorentz boost direction, and 3 = v/c the ratio of the boost speed
and the speed of light.

In the non-relativistic case, the measurement of the spin in the direction of the
unit vector @ is represented by the observable @ - §, and if we extend this definition
of the observable to the relativistic case as @ - §4, then we have

a-5a=[V1-p*a—éa-e)+eéa-e)-s (27)

and the normalized relativistic spin observable to be given by®):6)
W Ra-da-9)+da-a) 29)
V1+p8%(e-a)? —1] ’

where we have normalized the relativisitic spin observable by the absolute value of
its eigenvalue. Here @ and §4 are a unit direction vector and the relativistic spin




230 Y. H. Moon, S. W. Hwang and D. Ahn

operator as seen by the moving observer. We can specify a more clear physical
meaning of Egs. (28) and (29) by invoking principle of the special relativity. If we
consider @4 to be the Lorentz transformation (now as seen in the rest frame) of the
direction vector (of the moving frame), then from Eqs. (28) and (29), we obtain

aj-s a-s)

N@q-9| MG -sa)| (30)

which is consistent with the principle of special relativity which asserts the physics
does not change across frames. As a result, we can interpret @ as the correct normal-
ized relativistic observable for the observer in the moving frame. Here A(O) denotes
the eigenvalue of an operator 0.

It is straightforward to calculate the classical correlation (&Z;)Classical when the
moving observer is receding (approaching) from (to) the rest frame with the speed

of light. In this case, we have

A i-é b-é
0D) clnssical = R 1
(CL >class cal |Ei 61 ‘b a (3 )

and it should be noted that information in the direction perpendicular to the unit
boost vector € is lost, as both spins are toward the boost axis as a result of the
Lorentz transformation.

The normalized relativistic spin observables @ and b are given by%

(V1—p%, +ad))-o

e o) )
and
E:(\/l—ﬂ25L+g||)‘57 (33)

1+l 52 -1

where the subscripts L and || denote the components of @ and b that are perpendicular
and parallel to the boost direction, respectively. Moreover, we have |@| = |b] = 1.

3.1. The case that the momentum and boost vectors are in the same plane

Case I: Wyg — U(A)¥yy
From Eq. (19a), we have

1 1
2
). s
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Then, after some mathematical manipulations, we get

11 1

) _> = {(1 -
22/ 14522 -1+ 5202~ 1)]

- T= Pas(by +iby/T— ) ;_;>
T B, (ay + iay/T— ) _%%>
(ag + iay /T = B2) (bs + iby /T — B2) —%—%>} (35a)

- 1 1 1
Aoblos _2
a® ' 5’
11
272

a®b

2> ~ VI + @ - DL+ B2 - 1)
X {(a;E —iay\/1 — %) (by — iby\/1 — [32)

1= P (ay — iay 1_52>'§,_%>
— V1= B%a.(by —iby\/1 — 3?) —%,%>
1 1
—5,—§>}, (35Db)
&@g'l _1> _ L
2" 2/ I+ 32a2 - DI+ B202 - D)
« {\/1_52%(%—@@@,\/1—@) %%>
1 1
§’—§>
- (ap + iay /T = ) (bs — ibyr/T— ) _%%>
T= B, (as + iay /1= 5 —%—%>} (35¢)

_1 1> _ !
22" T+ @2 - D[ + F2(b2 — 1)]

x{mbzwx—wy 1‘62)'1 1>

+(1 = ?)a.b.

- (1 - /82)azbz

i@ b

22

+ (ag — tay/1 — B2)(by + iby\/1 — ?)

1 1
27 2

, 11
_(1_5 )azbz _§7§>
T= Pas(bs +iby/T— ) —%—%>} (35d)
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for a boost in the z-direction. The calculation of (a ® b) is straightforward and it
yields,

. 1

a®b) = azby + (1 — B*)azb,] cos(25+ 2_5
e \/[1+52(a§—1)][1+52(b%—1)]{[ ( Ja:0e] cos( % 2
— (1= BHayby — /1 — B2(azb, — bsay)sin(25 + 2_5)}. (36)
It is interesting that in the ultra-relativistic limit, 5 — 1, Eq. (36) becomes
A 2 Ay by
(G®0b) — 0l : ] cos(§25 + £2_5), (37)

implying that joint measurements are not correlated. As a result, one might suspect
that the entangled state satisfies Bell’s inequality. We now consider the vectors
@ = (75750, d = (- —50,b=(0,1,0),5' = (1,0,0), which lead to the
maximum violation of Bell’s inequality in the non-relativistic domain, 25 = 2_5;=0
and 0 = 0. Then the Bell observable for the four relevant joint measurements
becomes A A R A
(a@b)+(axb)+ (@ @b) —(a' @b
2
= — (1 — %2+ cos(25+ 2_3)). 38
\/m( ( p p)) ( )
In the ultra-relativistic limit, where 5 = 1, Eq. (38) gives the maximum value of 2
satisfying the Bell’s inequality, as expected.
Case II: W1 — U (AP
From Eq. (19b), we have

Ap) Qs 0

5y | Lo B8
1
2

2 2 2' 72 2’

From Egs. (35a) to (35d), we obtain

U(A)Wy =

. 1

a®by= —azbs + 1—52 ayb,|cos(§25— §2_5
@b \/[1+ﬁ2(a%—1)][1+52(b%—1)]{[ ( Jabe] cos( % 2
+ (1= BHayby + V1 — B2(a:b + bsay) sin(25 — 2_5)}. (40)
Then, in the ultra-relativistic limit, 6 — 1, we have
" 7 Qg by
<Cl ® b> i —m : m COS(Qﬁ— Q_ﬁ), (41)

again, indicating that the joint measurements become uncorrelated in this limit. We
. - 11 = 11 7 X

consider the vectors , @ = (_ﬁ’ E,O), a = <ﬁ’ W,O), b=(0,1,0), ¥ = (1,0,0)

which lead to the maximum violation of Bell’s inequality in the non-relativistic
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regime. Then the Bell observable for the four relevant joint measurements becomes

(Ga@b)+ (a@b)+ (@ @b)— (@ V)
2 (VT— 5+ cos( 25— 25), (42)

VR

thus giving the same maximum value as in Case L. It can also be shown that one can
obtain the same value for the Bell observables given by Eq. (42) for U(A)¥;o and
U(A)¥;;. This implies that Eq. (42) is a universal result.

3.2. The case that momentum and boost vectors are not in the same plane

Case I: Yoo — U(A)Wyo
From Eq. (25a), we have

Ap)° _
U(A)Wyo = (p%)\ﬁ/l, —pa) ® {(cos 25cos* n + cos Af2ysin® )

(\ 2| 5a)
antpeosn s (L1 - |- 1.1)

1 1 1
+isin Af25 s1nn\/§ <‘2 2> ‘—5,—§>>
@ :

—i(— cos 25+ cos Af25) sinn cos n— ’

2

Then, from Egs. (35a) to (35d), we obtain

N 1 A A_
<d®b> — { ++ X2 Y2
VIL+B%(a2 — D)1+ 5202 - 1)] 2 2
E E_ _ B B_ AL —A_

+ LZQ + MW 9 | Z* + XY + : X7z
2 2 2 24

(B By Do Doy, GGy By ,
21 21 21 2

where

X = cos 2 cos® 1 + cos AQﬁsin2 n,

Y =sin Qﬁcos 7,

Z = sin Af2zsinm,

W = — cos Qﬁcos nsinn + cos Af2zsinn cosn,
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DA b~ (- Py, + (- Pasbs,

% = —azb, — (1 — 62)ayby —(1- 62)azbz,

# = —azb, + (1 — 52)ayby + (1 - ?)a.b.,

% = azby + (1= B%)ayby — (1 — 5%)azb,

T Pl T Pasbs — beaa),

P e T Plasb +baaa),

A+ 2_1 A- = Bt 2_z b = M(amby + beay),

G = e T Plaaby — by,

T T (- ) asby + by,

D2 Be 2B (1 )0y — by, (45)

It is interesting that in the ultra-relativistic limit, 5 — 1, Eq. (44) becomes

<a®é>—>|;‘—i|.%(x2—y2—z2+w2), (46)

implying that joint measurements are not correlated. As a result, one might suspect
that the entangled state satisfies Bell’s inequality. We now consider the vectors

i = (5750, @ = (55,750, b = (0,1,0), b = (1,0,0), which lead to the
maximum violation of Bell’s inequality in the non-relativistic domain, {25 = 2_5 =0
and # = 0. Then, the Bell observable for the four relevant joint measurements

becomes
(a@b)+ (@aab) + (@ @b) — (@' @)
2
{(X?2=Y?2 - Z2 4+ W) + (X2 + Y2 - Z2 - W31 - 2}

= —— =
In the ultra-relativistic limit where 5 = 1, Eq. (47) gives the maximum value of 2
satisfying Bell’s inequality as expected (see the appendix).
Case II: W1 — U (AP
From Eq. (25b), we have
U ()Y (Ap )0\ ) ® { Al (‘
01 = DA, —PA cos
P° "2

1

2’

1 1 1 1

— sinAQﬁcosn\/—§ <‘§, —§> + ‘—5

. . 1 11 1 1
—HsmAQﬁsmnﬁ <‘§,§>—|— ‘—5,—§>>} (48)
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Also from Egs. (35a) to (35d), we obtain

P 1 Gi+G_ oy Af+A
<“®b>_J[Hﬂ?(az—nmw?(bg—1>]{ 2 T

+E++E_Z/2+2 |:F++F_X/2/+A+ _A_lel_ B+_B_lel:|}?

Y/2

2 2 2i 2i
(49)
where
X' = sin Af2zcosn,
Y’ = sin Af2zsin,
Z' = cos AL2;. (50)

Then, in the ultra-relativistic limit, 5 — 1, we have

2 Ay by

(a® by — Tl m(—X/2 Ty p—_ Lo cos2A8;  (51)

laz|  |bal

again, indicating that joint measurements become uncorrelated in this limit. We
consider the vectors @ = (—%, %,0), a = <%, %,0), b=(0,1,0), ¥ = (1,0,0),
which lead to the maximum violation of the Bell’s inequality in the non-relativistic
regime. Then the Bell observable for the four relevant joint measurements becomes

(Ga@b) + (@b + (@ ob) — (@ )

2 ——5
— 2 — 62{(_Xl2 _ Y/2 + Z/2) + (X/2 _ Y/2 + Z/2) 1 _ ﬁQ}
2
= ———{cos 2A02;5 + (cos® 1 + sin® n cos 2A025)1/1 — 52}, (52)

Vo

thus giving same maximum value as in case I. It can also be shown that one can
obtain the same value for the Bell observables given by Eq. (52) for U(A)¥;o and
U(A)¥;;. This implies that Eq. (52) is a universal result.

The results above agree with our previous results,® which did not take into
account the general momentum. It can also be shown that similar results would be
obtained for the case??) in which one observer is in the rest frame and the other
observer is in the moving frame and do joint measurements of spins. Now, one can
see that the quantum correlation approaches the classical correlation when the speed
of the moving observer reaches the speed of light, and in both cases, the information
in the direction perpendicular to the boost axis is lost. This is somewhat analogous
to the cases of (B-decay of nuclei and high energy electrons and positrons emitted
in the decay of muons, for which emitted electrons and positrons are polarized such
that their spins tend to lie in the same direction as the motion and the projections
of their spins in the direction of the motion become +1 for relativistic particles.2!)

It should be noted that if one simply rotates the spin directions instead of using
relativistic spin observables, then the entanglement between the spins of the Bell
states is not changed, and the results of the spin measurements would be exactly
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same as if they were done in the rest frame. Thus, they give the maximum violation
of Bell inequality. It is interesting that the entanglement remains, though it is
degraded, when Bell’s inequality is satisfied. The most plausible reason for this is
that the quantum correlations in the direction perpendicular to the boost are lost
and become classical. Therefore, we can conclude that Bell’s inequality is not always
violated for entangled state in special relativity.

§4. Summary

In this work, we studied the Lorentz transformed entangled Bell states and
the Bell observables in the case of general momentum to investigate whether Bell’s
inequality is always violated in special relativity. We calculated the Bell observable
for joint four measurements and found that the results are universal for all entangled
states:

(@@ bt =(a®b)+(@aob)+ @ ob) — (@ )

2 2
Here a and b are the relativistic spin observables derived from the Pauli-Lubanski
pseudo vector. It turns out that the Bell observable is a monotonically decreasing
function of 8 and approaches the limiting value of 2 as § — 1. This indicates that
Bell’s inequality is not always violated in the ultra-relativistic limit. We also showed
that quantum information, along the direction perpendicular to the boost is eventu-
ally lost, and Bell’s inequality is not always violated for entangled states in special
relativity. This could impose restrictions on certain quantum information process-
ing, such as quantum cryptography using massive types of particle. In particular,
unless both the sender and receiver measure along the boost direction, there will be
information loss.
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Appendix
We have, cosha = \/11_? and coshd = % from Egs. (10) and (11), and we have
deﬁned’ cosn = Coje’ sinn = w, r= \/sin2 0 sin? o+ cos? 9, and Qﬁ = QITJFZQ—f,
Ay = 95729‘5. From Egs. (21) and (22), we obtain
% 05 05 0

cos Qﬁ = cos 5 cos —— — sin —— sin ——

2 2 2
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1)
cosh2 5 cosh? 3~ smh2 > sinh? —

=

1 1 2 1 212
(5 + §coshoccosh(5> — (5 sinhasinhésin&cosqﬁ) ]

)
n2? < cosh? 2
COS 2 COS 2

« 5 1
sinh? — sinh? —
_ 2
2 2 3
1 4 coshacosh § sinh o sinh ¢
5]~ 5| =)
281Hh2 5 sinh? — 2 281nh2 5 sinh? 3

0
coth? % coth? 3~ 1

1
2

5\’ 5
[(coth2 % coth? 3 + 1) — 4coth? 2 coth2 (1 - 7"2)]

1)
coth? % coth? 5~

- 1
2

§ 2 §
2 20 2 & 2
[(co‘ch 5 — coth 5 1> + 4 coth 5 — coth 2 ]

B t—1 A1)
(= 1)2 + 40223

where t = coth? 3 coth? %, 1 <t and

2= = 2 _~
cos Af2y = cos 7p cos T + sin 710 sin 5 P

) )
cosh? & 5 cosh? = 5 ~sinh2 2 5 sinh? — 5 (sin? f cos? ¢ — sin? fsin ¢ — cos? 0)

2 2

1 1 2 1 2] 2
<— + —Coshozcoshé) — <§ sinh « sinh § sin 6 cos gb) ]

cosh2 2 cosh? —

2 (1-2r7)
sinh? — smh2
_ 2
2 2 z
1+ cosh avcosh d sinh v sinh &
5] - 5| =)
2 s1nh2 s1nh2 2 smh2 smh2

2 2



238 Y. H. Moon, S. W. Hwang and D. Ahn

5
coth? < 5 coth? 3~ (1—2r?)

1

2

5\ 5
[(coth2 — coth? = 5+ 1) ~4coth? e coth2 ( 7“2)]

1)
<coth2 5 coth? 3~ 1) + 212

N[

2
[(coth2 coth2 5 ) + 4(:0th2 coth2 0 ]

t—1)+2r?
S Gt (A-2)
[(t —1)2 + 4tr?]2
From Egs. (45), (A-1) and (A-2), we get
X2 -Y? - 72+ W? = cos? Q-’COSQ 77 + cos? AQﬁsin2 n
— sin? () ﬁcos n — sin? A.QﬁSiDQH
= 2(cos? 25 cos® ) + cos® Af2zsin®n) — 1
_ 2(75— 1)2cos?n + (t — 14 2r?)%sin?y )
B (t —1)% + 4tr?
t+ (1—r?)tan?

=1-8r?cos’n (=) tany (A-3)

(t —1)2 + 4tr?
and
X24+Y?2 272 —W? = cos® fZﬁcos2 1 cos 2n — cos> AQﬁsin2 1 cos 21 + sin? 050082 n
— sin? A(Zﬁsim2 1N+ 4 cos !_25 cos A(Zﬁsim2 ncos®n
= cos 21 + (1 — cos 2n7){cos® A2y — cos® n(cos 2y — cos A25)*}

(t — 1+ 2r?)2 — cos? n(—2r2)?
(t —1)2 + 4tr?

= cos2n + (1 — cos 2n) {

1 —r2sin®n

=1 — 8r%sin? nm (A-4)
From (A-3), we define
t+a
= — . A-
f) (t—1)2+4r2t (A-D)
Then, we have
dr(t) (t—1)(t+2a+ 1)+ 4r%a
= — > .
i ((t—1)2 1 42} <0, for t > 1,V0 and V¢, (A-6)
where a = (1 — r?) tan?n > 0. From Egs. (A-5) and (A-6), we obtain
I1+a
0=f(o0) < f(t) < f(1) = (A7)

472
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and ) )
1 1- t
1 —8r2cos?nf(1) =1—8r?cos’n + 4T2) |
r

= 2sin? @sin? ¢ — 1, (A-8)
and therefore
2sin®fsin?¢ -1 < X2 -Y2-Z2 4+ W2< 1. (A-9)
From (A-4), we define
b
t) = ——————. A-10
90 = G (A-10)
Then we have
dg(t) (t—1)+2r?
—= = -2b <0, fort>1,V0 and V A-11
it =12 pargpe = O fort =1, % Al
where b = 1 — r2sin?n > 0. From Eqgs. (A10) and (A11), we have
b
0=g(o0) <g(t) <9(1) = 5 (A-12)
and
. . 1 — r2sin?
1 —8r?sin?ng(1) =1 — 8r*sin? 777277
4dr
=1 —2sin?n(1 — r?sin?7)
T2
= cos2n + 5(1 — cos 27)?
> cos 2. (A-13)
Therefore, we obtain
2 2 2 2
cos2n < X +Y*—Z-—-W=<1. (A-14)
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