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Relativistic expansion of magnetic loops at the self-similar stage – II.
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ABSTRACT

We obtained self-similar solutions of relativistically expanding magnetic loops by assuming

axisymmetry and a purely radial flow. The stellar rotation and the magnetic fields in the ambient

plasma are neglected. We include the Newtonian gravity of the central star. These solutions

are extended from those in our previous work by taking into account discontinuities such as

the contact discontinuity and the shock. The global plasma flow consists of three regions, the

outflowing region, the post-shocked region and the ambient plasma. They are divided by two

discontinuities. The solutions are characterized by the radial velocity, which plays a role of

the self-similar parameter in our solutions. The shock Lorentz factor gradually increases with

radius. It can be approximately represented by the power of radius with the power-law index

of 0.25.

We also carried out magnetohydrodynamic (MHD) simulations of the evolution of mag-

netic loops to study the stability and the generality of our analytical solutions. We used the

analytical solutions as the initial condition and the inner boundary conditions. We confirmed

that our solutions are stable over the simulation time and that numerical results nicely recover

the analytical solutions. We then carried out numerical simulations to study the generality of

our solutions by changing the power-law index δ of the ambient plasma density ρ0 ∝ r−δ . We

alter the power-law index δ from δ ≃ 3.5 in the analytical solutions. The analytical solutions

are used as the initial conditions inside the shock in all simulations. We observed that the

shock Lorentz factor increases with time when the power-law index is larger than 3, while it

decreases with time when the power-law index is smaller than 3. The shock Lorentz factor Ŵs

can be expressed as Ŵs ∝ t(δ−3)/2 where δ is the power-law index of the ambient plasma. These

results are consistent with the analytical studies by Shapiro.

Key words: hydrodynamics – magnetic fields – stars: flare – stars: magnetic fields – stars:

neutron.

1 IN T RO D U C T I O N

Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are believed to be young neutron stars with strong magnetic fields

(∼1015 G). They are categorized as magnetars (see e.g. Woods & Thompson 2006; Mereghetti 2008, for review). Their rotation period P and

its time derivative Ṗ are P ∼ 10 s and Ṗ ∼ 10−10 s s−1, respectively. A magnetic field strength inferred by assuming the dipole emission

from P and Ṗ is about 1015 G. Persistent X-ray emissions with the luminosity of LX ∼ 1034–1036 erg s−1 are observed in SGRs and AXPs.

SGRs are identified by the hard X-ray bursts. Extraordinary energetic outbursts called giant flares are observed in three SGRs. The burst

energy in the SGR 1806-20 giant flares on 2004 December 27 reached ∼1047 erg (Terasawa et al. 2005). Since SGRs and AXPs are not

accretion-powered sources, it is believed that their activity is driven by dissipation of their magnetic fields.

Strong magnetic fields are created by the dynamo mechanism during the core collapse of a supernova progenitor. At this stage, the

star becomes unstable against the convective mode since the entropy gradient becomes negative, (dS/dr < 0) due to the neutrino cooling

(Burrows 1987; Keil, Janka & Mueller 1996). Thus, the infant neutron star can store a large amount of magnetic energies. The magnetic

fields are also amplified after the birth of the magnetar. The interior of the star rotates differentially at its birth when the equation of state
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2070 H. R. Takahashi, E. Asano and R. Matsumoto

is stiff. The internal magnetic fields can be amplified up to 1017 G due to the dynamo mechanisms (Duncan & Thompson 1992). As the

magnetic helicity is accumulated inside the star, the Lorentz force exerted by the twisted magnetic fields balances with the rigidity of the

crusts. When the critical twists are accumulated, the crustal rigidity can no longer sustain the Lorentz force by the strong magnetic fields.

The magnetic helicity is then injected into the magnetosphere. The resulting crustal motion induces the electric fields and it results in creating

the potential difference between the foot-points of the magnetic loops. The particles injected from the interior of the star are accelerated along

the magnetic field lines due to the potential difference. The accelerated particles initiate the avalanches of the pair creation (Beloborodov &

Thompson 2007). These particles carry the electric current, which twists the global magnetic fields. When the dynamical equilibrium is lost

by the accumulated magnetic twists, the magnetic loops expand by the magnetic pressure gradient force. Inside the magnetic loops, a current

sheet similar to that of solar flares is formed. The magnetic reconnections taking place in the current sheet are responsible for the magnetic

energy release and resulting flares (Lyutikov 2006). Recent observations which indicate the topological change of the global magnetic fields

before and after the giant flares support these models (Woods et al. 2001).

Motivated by the magnetar flare model, Spitkovsky (2005) performed two-dimensional relativistic force-free simulations of magnetar

flares by injecting the magnetic twists into the magnetosphere. They showed that the initially dipole magnetic fields are twisted by the foot-point

motion, and the loop magnetic fields then expand due to the magnetic pressure gradient force. Asano (2007) carried out two-dimensional

relativistic force-free simulations of expanding magnetic loops and showed that the Lorentz factor defined by the drift velocity vd =
c(E × B)/B2 exceeds 10 (see Uchida 1997, for the definition of the drift velocity). These simulations indicate that the magnetic loops expand

self-similarly.

Such self-similar solutions have been found in analytical studies. In the framework of the force-free dynamics, Lyutikov & Blandford

(2003) obtained self-similar solutions of the spherically expanding magnetic shell. Prendergast (2005) found self-similar solutions of the

relativistic force-free field in two dimensions. Gourgouliatos & Lynden-Bell (2008) derived relativistic self-similar force-free solutions and

analysed them in detail. In the framework of the relativistic magnetohydrodynamics (MHD), Lyutikov (2002) found self-similar solutions

of the spherically expanding magnetic shells. Recently, Takahashi et al. (2009) obtained self-similar solutions of magnetic loops (not shell)

by extending the non-relativistic solutions obtained by Low (1982b). Gourgouliatos & Vlahakis (2010) obtained solutions by ignoring the

gravity from the central star. These authors studied outflows of the magnetized plasma lifted up from the central star. However, they did

not consider the interaction between the outflow and the interstellar matter. Low (1984a) obtained non-relativistic self-similar solutions of

the expanding magnetic loops interacting with the interstellar matter. In their models, the outflows and the ambient plasma are divided by a

contact discontinuity. The forward-propagating wave forms another discontinuity (shock). This solution is useful to understand the coronal

mass ejections in solar flares. Stone et al. (1992) employed this solution as a test problem to check the validity and accuracy of axisymmetric

MHD codes.

In this paper, we extend the analytic solutions given by Takahashi et al. (2009) by including the contact discontinuity and the shock by

extending the non-relativistic model by Low (1984a) to the relativistic regime.

This paper is organized as follows. In Section 2, we summarize the basic equations of self-similar relativistic MHD equations given by

Takahashi et al. (2009). In Section 3, we show the solutions of these equations including the two discontinuities. These solutions represent

the relativistic coronal mass ejection from the central star. Such solutions are expected to explain the giant flares in magnetars. The physical

properties of the solutions are shown in Section 4. We also carried out the two-dimensional relativistic MHD simulations to study the stability

of the solutions. The analytical solutions shown in Section 3 are used as the initial and boundary conditions for simulations. These results are

shown in Section 5. We summarize our results in Section 6.

2 BASIC EQUATIONS OF SELF-SIMILAR R ELATIVISTIC MHD

In the following, we take the light speed as unity. The complete set of the relativistic ideal MHD equations is

∂

∂t
(γρ) + ∇ · (γρv) = 0, (1)

ργ

[

∂

∂t
+ (v · ∇)

]

(hγ v) = −∇p + ρe E + j × B −
GMρhγ 2

r2
er, (2)

[

∂

∂t
+ (v · ∇)

](

ln
p

ρŴ

)

= 0, (3)

∇ · E = 4πρe, (4)

∇ · B = 0, (5)

∂B

∂t
+ ∇ × E = 0, (6)

∂E

∂t
= ∇ × B − 4π j , (7)
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Relativistic self-similar expansion – II 2071

E = −v × B, (8)

where E, B, j , v, γ , ρe, ρ, p and Ŵ are the electric field, the magnetic field, the current density, the velocity, the Lorentz factor, the charge

density, the mass density, the pressure and the specific heat ratio, respectively. The vector er is a unit vector in the radial direction. Newtonian

gravity of the central star is included as an external force. Here, G is the gravitational constant, and r is the distance from the centre of the

star. We replaced the gravitational force −GMργ /r2 in Takahashi et al. (2009) with −GMρhγ 2/r2, which can treat the gravitational force of

the relativistic plasma more properly (Gourgouliatos & Vlahakis 2010).

The relativistic specific enthalpy including the rest mass energy h is written as

h =
ǫ + p

ρ
= 1 +

Ŵ

Ŵ − 1

p

ρ
≡ 1 + hN , (9)

where ǫ is the energy density of the matter including the photon energy coupled with the plasma, and hN = Ŵp/[(Ŵ − 1)ρ] is the non-relativistic

specific thermal enthalpy.

In the following, we take Ŵ = 4/3 which corresponds to the relativistic radiation pressure dominant plasma. Thus, we can study the

evolution of a fireball confined by magnetic fields.

We ignore the stellar rotation and assume a purely radial flow. We also assume axisymmetry. The magnetic fields in spherical coordinates

(r, θ , φ) are then expressed in terms of two independent scalar functions Ã and B as

B =
1

r sin θ

(

1

r

∂Ã

∂θ
, −

∂Ã

∂r
, B

)

. (10)

In the following, we assume that the evolution of the magnetic loops can be described by a Lagrangian coordinate η:

η ≡
r

Z(t)
, (11)

where Z(t) is a scale function of time. We further assume that the flux function Ã evolves with time t and radial distance r through the

Lagrangian coordinate η, as

Ã(t, r, θ ) = Ã(η, θ ). (12)

The MHD equations are then written as

d2Z(t)

dt2
= 0, (13)

vr = Ż(t)η, (14)

p(t, r, θ ) =
P (η, θ )

Z4(t)
, (15)

ρ(t, r, θ )γ =
D(η, θ )

Z3(t)
, (16)

B(t, r, θ ) =
Q(η, θ )

Z(t)
, (17)

4γ 2v2
r P

η
=

∂P

∂η
+

1

4πη2 sin2 θ

{

∂Ã

∂η

[

L̂(η,θ)Ã −
∂

∂η

(

Ż2η2 ∂Ã

∂η

)]

+ Q
∂

∂η

(

Q

γ 2

)}

+
GMDγ

η2

(

1 +
4γP

ZD

)

(18)

1

γ 2

∂Ã

∂η

∂Q

∂θ
−

∂Ã

∂θ

∂

∂η

(

Q

γ 2

)

= 0, (19)

4πη2 sin2 θ
∂P

∂θ
+

∂Ã

∂θ

[

L̂(η,θ)Ã −
∂

∂η

(

Ż2η2 ∂Ã

∂η

)]

+
Q

γ 2

∂Q

∂θ
= 0, (20)

where L̂(η,θ) is an operator

L̂(η,θ) ≡
∂

2

∂η2
+

sin θ

η2

∂

∂θ

(

1

sin θ

∂

∂θ

)

(21)

(see Takahashi et al. 2009, for derivation). We can readily solve equation (13) as

Z(t) =
√

ξ t, (22)

where ξ is a constant of integral. The radial velocity is obtained from equation (14) as

vr =
√

ξη. (23)
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2072 H. R. Takahashi, E. Asano and R. Matsumoto

By substituting equation (22) into equation (19), we obtain the function Q which has a form

Q(η, θ ) =
g(Ã)

1 − η2
, (24)

where g(Ã) is an arbitrary function of Ã.

We note that the last term in equation (18) includes Z(t) =
√

ξ t , which is a function of time. Thus, this term does not admit the existence

of the self-similar solutions because the thermal enthalpy in the gravity term explicitly depends on time. This violation of the self-similarity

comes from the difference of the scaling law between the density and the pressure (equations 15 and 16, also see Gourgouliatos & Vlahakis

2010). However, when the contribution of the thermal enthalpy on the gravity is sufficiently small, we can obtain self-similar solutions of the

relativistic expansion. The ratio of the gravity for the thermal enthalpy to the plasma inertia is written as

gravity for the thermal enthalpy

plasma inertia
=

|GMρhNγ 2/r2|
|ργD(γ hv)/Dt |

=
rg

rv2
, (25)

where rg = GM is the gravitational radius. Thus, when r ≫ rg, the gravitational force for the thermal enthalpy hN is negligible when v ∼ 1.

In this paper, we consider the evolution of the relativistically expanding plasma at large distance where the gravity for the thermal enthalpy

−GMρhNγ 2/r2 can be neglected. In such region, the plasma inertia is sustained by the pressure gradient and Lorentz forces. When r ≪ Rs,

we assume that the rest mass energy density much exceeds the thermal energy density (i.e. hN ≪ 1). In this regime, the gravity is expressed

as −GMργ 2/r2. The Lagrangian coordinate η (see equation 11) then behaves as the self-similar parameter.

Without loss of generality, we can change independent variables of P from (η, θ ) to (η, Ã) as

P (η, θ ) = P (η, Ã). (26)

By neglecting the thermal enthalpy in the gravitational force −GMρhγ 2/r2, equations (20) and (18) reduce to the self-similar equations as

∂P

∂Ã
= −

1

4πη2 sin2 θ

[

L̂(η,θ)Ã −
∂

∂η

(

ξη2 ∂Ã

∂η

)

+
g(Ã)

1 − ξη2

dg(Ã)

dÃ

]

, (27)

D =
η2
√

1 − ξη2

GM

(

4ξηP

1 − ξη2
−

∂P

∂η

∣

∣

∣

∣

Ã

)

. (28)

Equations (24), (27) and (28) are the set of the self-similar MHD equations. The explicit solutions can be constructed as follows. First we

prescribe an arbitrary function Ã(η, θ ) and the function g(Ã). The pressure function P is determined from equation (27) and the density

function D is obtained from equation (28).

Before presenting the solutions of the self-similar MHD equations, we have to note that the self-similar relativistic ideal MHD equations

describe the free expansion of the magnetized plasma. By taking time derivative of v, we obtain

Dv

Dt
= 0, (29)

where we used equations (11), (22) and (23). The plasma is neither accelerated nor decelerated, but it expands with the inertial speed keeping

the force balance (this can be confirmed by inserting equation 23 into equation 2, or, see equation 36 in Takahashi et al. 2009).

3 R ELATIVISTIC CORO NA L MASS EJECTI ON

In the previous section, we showed the set of the self-similar relativistic MHD equations, which describes the plasma expanding with the

inertial speed. In this section, we obtain solutions of these equations by imposing appropriate boundary conditions.

We adopt the simple model of magnetic explosions according to Low models (Low 1984a, see fig. 1). Equations (27) and (28) describe

magnetized plasma outflowing from the central star (outflow region). The outflow sweeps up an ambient plasma while it expands. A contact

surface would be formed which separates the outflowing plasma with the swept-up ambient plasma. The contact surface is situated at r =
Rc(t). Ahead of the contact surface, a forward wave propagating into an undisturbed ambient plasma forms a shock at r = Rs(t). The swept-up

ambient plasma is accumulated in the region in Rc(t) <= r <= Rs(t) (post-shock region).

First, we consider the outflow region where the magnetized plasma is lifted up from the central star. Various models of the magnetic

field configurations have been proposed (Low 1982b, 1984a; Takahashi et al. 2009). In this paper, we utilize the following flux function (Low

1984a)

Ã = A0

[

H0 +
√

2

π

(

sin(λη)

λη
− cos(λη)

)

]

sin2 θ ≡ A0f (λη) sin2 θ, (30)

where

f (x) = H0 +
√

2

π

( sin x

x
− cos x

)

. (31)

Here A0, H0 and λ are constants. The flux function given by equation (30) has local maxima (see fig. 4 in Low 1984a). The maximum

corresponds to the centre of the flux ropes. This function can thus describe the coronal mass ejection from the central star. Such relativistic
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Relativistic self-similar expansion – II 2073

Figure 1. Schematic picture of our models of the relativistic coronal mass ejection. Ahead of the global magnetic loops, two discontinuities exist at r = Rc(t)

(contact discontinuity) and r = Rs(t) (shock).

coronal mass ejections can be applied to giant flares in magnetars (Lyutikov 2006). We express the toroidal magnetic field g as a power series

of Ã:

g(Ã) =
∑

n

αnÃ
n, (32)

where αn are constants. Note that the dependence of the toroidal magnetic field on the polar angle is represented by
∑

n sin2n−1 θ from

equations (10), (17), (30) and (32). This indicates that the power-law index n and αn can be interpreted as the Fourier modes of the toroidal

magnetic fields in polar direction and their amplitudes, respectively. The modes and the amplitudes are determined by the boundary condition

at which the magnetic shear is injected into the magnetosphere. The shear injection begins before the self-similar expansion starts. In this

paper, we do not consider the details of the shear injection from the central star and leave them as free parameters since we consider the

self-similar stage.

The explicit forms of the magnetic fields are then written as

Br(t, r, θ ) =
2A0

r2

{

H0 +
√

2

π

[

sin(λη)

λη
− cos(λη)

]

}

cos θ, (33)

Bθ (t, r, θ ) = −
A0

r2

√

2

π

[

cos(λη) −
1 − (λη)2

λη
sin(λη)

]

sin θ, (34)

Bφ(t, r, θ ) =
1

r2 sin θ

η

1 − ξη2

∑

n

αnÃ
n. (35)

The pressure function of the outflowing plasma Po is obtained by inserting equations (30) and (32) into equation (27) as

Po(η, θ ) = PA(η, θ ) + PQ(η, θ ) + Pi(η), (36)

where

PA(η, θ ) =
A0Ã(η, θ )

4πη4

{

2H0 +
√

2

π
(λη)

[

(1 + ξη2) sin(λη) − (λη)(1 − ξη2) cos(λη)
]

}

, (37)

PQ(η, θ ) = −
1

4πη2(1 − ξη2)

{

∑

m+n �=1

mαmαnA
m+n
0

m + n − 1
f m+n(λη) sin2(m+n−1) θ +

∑

m+n=1

mαmαnA0f (λη) ln Ã(η, θ )

}

. (38)

Here Pi arises from the integration. By substituting equations (36)–(38) into equation (28), the corresponding density function Do is expressed

as

Do(η, θ ) = DA(η, θ ) + DQ(η, θ ) + Di(η), (39)

DA(η, θ ) =
A0Ã(η, θ )

4πGMη3
√

1 − ξη2
�(η), (40)
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2074 H. R. Takahashi, E. Asano and R. Matsumoto

DQ(η, θ ) = −
(3 − ξη2)f (λη) − (1 − ξη2)

[

H0 +
√

2

π
(λη) sin(λη)

]

4πGMη(1 − ξη2)
3
2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

m+n �=1

mαmαnA0Ã
m+n−1(η, θ )

m + n − 1
,

for m + n �= 1,
∑

m+n=1

mαmαnA0 ln Ã(η, θ ),

for m + n = 1,

(41)

where the function �(η) is defined as

�(η) = 8H0 +
√

2

π
λη
{[

(3 − (λη)2)(1 + (ξη2)2) + 2ξη2(1 + (λη)2)
]

sin(λη) − λη(1 − ξη2)(3 + 5ξη2) cos(λη)
}

. (42)

The function Di(η) describes the isotropic distribution of the plasma which is related with Pi(η) through equation (28).

To determine functions Pi and Di, we need one more relation between them. We assume that there is no energy/mass injection from

the central star at this stage. Since the contact surface separates the outflow region from the post-shock region, the outflow plasma expands

adiabatically. We then obtain another relation between Pi(η) and Di(η) from the entropy conservation equation as

pi

ρ
4
3
i

= const =
ν

4
, (43)

where pi = Z(t)4Pi, ρ i = Z(t)3 Di and ν is a constant. Substituting equations (15), (16) and (23) into equation (43), we obtain

Pi =
ν

4

(

1 − ξη2
)

2
3 D

4
3
i . (44)

Substituting equation (44) into (28), we obtain the solutions

Pi(η) =
1

4ν3

(

GM

η
−

μ
√

1 − ξη2

)4

, (45)

Di(η) =
1

ν3

1
√

1 − ξη2

(

GM

η
−

μ
√

1 − ξη2

)3

, (46)

where μ is a constant of integral. These solutions describe the isotropic outflowing plasma in the outflow region.

Next, we consider the post-shock region (Rc
<= r <= Rs). The shocked plasma also moves in radial direction. We assume that the shocked

plasma evolves self-similarly and obeys the same set of self-similar equations in the outflow region. Then the contact surface moves in radial

direction with a constant speed and the radius of the contact surface Rc is expressed as

Rc(t) = ηc

√

ξ t, (47)

where ηc is a constant. We assumed that the magnetic fields in the ambient plasma can be neglected. From these assumptions, the shocked

plasma obeys equation (28). We need another relation between the shocked gas pressure Ps and the shocked gas density Ds. Note that we

cannot use the adiabatic relation because the ambient plasma flows into the post-shock region from the shock surface at r = Rs. The forward

shock compresses and heats up the plasma, resulting in an increase in the entropy. Thus, the entropy in the shocked plasma should be

determined by the shock condition at r = Rs(t). Rather than evaluating the entropy variation by the shock, we consider the jump conditions of

the plasma density, the pressure and the velocity. The entropy variation is determined after imposing the Rankin–Hugoniot relations between

the undisturbed and shocked plasma (Low 1984b).

By assuming the strong shocks, the relativistic Rankin–Hugoniot relations are written as

p|r=Rs
=

2

3
Ŵ2

s ρ0

∣

∣

∣

∣

r=Rs

, (48)

ργ |r=Rs
= 2Ŵ2

s ρ0

∣

∣

r=Rs
, (49)

γ 2
∣

∣

r=Rs
=

1

2
Ŵ2

s , (50)

with an accuracy of O
(

1/γ 2
)

(Blandford & McKee 1976; Kennel & Coroniti 1984). Ŵs and ρ0 are the shock Lorentz factor and the plasma

mass density of the undisturbed ambient plasma, respectively. Here, we ignore the thermal pressure in the undisturbed plasma by assuming

the strong shock.

From equations (23) and (50), we obtain the time evolution of the shock radius as

Rs(t) =
3R0xs

(

xs +
√

1 + x2
s

)

√
2 (√

2xs −
√

1 + x2
s

)2
, (51)

where xs ≡ Rs/t and R0 is a constant of integral. Combining equations (48) and (49), we obtain the relation between the Ps and Ds:

Ps(η) =
√

ξR0

(√
ξη +

√

1 + ξη2

)

√
2 (√

2ξη −
√

1 + ξη2

)2
Ds(η). (52)
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Relativistic self-similar expansion – II 2075

Here we use equations (15), (16), (51). Substituting equation (52) into equation (28), Ps and Ds are expressed as

Ps =
P0

(

1 − ξη2
)2

K
(

√

ξη
)

, (53)

Ds =
P0√
ξR0

(√
ξη +

√

1 + ξη2

)

√
2

(√
2ξη +

√

1 + ξη2

)2
K
(

√

ξη
)

, (54)

where P0 is a constant of integral. The function K is expressed as

K
(

√

ξη
)

≡ exp

⎡

⎢

⎣
−

GM

R0

∫

√
ξη

√
ξηc

dx

(

x +
√

1 + x2

)

√
2

(1 − x2)
3
2

x2

(√
2x +

√
1 + x2

)

⎤

⎥

⎦
. (55)

The ambient plasma density is obtained by substituting equations (51) and (54) into (49) as

ρ0(r) =
3P0

4r4

η4
0

(1 − ξη2
0)

K
(

√

ξη0

)

. (56)

Here η0 should be determined from the following equation:

r =
3R0

√
ξη0

(√
ξη0 +

√

1 + ξη2
0

)

√
2 (√

2ξη0 −
√

1 + ξη2
0

)2
. (57)

Note that the radial profile of the ambient plasma density is not arbitrary but determined by equation (56). Some authors derive the self-similar

solutions by prescribing the density profile of the ambient plasma as ρ0 ∝ r−δ , where δ is a constant (Blandford & McKee 1976; Sari 2006).

In our approach, we first prescribe the self-similar variables given in equation (11). Then, the outflow velocity is obtained by equation (14).

The ambient plasma density is determined by applying the Rankin–Hugoniot relations at the shock. Thus, the ambient plasma density cannot

have an arbitrary form, but it is uniquely determined.

Finally, we apply the boundary conditions at r = Rc. Since we assumed unmagnetized ambient plasma, the magnetic fields should vanish

at r = Rc. This condition can determine the parameters H0 and λ in equation (30). The conditions that Br(r = Rc) = 0 and Bφ(r = Rc) = 0

are expressed as

H0 = −
√

2

π

(

sin(ληc)

ληc

− cos(ληc)

)

(58)

from equations (33) and (35). Another condition is that Bθ (r = Rc) = 0. This condition is written as

tan(λη) =
λη

1 − (λη)2
. (59)

Equation (59) determines λ and then the parameter H0 is obtained from equation (58). Note that the equation (59) has an infinite number of

roots (see fig. 4 in Low 1984a). The first root for η > 0 arises at λη = λη1 ≃ 2.7 and the second root does at λη = λη2 ≃ 6.1. The first root

corresponds to the position of the centre of the flux ropes. We take the second root as the contact surface, i.e. ηc = η2 (z1 in fig. 4 of Low

1984a) throughout this paper. The parameter H0 is then determined from equation (58) as H0 ≃ 0.81.

Another constraint on the parameter comes from pressure balance across the contact discontinuity. The pressure Po consists of three

component of the pressure, PA, PQ and Pi. PA and PQ are exactly zero at r = Rc since Ã|η=ηc = ∂Ã/∂η|η=ηc = 0. Pi should be smoothly

connected with Ps at the contact surface. From this condition, the parameter P0 is expressed as

P0 =
(1 − ξη2

c )2

4ν3

(

GM

ηc

−
μ

√

1 − ξη2
c

)4

. (60)

Here we used equations (45) and (53).

The remaining parameters are ξ , ηc, R0, αn, n, ν and μ, where ξ denotes the scaling of time and radius and ηc describes the velocity of

the contact surface. Equation (51) determines R0 by prescribing the shock radius when self-similar expansion starts. The twist injection at

the central star determines the amplitude αn and the Fourier mode number n of the toroidal magnetic fields. A constant ν which appears in

equation (43) denotes the entropy of the isotropic plasma in the outflow region r <= Rc. The density at the contact surface when self-similar

expansion starts determines the constant μ which appears in equation (46).

4 PHYSICAL PROPERTIES OF THE SELF-SI MI LAR EXPLOSI ONS

First, we concentrate on the structure of the magnetic loops in r <= Rc. Fig. 2 shows contours of the magnetic flux Ã (left-hand panel) and

the toroidal magnetic fields (right-hand panel) in the η − θ plane. The parameters are ηc = λ and ξ = 1. The poloidal mode number of the

toroidal magnetic fields is n = 1. We can see the flux rope structures emerging inside the expanding magnetic loops. The centre of the flux
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2076 H. R. Takahashi, E. Asano and R. Matsumoto

Figure 2. Contour plots of the magnetic flux Ã (left-hand panel) and the toroidal magnetic fields. The contact surface is situated at η/ηc = 1. The parameters

are taken as ηc = λ, ξ = 1 and n = 1.

ropes is situated at η = η1(η1 ≃ 0.44 ηc). Since the magnetic fields have both poloidal and toroidal components, they describe the twisted

flux ropes. The flux ropes rise in the + r direction with time. In the limit of t ≫ r, the magnetic fields are represented as

lim
t→∞

B =
2A0H0

r2
cos θ er, (61)

from equations (33)–(35). The toroidal magnetic fluxes are diluted by the expansion according to the flux conservation equation. The

configuration of the magnetic fields approaches that of the split monopole.

Fig. 3 shows contours of the gas pressure (left-hand panel) and the density (right-hand panel) in the η − θ plane. Contributions from

the isotropic plasma, Pi and Di, are subtracted, so that the pressure and the density can be negative in these panels. The set of the parameters

is the same as those in Fig. 2. Accompanying the flux ropes, low-density voids are generated. The toroidal magnetic fields can create such

voids. As mentioned at the end of Section 2, since the force balance is attained in our self-similar solutions, the Lorentz force by the poloidal

magnetic fields should balance with the gas pressure gradient force and the toroidal magnetic pressure gradient force. This indicates that the

gas pressure decreases as the toroidal magnetic pressure increases. Such voids exert the buoyancy force on the plasma in radial direction.

Fig. 3 shows that the pressure gradient force ahead of the voids balances the buoyancy force.

Next, we consider the isotropic part of the outflowing plasma expressed in equations (45) and (46). When the constant μ is exactly

zero, the plasma distribution reduces to that in hydrostatic states. The scaling comes from the assumption of adiabatic expansions with the

polytropic index of Ŵ = 4/3. When μ is not zero, the plasma distribution differs from that in the hydrostatic states. When the flow speed is

non-relativistic, i.e.
√

ξη ≪ 1, the solutions reduce to those in non-relativistic MHD obtained by Low (1984a). Since the enthalpy contributes

to the plasma inertia, the correction term (1 − ξ η2)−1/2 arises in the relativistic MHD. The plasma tends to be hydrostatic since
√

ξη ≪ 1

when t ≫ r.

In front of the outflow region, the ambient plasma is compressed by the shocks at r = Rs and is accumulated in the post-shock region

(Rc
<= r <= Rs). The contact surface at Rc =

√
ξηct divides the outflowing plasma from the shocked plasma. Since we assumed that the

post-shock gas evolves self-similarly according to the same basic equations for the outflow region, the contact surface has the constant

velocity vc =
√

ξηc. The expansion speed of the shock radius dRs/dt is, however, not constant but it increases with time. The time evolution

of the shock radius is expressed by equation (51). Fig. 4 shows the radial profile of the outflow Lorentz factor. Dashed, dotted and dot–dashed

curves denote the Lorentz factor at t = 10, 25 and 40, respectively. The thick curve denotes the time evolution of the shock Lorentz factor Ŵs,

while the thin solid curve the time profile of the outflow Lorentz factor at the shocks (γ |r=Rs ). The value of the parameter R0 is R0 = 1.78 ×
10−4, which corresponds to γ (t = 5) = 8. The shock Lorentz factor is larger than the outflow Lorentz factor at r = Rs by a factor of

√
2,

as expected from relativistic strong gas dynamical shocks (see equation 50). The undisturbed plasma is abruptly heated up by the shocks.

Plasma velocity suddenly becomes zero ahead of the shocks (r > Rs) where the undisturbed plasma exists.
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Relativistic self-similar expansion – II 2077

Figure 3. Contour plots of the pressure (left-hand panel) and the density (right-hand panel). The contribution from the isotropic plasma is subtracted. The

contact surface is situated at η/ηc = 1. The parameters are taken as ηc = λ, ξ = 1, n = 1 and μ = 0.

Figure 4. Radial profile of the outflow Lorentz factor. Dashed, dotted and dot–dashed curves show the outflow Lorentz factor at t = 10, 25 and 40, respectively.

The thick solid curve shows the shock Lorentz factor, while the thin solid curve the maximum Lorentz factor of the outflow. The value of the parameter R0 is

taken to be R0 = 1.78 × 10−4, which corresponds to γ (t = 5) = 8.

As the shock propagates in the undisturbed plasma, the shock surface is accelerated. The shock Lorentz factor and the shock radius can

be expressed as

Ŵs ≃

[

(1 +
√

2)
√

2

6

]1/4
(

t

R0

)1/4

≃ 0.87

(

t

R0

)1/4

, (62)

Rs ≃ t, (63)

respectively. Here we approximate v ≃ 1 to obtain the first equality in equation (62). While the shock surface moves with almost constant

speed ≃ 1, the shock Lorentz factor increases with time with the power-law index of 0.25. This result comes from the density profile of the

undisturbed plasma. As shown later, the undisturbed plasma density decreases with radius as r−3.5 (see equation 64). Shapiro (1979) showed

that when ρ ∝ r−δ , the flow is accelerated when δ > 3. Although we take into account the gravity from the central star, which is not included
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2078 H. R. Takahashi, E. Asano and R. Matsumoto

Figure 5. Radial profiles of the plasma pressure (thick solid curve), the plasma density (thin solid curve) and the Lorentz factor (dashed curve). Radius is

normalized by the shock radius Rs. The contact discontinuity is situated at Rc/Rs ≃ 0.834. We take Ŵs = 8
√

2 and μ = 0.

in Shapiro (1979), the gravitational force is smaller than the pressure gradient force in this region. Thus, their relation can be adopted in our

analysis. The outflow is gradually accelerated when δ ≃ 3.5.

Next, we consider the radial profile of the plasma pressure and the density. Fig. 5 shows the radial profile of the pressure p (thick solid

curve), the density ρ (thin solid curve) and the outflow Lorentz factor (dashed curve) on the equatorial plane. The horizontal axis denotes the

radius normalized by the shock radius Rs. The shock Lorentz factor is taken as Ŵs = 8
√

2. We take μ = 0 for simplicity. The other parameters

are ξ = 1, R0 = 1.3 × 10−4, αn = 0 and A0 = 0. The contact surface is situated at Rc ≃ 0.834Rs. Behind the contact surface, the gas pressure

and the density decrease with radius as ∝ r−4 and ∝ r−3, respectively.

The density jump appears at r = Rc, while the pressure is continuous (contact surface). The swept-up ambient plasma is accumulated in

region Rc
<= r <= Rs. The plasma density in the post-shock region (0.834 < r/Rs < 1) is larger than that in the outflow region. The strong

pressure gradient force in this post-shock region pushes the plasma in + r direction. The pressure gradient force balances with the inertia of

the accumulated plasma. Thus, the plasma flows towards + r direction with the inertial velocity.

Ahead of the contact discontinuity, a strong shock appears at r = Rs. We assumed the strong shock and neglected the ambient plasma

pressure. The plasma is abruptly heated up by the shock. The ambient plasma density jump also appears at the shocks. The density of the

shocked gas is larger than that of the ambient plasma by a factor of 32 for Ŵs = 8
√

2 as expected from the relativistic Rankin–Hugoniot

relations (see equations 49 and 50). The density of the undisturbed plasma is described by equation (56). From this equation, the density can

be approximately represented by the power law of r as

ρ(r) ≃
3P0

8
√

R0ξ 2

√

(1 +
√

2)
√

2

6
K(1)r− 7

2 . (64)

Here, we approximate vr(r = Rs) ≃ 1 for relativistic flows. The density decreases with radius with the power-law index of -3.5. The ambient

plasma density decreases slightly faster than that inside the shocks (∝ r−3). The shock Lorentz factor thus increases with radius (Shapiro

1979).

Next, we consider the total energy contained within the spherical surface Rs. Let E be the total energy in r < Rs. As shown in Takahashi

et al. (2009), the virial theorem can be applied for the relativistic inertial flow:

E = K − (3Ŵ − 4)Uth +
∫

∂S · r

∂t
dV +

∫

pr · dA −
1

8π

∫

{

2 [(r · E)(E · dA) + (r · B)(B · dA)] − (E2 + B2)(r · dA)
}

, (65)

where

K =
∫

dV ργ 2, (66)

Uth =
∫

dV
p

Ŵ − 1
(67)

and S shows the Poynting flux. Here A denotes expanding spherical surface at r = Rs(t). The third, fourth and fifth terms of the right-hand

side of equation (65) represent the Poynting flux, the work done by the gas pressure and the work done by the Maxwell stress, respectively.

Let us evaluate the non-kinetic part of the energy, E ′ = E − K. The second term in the right-hand side of equation (65) is zero because

the polytropic gas index is Ŵ = 4/3. The fifth term of (65) is zero since the electromagnetic fields vanish at r = Rs. The third term also

becomes zero after the straightforward calculations. Thus, the non-kinetic part of the energy can be evaluated as

E
′(t) =

8π

3
ρ0Ŵ

2
s R

3
s

∣

∣

∣

∣

r=Rs

=
4π

3
ργR3

s

∣

∣

∣

∣

r=Rs

. (68)
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Relativistic self-similar expansion – II 2079

Here, we used equations (48) and (50). The energy E ′ does not depend on the amplitudes of the magnetic fields. As shown in Section 3, the

plasma density (pressure) consists of three parts, DA, DQ and Di(PA, PQ and Pi). While the components DA and DQ depend on the magnetic

field strength, Di is independent of them. DA and DQ do not contribute to the non-kinetic part of the energy from equation (65) since they are

exactly zero at r = Rc. This indicates that the plasma interacting with the magnetic fields is in marginally stable state. Low (1982a) showed

that the inertial flow with the polytropic index Ŵ = 4/3 represents the marginally stable state in non-relativistic MHD. This situation is also

valid for the relativistic MHD. Total energy contained inside the shocks is thus independent of the strength of the magnetic fields.

By substituting equations (62) and (64) into equation (68), the time evolution of the energy E ′ is written as

E
′ =

(1 +
√

2)π

6

K(1)

ξ

P0

R0

, (69)

where we used equations (62), (63) and (64). Note that the non-kinetic part of the energy E ′ is positive. This means that plasma speed exceeds

the escape velocity determined by the gravitational potential.

The kinetic energy K given in equation (66) is expressed as

K = 2π

∫

dθ sin θ

∫

dη
D(η, θ )
√

1 − η2
, (70)

where we used equations (16) and (23). Note that equation (70) depends on time through η. When we integrate inside the sphere with radius

r = Rs, the integration is carried out in [0, ηs ] in the self-similar space. Since the flow is relativistic, i.e. vr ≃ 1, ηs ≃ 1/
√

ξ is constant with

time. Thus, both non-kinetic and kinetic energies are constant with time. Strictly speaking, the total energy should increase with time since

the shock surface sweeps up the ambient plasma. The rest mass energy of the swept-up plasma contributes to the increase in the total energy.

This energy is, however, negligible because we assume the strong shocks. From equation (48), the rest mass energy density of the undisturbed

ambient plasma is smaller than the kinetic energy density of the shocked gas by a factor of Ŵ4
s and negligibly small. [Note that the relations

48–50 are correct with the accuracy of O(1/Ŵ2
s )]. For the same reason, E ′ is also independent of time with the accuracy of O(1/Ŵ2). Using

these facts, the shock Lorentz factor is expressed as

Ŵs =
√

3

8π
E

′ 1
2 ρ

− 1
2

0 (r = Rs)R
− 3

2
s (71)

from equation (68). This result is equivalent with equation (16) in Shapiro (1979). Although our solutions include the magnetic fields and

the gravity from the central star, they do not contribute to the total energy because the system is in a marginally stable state. Thus, only the

hydrodynamical (isotropic) part contributes to the total energy. By inserting equations (63) and (64) into this equation, we obtain Ŵs ∝ r1/4

again (see equation 62). The shock is thus accelerated when it propagates in the ambient plasma.

5 N U M E R I C A L S I M U L AT I O N S

In this section, we show results of relativistic MHD simulations to study the stability of our solutions. For this purpose, we use the

analytical solutions as the initial conditions of the numerical calculations. The relativistic MHD equations are solved in two dimensions

using polar coordinates (r, θ ). We assume axisymmetry (∂/(∂φ) = 0). The number of grid points is (Nr, Nθ ) = (3600, 360) on the domain of

Rin ≡ 1 <= r <= 50 in normalized unit and 0 <= θ <= π. The grid sizes are �r = 1.39 × 10−2 and �θ = 8.72 × 10−3. We use the HLL (Harten,

Lax & van Leer 1983) method to calculate numerical fluxes. We utilize the modified Corner Transport Upwind (CTU) method (Mignone &

Bodo 2006) to achieve the second-order accuracy in space. In our analytical solutions, the strong shock is expected. Such a strong shock can

induce the numerical oscillations. To avoid the problem, we utilize the harmonic mean for smoother prescription (van Leer 1977). We use the

constraint-transport method to satisfy the no-monopole condition. We impose the outflow boundary conditions in outer radial boundary at r =
50 and the symmetric condition at the axes at θ = 0, π. The inner boundary conditions are imposed at r = Rin by applying the time-dependent

analytical solutions. We solve the whole region covering θ ∈ [0, π], although our analytical solution is symmetric at θ = π/2. So we can

check whether our code maintains this symmetry. The parameters are the initial time t0 = 11.0, Rs(t = t0) = 10.8, Rc(t = t0) = 8.83, rg ≡
GM = 0.148, ξ = 1, R0 = 2.58 × 10−3, α1 = 0.1, n = 1, μ = 0 and ρ iR

4
i /A2

0 = 100. The initial maximum Lorentz factor [γ s(t = t0, r =
Rs(t = t0))] is 5. Radius and time are normalized by the inner radius Rin and its light crossing time, respectively.

To obtain the analytical solutions, the ambient plasma pressure p0 is not specified because we adopted Ranking–Hugoniot relations for

a strong shock, so that the ambient pressure is negligible. However, in order for the ambient plasma to be in hydrostatic equilibrium, the gas

pressure gradient force should balance with the gravitational force of the central star. Since it is a hard task to reconstruct the self-similar

solutions taking into account the ambient plasma pressure, we use the analytical solutions obtained by using approximate Rankin–Hugoniot

relations given in equations (48)–(50) as the initial conditions and the ambient pressure are taken initially to be constant, which means that

the ambient plasma is not in hydrostatic equilibrium. The ambient plasma slowly falls towards the central star due to the gravity of the

central star. The parameters we used in numerical simulations are taken so that the free-fall time tff is much larger than the dynamical time

td (typically tff/td ≃ 103). Thus, the free-fall motion of the ambient plasma does not affect the dynamics of the expanding magnetic loops.

Stone & Norman (1992) adopted a different method for this problem such that the gravitational force is artificially subtracted in the ambient

plasma to numerically recover the solutions of the non-relativistic coronal mass ejection obtained by Low (1984a). We confirmed that the

results obtained by the method proposed by them are consistent qualitatively and quantitatively with those including the gravity in the ambient
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2080 H. R. Takahashi, E. Asano and R. Matsumoto

Figure 6. Colour contour shows the gas pressure profile and curves show the magnetic field lines for analytical solutions (left-hand panel) and numerical

results (right-hand panel).

Figure 7. Colour contour shows the density profile and curves show the magnetic field lines for analytical solutions (left-hand panel) and numerical results

(right-hand panel).

plasma. The ambient plasma pressure, which is not specified in the analytical solutions, is taken to be so small (p0 = 10−8) that it does not

affect the dynamics of the outflows.

Fig. 6 shows the pressure profile (colour) and the magnetic field lines (curves) at t = 48. The left-hand panel shows analytical solutions

and the right one numerical results. Fig. 7 shows the density profile (colour). The magnetic field lines in Figs 6 and 7 are depicted as the

isocontours of the flux function. The levels of the isocontours are identical in both figures.

As time goes on, the magnetic loops containing the flux ropes expand in radial direction. The flux ropes carry the toroidal magnetic

fields. The ambient matter inflowing through the shock is compressed and accumulated between the contact discontinuity and the shock. The

numerical results excellently recover the analytical solutions.

Fig. 8 shows the shock structure on the equatorial plane at t = 48. Left-hand panel shows the Lorentz factor and the right one the density

and the pressure. Thin solid curves denote the analytical solutions, while thick solid curves the numerical results. At this time, the maximum

Lorentz factor is γ = 7.2 for the analytical solution. The peak Lorentz factor in the numerical simulation is, however, γ = 6.2. The difference
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Relativistic self-similar expansion – II 2081

Figure 8. The Lorentz factor (left-hand panel) and the density and pressure profiles (right-hand panel) on the equatorial plane at t = 48. Thick curves denote

the numerical results, while thin curves denote analytical solutions.

Figure 9. Time evolution of the Lorentz factor on the equatorial plane. Thick curves show the numerical results, and the thin curves show the analytical

solutions. Dashed curve shows the reference radius r = r∗ = 0.995Rs.

comes from the shock flattening in the simulations. Note that we adopt the harmonic mean to evaluate primitive variables on the cell surface.

This method is more diffusive than other interpolation methods, such as the Monotone Upstream-centered Scheme for Conservation Laws

(MUSCL)-type interpolations. Although we utilize this method to avoid numerical oscillations at the strong shocks, it decreases the peak

Lorentz factor. Also the density and the pressure profiles are diffused (right-hand panel of Fig. 8). Another reason comes from the assumption

of strong shocks adopted to derive the approximate Rankin–Hugoniot relations (48)–(50). These relations are correct with an accuracy of

O(1/γ 2). Since we take the initial Lorentz factor at the shock as γ = 5, a few per cent error arises from the approximations.

Such a numerical diffusion produces the sound waves from the shocks. Fig. 9 shows the radial profile of the Lorentz factor on the

equatorial plane from the initial state at t = t0 = 11 to t = 25 with the interval δt = 2. Thick and thin solid curves show numerical results

and analytical solutions, respectively, while the dashed line denotes a reference radius r∗ = 0.995Rs (see Fig. 10). After the simulation goes

on, the shock is flattened due to the numerical diffusion, generating the sound waves propagating inwards and outwards from the shock. The

compressional waves extract a part of the fluid kinetic energy from the shock, resulting in the increase in the numerical velocity behind/ahead
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2082 H. R. Takahashi, E. Asano and R. Matsumoto

Figure 10. Time evolution of the Lorentz factor at r ≡ r∗ = 0.995Rs. Horizontal axis shows the time and vertical axis shows the Lorentz factor on the equatorial

plane. Solid curve shows the analytical solutions. Grey contours show the Lorentz factors at the grid points closest to the reference radius r∗ = 0.995Rs.

Figure 11. The dependence of the equatorial Lorentz factor at t = 48 on models of the gravity, (i) −GMργ 2/r2 (dashed), (ii) −GMρhγ 2/r2 (dash–dotted)

and (iii) without gravity. Solid curve denotes the analytical self-similar solutions. The inset shows solutions in the different range 1 ≤ r ≤ 25.

of the shock from the analytical solutions. As the wave propagates away from the shock front, the radial profiles approach those of analytical

solutions. Note that the amplitudes of the inwards propagating wave decreases with time because the wave conserves the wave energy density

Ew = ργ 2. Since the density increases inwards, the velocity deviation δγ decreases as the wave propagates.

Fig. 10 shows the time evolution of the Lorentz factor. Solid curve shows the analytical solution. We measure the Lorentz factor at a

reference radius r∗ = 0.995Rs(t) to avoid the effects of the shock flattening. Since the simulation is carried out at discrete grid points, we plot

the range of the Lorentz factors of the mesh points closest to the reference radius r∗ = 0.995Rs (grey contours). The numerical results deviate

from the analytical solution when t < 13 because the flattening of the shock front and the emission of the sound waves temporarily increase

the velocity behind the shock. The numerical results are, however, consistent with the analytical solutions after the sound waves propagate

away (t � 18). Then, the Lorentz factor increases with time as γ ∝ t1/4.

Next, we numerically verify the approximation of neglecting the thermal enthalpy term hN in the gravitational force −GMρhγ 2/r2 =
−GMρ (1 + hN)γ 2/r2 (Mobarry & Lovelace 1986; Meliani et al. 2006). When we derive analytical solutions of the self-similar expansion,

we neglect hN in the gravity. Although the specific thermal enthalpy hN becomes larger than unity behind the strong shock (ps/ρs ≃ Ŵs

≫ 1, see equations 48–50), the gravitational force itself becomes small compared to the other forces in the self-similar stage when Rs ≫
rg. To evaluate the contribution of the gravity, we carried out numerical simulations for three models of the gravity, i.e. (i) −GMργ 2/r2,

(ii) −GMρhγ 2/r2 and (iii) without gravity.

Fig. 11 shows the radial profiles of the Lorentz factor on the equatorial plane at t = 48 with different models of the gravity. Solid curve

shows the self-similar solutions, while dashed, dash–dotted and dotted curves show the numerical results for models (i)–(iii), respectively.

An inset shows solutions in the different range of r, 1 <= r <= 25. Behind the shock, numerical results are almost independent of the models

of the gravitational force, indicating that the gravitational force is much smaller than the other forces. As we mentioned in Section 2, the ratio

of the gravity for the thermal enthalpy to the plasma inertia decreases with radius (see equation 25). The ratio rg/Rs is 0.01 at the initial state
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Relativistic self-similar expansion – II 2083

Figure 12. The dependence of the equatorial Lorentz factor (left-hand panel) and the density profile (right-hand panel) at t = 48 on the density parameter of

the ambient gas δ. Dashed curves denote the numerical results for initial condition given by the analytical solutions (δ ≃ 3.5). The other curves depict those

for δ = 5, 4, 3, 2, 1, 0.

t = t0 and 3 × 10−3 at the final state t = 48 in our simulations. Thus, the gravity for the thermal enthalpy is negligible. This explains why the

numerical results are independent of the gravity models. The specific thermal enthalpy hN is larger than unity just behind the shock, but the

gravitational force is much smaller than the other forces when rg ≪ Rs.

Although the gravity becomes important in the region where rg < r ≪ Rs, the thermal enthalpy is negligible in this region (i.e. hN ≪
1). Thus, we can neglect the contribution of hN in the gravity (see the inset of Fig. 11). We note that the numerical results for model (iii)

deviate from the analytical solutions in this region. The plasma is accelerated in radial direction by the pressure gradient force, leading to the

formation of shocks (r ≃ 18.5). Since we use analytical solutions for inner boundary conditions at r = Rin = 1, the plasma is supplied from

the inner boundary. When the plasma is not confined by gravity, the outflowing plasma forms second shocks at r ≃ 11.

When Rs is close to rg, the contribution of hN in the gravity is not negligible, but we have to take into account the general relativistic

effects in such region, so that the characteristic length rg enters into the formulations. In such regime, no self-similar solutions can be obtained.

It is out of the scope of this paper to obtain solutions in this regime.

Next, we carried out simulations with different density profiles of the ambient plasma to study the generality of the analytical solutions

and the effects of the ambient density distribution on the loop dynamics. We substitute the density profile given in equation (56) with the

power-law profile as

ρ(r) = ρ0(r = Rs,0)

(

r

Rs,0

)−δ

, (72)

where Rs,0 = Rs(t = t0). The analytical solutions correspond to δ ≃ 3.5. We study several cases (δ = 0, 1, 2, 3, 4, 5). The initial condition is

given by the analytical solutions inside the shock.

The dependence of the equatorial Lorentz factor (left-hand panel) and the density profile (right-hand panel) at t = 48 on the density

parameter of the ambient gas δ is plotted in Fig. 12. Dashed curve denotes the numerical results for initial conditions given by the analytical

solutions (δ ≃ 3.5). Other curves depict those for δ = 5, 4, 3, 2, 1, 0. The peak Lorentz factor decreases as δ decreases. This is because the

shell becomes massive for a smaller δ by sweeping up the larger ambient plasma. The swept up plasma is accumulated behind the shock

surface. The inertia from the excess plasma accumulated behind the shock decelerates the outflows and creates another discontinuity behind

the shock. The discontinuity can be considered as the reverse shock. The compression ratio of the reverse shock is larger for the denser

ambient plasma.

Time evolution of the equatorial Lorentz factor at the reference radius r∗ is shown in Fig. 13. Circles depict the numerical results for the

initial conditions given by the analytical solutions for δ ≃ 3.5. Other symbols show the numerical results for δ = 5, 4, 3, 2, 1, 0. The Lorentz

factor is evaluated at r∗ = 0.995r(γ max), where r(γ max) is the radius where the Lorentz factor is its maximum.

The peak Lorentz factor increases with time when t < 13. This increase comes from the emission of the sound waves propagating

from the shock front. When t > 18, the peak Lorentz factor increases with time when δ > 3. The critical value of δ whether the outflow is

accelerated or not can be evaluated from the mass conservation. The plasma density of the outflow decreases with radius by r−3 according to

the mass conservations (see equation 16). The rest mass energy of the ambient plasma accumulated in the shell thus increases with time when

δ < 3. On the other hand, when δ > 3, the outflow is accelerated since the plasma inertia of the outflow decreases with time. Naively, we can

understand these processes from equation (71). According to this equation, the flow is accelerated when the ambient plasma density decreases

faster than r−3. When δ = 5, the shock is accelerated and its Lorentz factor is proportional to the radius (≃ time). It indicates that the flow

expands freely. The influence of the ambient plasma is almost negligible. Piran, Shemi & Narayan (1993) derived the self-similar solution of
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2084 H. R. Takahashi, E. Asano and R. Matsumoto

Figure 13. Time evolution of the Lorentz factor at the reference radius r∗. Circles depict the numerical results for the initial conditions given by the analytical

solution for δ ≃ 3.5. Other symbols show the numerical results for δ = 5, 4, 3, 2, 1, 0. The Lorentz factor is evaluated at r∗ = 0.995r(γ max), where r(γ max) is

the radius where the Lorentz factor is its maximum.

the free expansion. The shock Lorentz factor then increases with radius linearly. The shock profile for δ = 5 or a larger δ is consistent with

the solution obtained by Piran et al. (1993). Inside the shock surface, our solutions are, however, not identical with their analytical solutions

since our solutions include the magnetic fields and are intrinsically non-spherical.

6 SUMMARY AND DISCUSSIONS

We derived axisymmetric relativistic self-similar solutions of the magnetic flux rope expansion by assuming the purely radial flow and ignoring

the stellar rotation. By taking the self-similar variable as η = r/Z(t), the arbitrary function Z(t) has a unique form given in equation (22). The

MHD equations are then solved analytically.

The solutions obtained in this paper are the extension of our previous work (Takahashi et al. 2009) by considering the two discontinuities,

the contact discontinuity and the shock. The contact discontinuity separates the outflowing plasma and the ambient plasma. The outgoing

waves propagating in the ambient plasma form shocks.

Such self-similar solutions including two discontinuities are derived by Low (1984a) in non-relativistic MHD. Our solutions are the

extension of their solutions to the relativistic MHD. For the non-relativistic case, the compression ratio at the shock is determined by the

specific heat ratio. The specific heat ratio is taken as Ŵ = 4/3 in non-relativistic MHD equations. The system is marginally stable for

the inertial flow. The compression ratio is then up to 7 for the strong shocks. In relativistic plasma, the sound speed is limited to ∼0.58 for

the ideal gas. The differences between the upstream flow velocity and the downstream wave velocity are larger for the larger flow velocity.

This fact results in forming the strong shocks, and the compression ratio can be larger than 7. The ambient plasma is abruptly heated by the

strong shocks. The hot plasma is accumulated in the shell between the shocks and the contact discontinuity. Inside the contact discontinuity,

the magnetic loops anchored to the central star are assumed to follow the flux rope solutions obtained by Low (1984a). The flux ropes are

contained inside the global magnetic loops. Such magnetic field configuration can be expected for the SGR flares after the magnetic energy

is dissipated (Lyutikov 2006).

We also carried out numerical simulations of two-dimensional relativistic MHD by using the self-similar solutions as the initial and inner

boundary conditions. Since analytical solutions are obtained in this paper, we can apply them to check the accuracy of multi-dimensional

relativistic MHD codes. Many previous authors reported that the relativistic MHD code is verified by using the one-dimensional shock tube

problems. There are only a few standard multi-dimensional problems, such as the blast wave problem or the rotor problem. However, no exact

solutions are known for these problems. We have shown that the self-similar solutions can be applied to check the accuracy of the relativistic

MHD codes.

Numerical calculations show that the shock velocity strongly depends on the ambient plasma density. When the density profile is steeper

than ∝ r−3, the shock Lorentz factor increases with radius. On the other hand, it decreases for profiles shallower than r−3. Such a behaviour is

expected from the consideration of the mass conservation (Shapiro 1979). The density inside the shocks approximately decreases with radius

as ∝ r−3. When the decrease in the ambient plasma density is steeper than the shocked plasma density, the outflows can be accelerated. We

can understand this from the energy conservation given in equation (71). The time dependence of the shock Lorentz factor is related to the

ambient plasma density. When Rs ≃ t and the ambient plasma density is represented by the power law on r (ρ ∝ r−δ), the shock Lorentz factor

is expressed as Ŵs ∝ r(3−δ)/2. Numerical results agree with this relation. Especially when δ >= 5, the shock Lorentz factor linearly increases

with radius.

Finally, let us apply our results to the magnetar flares (Woods & Thompson 2006; Mereghetti 2008). In the following discussion, we

concentrate on the extraordinarily energetic outbursts (giant flares) observed in SGRs. Although AXPs as well as SGRs would be magnetars,
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Relativistic self-similar expansion – II 2085

the giant flares have not been detected from the AXPs. The reason would be that the giant flares are very rare events (1 per a few decades in

the whole sky).

The shock Lorentz factor Ŵs is estimated from the mass ejected by the flare Meje ∼ 4πρ0R3
s /3, and equation (68) as

Ŵs ≃ 24

(

E ′

1046erg

)
1
2
(

Meje

1022g

)− 1
2

. (73)

The expansion speed of the magnetic loop is relativistic when Meje < 1022 g (see also Lyutikov 2006). The mass density behind the forward

shock is estimated from equations (49), (50) and (73) as

ρs = 1.6 × 10−4 g cm−3

(

E ′

1046 erg

)
1
2
(

Meje

1022 g

)
1
2
(

Rs

109 cm

)−3

. (74)

The mass density in the ambient plasma ρ0 = ρs/(23/2Ŵs) estimated from equations (49), (50), (73) and (74) is much larger than the

Goldreich–Julian density. Such dense coronal pair plasmas would be created by the pair production when the magnetically trapped fireball is

formed on the surface of the magnetar (Beloborodov & Thompson 2007).

The temperature of the shocked gas is evaluated by using equation (48) as

Ts ≃ 2.8 MeV

(

E ′

1046 erg

)
1
2
(

M

1022 g

)− 1
2

. (75)

Here, we assume the pair plasma. Although the radiation spectrum of the initial spike in the giant flare is not well determined because of

its short duration, the typical temperature indicated by the spectrum is a few 100 keV (Hurley et al. 2005), which is lower than T s estimated

from our analytical solutions. We have to note that the temperature at the photosphere Tps should be smaller than Ts because the temperature

decreases with decreasing the radius behind the shock (see Figs 5 and 8). The radius of the photosphere Rps can be determined by the condition

that the optical depth of the expanding magnetic loops τ ps satisfies

τps =
∫ Rs

Rps

ρκ̃γ (1 − v cos θ ) dr = 1, (76)

where θ is the angle between the velocity vector and the direction of the photon propagation (Abramowicz, Novikov & Paczynski 1991),

and κ̃ =
√

κff(κes + κff) is the effective opacity. Here, κes and κ ff are the opacity for the electron scattering and the free–free absorption,

respectively. We assume that the ambient plasma (r > Rs) is optically thin. The electron scattering is the dominant source of the opacity inside

the shocks. This is because the plasma temperature is increased by the shock heating, so that the free–free opacity (ρT−3.5) is much smaller

than that of the electron scattering.

We numerically integrate equation (76) assuming that θ = 0, the expansion energy E ′ = 1046 erg and the mass of the central star

M = 1 M⊙, where M⊙ is the solar mass. The temperature at the photosphere Tps calculated at R = Rps from the analytical solutions

(equations 13, 15, 16, 53 and 54) can roughly be fitted by

Tps ≃ 10

(

Ŵs

10

)−1.4 (
Rs

109 cm

)−1.3

keV, (77)

when 10 � Ŵs � 100 and 107 cm � Rs � 1010 cm. The result is almost independent of the radius of the contact discontinuity (i.e. Rc/Rs). The

temperature in the observer’s frame is Tobs = γ Tps ≃ ŴsTps ≃ 100 keV when Ŵs ≃ 10. Here we assume γ ≃ Ŵs since the photosphere is very

close to the shock surface. This result is consistent with the observational results when Ŵs ≃ 10 and Rs ≃ 109 cm.

Such hot, relativistically expanding magnetic loops are expected to be formed with the help of the magnetic reconnections. According

to the scenario by Lyutikov (2006), the magnetic reconnections inside the magnetic loops are responsible for the initial spike of the flares

(see also Gill & Heyl 2010). Subsequently, the plasma is heated up by the shocks produced by the magnetic reconnection. By applying our

models to the giant flares, the time evolution of the luminosity from expanding plasma is expressed as L ∝ T4
obsR

2
ps ∝ Ŵ−1.6

s R−3.2
s from Tobs ∼

ŴsTps and equation (77). Here, we assumed Rps ≃ Rs. Since Ŵs ∝ R(δ−3)/2
s from equations (71) and (72), we obtain L ∝ t−0.8(1+δ) because Rs ∝

t from equation (63). Terasawa et al. (2005) reported that the observed photon counts decreased exponentially with time after the initial spike.

However, the photon counts at the earlier stage, whose decay time is very short (� 100 ms), is not inconsistent with the power-law decay.

In addition to the initial spikes, a hump is observed a few hundred seconds after the initial spike (Terasawa et al. 2005). It is considered

that the energy is re-injected from the central star. We now consider another possibility for this hump. Before the magnetic energy release, the

toroidal magnetic energy can be comparable to that of the poloidal magnetic fields inside the magnetic loops. When the magnetic reconnection

takes place inside the magnetic loops, the magnetic energy of the poloidal magnetic fields is converted to the plasma energies, generating the

twisted flux ropes. The toroidal magnetic field energy of the flux ropes does not dissipate in this process. When the twisted flux ropes cross

the Alfvén radius (≃ light cylinder), the rest magnetic energy will be dissipated by interaction with the ambient global magnetic fields. The

time-scale that a flux rope crosses the light cylinder and releases the magnetic energy is about ∼1 s, which is consistent with the observations.

The energy dissipation at the light cylinder can be responsible for the humps. We need further study to verify these processes.
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