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The investigations presented in this study are directed at relativistic modifications of the uncer-
tainty relation derived from the curvature of the background spacetime. These findings generalize
previous work which is recovered in the nonrelativistic limit. Applying the 3+1-splitting in accor-
dance with the ADM-formalism, we find the relativistic physical momentum operator and compute
its standard deviation for wave functions confined to a geodesic ball on a spacelike hypersurface.
Its radius can then be understood as a measure of position uncertainty. Under the assumtion of
small position uncertainties in comparison to background curvature length scales, we obtain the
corresponding corrections to the uncertainty relation in flat space. Those depend on the Ricci scalar
of the effective spatial metric, the particle is moving on, and, if there are nonvanishing time-space
components of the spacetime metric, gradients of the shift vector and the lapse function. Interest-
ingly, this result is applicable not only to massive but also to massless particles. Over all, this is
not a covariant, yet a consistently general relativistic approach. We further speculate on a possible
covariant extension.
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I. INTRODUCTION

Deformations of the Heisenberg algebra reflecting the influence of classical and quantum gravity on nonrelativistic
quantum mechanics [1–15], as popularized by findings in string theory [16–20], are consistently gaining in importance
in the community of quantum gravity phenomenology. They imply modifications of the uncertainty relation commonly
known as generalized [21–27] and extended uncertainty principles (EUPs) [28–31] given, that they are momentum or
position-dependent, respectively. This peculiar behaviour can be inferred from the Robertson relation [32, 33] linking
the standard deviations of the position and momentum operators to their commutator

σpσx ≥
|〈x̂, p̂〉|

2
. (1)

In one-dimensional quantum mechanics, for example, an EUP may be obtained from the algebra of observables

[x̂, p̂] = i~
(

1 +
p2

minx̂
2

4~2

)
. (2)

Then, the resulting theory implies a restricted resolution of momentum measurements σp > pmin or a maximal wave
length, akin to the temperature of spacetimes containing cosmological horizons. Similarly, momentum dependent
deformations often imply a minimum length. Therefore, EUPs are supposed to be vaguely related to the curvature of
the background spacetime [29, 30], while GUPs may be understood as alternative description of quantum mechanics
on curved momentum space [34–36].

This loose connection was put on firm ground recently [37–39] as EUPs where derived from the sole assumption that
the theory is staged on a curved three-dimensional geometry. This was further generalized to curved spacetime in Ref.
[40]. Those studies as well as most of the work on GUPs and EUPs have in common, that they are restricted to the
nonrelativistic context (some notable exceptions are provided in Refs. [36, 41–43]). The present paper is intended to
relax this assumption by dropping the nonrelativistic limit altogether and thus obtain an uncertainty relation which
can be applied to fast as well as massless particles in a general relativistic setting.

In that vein, we allow the four-dimensional background manifold describing position space to be nontrivial. As a
result, the relativistic physical three-momentum pi of a particle moving on this background, which is the observable
of interest, does not equal the canonical conjugate πi to the positions xi. Its explicit form is obtained given the ADM-
splitting [44, 45]. Turning to the quantum theory, the algebra of canonical observables on spacelike hypersurfaces is
assumed to be unaltered

[x̂i, x̂j ] = 0 [π̂i, π̂j ] = 0 [x̂i, π̂j ] = i~δij (3)

where Latin indices describe spacelike coordinates while Greek ones indicate a description of spacetime. By analogy
with the classical case, the physical relativistic momentum operator transcends the canonical one. In particular, it is
plagued by ordering ambiguities. However, we show, that the central finding of this paper is independent of ordering.

The algebra (3) implies, that there are no modifications to Heisenberg’s uncertainty principle through the Robertson
relation. However, this inequality is not the only way an uncertainty relation in quantum mechanics may be formulated
[46–48]. In principle, the rather vague motivations behind the EUPs cannot be deployed as means of distinguishing
between those different approaches. To the contrary, on the GUP-side there are a number of alternative approaches
towards a minimum length, for example, by superposition of geometries [49, 50] or direct inclusion into differential
geometry [51–53]. For the following considerations we rely on the recently found alternative mentioned above, which
has a rather operational interpretation and is straight-forwardly generalizable to curved manifolds [37–40, 54]. The
main idea behind this relation consists in confining the theory to a compact domain, in this case a geodesic ball.
Then, it is possible to interpret a diffeomorphism invariant measure of its size, here the radius of the ball, as the
position uncertainty. In this setting, the standard deviation of the momentum operator develops a global minimum
which is dependent on that very measure of uncertainty thus yielding the desired relation.

Assuming the position uncertainty to be small in comparison to background curvature length scales, the effective
spatial metric, the particle is subjected to, can be approximated in terms of Riemann normal coordinates. This allows
for the perturbative derivation of the uncertainty relation which is obtained to quadratic order in the radius of the
ball.

The paper is organized as follows. First, we introduce the general idea behind this type of uncertainty relation
in section II. Section III is aimed at deriving the relativistic physical momentum operator. The corrections to the
uncertainty relation in flat spacetime are computed in section IV, while section V summarizes the conclusions drawn
from this result.
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II. UNCERTAINTY RELATION

This section may be understood as an introduction to the alternative to the Robertson relation we alluded to in the
preceding section. The formalism, which is elaborated upon in the present section, was introduced in Refs. [37, 54]
and further expanded upon by the author and collaborators in Refs. [38–40]. It is instructive to consider it first in
the flat case from which the generalization to a curved background is straight-forward.

A. Standard deviation of the momentum operator

Assume that the effective line element on hypersurfaces of constant time reads

ds2 = δijdx
idxj (4)

featuring the Kronecker delta δij . Further asserting the canonical commutation relations (3) to be satisfied, the
position space representation of the momentum operator may be given in terms of partial derivatives

π̂aψ = −i~∂aψ (5)

with a general position space-wave function ψ. Throughout this paper, we will time and again come back to calculating
the standard deviation of the momentum operator p̂ which, assuming pa = πa as usual for a nonrelativistic particle
in a flat background (more on this below), reads

σp =
√
〈π̂2〉 − δab〈π̂a〉〈π̂b〉. (6)

This quantity will be the measure of momentum uncertainty used in this work. The position uncertainty, however,
will be represented differently.

B. Position uncertainty as size of a compact domain

In this section we take a more operational route towards constructing an instance of position uncertainty. Restricting
the support of allowed wave functions in the Hilbert space underlying the quantum theory to a compact domain D,
i. e. choosing it to be H = L2(D,d3x), we clearly localize them within a controllably sized setting. This can be
achieved by imposing Dirichlet boundary conditions. Accordingly, all ψ ∈ H have to satisfy ψ|∂D = 0 i. e. vanish at
the boundary and outside of it (see Fig. 1 for a visualisation).

Any diffeomorphism invariant scale characterising the domain’s extent would thus yield a measure of the position
uncertainty. For example, we might use a function of the domain’s volume

V =

∫
D

ddx. (7)

In particular, a position uncertainty of the dimensions of length is required, denoted by the symbol ρ. Following this
reasoning, we may choose

ρ ∝ d
√
V . (8)

In principle, this approach can be applied to any kind of domain. For reasons of simplicity, however, we will choose
to work with geodesic balls and measure the position uncertainty through their radius. This information suffices to
specify the Hilbert space which is about to be explored. Thus, we are all set to pose the problem whose solution
yields the uncertainty relation.

C. Eigenvalue problem and resulting inequality

The investigated quantum theory is set within a compact domain on a flat background manifold. Therefore, it can
be shown, that the Laplacian, basically representing the squared conjugate momentum operator, is Hermitian and
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FIG. 1: Schematic visualisation of the squared absolute value of two wave functions (eigenfunctions of the
Laplacian) colour coded from violet (vanishing) to red on a flat two-dimensional background, here as plane

embedded in three-dimensional space, and confined to a disk whose boundary is displayed in black.

possesses a discrete spectrum [55]. Thus, its eigenvectors ψ furnish an orthonormal basis of the Hilbert space H.
Evidently, they have to be solutions to the eigenvalue problem

∆ψ + λψ = 0 within D (9a)

ψ = 0 on ∂D. (9b)

In d dimensions, these eigenstates are characterized by d quantum numbers, represented by the sole symbol n to avoid
index cluttering. An example of how the absolute values of the eigenstates may be distributed within a two-dimensional
disk is given in Fig. 1. A general state Ψ can then be expressed as a linear combination of the eigenstates

Ψ =
∑
n

anψn (10)

with the coefficients an satisfying ∑
n

|an|2 = 1. (11)

The standard deviation (6) possesses a global minimum for a special state Ψ0 such that

σp (Ψ) ≥ σp (Ψ0) ≡ σ̄p(ρ) ≥ 0 (12)

where ρ, recall, denotes the measure of position uncertainty. Simple multiplication by ρ yields the uncertainty relation
in the usual form (as product of uncertainties)

σpρ ≥ σ̄p(ρ)ρ. (13)

Thus finding the state Ψ0 is all that is required to obtain the desired result. In general, it is hard to achieve that in
a domain-independent fashion. Therefore, the domain is mainly chosen to be a geodesic ball below. First, however,
we will give a general argument showing how the uncertainty relation scales in flat space.

D. Domain independent result in flat space

Euclidean space has a simplifying advantage over all other Riemannian manifolds: Any kind of domain can be scaled
up without ambiguities. Therefore, we are able to obtain a result for general domains following a simple conformal
reasoning. Assume the measure of position uncertainty to be of the form (8). Increasing the volume of a general
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extended object in flat space by a constant factor ad, i. e. transforming ρ→ ρ̃ = aρ, is then equivalent to a conformal
transformation of the metric δij → a2δij . Correspondingly, the Laplacian transforms as ∆→ ∆/a2 and therefore the

nth eigenvalue of the transformed Laplacian, denoted λ̃n, satisfies(
∆

a2
+ λ̃n

)
ψ̃n = 0. (14)

Evidently, the eigenvalues of the Laplacian transform accordingly: λ̃n = λn/a
2. Hence, we immediately see that

λn

λ̃n
=

(
ρ̃

ρ

)2

. (15)

As Cn = λ̃nρ̃
2 is just a dimensionless parameter independent of the scale a, the entire dependence of the eigenvalues

of the Laplacian on it has to be summarized in ρ−2. Thus, we obtain

λn(a) =
Cn
ρ2(a)

(16)

where the exact value of Cn depends on the shape of the domain and the exact form of the position uncertainty ρ.
In general, the real and the imaginary parts of the eigenvalue problem (9a) are colinear. This implies that the phase

of its solutions ψn can be removed by rotating the coordinate system. As the locally Euclidean frame is invariant under
rotations, we can calculate the expectation value of the momentum operator in any of those related by a rotation.
Thus, we can take the eigenfunctions of the Laplacian to be real. However, the expectation value of the momentum
operator with respect to any real wave function ψ : IR3 → IR vanishes as can be readily verified by

〈ψ|π̂aψ〉 =

∫
dµψπ̂aψ = −

∫
dµπ̂a(ψ)ψ = −〈ψ|π̂aψ〉 = 0 (17)

where dµ stands for the integration measure in flat space (dµ = d3x in Cartesian coordinates) and we used the
Hermiticity of π̂a as well as the boundary condition (9b). In fact, this statement continues to be true on curved
backgrounds.

If the state saturating the uncertainty relation is an eigenvector of the Laplacian (represented as n = 1), as was
shown explicitly below for the geodesic ball in Ref. [40], the uncertainty relation in flat space thus reads

σpρ ≥ ~C1 (18)

which shows the same scaling as Heisenberg’s celebrated inequality. The value of C1 is determined in the subsequent
section for the specific choice of a geodesic ball as domain.

E. Geodesic ball in three dimensions

A geodesic ball Bρ is defined such that the geodesic distance σ =
∫

ds from its center p0 to its boundary equals the
radius ρ. In flat space, of course, this is just the familiar ball. Rewritten in terms of spherical coordinates σi = (σ, χ, γ)
and the explicit quantum numbers in three dimensions n, l and m, the eigenvalue problem (9) becomes then[

∂2
σ +

2

σ
∂σ +

1

σ2

(
∂2
χ + cotχ∂χ+ sec2 χ∂2

γ

)
+ λ

(0)
nlm

]
ψ

(0)
nlm =0 (19)

ψ
(0)
nlm

∣∣∣
σ=ρ

=0 (20)

where the superscript (0) stands for the zeroth order of the perturbative expansion we perform below. This problem
can be solved by seperation of variables yielding the result

ψ
(0)
nlm =

√
2

ρ3j2
l+1(jl,n)

jl

(
jl,n

σ

ρ

)
Y lm(χ, γ) (21)

λ
(0)
nlm =

(
jl,n
ρ

)2

(22)
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with the spherical harmonics Y lm, the spherical Bessel function of first kind jl(x) and the nth zero of the spherical
Bessel function of first kind jl,n. In particular, as shown in Ref. [40], the state saturating the uncertainty relation is
the ground state of the Laplacian which reads

ψ
(0)
100 =

1√
2πρ

sin
(
π σρ

)
σ

(23)

and has eigenvalue λ
(0)
100 = π2/ρ2 - a rather intuitive result because, being the ground state, it is the only distinguished

state in the system. Therefore, we conclude that the ground state ψ
(0)
100 is indeed the state of lowest uncertainty in

flat space

Ψ0 = ψ
(0)
100. (24)

We can infer from this result, that C1 = π for geodesic balls yielding the flat-space uncertainty relation

σpρ ≥ π~. (25)

This resembles but does not equal the inequality derived from the Robertson relation because those two describe
different setups, which are non-linearly related.

The power of the formalism introduced here, in the flat case akin to using a sledge-hammer to crack a nut, is
shown to unfold at full strength below, where we obtain relativistic curvature induced corrections to the relation (25)
perturbatively.

F. Generalization to curved space

Almost all assertions made in this section swiftly generalize to nontrivial three-dimensional backgrounds. Geodesic
balls, for example, continue to be well-defined objects with diffeomorphism invariant radius. However, they may not
look like simple balls depending on the observer in question. An example of this variation is displayed in Fig. 2
showing the distortion of a geodesic ball as it approaches a Schwarzschild horizon as seen from the static observer
at spacelike infinity. Furthermore, the eigenvalue problem (9) basically stays the same. However, given a nontrivial
background, the Laplacian has to be replaced by its covariant version, the Laplace-Beltrami operator. Thus, the
setting is of the form displayed in Fig. 3 for a two-dimensional spherical background.

However, we do not only live on a three-dimensional Riemannian manifold but in curved four-dimensional spacetime.
In this context, there are a couple of subtleties in defining the physical momentum operator, i. e. the momentum as
it may be measured in experiments. These are dealt with in the following section.

III. GENERAL RELATIVISTIC MOMENTUM OPERATOR FOR MASSIVE PARTICLES

This section is devoted to the derivation of the operator corresponding to the momentum of a massive particle
moving in a possibly curved spacetime. To this aim, the underlying classical quantity is treated first to subsequently
provide its quantum mechanical counterpart.

A. Classical physical momentum

An approach, similar to the present one, was taken in Ref. [40], where the reader can find more details. Accordingly,
the background metric gµν(x) may be parameterized as

ds2 = −N2
(
dx0
)2

+ hij(N
idx0 + dxi)(N jdx0 + dxj) (26)

in accordance with the ADM formalism [44, 45], where the lapse function, the shift vector on the d-dimensional
spacelike hypersurfaces of constant coordinate time x0 are denoted as N(x), N i(x) and hij(x), respectively. Breaking
the time reparametrization invariance of the action describing a particle on this background by choosing the affine
parameter τ = x0, the Lagrangian can then be expressed as

L = −mN
√

1− β2 (27)
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FIG. 2: Three geodesic balls whith equal geodesic radius ρ = .4RS but different distances from the center of
symmetry r0 = 3.5RS (left), r0 = 2.5RS (mid) and r0 = 1.5RS (right) on a spatial section of the Schwarzschild
static patch characterized by the Schwarzschild radius RS and described in terms of Schwarzschild coordinates.

Surfaces of geodesic balls are coloured blue while black hole horizons are indicated in black.

with the analog of the squared ratio of velocity and speed of light in the curved-spacetime setting

β2 ≡
(
N i + ẋi

) (
N j + ẋj

)
hij

N2
. (28)

This quantity was expanded in in Ref. [40] to obtain the nonrelativistic limit. The present treatment diverges from
said approach at this point. Instead, the canonical momenta can directly be derived from the Lagrangian (27) yielding

πi ≡
∂L

∂ẋi
= m

Gij(ẋ
j +N i)√

1− β2
. (29)

This relation can be inverted to express the velocities in terms of the canonical momenta as

ẋi =

√
1− β2

m
Gijπj −N i (30)
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FIG. 3: Schematic visualisation of the squared absolute value of two wave functions (eigenfunctions of the
Laplacian) colour coded from violet (vanishing) to red on a sphere, imbedded in three-dimensional Euclidean space,

and confined to a disk whose boundary is indicated in black.

with the effective spatial metric the particle is experiencing Gij = hij/N, which, importantly, does not necessarily
equal the induced metric on spacelike hypersurfaces. This behaviour was already observed in the nonrelativistic case
[40]. There, the physical momentum is defined as

pi|β�1 ≡ mGij ẋ
j
∣∣
β�1

= πi −mGijN i (31)

to make it gauge invariant. In the relativistic context, though, we have to define the physical momentum differently
multiplying the equivalent of the γ-factor to account for standard relativistic effects

pi ≡
mGij ẋ

j√
1− β2

= πi −
√

1 +
π2

Nm2
mGijN

j (32)

with the squared canonical momentum π2 = Gijπiπj . For small canonical momenta with respect to the particle’s
mass, this clearly recovers eq. (31). In the ultrarelativistic limit, on the other hand it results in

pi|β�1 ≡ mGij ẋ
j
∣∣
β�1

= πi −
√
π2GijN

i/
√
N, (33)

which, being independent of the mass, also applies to massless particles.
Importantly, the physical momentum (32) only equals the canonical momentum if the shift vector vanishes. A

momentum measurement, thus, does not concern the canonical quantity in and of itself but the combination (32).
Therefore, uncertainty relations should in fact be obtained with respect to the physical momentum pi.

B. Quantum mechanical canonical momentum

On a general Riemannian background, the position space representation with manifest diffeomorphism invariance
necessitates the nontrivial integral measure

dµ =
√
Gddx (34)

with the determinant of the effective metric G. Assuming, that positions and canonical momenta satisfy the Heisenberg
algebra (3) and that the operator representing the latter be Hermitian, it has to act on position space wave functions
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as [56]

π̂iψ = −i~
(
∂i +

1

2
Γiij

)
ψ ≡ −i~∇iψ (35)

where the last equality defines the covariant derivative acting on scalar densities of weight 1/2. Writing it this way,
we concealed a subtlety, though.

The familiar treatment of vector operators in textbook quantum mechanics is not immediately generalizable to
curved space. In particular, the expectation value of a vector operator, being an integral over a vector, is mathemat-
ically not well-defined. For example, we could describe the momentum in two distinct coordinate systems xi and ya

expressing the components of a general one-form ωi of the former in terms of the latter as

ωi =
∂yj

∂xi
ωj . (36)

Then, the expectation value of the canonical momentum operator in the coordinate system xi with respect to a general
state |ψ〉 would read

〈p̂i〉 =

〈
∂yj

∂xi
p̂j

〉
=

∫
ddx
√
gψ∗

(
−i~∂y

j

∂xi
∇j
)
ψ 6= ∂yj

∂xi

∫
ddx
√
gψ∗(−i~∇i)ψ (37)

where the transformation matrix ∂ya/∂xi, being position dependent, cannot be taken out of the integral. Thus, it is
not diffeomorphism invariant as reflected by the inequality

〈π̂i〉 6=
∂yj

∂xi
〈π̂j〉. (38)

This problem can be circumvented with the help of geometric calculus [57]. Expressed in this language, one-forms are
expanded in terms of basis vectors γ(x)i which satisfy the generalized Clifford algebra

{γi, γj} = 2gij (39)

where the curly brackets stand for the anticommutator. The basis vectors themselves can be made independent of
the position using the tetrad formalism [58]. Define the vielbein eia and its inverse eai such that

gij ≡ eai ebjδab gij ≡ eiae
j
bδ
ab. (40)

Then, according to eq. (39), one can choose a basis such that γa = eai γ
i 6= γa(x) and

{γa, γb} = 2δab. (41)

Applying all of this machinery and using the familiar Dirac-notation, a one-form /ω can be expressed as /ω = γi(x)ωi =

γaeiaωi. Vectors may be treated analogously. Then, the symetric contraction of a operator-valued vector V̂/V = γiV̂
i

and an operator-valued one-form ω̂/ω reads {
V̂/V , ω̂/ω

}
=
{
V̂ i, ω̂i

}
(42)

as expected. In short, expectation values of vectors should always be evaluated in a local Euclidean frame. On a
flat background, this reduces to quantizing in Cartesian coordinates. This peculiar fact had already been stressed by
Dirac in 1930 [59].

Define, thus, the conjugate momentum operator through its action on wave functions in position space [60]

π̂/πψ ≡ γiπ̂iψ = −i~γi(x)∇iψ, (43)

Its expectation value reads

〈π̂/π〉 =

∫
d4x
√
Gψ∗

(
−i~γaeia∇iψ

)
= γa

∫
d4x
√
Gψ∗

(
−i~eia∇iψ

)
= γa

〈
eiaπ̂i

〉
. (44)

Here we could take the the basis vector out of the integral because, as was alluded to above, it is independent of the
positions. Thus, it suffices to add in the vielbein, i. e. describe the momentum in a local Euclidean frame, to turn
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the expectation value of the momentum operator into a well-defined object. In Ref. [60], the operator π̂/π is shown to
generate translations. Furthermore, it is proven that its square is proportional to the Laplace-Beltrami operator

π̂/π
2ψ = π̂2ψ = −~2 1√

G
∂i

(√
G∂iψ

)
(45)

thereby claiming the correct relation to the free-particle Hamiltonian. Thus, it fulfills all the requirements to yield a
position representation of the canonical momentum operator in curved space. However, it only describes the canonical
momentum. The definition of the physical momentum operator bears subtleties in and of itself.

C. Operator ordering ambiguities

Quantization, provided we understand it as such in the first place, is not an injective map. In fact, given any classical
function there is an infinite number of possible quantum operators corresponding to it. Consider, for example, the
squared position in one dimension, x2, which could be derived as the classical limit of any operator of the symmetric
form

F (p̂)x̂F−2(p̂)x̂F (p̂) = x̂2 − ~2

[(
F ′

F

)2

+
F ′′

F

]
(46)

for a general real function F. In the end, it is up to experiment to decide on the correct definition even though
there may be theoretical reasons to prefer one ordering over another. For instance, the Laplace-Beltrami operator, a
quantization of the classical function gij(x)pipj , apart from being backed by experiment, has the advantage that it is
invariant under spatial diffeomorphisms as expected from the squared magnitude of the physical momentum. In the
more primitive case of eq. (46), however, there is just no reason to expect anything else than x̂2 to be the quantisation
of the squared position. If no other principles can be found to guide the choice of ordering, it is thus intuitive to
refrain from adding more ingredients. Furthermore, as they are supposed to be observables, the resulting operators
have to be symmetric.

In comparison to the non-relativistic version (31), the relativistic momentum (32) mixes positions and canonical
momenta. Thus, it is not of the primitive form featured in eq. (46). Not specifying the exact prescription, its quantum
mechanical counterpart can be written as

/̂p = π̂/π −m

√1 +
π̂2

N̂m2
N̂/N


O

(47)

where the subscript O stands for any symmetric ordering without addition of extra operators. Then, the inequality
which is at the heart of the present work has to be derived from the standard deviation of the physical momentum
operator

σp̂/p =

√〈
p̂/p

2
〉
−
〈
p̂/p
〉2

=
√
〈p̂2〉 − δab〈p̂a〉〈p̂b〉, (48)

i. e. in a local Euclidean frame. The rest of the treatment is analogous to the one introduced in section II.
For the purpose of calculating this quantity, it is only required to show, that any symmetric term possibly appearing

in an ordering, obeying said principles, of a power of the squared conjugate momentum and a position coordinate
satisfies

1

2

(
π̂2J x̂aπ̂2(N−J) + π̂2(N−J)x̂aπ̂2J

)
=

1

2

{
x̂a, π̂2N}+

[
π̂2(N−J),

[
x̂a, π̂2J

]]
=

1

2

{
x̂a, π̂2N} (49)

with J ∈ (0, 1, . . . ,N ) and that similarly, once two coordinates are included

1

2

(
π̂2J x̂aπ̂2K x̂bπ̂2[N−(J+K)] + π̂2[N−(J+K)]x̂bπ̂2K x̂aπ̂2J

)
=

1

2

{
x̂ax̂b, π̂2N}+ i~

{
J
[
π̂2[N−(J+K)]x̂b, π̂aπ̂2(J+K−1)

]
− (J +K)

[
x̂a, π̂bπ̂2(N−1)

]}
(50)

=
1

2

{
x̂ax̂b, π̂2N}+ ~2

{
Jπ̂2(N−1)δab + 2 [(J +K)(N − 1)

−J(J +K − 1)] π̂2(N−2)π̂aπ̂b
}

(51)
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with J,K ∈ (0, 1, . . . ,N ) and J +K ∈ (0, 1, . . . ,N ). This implies that every function f , which is analytic on IR+ and
therefore can be expanded nonsingularly for all elements in the spectrum of π̂2, will satisfy[

f(π̂2)xa
]
O =

1

2
{x̂a, f (π̂)} (52)[

f(π̂2)x̂ax̂b
]
O =

1

2

{
x̂ax̂b, f (π̂)

}
+ ~2

[
G
(
π̂2
)
δab + G̃

(
π̂2
)
π̂aπ̂b

]
(53)

where the subscript O symbolizes a general symmetric ordering without adding extra operators and we introduced
the two additional, not specified, but equally analytic functions G and G̃. Similar results hold for symmetric orderings
of the forms [f(π̂2){xaπb}g]O and [f(π̂2){xaxbπcπd}g]O, where the curly brackets indicate, that the ordering in their
interior is fixed. These identities suffice to show, that the resulting uncertainty relation is independent of operator
ordering.

As position and momentum dependent operators appear within one square root in the expression (47), the ordering
has to be enforced at the perturbative level which, fortunately, is exactly what is required for the purpose of this
paper.

D. Riemann normal coordinates

Assuming small position uncertainties, the geometry of the relevant neighbourhood of the underlying three-
dimensional manifold may be approximated by describing the effective spatial metric in terms of Riemann normal
coordinates xa defined around the point p0 as

Gab ' δab −
1

3
Racbd|p0xcxd (54)

with the Riemann tensor Racbd. Furthermore, the lapse function and the shift vector may be expanded as

N 'N |p0 +∇bN |p0xb +∇b∇cN |p0xbxc (55)

Na 'Na|p0 +∇bNa|p0xb +∇b∇cNa|p0xbxc. (56)

Both are constant at lowest order. Being a quantity derived from the metric, the canonical momentum operator
expands as π̂/π ' π̂/π(0) + π̂/π(2). This implies that, applying eqs. (52) and (53) and the relation [π̂/π, x̂a] = [π̂/π(0), x̂

a], the

physical momentum operator satisfies order by order

/̂p(0) =π̂/π(0) −m/N |p0
√

1 + Π̂2 (57a)

/̂p(1) =
m

2

(
1

2
/N∇a lnN

∣∣
p0

{
x̂a,

Π̂2√
1 + Π̂2

}
−∇a /N |p0

{
x̂a,

√
1 + Π̂2

})
(57b)

/̂p(2) =π̂/π(2) +
m

4

(∇a /N∇b lnN + /N
∇a∇bN

2N

)∣∣∣∣
p0

{
x̂ax̂b,

Π̂2√
1 + Π̂2

}
− /N

∇aN∇bN
4N2

∣∣∣∣
p0

x̂ax̂b,
Π̂2
(

4 + 3Π̂2
)

(
1 + Π̂2

)3/2


−∇a∇b /N |p0

{
x̂ax̂b,

√
1 + Π̂2

}
−

/N

2Nm2

∣∣∣∣
p0

{
π̂2

(2),
1√

1 + Π̂2

}]
+ /Gab

(
π̂2

(0)

)
δab + /̃Gab

(
π̂2

(0)

)
π̂a(0)π̂

b
(0) (57c)

where we introduced the ordering-dependent tensor- and vector-valued functions /Gab and /̃Gab, which are analytic on

IR+, and the operator Π̂2 ≡ π̂2
(0)/N |p0m

2. Its expectation value

〈
Π̂2
〉

=
β2

(0)

1− β2
(0)

(58)

measures the relativisticness of the given state at lowest order. Functions of Π̂2 can be expanded in the eigenstates
of the Laplacian

f
(

Π̂2
)
≡
∑
n,l,m

f

(
~2λ

(0)
nl

m2N |p0

)∣∣∣ψ(0)
nlm

〉〈
ψ

(0)
nlm

∣∣∣, (59)
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where the states are represented as in eq. (21) and the eigenvalues are provided in eq. (22).

In the nonrelativistic limit (Π̂2 → 0) the expansion of the physical momentum operator (57) clearly recovers the
expressions provided in Ref. [40] as expected. Having thus obtained an expansion of the momentum operator around
a point on our background manifold, it is time to tackle the main goal of this paper.

IV. EXPLICIT SOLUTION

As the theoretical subtleties have been settled, we can now proceed to derive the uncertainty relation for a general
curved background. The result is first obtained analytically for a flat background to be further generalized to small
perturbations around it as indicated by the expansion in the preceding section.

A. Flat space

As for non-relativistic particles, we begin with the uncertainty relation in flat space. In this case, the linear and
squared momentum operators are given by eq. (57a) and as

p̂2
(0) = π̂2

(0) − 2m/N |p0
{
π̂/π(0),

√
1 + Π̂2

}
+m2NaNa|p0

(
1 + Π̂2

)
, (60)

Then, the variance of the momentum operator σ2
p can be expressed as(

σ2
p

)(0)
=
(
σ2
π

)(0)
+
(
σ2
p

)(0)

rel
(61)

where the global minimum of
(
σ2
π

)(0)
, stemming from the ground state of the Laplacian ψ100, was found in section

II E and we introduced the relativistic correction

(
σ2
p

)(0)

rel
= 2m/N |p0

(〈
π̂/π

(0)
〉〈√

1 + Π̂2

〉
−
〈
π̂/π

(0)

√
1 + Π̂2

〉)
+m2 NaNa|p0

[〈
1 + Π̂2

〉
−
〈√

1 + Π̂2

〉2
]
. (62)

Clearly, the first two terms can decrease the uncertainty when 〈π̂/π(0)〉 6= 0 i. e. for superpositions of eigenstates of the

Laplacian with relative phase, the kind which was treated in Ref. [40]. Expressed as a linear combination Ψ (c. f. eq.
(10)) of the eigenstates of the Laplacian and applying eqs. (9a) and (17), it becomes

(
σ2
p

)(0)

rel
=2m/N |p0

∑
n 6=n′

Re
(
a∗n′an

〈
ψ

(0)
n′

∣∣∣π̂/π(0)ψ
(0)
n

〉)∑
n′′

|an′′ |2
√

1 +
λ2
Cλn′′

N |p0
−

√
1 +

λ2
Cλn
N |p0

 (63)

≥− 2m|| /N ||p0
∑
n 6=n′

|an||an′ |
∣∣∣∣∣∣MaxRe

(
ei∆φnl,n′l′

〈
ψ

(0)
n′

∣∣∣π̂/π(0)ψ
(0)
n

〉)∣∣∣∣∣∣
∣∣∣∣∣∣
∑
n′′

(
|an′′ |2 − δn′′n

)√
1 +

λ2
Cλn′′

N |p0

∣∣∣∣∣∣
+m2 NaNa|p0

1 +
∑
n

|an|2
λ2

Cλn
N |p0

−
∑
n′

|an′ |2
√

1 +
λ2
Cλn
N |p0

√
1 +

λ2
Cλn′

N |p0

 (64)

where λC stands for the reduced Compton wave length and MaxRe indicates a choice of relative phase ∆φnln′l′

between the coefficients an, an′ such that the real part of the resulting quantity is maximized. In the nonrelativistic
limit the corrections multiply the factor

∑
n′′(|an′′ |2 − δn′′n) = 0 and the contribution vanishes as expected. After

some straight-forward yet tedious algebra displayed in appendix A and recovering all quantum numbers in three
dimensions, we can estimate

(
σ2
p

)(0)

rel
≥− 2~2

ρλC

√
NaN bGab

∣∣
p0

∑
n,l 6=n′,l′

|an||an′ | jl,njl′,n′

|j2
l,n − j2

l′,n′ |

∣∣∣∣∣∣
∑
n′′,l′′

(
|an′′,l′′ |2 − δn′′nδl′′l

)√
1 +

λ2
Cj

2
l′′,n′′

ρ2N |p0

∣∣∣∣∣∣
+ NaNa|p0

1 +
∑
n

|an|2
 λ2

Cj
2
l,n

ρ2N |p0
−
∑
n′

|an′ |2
√

1 +
λ2
Cj

2
l,n

ρ2N |p0

√
1 +

λ2
Cj

2
l′,n′

ρ2N |p0

 . (65)
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As the non-relativistic case has been treated already in Ref. [40], a possible change in the state of smallest uncertainty
should be expected to result in the ultra-relativistic limit i. e. for states for which λCjl′′,n′′/N |p0ρ2 � 1. Then the
relativistic correction becomes approximately

ρ2

~2

(
σ2
p

)(0)

rel

∣∣∣
〈Π̂〉�1

&− 2

√
NaNa

N

∣∣∣∣∣
p0

∑
n,l 6=n′,l′

|an||an′ | jl,njl′,n′

|j2
l,n − j2

l′,n′ |

∣∣∣∣∣∣
∑
n′′,l′′

(
|an′′,l′′ |2 − δnn′′δll′′

)
jl′′,n′′

∣∣∣∣∣∣
+
NaNa
N

∣∣∣∣
p0

∑
n

|an|2
(
j2
l,n −

∑
n′

|an′ |2 jl,njl′,n′

)
. (66)

This implies, that the sum of both relevant contributions to the variance (61) satisfies at the ultrarelativistic level

ρ2

~2

(
σ2
p

)(0)
∣∣∣
〈Π̂〉�1

&− 2

√
NaNa

N

∣∣∣∣∣
p0

∑
n,l 6=n′,l′

|an||an′ | jl,njl′,n′

|j2
l,n − j2

l′,n′ |

∣∣∣∣∣∣
∑
n′′,l′′

(
|an′′,l′′ |2 − δnn′′δll′′

)
jl′′,n′′

∣∣∣∣∣∣
+
∑
n

|an|2
[
j2
l,n

(
1 +

NaNa
N

∣∣∣∣
p0

)
− NaNa

N

∣∣∣∣
p0

∑
n′

|an′ |2 jl,njl′,n′

]
. (67)

As the transition amplitude 〈ψnlm|π̂/π(0)ψn′l′m′〉 is only nonvanishing if ∆l = |l′− l| = 1, which is shown in appendix A,

the effect of linearly combining more than two eigenstates of the Laplacian cannot be stronger than just adding two
of them. Thus, we can consider only the former without loss of generality. Then, we can define the relative weight
a ≡ |an,l| =

√
1− |an′,l′ |2 leading to the relation

(
σ2
p

)(0)
∣∣∣
〈Π̂〉�1

≥~2

ρ2

A(a)−B(a)

√
NaNa
N

∣∣∣∣∣
p0

+ C(a)
NaNa
N

∣∣∣∣
p0

 (68)

where, denoting the quantum numbers of the two states as n, l and n′, l′ by a slight abuse of notation, we introduced
the functions of the parameter

A(a) =a2j2
l,n + (1− a2)j2

l′,n′ (69)

B(a) =2a
√

1− a2
∣∣1− 2a2

∣∣ jl′,n′jl,n
|j2
l′,n′ − j2

l,n|
|jl,n − jl′,n′ | (70)

C(a) =a2(1− a2) (jl,n − jl′,n′)
2
. (71)

As a function of the shift vector and the lapse function the uncertainty clearly has a global minimum at
√
NaNa/N |p0 =

B
2C . Thus, we can estimate

(
σ2
p

)(0)
∣∣∣
〈Π̂〉�1

≥~2

ρ2

[
A− B2

4C

]
=

~2

ρ2

[
a2j2

l,n + (1− a2)j2
l′,n′ −

(
1− 2a2

)2 jl′,n′jl,n
|j2
l′,n′ − j2

l,n|

]
. (72)

The resulting uncertainties as functions of the parameter a are plotted for all eigenfunctions of the Laplacian (21)
characterized by quantum numbers n ≤ 10, n′ ≤ 11 in figure 4. Not a single one of those states has a smaller

uncertainty than the ground state of the Laplacian ψ
(0)
100 defined in Eq. (23). Those mixing with the ground state as

Ψ = aei∆φψ
(0)
100 +

√
1− a2ψ

(0)
nlm, (73)

coloured black, for example, only reach their minimum value at a = 1. Furthermore, the difference only grows with
increasing n+ n′ as can be inferred from the colour of the other graphs.

To put it in a nutshell, the ground state of the Laplacian ψ
(0)
100 remains the state of smallest uncertainty, i. e. we

have found

Ψ
(0)
0 = ψ

(0)
100 (74)

and we recover the inequality (25) in the relativistic setting. This result will be modified by gradually adding in
curvature.
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FIG. 4: Lower bounds on the relativistic momentum uncertainties of all linear combinations of two eigenstates of the
Laplacian (21) with principal quantum numbers (n, n′) ≤ (10, 11) to lowest nonvanishing order as functions of the

parameter a ∈ [0, 1] characterizing the relative weight and in units of ~/ρ. Black curves correspond to linear
combinations including the ground state (23), while the colour measures the sum of the principal quantum numbers

n and n′ for the others. The eigenvalue of the ground state is represented by the violet line.

B. Corrections

As perturbative corrections are comparably small by definition, the fact, that the ground state of the Laplacian
uniquely saturates the uncertainty relation, carries over to the slightly curved setting in general meaning, that

Ψ0 = ψ100. (75)

This implies, that eq. (17) continues to hold to all orders in the expansion. Furthermore, the integration measure in
flat space, with respect to which corrections to expectation values are computed (c. f. Ref. [39]), is even in the radial
coordinate. Hence, all expectation values of operators, which are odd in the sum of the numbers of positions and
unperturbed momenta vanish. Therefore, the derivation of the correction(

σ2
p

)(1)
(ψ100) =

〈
ψ

(0)
100

∣∣∣p̂2
(1)ψ

(0)
100

〉
0
− 2
〈
ψ

(0)
100

∣∣∣p̂(1)ψ
(0)
100

〉
0

〈
ψ

(0)
100

∣∣∣p̂(0)ψ
(0)
100

〉
0
, (76)

where the subscript 0 at expectation values stands for the flat-space integration measure, simplifies significantly.
In fact, at this order all possibly arising corrections to 〈p̂/p〉 are even in the momenta and odd in the coordinates

implying 〈p̂/p(1)
〉 = 0. Most of the contributions to 〈p̂2〉 vanish for the same reason. The remaining terms assume the
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form 〈
ψ

(0)
100

∣∣∣p̂2
(1)ψ

(0)
100

〉
0
∝
〈
ψ

(0)
100

∣∣∣{x̂aπ̂b}ψ(0)
100

〉
0
. (77)

This can be shown to equal zero applying the canonical commutation relations (3) and computing explicitly that〈
ψ

(0)
100

∣∣∣x̂aπ̂bψ(0)
100

〉
0

=
i~
2
δab . (78)

To put it in a nutshell, there are no first-order corrections to the uncertainty relation. In order to obtain curvature-
induced contributions, it is necessary to treat the system at higher order.

The second-order contribution to the variance of the momentum operator(
σ2
p

)(2)
=

〈(
p̂/p

(1)
)2
〉

0

−
〈
p̂/p

(1)
〉2

0
+
〈{
p̂/p

(2), p̂/p
(0)
}〉

0
− 2
〈
p̂/p

(2)
〉

0

〈
p̂/p

(0)
〉

0
, (79)

for example, yields meaningful terms. Still, it simplifies considerably taking into account generic cancellations. The
second term was shown to vanish when treating the calculations at first order. Furthermore, eq. (57a) implies that
the third and the fourth terms largely cancel for all eigenstates of the Laplacian leaving us with(

σ2
p

)(2)
(ψnlm) =

〈(
p̂/p

(1)
)2
〉

0

+
〈{
p̂/p

(2), π̂/π
(0)
}〉

0
+
〈[
p̂/p

(0) − π̂/π(0), p̂/p
(2)
]〉

0
. (80)

All contributions to p̂/p
(2) as given in eq. (57c) except for π̂/π

(2) are even in π̂a and x̂b while π̂/π
(0) is evidently odd. Thus,

when evaluated respective to the ground state of the Laplacian, this sum experiences a further simplification to read(
σ2
p

)(2)
(ψ100) =

〈
π̂2

(2)

〉
0

+

〈(
p̂/p

(1)
)2
〉

0

+
〈[
p̂/p

(0) − π̂/π(0), p̂/p
(2)
]〉

0
. (81)

The first term appearing at the right-hand side just equals
(
σ2
π

)(2)
as derived in Ref. [39] yielding〈

π2
(2)

〉
= −R|p0

6
. (82)

with the Ricci scalar R derived from the effective metric Gab, while the correction obtained in Ref. [40] is hidden in
the second term. Making use of eq. (57b), this expectation value is of the form〈(

p̂/p
(1)
)2
〉

0

=
m2

4

〈{
x̂a, /F a

(
Π̂2
)}2

〉
0

(83)

=m2

{
FacF

c
b

(
Π2
) 〈
xaxb

〉
0

+ ρ2 Π2

π2

[
(FacF

ac)
′ − ρ2

~2

Π2

π2
(2FacF

′′
bc + F ′acF

′
bc)
〈
π̂aπ̂b

〉]}
(84)

where Π2 = ~2π2/ρ2m2N |p0 = π2λ2
C/ρ

2N |p0 , with the reduced Compton wavelength λC ≡ ~/m, denotes the relativs-
ticness of the ground state and we introduced the dimensionful, tensor-valued function

Fac

(
Π̂2
)

=
1

2
Nc∇a lnN |p0

Π̂2√
1 + Π̂2

−∇aNc|p0
√

1 + Π̂2. (85)

The required expectation values can be evaluated explicitly yielding〈
ψ

(0)
100

∣∣∣x̂ax̂bψ(0)
100

〉
0

=
2π2 − 3

18π2
ρ2δab ≡ ξ

2
ρ2δab (86)〈

ψ
(0)
100

∣∣∣π̂aπ̂bψ(0)
100

〉
0

=
~2π2

3ρ2
δab (87)

where the third equality of the first equation defines the mathematical constant ξ ∼ O(10−1). Plugging these explicit
results back in eq. (84), we obtain〈(

p̂/p
(1)
)2
〉

0

= m2ρ2

{
ξ

2
FacF

ac +
Π2

π2

[
1

2
(FacF

ac)
′ − Π2

3
(2F ′′acF

ac + F ′acF
′ac)

]}
. (88)
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Fortunately, the third term of eq. (81) turns out to be such that the dependence on the ordering in the second-order
correction to the momentum operator (57c) exactly cancels. Resultingly, this contribution can be expressed as

〈[
p̂/p

(0) − π̂/π(0), p̂/p
(2)
]〉

0
=
〈
ψ

(0)
100

∣∣∣π̂aπ̂bψ(0)
100

〉
0

[
m2ρ4

~2π4

Π4

√
1 + Π2

(
F̃ab

(
Π2
)

1 + Π2
− F̃ ′ab

(
Π2
))

+
ρ2

6π2

Π2

1 + Π2

N cNcRab
N

∣∣∣∣
p0

]
(89)

=
ρ2m2

3π4

Π2

√
1 + Π2

(
F̃ aa

1 + Π2
− F̃ ′aa

)
+

~2

36

Π2

1 + Π2

N cNcR

N

∣∣∣∣
p0

(90)

where we introduced the dimensionful, tensor-valued function

F̃ab =
Nc
2

1

2
∇a (N c∇b lnN)

Π̂2√
1 + Π̂2

−∇a∇bN c

√
1 + Π̂2 − 1

8
N c∇a lnN∇b lnN

Π̂2
(

4 + 3Π̂2
)

(
1 + Π̂2

)3/2


∣∣∣∣∣∣∣
p0

. (91)

Plugging all those terms back into eq. (81), the correction to the variance of the momentum operator reads

(
σ2
p

)(2)
=
~2

2

[
R

9

(
NaN

a

N

Π2

1 + Π2
− 3

)∣∣∣∣
p0

+ F1

(
Π2
) NbN b

N
∇a lnN∇a lnN

∣∣∣∣
p0

−F2

(
Π2
) N b∇aNb

N
∇a lnN

∣∣∣∣
p0

+ F3

(
Π2
) ∇aNb∇aN b

N

∣∣∣∣
p0

−F4

(
Π2
) N b∆Nb

N

∣∣∣∣
p0

+ F5

(
Π2
) NbN b

N
∆ lnN

∣∣∣∣
p0

]
(92)

where we introduced the functions of relativisticness

F1 =
π2

4
ξ

Π2

1 + Π2
+

Π2
(
−4 + 5Π2 + 2Π4

)
12 (1 + Π2)

3 , (93)

F2 =π2ξ + 1− Π2

3 (1 + Π2)
2 , (94)

F3 =π2ξ
1 + Π2

Π2
+ 1 +

1

6

Π2

1 + Π2
, (95)

F4 =
1

6

Π2

1 + Π2
, (96)

F5 =
1

12

Π2
(
4 + Π2

)
(1 + Π2)

2 . (97)

The final result of this paper thus reads

σpρ ≥π~

{
1 +

ρ2

4π2

[
R

9

(
NaN

a

N

Π2

1 + Π2
− 3

)∣∣∣∣
p0

+ F1

(
Π2
)
∇a lnN∇a lnN

NbN
b

N

∣∣∣∣
p0

−F2

(
Π2
)
∇a lnN

∇aNbN b

N

∣∣∣∣
p0

+ F3

(
Π2
) ∇aNb∇aN b

N

∣∣∣∣
p0

−F4

(
Π2
) N b∆Nb

N

∣∣∣∣
p0

+ F5

(
Π2
) NbN b

N
∆ lnN

∣∣∣∣
p0

]}
. (98)

Undoubtedly, this is a quite involved expression. Therefore, it is instructive to consider its asymptotic behaviour. On
the one hand, for Π� 1, implying the non-relativistic limit, we recover the relation derived in Ref. [40]

σpρ ≥ π~

[
1− ρ2

(
R

12π2
− ξ ρ

2

λ2
C

∇aNb∇aN b

)∣∣∣∣
p0

]
(99)

as expected. Ultra-relativistic particles satisfying Π� 1, on the other hand, obey the uncertainty relation

σpρ ≥ π~

{
1 +

ρ2

4π2

[
R

9

(
NaN

a

N
− 3

)
+ ξ̃∇a

(
Nb/
√
N
)
∇a
(
N b/
√
N
)
− Na

6
√
N

∆
(
Na/
√
N
)]∣∣∣∣

p0

}
(100)
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with the mathematical constant ξ̃ = ξ + 7/6π2 ∼ O(10−1), a result, which reflects the form of the ultrarelativistic
momentum (33). In particular, it is independent of Π. Hence, there is no divergence at high energies. Instead, the
relation asymptotes towards a constant value. In principle, it therefore also applies to massless particles. On the
other hand, the nonrelativistic shift-dependent correction in Eq. (99) scales linearly with the mass of the particle.
Thus, the gravitational influence is strongest on very massive particles as expected. Furthermore, as mentioned above,
all relativistic corrections are dependent on the value of the shift vector. If the latter vanishes, the corrections only
depend on the scalar curvature of the effective spatial geometry. It is instructive, to examine the new corrections by
virtue of an example.

C. Kerr black hole

Arguably, the most famous geometry with nontrivial nondiagonal elements is the Kerr black hole, in Boyer-Lindquist
coordinates described by the metric

ds2 =−
(

1 + 2φGR
r2

Ξ2

)
dt2 + 4φGRaJ sin2 θ

r2

Ξ2
dtdϕ

+
Ξ2

Σ
dr2 + Ξ2dθ2 + r2

(
1 +

a2
J

r2
− 2φGR sin2 θ

a2
J

Ξ2

)
sin2 θdϕ2 (101)

with φGR = −GM/r, Ξ = r
√

1 + cos2 θa2
J/r

2 and Σ = r2(1 + φGR + a2
J/r

2). The resulting relativistic uncertainty
relation reads to fourth order in the gravitational potential φGR|r0 and the relative angular momentum aJ/r0 at the
point p0 = (r0, θ0, φ0)

σP ρ ≥ π~

{
1 +

φ2
GR

∣∣
r0
ρ2

48π2r2
0

[
10 + 10 φGR|r0 + 15 φ2

GR

∣∣
r0
− a2

J

r2
0

(469− 217 cos 2θ − 96F3|N=1 (7− 3 cos 2θ))

]}
. (102)

Note, that, the radial coordinate, in terms of which this inequality is provided in Ref. [40] is nonlinearly related to
the one used in this paper. Therefore, even though the second and third terms in the square bracket have different
prefactors, both results are equivalent. In said reference the modified uncertainty relation was evaluated along a wide
trajectory around a rotating black hole for a heavy particle. The relativistic version clearly allows for closer orbits
and lighter particles. Such an evolution is displayed in the left plot of Fig. 5, where the colour of the curve indicates
progress in proper time. The graph inset into the top left corner of this visualisation provides the deviation of the
right-hand side of inequality (102) from the value of the flat-space uncertainty ~π. Clearly, the influence is strongest,
when the the curvature is large leading to peaks at the periapsis, as had already been concluded in Ref. [40]. The
nonrelativistic and relativistic expressions are compared graphically at the first peak in the plot to the right of Fig.
5. The former lead to an increase of the effect by a factor of two for the given choice of parameters.

V. CONCLUSION

Starting at the dynamics of relativstic particles in curved spacetime, we have derived an uncertainty relation
between the positions and momenta on hypersurfaces of constant time in accordance with the 3+1-formalism. This
was achieved by, first, finding the relevant relativistic physical momentum operator and then obtaining its standard
deviation on a compact domain. In particular, for reasons of simplicity we chose to work with geodesic balls whose radii
are diffeomorphism invariant and yield, thus, a meaningful measure of position uncertainty. Under the assumption,
that the involved position uncertainties are small in comparison to all relevant background curvature length scales,
we solved the corresponding problem perturbatively by describing the effective spatial metric in terms of Riemann
normal coordinates constructed in the center of the ball. This was done drawing heavily on results obtained in earlier
work [39, 40].

To second order, the resulting uncertainty relation is proportional to the Ricci scalar of the effective spatial metric
as well as a couple of terms, which depend on the gradients of the shift vector and the lapse function. In particular,
all relativistic corrections to the nonrelativistic result in Ref. [40] are proportional to the shift vector and/ or its
gradients. Thus, they all vanish in the absence of meaningful nondiagonal entries in the original spacetime metric.
Interestingly, the ultrarelativistic limit asymptotically yields a constant correction and does not diverge. Thus, the
relation may, in principle, also be used to describe massless particles.
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FIG. 5: The left plot shows the trajectory followed by a massive particle in the equatorial (x-y) plane of a fast black
hole rotating as aJ/GM = 0.5 and with an outer horizon of radius r+ symbolized by the black disk in the center. Its

starting point lies on the x axis at a distance 100r+ from the source with initial velocity
u(τ = 0) ' (1.010,−0.0010, 0.0000, 0.0001) in Boyer-Lindquist coordinates. The color, ranging from violet to red,

indicates an increase in the affine parameter τ. Inset in the top left corner is a plot displaying the all corrections to
the uncertainty relation in units of ~ logarithmically experienced by a particle of mass m = ~/r+ with position

uncertainty ρ = 10−1r+ along this orbit as a function of proper time. On the right-hand-side, the fully relativistic
(blue) and nonrelativistic (orange, dotted) corrections are compared allowing a closer look at the first peak of the

uncertainty relation.

This formalism was applied to a particle moving on a geodesic in the equatorial plane of the Kerr-geometry. In that
vein, it was shown, that the relativistic corrections support the effect by increasing the deviation from the flat-space
uncertainty relation.

Have we thus obtained a covariant uncertainty relation? Recall, that the derivation we followed throughout this
paper was based on a given division of the underlying spacetime manifold M into a time direction IR and spacelike
hypersurfaces Σ, on which the uncertainty relation is determined. To be more precise, this was indicated by the choice
of domain. The investigated particle is confined to a geodesic ball at a certain time, which is clearly a slicing-dependent
statement. Changing the time coordinate, e. g. by a local Lorenz transformation, would lead to a deformation of the
ball and change the problem entirely. Clearly, the core of this peculiarity lies in the fact that the objective lies in
obtaining an uncertainty principle relating positions and momenta, notions, which can only be understood as absolute
in an non-relativistic context. How could we, then, obtain an intrinsically covariant result?

In principle, the relevant quantity to study in this direction would be the standard deviation of the Dirac operator
P̂/P = −i~γµ∂µ. By analogy, this requires a domain, compact not only in space but also in time, thus treating both
entities equally. Hence, it seems necessary to consider the domain to be expanding into the future from an initial
hypersurface to afterwards recollapse into another hypersurface, basically like the creation and subsequent anihilation
of an excitation by the uncertainty. This will be the subject of future research.

Appendix A: Evaluation of
∣∣∣∣∣∣MaxRe

[
ei∆φ

〈
ψn′l′m′

∣∣∣π̂/π(0)ψnlm
〉]∣∣∣∣∣∣

In order to be able to evaluate the expectation value of the momentum operator with respect to a general state Ψ

written in the basis of the Laplacian (see eq. (10)), we need to compute the transition amplitudes 〈ψn′ |π̂/π(0)ψn〉. In
particular, confined to geodesic balls of radius ρ and on a flat three-dimensional background they read〈

ψn′l′m′

∣∣∣π̂/π(0)ψnlm

〉
=

∫
Bρ

dµψ∗n′l′m′ π̂/π
(0)ψnlm, (A1)

where the functions ψnlm were defined in eq. (21) and we introduced the flat space measure dµ = σ2 sinχdσdχdγ in
spherical coordinates σi = (σ, χ, γ).

According to eq. (17), those amplitudes evidently vanish if n′ = n, l′ = l and m′ = m. To be more precise, this
result can be extended to cases where m′ 6= m. Having in mind that non-vanishing ∆m ≡ m′ −m leads to a phase
difference ψnlm = exp i∆mγψnlm′ , the only possible change in the transition amplitude has to stem from derivatives
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with respect to the coordinate γ. Due to the proportionality

∂γψnlm ∝ ψnlm, (A2)

we infer, that the relevant integrals, i. e. the ones which could prevent the transition amplitude from vanishing, share
the behaviour ∫ 2π

0

e−i∆mγ sin γdγ =

∫ 2π

0

e−i∆mγ cos γdγ = 0, (A3)

where the last equality holds irrespective of the value of ∆m. Thus, varying solely m does not change the transition
amplitude, yielding 〈

ψnlm′

∣∣∣π̂/π(0)ψnlm

〉
= 0. (A4)

As the eigenvalues of the Laplacian are functions of the quantum numbers l and m (c. f. eq. (22)), the remaining
transition amplitudes feature states with distinct eigenvalues. The evaluation of those can be simplified considering
a different amplitude〈

ψn′l′m′

∣∣∣π̂/π3
(0)ψnlm

〉
= −~2λnl

〈
π̂/π

(0)
〉

= −~2λn′l′

〈
π̂/π

(0)
〉
− ~3

∫
Bρ

dµ∂j
[(
−i/∂ψn′l′m′

)∗
∂jψnlm

]
, (A5)

where the boundary condition (9b) has been applied. The last term, being a total derivative, can be turned into a
surface integral by Stokes’ theorem such that we can rewrite eq. (A5)〈

π̂/π
(0)
〉

=
~

λnl − λn′l′

∫
∂Bρ

dµ̃
(
−i/∂ψn′l′m′

)∗
nj∂jψnlm (A6)

=
σ2~

λnl − λn′l′

∫
S2

dΩ
(
−i/∂ψn′l′m′

)∗
∂σψnlm

∣∣∣
σ=ρ

(A7)

with the determinant of the induced metric on the surface of the geodesic ball, which in spherical coordinates is
proportional the volume element of the two-sphere S2 (of radius σ) dµ̃ = σ2dΩ = σ2 sinχdχdγ, and the outward
normal ni = δiσ. Writing the basis states decomposed in terms of their radial and angular parts,

Rnl(σ) =

√
2

ρ3j2
l+1(jl,n)

jl

(
jl,n

σ

ρ

)
(A8)

and the spherical harmonics Y lm(χ, γ) respectively, eq. (A7) can be reexpressed as〈
ψn′l′m′

∣∣∣π̂/π(0)ψnlm

〉
= − iρ2~

λnl − λn′l′
∂σRn′l′∂σRnl

∣∣
σ=ρ

∫
dΩγσ

(
Y l

′

m′

)∗
Y lm (A9)

where γσ = γa∂σ
i/∂xa denotes the unit radial vector and we used the boundary condition (9b) yielding Rnl|σ=ρ = 0.

Without loss of generality, we can choose l ≥ l′ because the inverse case can be obtained from this one by complex
conjugation. Then the remaining integral can be calculated explicitly yielding∫

dΩγσ

(
Y l

′

m′

)∗
Y lm = δl+1

l′

[
s−1
l′m′δ

m+1
m′ (−γx + iγy) + s1

l′m′δm−1
m′ (γx + iγy) + is0

l′m′δmm′γz
]
, (A10)

where we introduced the unit vectors in the x, y and z-directions denoted γx, γy and γz, respectively, and the sequences
s∆m
lm

s±1
lm =

1

2

√
(1 + l ∓m)(2 + l ∓m)

3 + 4l(2 + l)
, (A11)

s0
lm =

√
(l + 1)2 −m2

4(l + 1)2 − 1
. (A12)
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Formulated explicitly, a general transition amplitude featuring the momentum operator reads〈
ψn′l′m′

∣∣∣π̂/π(0)ψnlm

〉
=

ρ2~
λn′l′ − λnl

∂σRn′l′∂σRnl
∣∣
σ=ρ

{

× δl+1
l′

[
s1
l′m′δm+1

m′ (iγx + γy) + s−1
l′m′δ

m−1
m′ (−iγx + γy) + is0

l′m′δmm′γz

]

+ δll′+1

[
s1
lmδ

m
m′+1 (−iγx + γy) + s−1

lmδ
m
m′−1 (iγx + γy)− is0

l′m′δmm′γz

]}
. (A13)

Furthermore, the norm of its maximal real part including a relative phase ∆φ becomes∣∣∣∣∣∣MaxRe
[
ei∆φ

〈
ψn′l′m′

∣∣∣π̂/π(0)ψnlm

〉]∣∣∣∣∣∣ =
ρ2~

|λn′l′ − λnl|
∂σRn′l′∂σRnl

∣∣
σ=ρ

×
[
δl+1
l′

(
s1
l′m′δm+1

m′ + s−1
l′m′δ

m−1
m′ + s0

l′m′δmm′

)
+ δll′+1

(
s1
lmδ

m
m′+1 + s−1

lmδ
m
m′−1 + s0

lmδ
m
m′

)]
. (A14)

Introducing the sign function sgn(x) which equals one for x > 0 and negative one for x < 0, we can readily evaluate

∂σRnl|σ=ρ = sgn [jl+1 (jl,n)]
√

2λnl/ρ3 (A15)

and estimate 0 < s1
lm, s

−1
lm , s

0
lm < 1/2 (though tighter estimates are possible). This implies for eq. (A14) that∣∣∣∣∣∣MaxRe

[
eiφ
〈
ψn′l′m′

∣∣∣π̂/π(0)ψnlm

〉]∣∣∣∣∣∣ ≤~
ρ

√
λnlλn′l′

|λn′l′ − λnl|

×
[
δl

′+1
l

(
δm+1
m′ + δm−1

m′ + δmm′

)
+ δl

′

l+1

(
δmm′+1 + δmm′−1 + δmm′

)]
. (A16)
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