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A relativistic formulation of the Kohn-Rostoker Green's function method is developed in 
the Dirac formalism. The result is very simple. The matrix elements of the secular equa
tion have the same form as the nonrelativistic matrix elements, and the relativistic structure 
constant consists of the summation of the products of a nonrelativistic structure constant 
and a Clebsch-Gordan coefficient over spin ± 1/2. Hence, a calculation of the relativistic 
matrix elements can be performed as easily as the nonrelativistic calculation, and the only 
problem is a significant increase in computing time which results from the doubling of the 
dimensions of the secular equation and the complex property of the matrix elements. The 
present paper also contains a brief discussion of the relativistic formulation of the APW 
method, and an expression for the matrix element corresponding to the nonrelativistic matrix 
element is proposed. 

§ I. Introduction 

Recently, many authors have studied the band structures of metals and 
semiconductors composed of heavy elements, and attempted to include relati
vistic effects. 

Most of these studies were carried out in Pauli's spinor formalism, mainly 
by using the perturbation method. 1

) However, there is a case for a free-electron
like band in which the relativistic effects have the same order as the crystal 
potential effects, and in that case it is not appropriate to treat the relativistic 
effects by the perturbation method. 2

) In addition, in the perturbation method 
there is a problem how to choose the wave functions. 

More recently, a relativistic formulation of the OPW method2
) and of the 

APW method3
} have been developed in the Dirac formalism. In both cases, 

the expressions for the matrix elements of the secular equations are similar to 
those of the nonrelativistic theory. Therefore, a calculation of the matrix 
elements can be performed as easily as the nonrelativistic calculation. The 
only problem found in the relativistic theory is a significant increase in comput
ing time, which results from the doubling of the basis set and the complex 
property of the matrix elements. 

*) Present address : Department of Physics, College of General Education, University of Tokyo, 
Tokyo. 
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Relativistic Formulation of the Green's Function Method 225 

On the other hand, the Green's function method is the most useful method 
in the nonrelativistic band theory because of its rapid convergence and genera
lity.4>'5> Hence we can expect that the Green's function method has its advan
tages also in the relativistic theory. In particular, its rapid convergence is 
expected to make it the most powerful one in the relativistic theory. For this 
reason, we have studied the relativistic formulation of the Green's function 
method in the Dirac formalism. 

§ 2. Basic formulation 

Our eigenvalue problem is expressed as follows : 

HiW(r))=WIW(r)), (1) 

IW(r+Rn))=exp(ik~Rn) IW(r)), (2) 

where W is an energy eigenvalue for the wave vector k. Rn is any translation 
vector of the lattice. H is the Dirac Hamiltonian:*> 

H=a·p+fl+ V. (3) 

Corresponding to the Kohn-Rostoker nonrelativistic formalism, we introduce 
the relativistic Green's function 

where r is the volume of the unit cell of the lattice. IW~m (r)) is the Dirac 
plane wave with wave vector kn expressed in the form6

> 

(5) 

where 

Kn is the reciprocal lattice vector. cr is the Pauli matrix, and I x ( ± 1/2)) are 
the Pauli spinors. I W~~m (r)) satisfies th~ Dirac equation for a free particle : 

The Green's function G (r, r') satisfies 

(a·p+fj- W)G(r, r') = -o(r-r'), 

G (r + Rn, r') = exp (ik •Rn) G (r, r'). 

(6) 

(7) 

(8) 

By using the Green's function, our eigenvalue problem IS replaced by 

*> Units are m=c=fl=l. 
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226 S. Takada 

J?f(r))= ~G(r, r')V(r') J?F(r 1
)), (9) 

where the volume integral is taken over the unit cell. 
The integral equation (9) is equivalent to the variational principle 

oA=O, (10) 

where 

A=~<W(r) IV(r) J?f(r))dr 
7' 

- ~}<W(r) JV(r)G(r, r') V(r') J?f(r') )drdr'. (11) 
7' T 

In this variational principle, k and W are variational for arbitrary trial 
functions J1F (r)) as indicated by Kohn and Rostoker. 4

) 

For simplicity, we restrict our attention to a ~imple lattice. The genera
lization to complex lattices is easily carried out as in the nonrelativistic case. 7) 

Further we restrict our discussion to a potential of the " muffin-tin " form, that 
is, the potential V is spherically symmetric about each atom within the sphere 
inscribed in the unit cell and constant elsewhere: 

V(r) =V(r), r<R 

=0, r>R. 
(12) 

This assumption is necessary for the Green's function method so that the 
practical calculation may be carried out without formidable labor. 

We notice from (11) that the contribution to A comes only from the sphere 
r<R, r' <R and the calculation of A is greatly simplified. 

Following Kohn and Rostoker we deal with the singularity of G as follows: 

A=lim A8
, (13) 

8~0 

where 

A8=~ dr <W(r) JV(r) J?f(r)) 
r~R-28 

-) dr ) dr' <1F(r)JV(r)G(r,r')V(r')J1F(r')). (14) 
r~R-28 r's.R-8 

Using the hermitian property of the operators and the divergence theotem, 
the volume integral in (14) can be transformed into the following surface 
integral form. (Appendix A) 

A8 
· -) ds } ds' <1F(r) la·rG(r, r')a·r'11F(r')), (15) 

r=R-28 r' =R-8 
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Relativistic Formulation of the Green's Function Method 227 

where r represents the unit vector along r. 

In order to calculate the surface integral, It is sufficient to know the wave 
function I ?J! (r)) inside the sphere. Then we expand I ?J! (r)) in the central field 
orbitals I ?J! x" (r)) :6

) 

(16) 

where 

(17) 

I ?J! x") is taken as the eigenfunction of our Hamiltonian Inside the sphere with 
the energy eigenvalue W which we are seeking. 

(18) 

By using the Clebsh-Gordan coefficients, the spin angular functions I Xx" (r)) 
are expressed in the form6

) 

lxx"(r))= I: C(l1/2j; ji-m, m)Yt-m(r)/x(m)). (19) 
m=±l/2 

The radial functions are the solutions of the following coupled linear differ
ential eq ua twns : 

(20) 

d[! x = -X+ 1 [/ x + (W- V + 1)fx . 
dr r 

(21) 

Substitutmg (16) into (14) and using the variatiOnal principle (10), we 
reach the desired secular equation 

(22) 

where 

(23) 

At. , X' P' = - ~ ds ~ ds' 
r=R-2S r' =R-s 

(24) 

§ 3. Relativistic Green ·s function 

In this section, we derive a simplified expression for the relativistic Green's 
function, which consists of the nonrelativistic Green's function operated on by 
a matrix whose elements include operators. 
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228 S. Takada 

Substituting the expression for the Dirac plane wave (5) into ( 4) and 
replacing wave vectors kn by momentum operators p and p', the relativistic 
Green's function is expressed in the symmetric form 

G(r, r') = 

r

-_l:L;kn *+ 1 exp ikn(r-r') -u' ·p'[-_!_:L:_1_ exp ikn(r-r').] l 
r n 2kn* kn*- w r n 2kn* k:,*- w 

u· [-_!_:L;_1_ exp ikn(r-r')] -u· u'. '[-_!_I:: 1 exp ikn(r-r')] 
p r n 2kn * kn *- w p p r n 2kn *(kn * + 1) k,, *- w 

x I:; IX(m)) (x(m) I, (25) 
m=±l/2 

where ~I x (m)) (x (m) I is operated on as a scalar by the matrix [ ] . u operates 
on lx(m)) and u' on (x(m) 1. 

Because of the linear property of the operators, we can take the summation 
over n in each element before u · p and u' · p' operate on them. The summation 
over n in each element of Eq. (25) is carried out as follows. For this purpose 
we use the two relations : 

--1 -(exp[i(Kn+k-K) p]d3p=o(Kn+k-K), 
(27r) 3 j 

1 . 
-· 'L,exp (iKnp) = 'L,o (p- Rs) . 
r n s 

For the first element, for example, we also use the relation 

1 ( k* + 1 eikR ( 1 ei 11R) 
- (2n-) 3J 2k* k*- (W +is) d

3

k= (W + 1) - 4n- R 

where 

(26) 

(27) 

(28) 

(29) 

The relation (28) is easily derived by means of complex integration. In (29) 
E is the energy measured with respect to the rest mass and the last expres
sion is expressed in Rydberg units. 

Using (26)-(29) we can carry out the summation over n for the first 
element of (25) as follows : 

_l__L;~~* + 1 ~e~p (iknR) 
r n 2kn* kn*-(W+is) 

=-l_L;_1_(( d3Kd3pexp[i(K +k-K)p]K*+1 exp(iKR) 
r "(2n) 3 j) n 2K* K*-(W+is) 

= --1 -~(( d 3Kd3po(p-Rs)exp[i(k-K) p] 
(27r) 3 s j j 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/36/2/224/1921771 by guest on 21 August 2022



Relativistic Formulation of the Green's Function Method 

X K* + 1 exp (iKR) 
2K* K*- (W +ie) 

= _ ~ exp(ikR) _1_( daKK*+ 1 exQ_[iK(R-R8)1 
.~ 8 

(2n) 3 l 2K* K*-(W+ie) 

= (W + 1) (-1__~ exp(ikR8) exp(ir;jR-R81)). 
4n s jR-R8j 

229 

(30) 

Putting R = r- r' in the last expression of (30) we get the first element of 

(25) in simplified form. Calculating each- element of (25) similarly, we get 

the relativistic Green's function in the simplified symmetric form: 

l 
W+1 

G(r, r') = 
(]'p 

(31) 

where 

GN·R( ') __ 1 ~ ('kR )exp[ir;lr-r' -R8 j] r, r - -L.J exp z 8 -- --· -. 

4n s .· jr-r' -Rsl 
(32) 

It should be noted that GN·R(r, r') has the same form as the nonrelativistic 

Green's function, and in fact it becomes the nonrelativistic Green's function 

itself in the nonrelativistic limit (c~ oo). The relativistic Green's function 

(31) has a form which consists of the nonrelativistic Green's function operated 
on by the matrix whose elements include the operators (]'p and (]''p'. If we 

note the relation between the upper component and the lower component of a 
wave function in the relativistic theory, and note that the upper component 

becomes the nonrelativistic wave function in the nonrelativistic limit, we can 

easily appreciate that this result is natural. 
To calculate the surface integral (24), we need the value of GN·R(r, r') in 

the region of r<r'. As was shown by Kahn and Rostoker, GN·R(r, r') can be 

written in the form4
) 

GN•R(r, r') = ~ [Azm,l'm'jz(r;r)jv(r;r') 
lm 

l"m' 

(33) 

The " structure constants " Azm, l'm' are functions of E and k, and are charac

teristic for the lattice independent of the potential. The calculation of Az~, l'm' 

can be carried out to any desired accuracy by the Ewald summation procedure, 
as was shown by Ham and Segall. 5) 

Using the transformation inverse to (19), we get 

~ jx(m))(x(m)jGN·R(r, r') 
m=±l/2 
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230 S. Takada 

(34) 

where 

Bxp,X'p/ = ~ C (l1/2j; 11-m, m) C (l' 1/2j'; 11'- m, m) 
m=±l/2 

· X Alp-m, l' p' -m • (35) 

Substituting (34) into (31), we obtain the final expressiOn for the relati
vistic Green's function 

l 
W+1 

G(r, r') = 
up 

- u'p' l 
_ (up) ( u' p') 

W+1 

§ 4. Calculation of the matrix; elements 

(36) 

, In calculating the surface integral (24), we must deal with the operators 
up and u'r'. For this purpose we use the relations for relativistic operators,6

> 

where 

. c "') ( a x + 1) up= -z ur --+-- , or r 

x = - ( ul + 1) , 

X I XxP) =X I XxP) ' 

uri XxP) = - I x~x) ' 

and the relations for spherical Bessel functions, 

_E_jl(P) =-
1-[ljl-l(P)- (l+1)jl+l(p)J, 

dp 2l+ 1 

jl (p) 1 [ . ( ) . ( ) J ---=-- }l-l p +}l+l p . 
p 2l+1 

From (37)-(41), we get 

upjz (1Jr) I XxP) = i1}Sxfi (1Jr) ! X~x), 

upnl (1Jr) I Xx~-') = i1}Sxm (1Jr) I X~x), 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

where Sx IS the sign of x. j, l and l are specified by x according to the rule 

j=l-1/2; l=X; 
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Relativistic Formulation of the Green's Function Method 231 

j=l+1/2; l= -x-1; l=l+1 (x<O). (44) 

Substituting G (r, r') (Eq. (36)) and I ?F x") (Eq. (17)) into the surface 

integral (24), and using the relations (39), ( 42) and ( 43), we obtain Ax,.; x' ,., 

1n the following form : 

Ax,.;x-,.-= (W+1)UxUx-(Lxjz-~~ljr) 

[B ( Sx-'YJ ._ . L ) 
X x,.,x'p/ W + 

1 
}l'-}l' x' 

(45) 

where 

Lx= fx(R), Ux=Ux(R), iz=iz(r;R), etc. 
Ux(R) 

Dividing each row and each column of Ax,.; x',.' by the proper factors before 
equating the determinant of ( 45) to zero, and neglecting terms of the order of 

(E/c) 2 (""'--'10-5
), we obtain the desired secular equation 

et x,., X'#'+ 'YJUxx'U #I'' . . - . D IB ~ ~ Lxn,-r;Sxm I _0 
Lx}z-r;Sxji 

(46) 

We can convert (46) to an expression in Rydberg units by replacing 

Lx= fx(R)_ with cfx(!!)_ =Lx. 
Ux(R) Ux (R) 

§ 5. Relation to the nonrelativistic theory 

To compare the relativistic secular equation ( 46) with the nonrelativistic 
equation, let us refer to the nonrelativistic secular equation 

D 
I 
A ~ ~ Lznz- n~ I 0 et z z' '+ r;uzz'u '---c-- ---- - = m, m mm L . ·" ' 

r}z-}z 
(47) 

where 

Lz= dln Rz(r) I , 

dr r=R 

·' d . ( ) Jz = -Jz r;r , etc. 
dr 

Comparing ( 46) with ( 47), we notice that the relativistic secular equation 

has the same form as the nonrelativistic equation. We can then reach the 
relativistic secular equation ( 46) by replacing each factor in the matrix elements 
as follows: 
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232 S. Takada 

•' , 
Jz,nz ----* r;Sxjl , r;Sxnr: , 

----* Lx. (48) 

The reason for this analogy is apparent. Because of the m1xmg of the 
"up spin" (m = 1/2) with "down spin" (m = -1/2) in the same (x, !1), the 
relativistic structure constants Bxl', x' I'' consist of a summation of the product of 
the nonrelativistic structure constant Azm, l'm' and the Clebsh-Gordan coefficient 
over spin ± 1/2. (see 35). The derivatives of Bessel functions change the form; 
since in the relativistic theory the momentum operator appears in the form of 

up. The logarithmic derivatives Lz = d ln Rzl become Lx = cfx (R) . 
dr r=R Ux (R) 

In fact, it can easily be shown that in the nonrelativistic limit (c~ oo) the 
relativistic secular equation ( 46) becomes the nonrelativistic secular equation 
( 47) except for the spin degeneracy. 

From (20) and (21), we have in the nonrelativistic limit 

lim cfx ( r) = d In g x ( r) + X + 1 . 
c~oo Ux (r) dr r 

(49) 

Since the upper component of the relativistic wave function becomes the 

nonrelativistic wave function in the limit of c~ oo, dIn _Ux (r) in ( 49) is noth
dr 

ing but the usual logarithmic derivative dIn Rz (r) appearing in the nonrela
dr 

tivistic theory. 
From (49) and (40)-(43), we obtain the following relations In the limit 

of c~oo: 

(50) 

(51) 
c~oo 

Substituting (50) and (51) into ( 46) and transforming (x, !1) into (l, !1-

m, m), we get the nonrelativistic secular equation (47) except for the spin 
degeneracy. 

§ 6. Remarks 

We have shown that the matrix elements of the relativistic secular equation 
have the same form as the nonrelativistic matrix elements. Thus the calcula
tions of the relativistic matrix elements are not complicated compared with the 
nonrelativistic calculations. The only problem found in the relativistic calcula
tion is a significant increase in computing time which results from the doubling 
of the basis set, the complex property of the matrix elements and the double 
roots of the secular equation in crystals with inversion symmetry according to 
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Relativistic Formulation of the Green's Function Method 233 

the time reversal symmetry. This problem arising from the relativistic band 

theory is shared with other methods.2
),s) Because of its rapid convergence, the 

Green's function method is more advantageous than other methods for relativistic 

calculations. 
Together with the Green's function method, the APW method seems to be 

a powerful method also in the relativistic theory because of its rather good 

convergence and generality. The APW method is similar to the Green's func

tion method in that the wave function is expanded in the central field orbitals 

inside the sphere and its matrix elements include the logarithmic derivatives 

on the sphere. Hence, as in the case of the Green's function method, its 

relativistic matrix elements are expected to have a form corresponding to the 

nonrelativistic matrix elements. However, Loucks' expression for the relativistic 

APW matrix elements is not expressed in the same form as the nonrela

tivistic matrix elements, and Loucks did not show the relation between the 

relativistic formulation and the nonrelativistic formulation. 3> In Appendix B 

we give a brief discussion of the relativistic APW formalism and derive the 

matrix elements in the same form as the nonrelativistic matrix elements by 

replacing the factors of the nonrelativistic matrix elements with the proper 

factors.*> Our expression for the matrix elements is more compact than 

Loucks' expression, although it can easily be derived from his expression. 

It should be noted that besides their convergence and generality both the 

Green's function method and the APW method have the advantage, for relati

vistic calculations, that the wave functions are comparatively exact in the neigh

borhood of the atoms. 
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Appendix A 

Derivation of (15) 

Using the hermitian property of a and the divergence theorem, we have 

~ (Wiapi<D)dr = ~ (<D!apl?f)*dr 
r~R r~R 

-i ~ (Wiari<D)ds. (A·l) 
r=R 

From (A·l), we get 

*> A complete formulation and discussion of the relativistic APW method is presented m the 
author's thesis.8> 
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234 S. Takada 

) G(r, r')ap'I?J!(r'))dr'=) {<?J!Cr') lap'G(r', r)}tdr' 
~~ ~~ 

-i ~ G(r, r')ar'I?J!(r') )dS'. 
r'=R 

From (A· 2), (1) and (3) we derive the relation 

) G (r, r') V (r') dr' 
r'-::;:,R 

=) {<?J!Cr') I (ap'+/1- W)G(r', r)rdr' 
r'-::;:,R 

-i) G(r, r')a·r'I?J!(r'))dS' 
r'=R 

= I?J!(r)>) o(r-r')d-.:'-i~ G(r, r')ar'I?J!(r'))dS' 
r'-::;:,R r'=R 

and the conjugate relation for (A· 3) 

) <W(r) IV(r)G(r, r')dr 
r-::;:,R -

=<?J!(r') 1) o(r-r')dr+i) <W(r) larC(r, r')dS. 
r-::;:,R r=R 

(A·2) 

(A·3) 

(A·4) 

Substituting (A· 3) and (A· 4) into (14), we obtain the surface integral 
(15) as follows : 

A,"=) dr <W (r) IV (r) 
r-::;:,R-28 

X [ j?J!(r))-) dr'G(r, r')V(r') j?J!(/))J 
r'-::;:,R-8 

=i) dr ) dS'<?J!(r) IV(r)G(r, r')ar'i?J!(r')) 
r~R-28 r' =R-e 

=- ~ dS ~ dS'<?J!(r) larG(r, r')ar'I?J!(r')). (A·5) 
r=R-2e r' =R-e 

Appendix B 

On the relativistic formulation of the APW method 
Loucks3

> constructed the relativistically argumented plane wave (RAPW), 
which consists of an expansion of the central field orbitals J ?J! x'") (Eq. (17)) 
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Relativistic Formulation of the Green's Function Method 235 

inside the sphere and a Dirac plane wave (5) outside the sphere. The ex
pansion coefficients are chosen such that the upper components of the wave 
functions in each region are continuous on the sphere. As a result the lower 
components of RAPW are discontinuous on this boundary. Using RAPW as 
the basis function, Loucks derived the secular equation for the Hamiltonian 
(3) with the "muffin-tin" potential (12). 

First, let us prove that RAPW exactly corresponds to APW. 
The lower components I (/j2) of the relativistic wave function I ?JI) can be 

expressed in terms of the upper component I @1) 

(A·6) 

We notice from this expression that the discontinuity of the lower compo
nent is nothing but the discontinuity of the derivative of the upper component 
and the contribution from the surface integral in the matrix eleme:Uts is due to 
this discontinuity. Thus if we note that the upper component is the nonrela
tivistic wave function in the nonrelativistic limit, it is apparent that Loucks' 
formalism exactly corresponds to the nonrelativistic APW formalism. Hence we 
expect that the RAPW matrix elements have a form corresponding to the APW 
matrix elements, just as in the Green's' function method. In fact we can obtain 
the relativistic matrix elements by replacing the factors of the nonrelativistic 
matrix elements with the proper factors, as in the case of the Green's function 
method. 

The nonrelativistic APW matrix elements9
) are written in the form 

APW(N) = (kNkn-E)QnN 

+ 4rcR2~Dz (N) Jz (knR)jz (kNR) Lz, (A·7) 

where 

(A·8) 

l A A 

= 4rc ~ Yzmt (kN) Yzm (kn) , 
m=-l 

(A·9) 

Lz= dln Rz(r) I . 
dr r=R 

(A·lO) 

Taking into account the spin, and noting that the quantum number in the 
relativistic central field problem is (x, fl.) and referring to the relation between 
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236 S. Takada 

the relativistic matrix elements and the nonrelativistic matrix elements 1n the 
Green's function method, we replace the factors in (A ·12) as follows: 

QnN ------- · QnNDmM, 

Dl(N) ------- Dx(N~), 

Lz ------- Lx 
cfx (R) (A·11) 
gx(R) 

where 

Dx (N "!:J) = 4n~C (l1/2j; fJ.- m, m)C (l1/2j; fJ.- M, M) 

(A·12) 

where m, M specify the spins of RAPW. In (A ·11), we neglect the relati
vistic effects on the plane wave part, since its effect is· of the order of ( kn/ c) 2

• 

From (11), we get the relativistic matrix elements 

RAPW(N ~) = (kn·kN-E)QnNOmM 

+ 4nR2~Dx (N "!:J) jl (knR)jl (kNR) Lx. (A·13) 

In fact, if we calculate the surface integral by the same procedure as m 
the nonrelativistic case, we can get (A ·13) neglecting terms of the order of 
(kn/ c) 2.8) 
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