Lawrence Berkeley National Laboratory Recent Work

Title
RELATIVISTIC HARTREE-FOCK X-RAY AND ELECTRON ATOMIC SCATTERING FACTORS AT HIGH ANGLES

Permalink

https://escholarship.org/uc/item/Ofn8h8zd

Authors

Fox, A.G.
O'Keefe, M.A.
Tabbernor, M.A.
Publication Date
1988-12-01

$[3$ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Materials \& Chemical Sciences Division

National Center for Electron Microscopy

Submitted to Acta Crystallographica
RECEIVED
LAWRENCE
GALLEY LABORATORY
Relativistic Hartree-Fock X-Ray and Electron MAR 31989 Atomic Scattering Factors at High Angles

DOCUMENARY AND
A.G. Fox, M.A. O'Keefe, and M.A. Tabbernor

December 1988

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Relativistic Hartree-Fock X-Ray and Electron Atomic Scattering Factors at High Angles

A.G. Fox and M.A. O'Keefe
Center for Advanced Materials and
National Center for Electron Microscopy
Materials and Chemical Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720
U.S.A.
M.A. Tabbernor
School of Construction
Engineering and Technology
The Polytechnic
Wulfruna Street
Wolverhampton WV1 1SB
U.K.

December 1988

Relativistic Hartree-Fock X-Ray and Electron Atomic Scattering Factors at High Angles

By A.G. Fox, M.A. O'Keefe
Center for Advanced Materials and National Center for Electron Microscopy,
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720. U.S.A.
and
M.A. Tabbernor
School of Construction, Engineering and Technology, The Polytechnic, Wulfruna Street, Wolverhampton WV1 1SB U.K.

Abstract

An enlarged set (atomic number $Z=2$ to 98) of free atom X-ray atomic scattering (form) factors for high angles ($2 \AA^{-1} \leq \sin \theta / \lambda \leq 6 \AA^{-1}$) has been calculated based on those of Doyle and Turner [Acta Cryst. A24, 390-397 (1968)]. Four-parameter 'exponential polynomial' fits for these are presented which give far more accurate estimates of the scattering factors at high angles than the Gaussian fits normally used. The use of the Mott formula in conjunction with these new high-angle X-ray form factors allows the calculation of improved accuracy high-angle electron scattering factors. The use of these high accuracy, high-angle scattering factors for important applications such as Fourier chargedensity analysis and computer simulation of high resolution electron microscope (HREM) images is discussed.

Introduction

In 1968 Doyle and Turner produced a classic paper tabulating the relativistic Hartree-Fock (RHF) X-ray and electron atomic scattering (form) factors for seventy-six atoms and ions from $\sin \theta / \lambda(s)=0$ to $6 \AA^{-1}$. In addition Doyle and Turner produced nineparameter Gaussian fits for the X-ray form factors for the angular range $s=0$ to $2 \AA^{-1}$ based on the formula

$$
\begin{equation*}
f^{x}(s)=\sum_{i=1}^{4} a_{i} \exp \left(-b_{i} s^{2}\right)+c \tag{1}
\end{equation*}
$$

where the $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$ and c are constants for a given element or ion, and $\mathrm{f}^{\mathrm{x}}(\mathrm{s})$ is the X -ray form factor. Subsequently Cromer and Waber (1968) 'filled in the gaps' in Doyle and Turner's
work, and so a complete set of X-ray form factors from $Z=1$ to 98 for $s=0$ to $2 \AA^{-1}$ with nine parameter Gaussian fits was available. These results are shown in full in Intemational Tables for X-ray Crystallography Volume 4 (1974) and have formed the basis for many computer and other applications requiring X-ray or electron scattering factors. For recent examples see O'Keefe, Buseck and Iijima (1978), Tabbernor, Fox and Fisher (1988) and Peng and Cowley (1988).

However, equation (1) is only applicable to the angular range $s=0$ to $2 \AA^{-1}$ and attempts to extend it to higher angles can lead to large errors. For example figure 1(a) shows the Doyle and Turner Gaussian fit to the calculated $\mathrm{f}^{\mathrm{x}}(\mathrm{s})$ for nitrogen ($\mathrm{Z}=7$) extrapolated to $s=6 \AA^{-1}$; it can be seen that the curve based on equation (1) drops well below the true values calculated by Doyle and Turner (1968), and in fact goes negative for $s>3 \AA^{-1}$. Another example, uranium ($Z=92$), is shown in figure $1(b)$, and in this case the extrapolated Gaussian values are far too high. It is clear from this discussion that an accurate set of high-angle form factors for all elements from $s=2 \AA^{-1}$ to $6 \AA^{-1}$ is necessary, and that a n-parameter curve fitting routine for this angular range is highly desirable; this is the object of the present work.

Calculations

(1) High-Angle Form Factors-- As mentioned previously, Doyle and Turner (1968) calculated form factors for seventy-six atoms and ions up to $s=6 \AA^{-1}$. The elements they omitted to consider were those with atomic number, $Z=1,39-41,43-46,52,57-62$, 64-79, 81, 84-85, 87-91 and 93-98. It is therefore necessary to calculate the highangle form factors for all these elements; this could be done from first principles in the manner of Doyle and Turner or Cromer and Waber (1968). This, however, is very time consuming and tedious, and in this work a simpler alternative is discussed.

For hydrogen at angles for which $s \geq 1.5 \AA^{-1}$, the X -ray form factor is less than 2 $\times 0^{-3}$ (see for example Stewart, Davidson and Simpson, 1965) and can therefore be considered to be virtually zero for these high angles.

For elements in the range $Z=35-92$, the variation of f^{x} with Z for the Doyle and Turner (1968) values was investigated, and it was found that they fell on a slowly varying smooth curve which is very close to linear for high Z . A simple polynomial curve-fitting routine available in the Cricket Graph TM software for an Apple - McIntosh personal computer was used to fit the f^{x} versus Z data for the appropriate values of s in order to 'fill in the gaps' in Doyle and Turner's values, and a correlation coefficient of 0.999 or better was obtained in each case with appropriate choice of polynomial coefficients; an example for $s=3 \AA^{-1}$ is shown in figure 2. Interpolation using these curve fits allowed the evaluation of the high-angle X-ray form factors for the atomic numbers not considered by Doyle and Turner up to $\mathrm{Z}=91$.

For the elements with $\mathrm{Z}=93-98$, a simple linear extrapolation from the f^{x} versus Z variation $(Z=63-92)$ of the values of Doyle and Turner (1968) for $2 \AA^{-1} \leq s \leq 6 \AA^{-1}$ was used. This is likely to be a little less accurate than the interpolative method described previously, but still good (and certainly much better than the Gaussian fits) as the form of f^{x} versus Z is close to linear in the range $Z=63-92$, as shown in figure 3 for $s=3 \AA^{-1}$.

The foregoing calculations together with the values of Doyle and Turner (1968) allowed a tabulation of the X-ray form factors for $s=2.5,3.0,3.5,4.0,5.0,6.0 \AA^{-1}$ for all elements $(\mathrm{Z}=2-98)$ and these are shown in table 1 . It is also satisfactory to use these for ions, as the ionic form factors of Cromer and Waber (1968) and Doyle and Turner for 2 \AA^{-1} are very close to the free atom values; this is of course not surprising, as ionicity only significantly affects low-angle scattering factors which reflect the behaviour of valence electrons.
(2) Parametric Curve-Fitting Routines--Initially an attempt was made to fit accurately the full range of $f^{x}(s)$ values for $s=0$ to $6 \AA^{-1}$. It soon became apparent that this would be an impossible task with any conventional curve fitting routines such as polynomial or Gaussian, and so to obtain accurate high-angle form factors for arbitrary values of s in the range $2 \AA^{-1} \leq s \leq 6 \AA^{-1}$ the values of table 1 only were considered. A simple, yet seemingly
quite reasonable approach to the fit is linear interpolation between the values shown in table 1, although it is difficult to estimate the errors at the mid-way points between the tabulated values. For computer applications it is more convenient to have a n-parameter function to fit the $f^{x}(s)$ versus s variation, and initially a conventional Tchebyshev polynomial curve fit was tried; it soon became clear from the shape of the $f^{x}(s)$ versus s curves for $2 \AA^{-1} \leq s \leq$ $6 \AA^{-1}$ that an exponential or logarithmic expression would provide a better fit. Accordingly, expressions of the form

$$
\begin{align*}
& f^{\mathrm{x}}(\mathrm{~s}) \tag{2a}\\
\text { and } \quad & =\mathrm{s}^{-\mathrm{b}} \tag{2b}\\
\mathrm{f}^{\mathrm{x}}(\mathrm{~s}) & =\mathrm{a} \exp (-\mathrm{bs})
\end{align*}
$$

(where a and b are constants which depend on atomic number, Z) were fitted using the Cricket Graph ${ }^{\text {TM }}$ software on the Apple McIntosh personal computer. This resulted in an improvement over the polynomial fits, but the correlation coefficients, R , for these fits could still drop below 0.99. For example, for equation (2a) for silicon $(Z=14), a=3.7856$, $b=1.4668$ and $R=0.976$ which gave errors of up to 13% in the interpolated values of $\mathrm{f}^{\mathrm{x}}(\mathrm{s})$.

In order to improve the accuracy of fit, a three parameter polynomial fit based on equation (2b) in the following form was tried

$$
\begin{equation*}
\ln [\mathrm{fx}(\mathrm{~s})]=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{~s}+\mathrm{a}_{2} \mathrm{~s}^{2} \tag{3}
\end{equation*}
$$

This expression resulted in a minimum R value of 0.993 at $Z=22$, corresponding to a maximum error of 8.8% in $f^{x}(s)$ at $s=2.5 \AA^{-1}$ for titanium.

To improve matters still further a four-parameter fit of the form

$$
\begin{equation*}
\ln \left[\mathrm{f}^{x}(\mathrm{~s})\right]=\mathrm{a}_{0}+\mathrm{a}_{1} s+a_{2} s^{2}+\mathrm{a}_{3} s^{3} \tag{4}
\end{equation*}
$$

was-adopted and the correlation coefficient R remained at 0.999 or above, except for $\mathrm{Z}=$ 95-97 where it dropped to 0.9985 and for $\mathrm{Z}=98$ for which R was found to be 0.998 . The values of $a_{0}, a_{1}, a_{2}, a_{3}$ and R for all Z derived in this way from equation (4) are shown in table 2. This use of equation (4) resulted in a maximum error in $f^{x}(s)$ of 5.0% which occurred for californium $(Z=98)$ at $s=2.5 \AA^{-1}$. For most other elements the maximum
errors in $\mathrm{f}^{\mathrm{x}}(\mathrm{s})$ are below 3%, which is much better than the errors given by the Gaussian fits. As discussed by Doyle and Turner (1968) the percentage error in $f^{x}(s)$ is perhaps better expressed as a function of $\mathrm{f} \times(0)$. For $\mathrm{Z}=98$ at $\mathrm{s}=2.5 \AA^{-1}$ we find that $\partial \mathrm{f}^{\mathrm{x}}(\mathrm{s}) / \mathrm{f}^{\mathrm{x}}(0) \times$ 100 (where $\partial \mathrm{f}^{x}(\mathrm{~s})$ is the error on $\mathrm{f}^{\mathrm{x}}(\mathrm{s})$) is equal to 0.008 ; this error is about the same as the best equivalent average error values quoted by Doyle and Turner for their Gaussian fits in the range $s=0$ to $2 \AA^{-1}$. All other fitted values of the present work give values of $\partial \mathrm{f}^{\mathrm{x}}(\mathrm{s}) / \mathrm{f}^{\mathrm{x}}(0) \times 100$ smaller than 0.008 .

To check the accuracy of the curve fitting on the personal computer, equation (4) was used to fit the $\ln \left[\mathrm{f}^{\mathrm{x}}(\mathrm{s})\right]$ versus s data on a mainframe computer with polynomial curvefitting NAG routines E02ADF and E02AEF, and the interpolated values of $f^{x}(s)$ obtained using the NAG routines agreed to within 1 part in 10^{4} with those generated by the personal computer.

Electron Scattering Factors

The electron scattering factor, $\mathrm{f}(\mathrm{s})$, is related to the X -ray scattering factor by the usual Mott formula

$$
\begin{equation*}
f^{e}(s)=\frac{m^{2}}{2 h^{2}}\left(\frac{\lambda}{\sin \theta}\right)^{2}\left(Z-f^{x}(s)\right) \tag{5}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\mathrm{f}^{\mathrm{e}}(\mathrm{~s})=0.023934\left(\frac{1}{\mathrm{~s}}\right)^{2}\left(\mathrm{Z}-\mathrm{f}^{\mathrm{x}}(\mathrm{~s})\right) \tag{6}
\end{equation*}
$$

where $f^{e}(s)$ is a scattering length expressed in \AA. Hence a complete set of high angle electron scattering factors can be obtained by the use of equation (6) and table 2 except for hydrogen where the simple use of equation (6) with $f^{x}=0$ is very satisfactory. If ∂f^{x} is the error on f^{x} and ∂f^{e} the error on $f e$, then differentiating (6) gives

$$
\begin{equation*}
\frac{\partial f^{e}}{f^{e}}=\frac{\partial f^{x}}{Z-f^{x}} \tag{7}
\end{equation*}
$$

which means that the larger s, the smaller f^{x} and the smaller the error in f^{e}. For higher angles f^{x} is smaller, and so the error in f^{e} is even smaller. As for f^{x}, the greatest error in f^{e}
occurred for $\mathrm{Z}=98$ at $\mathrm{s}=2.5 \AA^{-1}$ and was 0.93%. All errors in f^{e} calculated by this method are therefore less than 1.0%, which is more than adequate for most applications.

It is worth noting that the use of the nine-parameter Gaussian fitted X-ray form factors of Doyle and Turner (1968) for $0 \AA^{-1} \leq s \leq 2 \AA^{-1}$ and the four-parameter fits of the present work for $2 \AA^{-1} \leq s \leq 6 \AA^{-1}$ together with the Mott formula generally gives better interpolated electron scattering factor values than the eight-parameter Gaussian fit for $\mathrm{fe}^{\mathrm{e}}(\mathrm{s})$ quoted by Doyle and Turner. This is true except for very low angles ($s \leq 0.04 \AA^{-1}$) when Z - f^{x} is small, and in this case the procedure adopted by O'Keefe et al.(1978) and described in detail by Peng and Cowley (1988) should be used so that large errors in fe^{2} are avoided for small s.

Examples of applications for high-angle form factors

(1) Electron charge-density calculations--These are important for determining the distribution of electrons around atoms in crystalline solids. The electron charge density, ρ (x, y, z), at position vector $r(x, y, z)$ in a unit cell is given by

$$
\begin{equation*}
\rho(x, y, z)=\frac{1}{\Omega} \sum_{h} \sum_{k} \sum_{l} F_{h k l} \exp [-2 \pi i(h x+k y+l z)] \tag{8}
\end{equation*}
$$

where Ω is the volume of the unit cell and $F_{\text {hkl }}$ are the X -ray structure factors for planes with Miller indices (hkl). For copper, Smart and Humphreys (1978) have shown that for the Fourier series of equation (8) to converge, well over 1200 terms are needed. This has been confirmed by Tabbernor (1988) who also found that similar numbers of structure factors are needed for convergence of the charge density series of other elements. This means that many high angle structure factors which occur in the range $2 \AA^{-1} \leq s \leq 6 \AA^{-1}$ are needed for such calculations, and this is an important application for the high-angle form factors presented here.
(2) Simulation of HREM images-The dynamical electron scattering calculation for the simulation of high resolution electron microscope images requires a numerical evaluation of the crystal potential. This evaluation is normally carried out by Fourier transformation of the structure factors (for electrons), $\mathrm{F}_{\mathrm{hld}}$, for the structure being simulated. In the case of the commonly used 'multislice' dynamical scattering algorithm (Goodman and Moodie, 1974), the structure factor calculation requires accurately-known scattering factors out to twice the scattering angle of the highest-order diffracted beam included in the computation (O'Keefe and Kilaas, 1988). In order to maintain sufficient precision, diffracted beams out to values of h, k, l corresponding to reciprocal lattice vectors of 3 or 4 reciprocal Ångstroms should be included in the computation; thus scattering factors are required for values out to $s=3$ or $4 \AA^{-1}$, equivalent to lattice vectors of 6 to $8 \AA^{-1}$. Computations for structures that include heavy atoms, or for higher voltage microscopes, increase the requirement for form factors accurate at higher angles, due to the heavier scattering and flatter Ewald spheres involved.

For image simulations, it is convenient to be able store scattering factors in the form of parameterised fits to the scattering curves. Lack of suitable complete tables of parameterised fits of electron form factors has led to the widespread use of the Gaussian fits of the International Tables for Crystallography for the X-ray form factors followed by conversion to the electron values by the Mott formula (equation 5). As discussed previously this can lead to very poor accuracy form factors for $s \geq 2 \AA^{-1}$ and the procedures recomended in the present work improve matters considerably.

Summary and Conclusions

- The effect of extending the Gaussian fits for X-ray form factors, fx , presented in the International Tables for X -ray Crystallography (1974) to high angles ($2 \AA^{-1} \leq \mathrm{s} \leq 6 \AA^{-1}$) has been carefully investigated, and it has been found that errors as high as a hundred percent in f^{x} can occur, and that in some cases fx^{x} can even go negative (see for example figure 1a for nitrogen) if this approach is adopted. For the electron scattering factors, fe, derived
by the Mott formula from these high-angle X-ray form factors, the situation is not as catastrophic, but errors in f^{e} as high as ten per-cent can often be encountered.

It is clear that such inaccuracies are not acceptable when performing the Fourier analyses necessary for charge density studies or HREM image simulations, and in the present work an alternative method of producing high-angle X-ray and electron form factors is discussed. This has involved curve fitting the f^{x} versus Z variation of the RHF values of Doyle and Turner (1968), so that a complete set of form factors from 2-6 \AA^{-1} is available for all elements from $Z=1$ through 98 . From these form factors, a four-parameter 'exponential polynomial' curve fitting of the variation of f^{x} with s has been made. Accurate values of the electron scattering factors were then calculated with the Mott formula in the usual way.

This procedure would appear to generate a maximum error of only about 5.0% in the X -ray scattering factors (for $\mathrm{Z}=98$ (californium) with $\mathrm{s}=2.5 \AA^{-1}$) which is far more satisfactory than the Gaussian approach. If these best X-ray form factors are converted to electron scattering factors, by the Mott formula the maximum error encountered in $f e$ is less than 1.0% which is more than adequate for most applications.

Acknowledgements

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract DEAC03-76SF00098. MAT would also like to thank the Science and Engineering Research Council (U.K.) for a research studentship and financial support while he was a visiting scientist at the Lawrence Berkeley Laboratory, University of California.

References

Cromer D.T. and Waber J.T.(1968) presented in International Tables for X-ray Crystallography Vol. 4 (1974) (Kynoch Press, Birmingham) Section 2.2., 71-74.

Doyle P.A. and Turner P.S.(1968) Acta Cryst. A24, 390-397

Goodman P. and Moodie A.F.(1974) Acta Cryst. A30, 280-290

O'Keefe M.A., Buseck P.R. and lijima S.(1978) Nature 274, 322-324

O'Keefe M.A. and Kilaas R.(1988) in Proceedings of the 6th Pfeffercorn Conference on Image and Signal Processing at Niagara Falls, Canada, April 1987. Published as Scanning Microscopy Supplement 2, 225-242

Peng L.M. and Cowley J.M. (1988) Acta Cryst.A44, 1-4

Smart D.J. and Humphreys C.J.(1978) in Electron Microscopy and Analysis (1979) ed T. Mulvey, Inst. Phys. Conf. Ser. 52C, 211-214.

Stewart R.F., Davidson E.R. and Simpson W.T.(1965) J. Chem. Phys. 42, 3175-

Tabbernor M.A.(1988) M. Phil. Thesis The Polytechnic, Wolverhampton U.K.

Tabbernor M.A., Fox A.G. and Fisher R.M.(1988) submitted to Acta Cryst.

S	2.0	2.5	3.0	3.5	4.0	5.0	6.0	
He	0.010	0.004	0.002	0.001	0.001	0.000	0.000	
Li	0.044	0.021	0.011	0.006	0.004	0.002	0.001	
Be	0.120	0.060	0.033	0.019	0.012	0.005	0.003	
B	0.233	0.126	0.072	0.043	0.027	0.012	0.006	\checkmark
C	0.373	0.216	0.130	0.081	0.053	0.025	0.013	
N	0.525	0.324	0.204	0.132	0.088	0.043	0.023	
0	0.674	0.443	0.292	0.196	0.134	0.067	0.037	-
F	0.810	0.564	0.389	0.270	0.190	0.099	0.055	
Ne	0.929	0.680	0.489	0.331	0.254	0.137	0.079	
Na	1.032	0.791	0.591	0.438	0.325	0.183	0.107	
Mg	1.120	0.892	0.691	0.527	0.401	0.234	0.141	
Al	1.195	0.979	0.783	0.615	0.478	0.290	0.179	
Si	1.264	1.056	0.867	0.699	0.556	0.349	0.222	
P	1.333	1.122	0.942	0.777	0.632	0.411	0.268	
S	1.411	1.182	1.009	0.849	0.705	0.474	0.316	
Cl	1.502	1.240	1.069	0.915	0.773	0.536	0.367	
Ar	1.614	1.301	1.123	0.974	0.836	0.597	0.419	
K	1.748	1.367	1.174	1.028	0.895	0.657	0.472	
Ca	1.908	1.444	1.225	1.078	0.949	0.715	0.524	
Sc	2.090	1.533	1.279	1.125	0.998	0.770	0.577	
Ti	2.290	1.637	1.338	1.171	1.044	0.821	0.627	
\checkmark	2.506	1.756	1.404	1.217	1.087	0.869	0.677	
Cr	2.727	1.888	1.479	1.266	1.129	0.914	0.724	
Mn	2.963	2.037	1.563	1.319	1.171	0.956	0.769	
Fe	3.195	2.197	1.658	1.377	1.213	0.995	0.813	
Co	3.424	2.366	1.763	1.441	1.258	1.033	0.853	
Ni	3.647	2.543	1.878	1.512	1.306	1.069	0.892	
Cus	3.855	2.721	2.001	1.590	1.358	1.105	0.929	
Zn	4.063	2.908	2.135	1.677	1.414	1.140	0.964	
Ga	4.260	3.097	2.277	1.772	1.477	1.176	0.998	
Ge	4.447	3.287	2.428	1.876	1.545	1.213	1.030	
As	4.621	3.475	2.584	1.988	1.621	1.251	1.061	
Se	4.782	3.658	2.745	2.108	1.703	1.292	1.092	
Br	4.932	3.836	2.909	2.235	1.793	1.337	1.123	
Kr	5.071	4.007	3.074	2.369	1.890	1.384	1.154	
Rb	5.200	4.168	3.239	2.507	1.993	1.436	1.186	
Sr	5.323	4.320	3.401	2.649	2.103	1.493	1.219	
Y	5.440	4.460	3.560	2.780	2.215	1.550	1.250	
Zr	5.558	4.590	3.720	2.920	2.335	1.620	1.285	
Nb	5.680	4.710	3.860	3.065	2.405	1.690	1.327	t
Mo	5.813	4.827	3.988	3.217	2.581	1.766	1.373	
TC	5.946	4.930	4.110	3.350	2.690	1.840	1.420	
Ru	6.097	5.040	4.230	3.485	2.820	1.925	1.470	-
R	6.262	5.140	4.350	3.620	2.940	2.012	1.520	
Pd	6.443	5.240	4.460	3.740	3.080	2.100	1.575	
Ag	6.651	5.351	4.566	3.862	3.207	2.206	1.635	
Cd	6.871	5.461	4.665	3.977	3.330	2.304	1.698	
In	7.110	5.577	4.761	4.087	3.449	2.406	1.746	
Sn	7.367	5.702	4.853	4.192	3.565	2.509	1.835	

Table 1 (continued)

Table 2: Parameters for the fit of $\ln \left[\mathrm{f}^{\mathrm{x}}(\mathrm{s})\right]$ in equation (4)

z	Symbol	80	a 1	a2 ($\times 10$)	a3 (x100)	R factor
2	He	0.52543	-3.43300	4.80070	-2.54760	1.0000
3	Li	0.89463	-2.43660	2.32500	-0.71949	1.0000
4	Be	1.25840	-1.94590	1.30460	-0.04297	1.0000
5	B	1.66720	-1.85560	1.60440	-0.65981	1.0000
6	C	1.70560	-1.56760	1.18930	-0.42715	1.0000
7	N	1.54940	-1.20190	0.51064	0.02472	1.0000
8	0	1.30530	-0.83742	-0.16738	0.47500	1.0000
9	F	1.16710	-0.63203	-0.40207	0.54352	1.0000
10	Ne	1.09310	-0.50221	-0.53648	0.60957	. 0.9995
11	Na	0.84558	-0.26294	-0.87884	0.76974	1.0000
12	Mg	0.71877	-0.13144	-1.20900	0.82738	1.0000
13	Al	0.67975	-0.08756	-0.95431	0.72294	1.0000
14	Si	0.70683	-0.09888	-0.98356	0.55631	1.0000
15	P	0.85532	-0.21262	-0.37390	0.20731	1.0000
16	S	1.10400	-0.40325	0.20094	-0.26058	1.0000
17	Cl	1.42320	-0.63936	0.84722	-0.76135	0.9995
18	Ar	1.82020	-0.92776	1.59220	-1.32510	0.9995
19	K	2.26550	-1.24530	2.38330	-1.91290	0.9990
20	Ca	2.71740	-1.55670	3.13170	-2.45670	0.9990
21	Sc	3.11730	-1.81380	3.71390	-2.85330	0.9990
22	Ti	3.45360	-2.01150	4.13170	-3.11710	0.9995
23	v	3.71270	-2.13920	4.35610	-3.22040	0.9995
24	Cr	3.87870	-2.19000	4.38670	-3.17520	1.0000
25	Mn	3.98550	-2.18850	4.27960	-3.02150	1.0000
26	Fe	3.99790	-2.11080	3.98170	-2.71990	1.0000
27	Co	3.95900	-1.99650	3.60630	-2.37050	1.0000
28	Ni	3.86070	-1.88690	3.12390	-1.94290	1.0000
29	Cu	3.72510	-1.65500	2.60290	-1.49760	0.9995
30	2 n	3.55950	-1.45100	2.03390	-1.02160	0.9995
31	Go	3.37560	-1.23910	1.46160	-0.55471	0.9995
32	Ge	3.17800	-1.02230	0.89119	-0.09984	0.9995
33	As	2.97740	-0.81038	0.34861	0.32231	0.9995
34	Se	2.78340	-0.61110	-0.14731	0.69837	0.9995
35	Br	2.60610	-0.43308	-0.57381	1.00950	0.9995
36	Kr	2.44280	-0.27244	-0.95570	1.27070	0.9995
37	Rb	2.30990	-0.14328	-1.22600	1.45320	1.0000
38	Sr	2.21070	-0.04770	-1.41100	1.55410	1.0000
39	Y	2.14220	0.01935	-1.52240	1.59630	1.0000
40	Zr	2.12690	0.08618	-1.49190	1.51820	1.0000
41	Nb	2.12120	0.05381	-1.50070	1.50150	1.0000
42	Mo	2.18870	-0.00655	-1.25340	1.24010	1.0000
43	Tc	2.25730	-0.05737	-1.07450	1.06630	1.0000
. 44	Ru	2.37300	-0.15040	-0.77694	0.79060	0.9995
45	Rh	2.50990	-0.25906	-0.44719	0.49443	0.9995
46	Pd	2.67520	-0.39137	-0.05894	0.15404	0.9995
47	Ag	2.88690	-0.56119	0.42189	-0.25659	0.9990
48	Cd	3.08430	-0.71450	0.84482	-0.60990	0.9990
49	In	3.31400	-0.89697	1.35030	-1.03910	0.9990
50	Sn	3.49840	-1.02990	1.68990	-1.29860	0.9990

Table 2: Parameters for the fit of $\ln \left[\mathrm{f}^{\mathrm{x}}(\mathrm{s})\right]$ (continued).

	2	Symbol	80	a 1	$82\left(x^{10}\right)$	$83(\times 100)$	R factor
*	51	Sb	3.70410	-1.18270	2.08920	-1.61640	0.9990
	52	Te	3.88240	-1.30980	2.41170	-1.86420	0.9990
\checkmark	53		4.08010	-1.45080	2.76730	-2.13920	0.9990
	54	xe	4.24610	-1.56330	3.04200	-2.34290	0.9990
	55	Cs	4.38910	-1.65420	3.25450	-2.49220	0.9995
	56	Ba	4.51070	-1.72570	3.41320	-2.59590	0.9995
	57	Le	4.60250	-1.77070	3.49970	-2.64050	0.9995
	58	Ce	4.68890	-1.81690	3.60090	-2.70550	0.9995
	59	Pr	4.72150	-1.81390	3.56480	-2.65180	0.9995
	60	Nd	4.75090	-1.80800	3.51970	-2.59010	1.0000
	61	Pm	4.74070	-1.76600	3.37430	-2.44210	1.0000
	62	Sm	4.71700	-1.71410	3.20800	-2.28170	1.0000
	63	Eu	4.66940	-1.64140	2.98580	-2.07460	1.0000
	64	Gd	4.61010	-1.55750	2.73190	-1.84040	0.9995
	65	Tb	4.52550	-1.45520	2.43770	-1.57950	0.9995
	66	Dy	4.45230	-1.36440	2.17540	-1.34550	0.9990
	67	Ho	4.37660	-1.27460	1.92540	-1.13090	0.9990
	68	Er	4.29460	-1.18170	1.67060	-0.91467	0.9990
	69	Tm	4.21330	-1.09060	1.42390	-0.70804	0.9990
	70	Yb	4.13430	-1.00310	1.18810	-0.51120	0.9990
	71	Lu	4.04230	-0.90518	0.92889	-0.29820	0.9990
	72	Hf	3.95160	-0.80978	0.67951	-0.09620	0.9990
	73	Ta	3.85000	-0.70599	0.41103	0.11842	0.9990
	74	W	3.76510	-0.61807	0.18568	0.29787	0.9990
	75	Re	3.67600	-0.52688	-0.04706	0.48180	0.9995
	76	Os	3.60530	-0.45420	-0.22529	0.61700	0.9995
	77	Ir	3.53130	-0.37856	-0.41174	0.75967	0.9995
	78	Pt	3.47070	-0.31534	-0.56487	0.87492	0.9995
	79	Au	3.41630	-0.25987	-0.69030	0.96224	0.9995
	80	Hg	3.37350	-0.21428	-0.79013	1.02850	$1.00,00$
	81	Tl	3.34590	-0.18322	-0.84911	1.05970	1.0000
	82	Pb	3.32330	-0.15596	-0.89878	1.08380	1.0000
	83	Bi	3.31880	-0.14554	-0.90198	1.06850	1.0000
Ni	84	Po	3.32030	-0.13999	-0.89333	1.04380	1.0000
	85	At	3.34250	-0.15317	-0.83350	0.97641	1.0000
	86	Rn	3.37780	-0.17800	-0.74320	0.88510	1.0000
*	87	Fr	3.41990	-0.20823	-0.64000	0.78354	0.9995
	88	Ra	3.47530	-0.25005	-0.50660	0.65836	0.9995
	89	Ac	3.49020	-0.25109	-0.49651	0.64340	0.9995
	90	Th	3.61060	-0.35409	-0.18926	0.36849	0.9995
	91	Pa	3.68630	-0.41329	-0.01192	0.20878	0.9995
	92	u	3.76650	-0.47542	0.16850	0.05060	0.9990
	93	Np	3.82870	-0.51955	0.29804	-0.06566	0.9990
	94	Pu	3.88970	-0.56296	0.42597	-0.18080	0.9990
	95	Am	3.95060	-0.60554	0.54967	-0.29112	0.9985
	96	Cm	4.01470	-0.65062	0.67922	-0.40588	0.9985
	97	BK	4.07780	-0.69476	0.80547	-0.51729	0.9985
	98	Cf	4.14210	-0.73977	0.93342	-0.62981	0.9980

Figure Legends

Figure 1a Graph of X -ray scattering factor, f^{x}, versus $\sin \theta / \lambda$ for nitrogen $(\mathrm{Z}=7$) showing the Gaussian fit going negative at high angles.

Figure 1 b Graph of f^{x} versus $\sin \theta / \lambda$ for uranium ($\mathrm{Z}=92$) showing the Gaussian fit to be too high for high angles.
Figure 2 Graph of X -ray scattering factor, f , versus atomic number, Z , for $\sin \theta / \lambda=3 \AA^{-1}$ showing the polynomial fit to the values of Doyle and Turner (1968).

Figure 3 As figure 2 but showing the linear variation of f^{x} with atomic number $Z=63$ to 92.

Figure 1 (b)

XBL 8811-9791
Figure 3

LAWRENCE BERKELEY LABORATORY CENTER FOR ADVANCED MATERIALS 1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

