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Abstract

The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the

discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle

and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of

light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle.

While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the

spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-

controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz

repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source

allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of

relativistic energy electrons.

Introduction

Waveform-controlled few-cycle laser pulses are for-

midable optical tools that unite temporal finesse on the

attosecond time scale with ultra-high electromagnetic

field strengths. Laser transients approaching a single

carrier wave period have been available for more than a

decade with sufficient average (<1W) and peak power

(≤0.1 TW) to drive laser–atom interactions in the strong-

field regime, where a laser electric field of ≳1010V/m

starts overcoming that binding valence electrons to the

nucleus. The temporal precision afforded by carrier-

envelope phase (CEP) control of these pulses helped pave

the way for attosecond science1–3, which continues to

further our understanding of fundamental ultrafast many-

body quantum dynamics.

With laser electric field strengths of ≳1013V/m, the

field-driven quiver energy of electrons exceeds their rest

mass energy (mec
2 � 0:5MeV), that is, electrons reach

relativistic velocities within one laser period. Here, the

magnetic component of the Lorentz force becomes

equally important or even dominates the electric com-

ponent, and the electron dynamics become highly non-

linear as a function of the laser field. Laser–matter

interaction in this relativistic regime4–6 is at the forefront

of contemporary physics, uniting highly complex plasma

dynamics with the highest achievable laser field strengths.

This launched the development of highly promising sec-

ondary energetic particle and light sources, such as laser-

plasma electron accelerators7 and plasma mirror-based

attosecond extreme ultraviolet sources8.

Generating CEP-controlled few-cycle pulses capable not

only of driving such relativistic laser–plasma interactions

but also of steering these extreme light forces with atto-

second precision has been a long-standing challenge. This
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is chiefly motivated by the power scaling of laser wakefield

acceleration (LWFA) of relativistic electrons9 and the

generation of intense isolated attosecond pulses from

relativistic plasma mirrors10 or thin transmission tar-

gets11. From a more fundamental standpoint, few-cycle

pulses exhibit the fastest intensity gradients and enable

the isolation of electromagnetic field-driven processes

from cycle-averaged intensity effects.

Recent developments have led to a significant increase

in the power generated by few-cycle laser pulse sources.

Broadband optical parametric chirped pulse amplifiers

(OPCPAs) have succeeded in scaling up the peak power of

few-cycle pulses to the multi-TW range12–14. However,

due to their need for large pump energies of several

hundreds of mJ, these systems usually operate only at low

repetition rates (10 Hz), which denies proper CEP stabi-

lization. Nonetheless, because of their inherently high

temporal contrast, OPCPA-based sources have recently

enabled few-cycle-driven relativistic laser–plasma inter-

actions at a 10-Hz repetition rate, demonstrating relati-

vistic surface high-harmonic generation with sub-2-

cycle13 and sub-3-cycle10,14,15 pulses, as well as LWFA

with 3-cycle pulses16.

Efforts to scale the average power have led to a >200W

sub-2-cycle pulse source17 based on high-repetition-rate

(100 kHz) ytterbium-based fiber chirped pulse amplifier

technology combined with hollow-core fiber (HCF) non-

linear post-compression18. While the achievable com-

pression factors have increased 33-fold19, CEP locking has

yet to be implemented. On the other hand, progress in

high-repetition-rate pump laser technology and passively

CEP-stable seed generation20 for TW-class OPCPAs has

recently led to the production of ~10W average power

sub-3-cycle pulses with a stable CEP21, but their cap-

abilities for high-field applications have yet to be

harnessed.

Novel schemes for the generation of terawatt or even

petawatt few-cycle pulses have been proposed, and

recently, the first experimental proof-of-principle

demonstrations have been reported for thin-film com-

pression of top-hat pulses22 as well as frequency down-

shifting of intense optical pulses into the mid-infrared via

plasma-based photon deceleration23.

A competing approach for TW-level sub-2-cycle pulse

generation relies on the power scaling of HCF-based post-

compression of pulses produced by Ti:sapphire chirped

pulse amplification (CPA) systems24. This approach was

shown earlier to provide 2-cycle pulses at 1 TW peak

power25, albeit without CEP control. The first system

following this approach and uniting multi-mJ pulse

energy, sub-2-cycle duration, and CEP locking26 was the

precursor to the system described here. In an inter-

mediate development stage with increased energy from

the laser amplifier chain and improved vacuum

integration of the HCF but lacking CEP control due to

insufficient pulse energy stability, the system was the first

to drive LWFA to relativistic electron energies at a kHz

repetition rate9.

Here, we present our most advanced setup as the result

of a large engineering effort resulting in significant per-

formance improvements: the pulses set a new duration

record (1.5 cycles) for TW peak power pulses, and the

pulse stability (CEP, energy, spatial, and spectral) fulfills

the requirements for relativistic-intensity laser–matter

experiments. Combining the kHz repetition rate, high

temporal contrast ratio, and achievable ultra-high inten-

sity on the target, this system is now uniquely suited to

drive relativistic-intensity light–matter interactions with

sub-cycle time control over the driving light waveform.

Here, we describe this unique light source and the first

experimental indications of CEP effects in relativistic

LWFA driven in the near-single-cycle regime.

Results

Power-scaled hollow fiber compressor

The fully vacuum-integrated post-compressor setup is

shown in detail in Fig. 1. The seed laser is a Ti:sapphire

double CPA chain delivering pulses with 10mJ energy

(shot-to-shot stability of <0.3% root mean square (r.m.s.)

over hours) at a 1-kHz repetition rate with a temporal

contrast of >1010 at ≈−10 ps before the pulse peak27.

Pulses from the CPA are first only partially compressed to

≈200 fs in air to prevent nonlinear beam degradation in

the entrance window of the vacuum beamline, which

would significantly reduce the coupling efficiency into the

HCF26. Final compression to the Fourier transform-

limited duration of 24 fs is achieved after eight highly

dispersive chirped mirrors under vacuum introducing

≈−2000 fs2 group delay dispersion (GDD).

The double CPA seed laser has been improved com-

pared to that in refs. 9,27. Its nonlinear crosspolarized wave

(XPW) contrast filter and low stretching factor lead to a

significant B-integral accumulated through the amplifier

chain, and thus, noise is coupled from intensity to phase.

CEP locking thus first requires excellent pulse energy

stability. This has been achieved by replacing the pump

laser of the front end (to an Ascend 40 by Spectra Physics,

Santa Clara, California), optimizations of the power

amplifier layout, and enhanced enclosures of the laser and

all pump beams to protect from air movement. Other

improvements include the configuration of the low-jitter

mode of the two acousto-optical programmable dispersive

filters in the seed laser chain.

The post-compression stage is based on self-phase

modulation (SPM) in a gas-filled HCF, a now widely used

technique18 that has the advantage of producing well-

compressible broadband pulses with excellent beam

profiles and spatially homogeneous spectra28. We

Ouillé et al. Light: Science & Applications            (2020) 9:47 Page 2 of 9



implemented a combination of three strategies to scale

this technique to the ≈0.4 TW peak power of our CPA

chain. First, we exploit stretched flexible HCF technology

enabling an arbitrary waveguide length without degrada-

tion of the waveguiding properties29,30. The HCF

dimensions were scaled to 2.5 m length and 536 μm inner

diameter. A conical glass taper is coaxially installed at the

HCF entrance to create very robust protection against

damage due to slight misalignments or pedestals in the

spatial beam profile. The beam is focused into the fiber

using a reflective mirror telescope with an effective focal

length of ≈4.2 m, and the optimal coupling into the fiber is

maintained with active beam-pointing stabilization to

ensure long-term stability. Second, high-purity helium gas

is differentially pumped through the HCF, thus forming a

stable pressure gradient across the waveguide31. The

pressure gradually increases from <1mbar at the fiber

entrance to the static filling pressure of the output

chamber up to 2 bar. This prevents undesirable nonlinear

phenomena around the fiber entrance and enhances the

coupling efficiency and stability. Furthermore, the

increasing pressure counteracts the decreasing non-

linearity due to propagation losses inside the fiber. Third,

both multi-photon ionization and self-focusing are further

mitigated by using circular polarization32,33, which also

reduces losses and instabilities due to cycling of energy

between fiber modes34. Two broadband quarter-wave

plates are therefore placed before and after the HCF to

switch the laser polarization between linear and circular.

In the output chamber, two insertable mirrors can send

the beam to diagnostics for position, spatial profile,

spectrum and pulse energy. Two active mirrors then allow

for alignment onto the near- and far-field references thus

obtained. A 3-mm-thick fused silica window separates the

helium-filled output chamber from the vacuum beamline

downstream. The beam first propagates through a pair of

motorized fused silica wedges. The positive GDD induced

by SPM in the fiber as well as the propagation through the

quarter-wave plate and the window is slightly over-

compensated by six pairs of highly dispersive (−40 fs2

each) double-angle chirped mirrors (PC70, Ultrafast

Innovations, Garching, Germany), and the wedge position

is tuned for fine adjustment of the GDD leading to the

optimum pulse compression. A dispersion (d)-scan device

(Sphere Ultrafast Photonics, Porto, Portugal) placed

under vacuum serves as a precise temporal measurement

immediately before the experimental chamber with con-

trollable dispersion provided by precise insertion of one of

the wedges. With 1.3 bar helium pressure in the output

chamber, the minimum achievable full-width at half-

maximum (FWHM) pulse duration of our system is 3.4 ±

0.1 fs (see Fig. 2c). This duration is close to the Fourier

limit of 2.9 fs (with 60% higher peak power) supported by

the broadened spectrum.

This is a remarkable result indicating accurate com-

pensation of not only the GDD but also the third-order

dispersion (TOD), to which compression in the sub-two-

optical-cycle regime is extremely sensitive35–38. As a

consequence, venting the d-scan chamber with air is

sufficient to spoil the compression shown in Fig. 2, and

the optimal wedge position leaves a significant negative

TOD on the compressed pulses, similar to the result

reported in ref. 39. This is due to the different GDD/TOD

ratio of air compared to that of the fused silica wedges.

The remaining room for improvement on the result

shown in Fig. 2 is due to two imperfections in the com-

pression. The first and minor imperfection is a very small

remaining negative TOD of a few fs3. The second and
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dominant imperfection is the phase distortion introduced

by the chirped mirrors on the blue end of the spectrum.

The phase oscillations between 700 and 550 nm reduce

the energy contained in the main peak, and smoothing

them (possible by using complementary-pair CMs instead

of double-angle CMs) combined with a TOD of −5 fs3

would increase the peak power by 15% and reduce the

pulse duration to 3.2 fs. To further approach the Fourier

limit, the uncontrolled phase below 520 nm would need to

be smoothed and flattened, which would require a more

advanced and, to our knowledge, not yet available CM

design. This would decrease the pulse duration to 3.2 fs

and increase the peak power by 20%.

Energy measurements performed for 1.3 bar of helium

with a single-shot energy detector (noise level ≈10 μJ)

yield an excellent pulse-to-pulse stability of ≈0.4% rms

and typical pulse energies of 4.5–5mJ immediately after

the fiber, 3.5 mJ after the chirped-mirror compressor at

the entrance of the d-scan device and 2.5 mJ on the target

in the LWFA chamber. Losses along the beamline are due

to the wave plate, wedges (≈5%), CMs (≈5% from all 12

CMs) and transport mirrors (≈1.5% per mirror).
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CEP stabilization of the system is based on a home-

made f-to-2f interferometer. As shown in Fig. 1, the f-to-

2f signal is generated using the reflection from the front

face of a thin wedge pair placed in the beam path of an

auxiliary beam created with a holed mirror and used for

plasma imaging9. The derived error signal then modulates

the phase offset of the oscillator locking electronics to

correct for slow CEP drifts accumulated through the laser

chain. As shown in Fig. 2e, the residual CEP noise of the

system, measured in-loop over 5 min, is ≈150mrad r.m.s.

Pulse duration tuneability

Compression data for different gas pressures (Fig. 3)

show that our HCF post-compression stage is adequately

energy scaled, that is, self-focusing and ionization-

induced effects are avoided: the fiber transmission is the

same for a Fourier-limited input pulse as for a positively

chirped (+275 fs2) input pulse; the fiber transmission

remains the same over the complete helium pressure

range used. Only at the highest pressure of 1.4 bar, which

is above our usual working range, does the transmission

start to drop. Finally, as shown in Fig. 3b, the measured

spectral broadening follows the helium pressure p as

expected for purely SPM-induced broadening. We com-

pare the experimental spectral widths, defined as twice the

r.m.s. bandwidth σω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2h i � ωh i2
q

, to values obtained

from a numerical solution of the one-dimensional gen-

eralized nonlinear Schrödinger equation40,41 for a Kerr

nonlinearity42. These simulations start from an experi-

mentally measured input pulse obtained from a Wizzler

measurement43 (Fastlite, Antibes, France) located after

the diagnostics port of the output chamber (cf. Fig. 1) for

an evacuated HCF and describe dispersion, SPM and self-

steepening. The latter significantly modulates SPM-

induced spectral broadening for input pulses as short as

ours. The pressure gradient along an HCF of length L=

2.5 m was modeled as pðzÞ ¼ pL
ffiffiffiffiffiffiffiffi

z=L
p

, where pL is the

pressure at the HCF exit located at z= L. Neither

ionization-induced effects nor spatial effects had to be

included in these 1D simulations to obtain satisfactory

agreement with the experimental spectral width and

shape. Note that the functional shape of the pressure

dependence remains very close to that derived for pure

SPM and Fourier transform-limited Gaussian input

pulses44.

An interesting consequence of this well-scaled post-

compression stage is that the pulse duration can be easily

tuned from 25 fs down to 3.5 fs by simply varying the gas

pressure and adjusting the dispersion while keeping a
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constant output pulse energy (see Figs. 2 and 3c) and a

very similar spatial beam profile imposed by the

waveguide.

CEP dependence of relativistic LWFA

As a demonstration of the excellent spatiotemporal

quality of our system, we now focus on its application to

LWFA in the relativistic-intensity regime45. The experi-

mental setup for LWFA is shown in Fig. 4. LWFA of

electrons driven by near-single-cycle pulses was demon-

strated with a similar setup but without CEP stability9,46.

The beam is focused into a continuously flowing micro-

scale supersonic nitrogen gas jet using a 90° off-axis f/2

parabola. We obtain a near-Gaussian 2.5 × 2.8 µm2

(FWHM) focal spot (see Fig. 4), corresponding to an on-

target peak intensity of ≈5 × 1018W/cm2 with 2.4 mJ on

the target (the relativistic limit for which the normalized

vector potential reaches a0= 1 is ≈2.6 × 1018W/cm2 at

719 nm central wavelength). More details on the electron

detection system can be found in ref. 46.

In these experiments, the laser pulse envelope drives the

wakefield via the ponderomotive force. Electrons are

injected into the wakefield in a process known as ioni-

zation injection47,48. In ionization injection, electrons are

born at the peak of the laser electric field and subse-

quently injected and accelerated into the wakefield

accelerating structure. This injection process heavily

depends on the CEP because the laser phase determines

the initial conditions of electrons in the longitudinal phase

space, which eventually impacts their final momenta49.

More precisely, the CEP controls (i) the amplitude of the

most intense laser half-cycle and therefore the number of

injected electrons and (ii) the exact initial conditions of

the trapped electrons, which impact the final electron

energies and angles. Observing such CEP effects in an

experiment is rather challenging because the CEP varies

rapidly during laser propagation since the laser phase

velocity (vφ) and group velocity (vg) are different in the

plasma. Typically, the CEP spans 2π over the phase slip-

page length L2π= λc/(vφ− vg) ≈ λnc/ne, where ne and nc
are the electron plasma density and critical density,

respectively. In our typical LWFA experiments46, ne/nc ≈

0.1 and L2π ≈ 8 μm, that is, ≈10% of our typical target

widths. Therefore, the effect of the CEP on electron

injection is significant only if the injection length is

smaller than L2π, which therefore requires a very localized

injection and places stringent demands on the stability of

all other pulse parameters in space, time and energy.

Using the same gas density as in our earlier experi-

ments, ne/nc ≈ 0.1, we obtain the same 6-MeV electron

peak energies with the upgraded driver laser, but do not

observe any influence of the CEP. Therefore, for the

experiment presented here, we used a target with ne ≈ 2 ×

1019 cm−3, that is, ne/nc ≈ 0.01, which relaxes the difficulty

posed by L2π at the price of reduced achievable electron

energies.
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Under these conditions, a correlation between rapid

CEP changes and rapid changes in the electron energy

distribution could be observed for the first time. Figure 5a

shows a cascade plot of successive electron spectra

recorded as the CEP was cycled between 0 and π/2. Note

that the absolute value of the CEP is not measured, and

only the relative changes are known. For a relative CEP of

0, the spectrum exhibits a peak close to 0.5MeV, and the

distribution tail displays another smaller feature at

0.65MeV. These features disappear when the CEP is

shifted by π/2. While the effect of the CEP is initially clear

(data 1 to 125), it should be noted that the difference

tends to wash out towards the end of the scan. The high

nonlinearity of the relativistic laser–plasma interaction

makes it likely that even small fluctuations or drifts of

laser properties or the plasma density profile wash out or

outweigh the pure CEP effect.

Figure 5b shows averaged spectra for the first two CEP

cycles with a clear correlation and compares the results

for relative CEP values of 0 and π/2. The CEP effect

clearly outweighs that of the spectral fluctuations, as it is

significantly larger than the standard deviation of the

spectra. These results constitute the first observation of

CEP effects in underdense relativistic laser–plasma

interactions. However, systematic control of the electron

spectra using the CEP has not yet been demonstrated, and

future work will focus on enhancing the stability and

robustness of this process.

Discussion

Our laser system delivers pulses combining high peak

power up to 1 TW, near-single-cycle pulse duration (3.4 fs

or 1.5 cycles at 719 nm central wavelength) and excellent

beam quality. Due to the quasi-instantaneous interaction

with helium in the HCF post-compressor stage, the high

temporal contrast on the picosecond time scale is inher-

ited directly from the double CPA seed laser. This system

is currently the only terawatt light source capable of

generating sub-4-fs pulses. Furthermore, the output

exhibits the necessary spectral, energy and CEP stability

required for the investigation of relativistic-intensity

laser–matter interactions on a sub-light-cycle time scale.

The unique capabilities of the system are demonstrated by

the observation of the first experimental indications of

CEP effects in LWFA.

Materials and methods

The Ti:sapphire double CPA seed laser has the follow-

ing structure: the commercial CPA front end (Femto-

power Compact Pro CE Phase, Femtolasers, Vienna,

Austria), including a first acousto-optical programmable

dispersive filter (low-jitter Dazzler HR800, Fastlite, Anti-

bes, France) and pumped by a frequency-doubled Q-

switched Nd:YLF laser (Ascend 40, Spectra Physics, Santa

Clara, California), delivers 29-fs pulses with 1.3 mJ energy

at a 1 kHz repetition rate and a residual CEP noise of

≈100mrad (in-loop, averaged over 30 shots). These pulses

are sent through an XPW contrast filter50 including a

Glan polarizer with ~104 extinction ratio, which produces

≈10-fs pulses of ≈200 μJ energy with a temporal contrast

of 1011. The pulses are then stretched to 45 ps by pro-

pagation through 75 cm of SF57 before a double pass

through a second low-jitter Dazzler (HR45, Fastlite). The

resulting amplitude and phase-shaped seed pulses of

≈20 μJ energy are then sent through a commercial 6-pass

amplifier (Femtolasers), boosting the pulse energy to

≈4.5 mJ, followed by a home-built 2-pass amplifier that

brings the pulse energy up to ≈13mJ. These two ampli-

fication stages are pumped by frequency-doubled Q-

switched Nd:YLF lasers (DM30 and DM50, respectively,

Photonics Industries, Long Island, New York). After a
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Fig. 5 a Top: Electron spectra dN/dE (arb. units) obtained while

varying the CEP of the accelerating laser pulse (each spectrum was
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GRISM compressor (Fastlite) and subsequent set of eight

highly dispersive (−275 fs2 each) chirped mirrors (HD58,

Ultrafast Innovations, Garching, Germany) under

vacuum, the pulses are 24 fs long and have 10 mJ energy at

a 1 kHz repetition rate.

These pulses are then converted to circular polarization

by a superachromatic quarter-wave plate (Bernhard Halle,

Berlin, Germany). The same wave plate converts the

pulses back to linear polarization after the HCF. A tele-

scopic combination of a concave and a convex spherical

mirror allows gradual adjustment of the effective focal

length (≈4.2 m) and therefore of the beam size in focus at

the HCF entrance. The angles of incidence on the two

mirrors can also be adjusted such that the astigmatism

introduced by the first mirror is compensated by that

introduced by the second mirror. To ensure the system’s

long-term stability, we maintain optimal coupling into the

fiber with a 4D beam stabilization system (Aligna, TEM

Messtechnik, Hannover, Germany), locking the near- and

far-field positions by active feedback to two piezo-driven

mirror mounts. After the HCF, the pulses are compressed

by a combination of two fused silica wedges and a set of

six pairs of highly dispersive (−40 fs2 each) double-angle

chirped mirrors (PC70, Ultrafast Innovations).

The home-built f-to-2f spectrometer does not include a

spectral broadening stage, but includes a β barium borate

crystal for frequency doubling, a polarizer for projecting

the second harmonic and fundamental onto the same

polarization direction, and a fiber-coupled spectrometer

(SP3-USB, Thorlabs, Newton, New Jersey). The analysis of

the spectra and generation of the error signal is imple-

mented in the APS800 software by Menlo Systems

(Garching, Germany).

For the d-scan measurement, the full laser beam is

sampled by an insertable uncoated fused silica wedge and

sent into the commercial d-scan device (Sphere Ultrafast

Photonics, Porto, Portugal), where it is focused into a thin

β barium borate crystal for frequency doubling. The sec-

ond harmonic spectrum is measured for a range of

insertions of two fused silica wedges. An iterative algo-

rithm then reconstructs the spectral amplitude and phase

of the laser pulse in focus, providing a complete temporal

characterization of the laser pulse at best compression.

The pulse energy is measured shot-by-shot by a pyro-

electric energy meter (QE50SP-S-MT-D0, Gentec-EO,

Québec, Canada).
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