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On the basis of the Dirac equation, a relativistic interaction Hamiltonian is derived which linearly
couples the angular momentum density j of the electromagnetic (EM) field and the electron’s spin
σ. The expectation value of this novel Hamiltonian is demonstrated to be precisely the recently
proposed energy coupling the EM angular momentum density and magnetic moments [A. Raeliari-
jaona et al., Phys. Rev. Lett. 110, 137205 (2013)]. This previously overlooked Hamiltonian is also
found to naturally result in the exact analytical form of the interaction energy inherent to the in-
verse Faraday effect, therefore demonstrating its relevance and easy use for the derivation of other
complex magneto-optical and magneto-electric effects originating from electron spin-light angular
momentum-couplings.

PACS numbers: 78.20.Ls,78.20.Bh,75.70.Tj

A coupling energy between angular momentum density
of an electromagnetic (EM) field and magnetic moments
in a material has been recently proposed1, with the fol-
lowing form:

E = ξ

∫

Ω

[r × (E ×B)] ·M dr. (1)

where ξ is a material-dependent coefficient, r is the vec-
tor position, E is the electric field, B is the magnetic field
and M is the magnetization. Here j = r×(E×B) is the
density of total angular momentum of the EM field2,3.
Surprisingly, such coupling energy has been shown to
naturally explain various experimentally known, com-
plex spin-orbit-driven effects. Examples include the spin-
current model in multiferroics1, the anomalous Hall ef-
fect4, planar Hall effect and anisotropic magnetoresis-
tance5 in ferromagnets. It even led to the prediction of
striking spintronics phenomena at interfaces, that bear
resemblance to the so-called inverse Rashba-Edelstein-
like effects6.
However, the energy of Eq. (1) was proposed solely

based on symmetry arguments and on the control of mag-
netic vortices by the cross-product between the electric
field and magnetic fields1. In other words, its physical
origin still remains to be elucidated, which will then def-
initely make it a novel, robust and straightforward pre-
dictive tool. One may, for instance, wonder if it is possi-
ble to trace Eq. (1) to the most fundamental quantum-
mechanical Hamiltonian involving relativistic effects such
as the spin-orbit interaction, viz. the Dirac equation. If
that is the case, it will not only establish the existence of

Eq. (1) at a fundamental level, but also lead to the pos-
sibility of deriving and understanding other spin–angular
momentum effects.
In this Communication, we demonstrate that the

Dirac Hamiltonian naturally leads to a previously
overlooked electron spin–light angular momentum-
interaction Hamiltonian. In what follows, we will refer to
this term as the Angular MagnetoElectric (AME) cou-
pling Hamiltonian. Quite remarkably, the expectation
value of the AME Hamiltonian is found to precisely be
Eq. (1) for some materials (e.g., in ferromagnets). More-
over, the use of this general AME Hamiltonian is also
shown here to reproduce in a straightforward manner the
analytical form of the potential inherent to the so-called
and complex inverse Faraday effect7–9 – which further
demonstrates the enormous and broad importance of the
AME Hamiltonian.
Derivation of the AME Hamiltonian:

Let us start from the Dirac Hamiltonian for an electron
(mass m, charge e) in an electromagnetic field:

HD = cα · (p− eA) + (β − 1)mc2 + V+eΦ, (2)

where A(r, t) is the time-varying EM vector potential,
p is the momentum operator, V is the crystal potential,
Φ(r, t) is the scalar potential of the EM field, 1 is the
4× 4 unit matrix and α and β are 4× 4 matrices given,
for instance, in Ref.10. Applying the Foldy-Wouthuysen
transformation11 to Eq. (2), expanding the result in pow-
ers of 1/c and keeping terms up to second order, we arrive
at the Hamiltonian for the large component of Dirac bi-
spinor (see Ref. 12):
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HFW =
(p− eA)

2

2m
+ V+eΦ− eh̄

2m
σ ·B − (p− eA)

4

8m3c2
− 1

8m2c2
(
p2V

)
− eh̄2

8m2c2
∇ ·Eext

+
i

4m2c2
σ · (pV )× (p− eA)− eh̄

8m2c2
σ · {Eext × (p− eA)− (p− eA)×Eext} . (3)

Here B = ∇ ×A is the external magnetic field and Eext = −∂A/∂t−∇Φ is the external electric field. The last two
terms of Eq. (3) contain the spin-orbit interaction,

HSOC =
i

4m2c2
σ · (pV )× (p− eA)− eh̄

8m2c2
σ · {Eext × (p− eA)− (p− eA)×Eext} . (4)

We can re-arrange HSOC as:

HSOC = HTSOC +HAME (5)

with

HTSOC =
i

4m2c2
σ · (pV × p)− eh̄

8m2c2
σ · {Eext × p− p×Eext}

=
h̄

4m2c2
σ · (∇V × p)− eh̄

4m2c2
σ · (Eext × p) +

ieh̄2

8m2c2
σ · ∂B/∂t, (6)

HAME = −i e

4m2c2
σ · (pV ×A) +

e2h̄

8m2c2
σ · {Eext ×A−A×Eext} , (7)

where HTSOC contains the “traditional” spin-orbit inter-
action, and HAME contains, what we call, the AME in-
teraction. An important point to note is that neither the
AME HamiltonianHAME norHTSOC are gauge invariant.
It is rather the total spin-orbit Hamiltonian HSOC which
is gauge invariant. Note that, in the Coulomb gauge,
both the magnetic B and magnetic induced electric Eext

fields are transverse. Introducing the total electric field
E = Eext − 1

e
∇V , we can write the AME coupling in a

very concise form as

HAME =
e2h̄

4m2c2
σ · (E ×A) . (8)

Interestingly, the relativistic interaction Hamiltonian
adopts the simple form ζ σ · js, where the EM spin an-
gular momentum density3 is expressed as js = −2E×A

(ǫ0 = 1). This term can be considered as the EM-field
analog of the conventional spin-orbit coupling term in
HTSOC, which (for central symmetric potentials) gives
the well-known interaction λσ ·l with the orbital moment
l. The existence of this coupling term highlights the ap-
pealing possibility to manipulate the spin of electrons in
materials by suitably shaped EM waves possessing angu-
lar momentum.

The total electric field in a material can be split in
terms of an internal electric field Eint, generated by all
charges in the material, and an applied electric field Eext

which would exist even in vacuum. Of course, the mate-
rial shall screen the applied electric field. Therefore, the
internal electric field depends on Eext, which in the limit
of small applied field can be dealt with in the framework

of linear response theory:

Eint = E0
int +

←→γ ·Eext, (9)

where E0
int= − 1

e
∇V is the internal electric field when no

external field is applied and, in general, ←→γ is a 3 × 3
matrix. For the sake of simplicity we will assume a cubic
or isotropic material, so that ←→γ reduces to a scalar γ.
Therefore, we can re-write the AME coupling according
Eqs. (8) and (9) as the sum of an intrinsic part Hint and
an induced part Hind:

HAME =
e2h̄

4m2c2
σ ·

(
E0

int ×A
)

︸ ︷︷ ︸

Hint

AME

+(1 + γ)
e2h̄

4m2c2
σ · (Eext ×A)

︸ ︷︷ ︸

Hind

AME

. (10)

The first term of this Hamiltonian acts as an anisotropy
term and will not be given further consideration in what
follows. Instead, we will focus on the second term, which
is material dependent through the constant γ that char-
acterizes the linear response of the material to an external
field. The Hamiltonian of interest is therefore

Hind
AME = aσ · (Eext ×A) , (11)

with a = (1 + γ) e2h̄
4m2c2

.
Relation between the AME Hamiltonian and the previ-

ously proposed Eq. (1):
Let us now analyze the case of a homogenous mag-

netic field inside a magnetic media, which is, e.g., the



3

case for the anomalous Hall effect4, planar Hall effect
and anisotropic magnetoresistance5 in ferromagnets. Us-
ing the Coulomb gauge for a uniform and slowly varying
magnetic field, the vector potential is given by

A =
B × r

2
, (12)

where r is the position vector. Note that the vector po-
tential is in itself subject to gauge transformations, how-
ever, when choosing ∇ ·A = 0 only the transverse part
of A is retained, which is gauge invariant (see, e.g., Ref.
13). The energy related to the induced term of the AME
coupling in Eq. (10) can be obtained by taking its expec-
tation value

E indAME = ξ

∫

Ω

M(r) · [Eext × (B × r)]dr (13)

where ξ is a material-dependent coefficient, Ω is the vol-
ume of the system and M is the magnetization.
With the help of the vector identity a × (b× c) =

(a · c) b− (a · b) c, the energy in Eq. (13) can be written
as

E indAME =ξ

∫

Ω

[(M ·B)(r ·Eext)− (M · r)(Eext ·B)] dr.

(14)
Finally, by employing that M = χmH , with χm the
volume magnetic susceptibility, and the linear relation
B = (1 + χ−1

m )M (µ0 = 1), we can interchange B and
M in the second term of Eq. (14). This leads to the
following expression for the AME energy

E indAME =ξ

∫

Ω

[(M ·B)(r ·Eext)− (B · r)(Eext ·M)] dr

=ξ

∫

Ω

[r × (Eext ×B)] ·M dr. (15)

Remarkably, Equation (15) is precisely the coupling
energy between the angular momentum density of the
EM field and magnetic moments given in Eq. (1)! One
can therefore conclude that the AME Hamiltonian of Eq.
(11) is the source of this coupling energy and thus of
the different spin-driven magnetoelectric effects that have
been recently re-derived via the use of Eq. (1) – such as
the spin-current model in multiferroics1, anomalous Hall
effect4, planar Hall effect and anisotropic magnetoresis-
tance5 in ferromagnets.
Application of the AME Hamiltonian to the inverse

Faraday effect:
Let us now take advantage of the present discovery of

this AME Hamiltonian to determine if other magneto-
electic effects can be “easily” predicted or deduced, but
now starting from the more fundamental Eq. (11) rather
than from Eq. (15).
One of the magneto-optical phenomena of current in-

terest is the inverse Faraday effect (IFE). Note that IFE
refers to the induction of magnetization by a circularly
polarized incident EM wave in a material7,14 where the

induced magnetization is proportional to the waves’ in-
tensity. The IFE is experiencing a resurgence of interest
because of its recent observation in magnetically-ordered
materials (namely, ferrimagnets and ferromagnets)8,15–19

and its possible role in optically induced ultrafast mag-
netization dynamics and reversal (see, e.g., the review of
Ref. 9). The origin of the IFE is presently not well un-
derstood on a fundamental level (see, e.g., Refs. 20–25).
It has recently been represented as an induced optomag-
netic field in studies of ultrafast laser-induced magneti-
zation reversal in ferrimagnetic alloys26.
Here we investigate if the derived AME Hamiltonian

can contribute to the IFE effect in the case of a propa-
gating plane EM wave, which thus has only a transverse
component to the electric field,

Eext(r, t) = −
∂A

∂t
= R

(
E0 e

i(k·r−ωt)
)

(16)

where ω is the angular frequency and k is the wavevector.
For a general elliptically polarized EM wave propagating
along an arbitrary ez axis,

E0 =
E0√
2

(
ex + eiηey

)
, (17)

where η determines the ellipticity. The vector potential
writes according to Eq. (16)

A(r, t) = R
(

− i
E0

ω
ei(k·r−ωt)

)

, (18)

which, after inserting into the AME coupling Hamilto-
nian (Eq. (11)) yields:

Hind
AME = − a

2ω
R[ i (E0 ×E∗

0 )] · σ. (19)

This is precisely the form that has been phenomenolog-
ically7,14 introduced to explain the IFE. In other words,
the AME Hamiltonian naturally leads to a straightfor-
ward derivation of the IFE effect. Moreover, the Hamil-
tonian Hind

AME can be rewritten as −Bopt · gµBσ, with g
and µB being the Landé factor and the Bohr magneton,
respectively, and Bopt being an optically induced mag-
netic field given by

Bopt =
a

2gµBω
R (iE0 ×E∗

0 )

= (1 + γ)
e2h̄

4m2c3gµBǫ0ω
sin η Iez , (20)

with I = c ǫ0E
2
0/2 being the intensity of the incoming

light. The optomagnetic field Bopt is maximal for circu-
larly polarized light, η = ±π/2, and vanishes for linearly
polarized light, η = 0 or π, as expected from the IFE. In
order to estimate the strength of the AME-induced mag-
netic field, we consider circularly polarized light with an
intensity I = 10 GW/cm2, which is large but reachable
with contemporary sources, and light of 800 nm wave-
length. In the limit γ −→ 0, i.e., no screening response
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of the solid to the applied EM field, the optically in-
duced magnetic field is of the order of 8 µT. On the other
hand, the AME coupling has been shown to reproduce
the anomalous Hall effect4. Assuming that the anoma-
lous Hall effect is fully described by the AME Hamil-
tonian (11) allows to estimate an upper limit for γ at
zero frequency27, which would correspond to an induced
magnetic field in iron as high as 1.5 T.
It is important to realize that Eq. (20) provides the

relativistic spin–EM angular momentum-coupling contri-
bution of the IFE (because our starting point is the AME
Hamiltonian) and that there is also a part of the inverse
Faraday effect that exists even in the absence of spin-
orbit coupling20,22,25.
In summary, the present work derives the existence

of the AME Hamiltonian starting from the Dirac equa-
tion. Such Hamiltonian is further proven to be related,
in some cases and via its expectation value, to the re-
cently proposed coupling between total angular momen-
tum density of the EM field and the magnetization1 –

which has been shown to reproduce or even predict var-
ious spin-orbit-driven magneto-electric effects1,4–6. Fi-
nally, we also demonstrate that this AME Hamiltonian
can easily be used to tackle other effects, such as, e.g., the
spin–angular momentum-driven contribution to the IFE.
We envision that the presently discovered AME coupling
Hamiltonian between the electron spin and the angular
momentum of an EM wave may lead to the prediction
of novel optomagnetic effects effects of fundamental and
technological importance.
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