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Relativistic Lamé functions: the special caseg = 2
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Abstract. We study a class of eigenfunctions of an analytic difference operator generalizing
the special Laḿe operator−d2/dx2 + 2℘(x), paying particular attention to quantum-mechanical
aspects. We show that in a suitable scaling limit the pertinent eigenfunctions lead to the
eigenfunctions of the operator−d2/dx2 + 2cδ(x) in a finite volume. We establish various
orthogonality and non-orthogonality results by direct calculations, generalize the ‘one-gap picture’
associated with the above Lamé operator, and obtain duality properties for the hyperbolic,
trigonometric and rational specializations.
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1. Introduction

In two recent papers [1, 2] we introduced and studied eigenfunctions of an analytic difference
operator that generalizes the Lamé operator

Hnr(g) = − d2

dx2
+ g(g − 1)℘ (x) (1.1)

where℘ is the Weierstrass℘ function. This analytic difference operator (hereafter abbreviated
to A1O) reads

Hrel(g) =
(
σ(x − iβg)

σ(x)

)1/2

Tiβ

(
σ(x + iβg)

σ(x)

)1/2

+ (i →−i) (1.2)
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whereσ is the Weierstrassσ function, and whereTα denotes translation overα:

(Tαf )(x) = f (x − α) α ∈ C. (1.3)

The subscripts ‘nr’ and ‘rel’ in these formulae stand for ‘non-relativistic’ and ‘relativistic’.
Indeed, one clearly has the limiting relation

Hrel(g) = 2 +β2Hnr(g) + O(β4) β → 0. (1.4)

Accordingly, the parameterβ may be viewed as 1/c, with c the speed of light. Admittedly, this
interpretation may seem unconvincing without further explanation, but it is beyond the scope
of this paper to supply the necessary background. Instead, we refer the reader to our survey [3]
and lecture notes [4] concerning non-relativisticN -particle Calogero–Moser systems and their
relativistic generalizations. (The operators (1.1) and (1.2) are the (reduced)N = 2 versions
of the quantum dynamics defining these integrable systems.)

The present paper is concerned with the special choiceg = 2 in the above operators and
their hyperbolic, trigonometric, and rational specializations. Though theg = 2 case is covered
by previous papers, both in the elliptic regime [1] and in the hyperbolic and trigonometric
regimes [2], it has special features allowing a simpler and more explicit treatment. Indeed,
this paper is largely self-contained.

On the other hand, it is illuminating to compare a number of formulae and results with their
general counterparts in [1] and [2]. (We refer to equations in the latter papers through prefixes
I and II, respectively.) In particular, our focusing on functions that are not only eigenfunctions
ofHrel(2) (1.2), but also of a second independent A1O commuting withHrel(2), might appear
unmotivated without some acquaintance with the symmetries exhibited by this A1O pair in
the general case (cf equation I(1.12)).

Apart from its transparency and accessibility, an important reason for a separate study
of the g = 2 case is its remarkable connection to the (reduced) two-particle sector of the
quantized nonlinear Schrödinger model, also known as the delta-function gas. In [3] we
already mentioned that theg = 2 hyperbolic relativistic eigenfunction transforms lead to the
eigenfunction transform of the delta-function boson gas on the line in a certain scaling limit.
Here, we not only supply the details of this assertion, but also prove that the relation persists
at the elliptic level. Specifically, thefiniteelliptic real period corresponds to thefinite-volume
Lieb–Liniger eigenfunctions [5].

A second reason for zooming in on theg = 2 case is that the ‘one-gap picture’ associated
with the differential operatorHnr(2) (1.1) admits a rather complete generalization to our
analytic difference operatorHrel(2) (1.2). (The ‘band problem’ was not addressed in I, since the
constraint system for the general case only yields explicit information concerning eigenvalues
and eigenfunctions in the unbounded spectral interval.)

Last but not least, the surprisingduality properties of the eigenfunctions can be more
readily understood forg = 2. More precisely, these properties emerge in the hyperbolic,
trigonometric and rational regimes. Thus far, no useful elliptic generalization of these
symmetries has been found. TheN = 2, g = 2 setting studied here might provide the
simplest starting point for a search.

Before sketching the organization of this paper, we summarize some notation, conventions
and operator pairs that play a crucial role below. First of all, we do not work with the Weierstrass
σ function occurring in (1.2), but rather with its close relative

s(r, a; z) ≡ σ
(
z; π

2r
,

ia

2

)
exp(−ηz2r/π). (1.5)
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(Compare with Whittaker and Watson [6] for the elliptic notation and results used here and
below.) Various salient features ofs(z) can be read off from the two product representations:

s(r, a; z) = exp(−rz2/a)
sh(πz/a)

π/a

∞∏
k=1

(1− exp[−2π2k/ar + 2πz/a])(z→−z)
(1− exp[−2π2k/ar])2

(1.6)

s(r, a; z) = sin(rz)

r

∞∏
k=1

(1− exp[−2kar + 2irz])(z→−z)
(1− exp[−2kar])2

. (1.7)

In particular, one reads off thats(z) is an entire odd function with simple zeros in the
elliptic lattice pointsZπ/r + iZa. Moreover, it is clear from these formulae that one has the
limiting relations

lim
r→0

s(r, a; z) = sh πz/a

π/a
(uniformly on compacts) (1.8)

lim
a→∞ s(r, a; z) =

sinrz

r
(uniformly on compacts). (1.9)

(These limits enable us to pass from the elliptic to the hyperbolic and trigonometric levels
without the need for renormalizations.) Finally, from (1.7) one sees thats(z) is π/r-
antiperiodic, and from (1.6) one infers thats(z)obeys the analytic difference equation (hereafter
abbreviated to A1E)

s(z + ia/2)

s(z− ia/2)
= −exp(−2irz). (1.10)

The iterated version of this A1E, viz.,
s(r, a; z + iLa)

s(r, a; z) = (−)L exp(arL2 − 2irLz) L ∈ Z (1.11)

will frequently be used below.
Though this is not necessary for some of our results, we assume from now on that the

numbersr anda satisfyr ∈ [0,∞), a ∈ (0,∞]. Similarly, we takeβ ∈ (0,∞). With these
conventions in force, our starting-point elliptic Hamiltonian

H− ≡ exp(−2βr)

(
s(x − 2iβ)

s(x)

)1/2

Tiβ

(
s(x + 2iβ)

s(x)

)1/2

+ (i →−i) (1.12)

and its various specializations are formally self-adjoint.
In view of (1.5), the HamiltonianH− is a positive multiple ofHrel(2) (1.2). The prefactor

chosen inH− and in the second Hamiltonian

H+ ≡ exp(2βr − 2ar)(Tia + T−ia) (1.13)

guarantees certain invariance properties that will emerge below. These A1Os are theg = 2
(more precisely,b = 2a+) specializations of the commuting A1O pairHδ I(1.12). (Recall
that we prefix equations from our previous papers [1] and [2] by I and II, respectively; the
parametersa−, a+ employed there equal the parametersa, β of the present paper.) TheH−-
eigenfunctions studied below are in factH+-eigenfunctions as well, and it is this extra property
that singles them out from the infinite number of linearly independentH−-eigenfunctions. (We
return to this crucial uniqueness property in the main text, see the end of subsection 2.1.)

We proceed by introducing the auxiliary weight function

ŵ(x) ≡ 1/s(x + iβ)s(x − iβ) (1.14)

and the auxiliary A1Os

Bδ ≡ ŵ(x)−1/2Hδ ŵ(x)
1/2 δ = +,−. (1.15)
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Thus we obtain (using (1.11) withL = 1)

B− = e−2βr s(x + iβ)

s(x)
Tiβ + (i →−i) (1.16)

B+ = −e2βr−3ar (e−2irxTia + (i →−i)). (1.17)

Note thatB− andB+ may be viewed as commuting operators on the space of meromorphic
functions. Below, we exhibit meromorphic (in fact, entire) jointBδ-eigenfunctionsH(±x),
giving rise to jointHδ-eigenfunctionsŵ(x)1/2H(±x).

We mention at the outset that there exists one representation of the eigenfunctions and
their specializations that is common to all cases considered: we always have

H(x) = s(x + z)ex6 (1.18)

wherez and6 are complex numbers, related in general via a transcendental constraint. As
will become clear, this structure is deceptively simple, inasmuch as in several instances a
considerable effort appears inevitable in arriving at the desired results. In particular, the
duality features to be uncovered in the hyperbolic, trigonometric and rational cases are very
far from obvious when the representation (1.18) is employed.

We continue by sketching the plan of the paper and some of its results. Section 2 is
concerned with the elliptic caser ∈ (0,∞), a ∈ (0,∞), section 3 with the hyperbolic case
r = 0, a ∈ (0,∞), section 4 with the trigonometric caser ∈ (0,∞), a = ∞, and section 5
with the rational caser = 0, a = ∞. In section 6 we study the non-relativistic limitβ ↓ 0.
We have isolated various distinct features of the elliptic eigenfunctions in several subsections.

Subsection 2.1 deals with algebraic (as opposed to functional-analytic/quantum-
mechanical) aspects of the pertinent joint eigenfunctions. The choices

2β ∈ aN∗ (1.19)

give rise to an A1O H− (1.12) withx-independent coefficients (just asH+), so they can be
quite easily handled. For theβ-intervals

2β ∈ a(k, k + 1) k ∈ N (1.20)

we view (1.18) as an ansatz for aB−-eigenfunction, which yields the constraint

s(z− iβ)

s(z + iβ)
= e2iβ6. (1.21)

We study this constraint in considerable detail, establishing in particular that some
properties of the eigenfunctions and associated eigenvalues depend on the choice of interval
(1.20). We also analyse the limits asβ approaches the upper and lower boundary points. As
it turns out, the limitsβ ↑ Ma andβ ↓ Ma,M ∈ N∗, do not coincide, which reveals that a
continuous interpolation to arbitraryβ ∈ (0,∞) does not exist without further restrictions. (To
understand why such interpolation ambiguities may occura priori, it is crucial to be aware of
the occurrence of infinite-dimensional joint eigenspaces wheneverβ/a is a rational number.)

Subsection 2.2 is devoted to orthogonality properties of the odd linear combination
H(x) − H(−x) for suitably discretized6, z ∈ i(0,∞). Here, orthogonality refers to the
Hilbert space

Hŵ ≡ L2((0, π/r), ŵ(x) dx). (1.22)

Not surprisingly, the ‘free’ cases (1.19) are easily seen to give rise to orthogonal bases forHŵ,
but orthogonality is violated in the strongest possible way whenβ satisfies (1.20) withk > 1.
We demonstrate orthogonality fork = 0, 1, but we have no proof that the pertinent functions
are complete inHŵ. (We conjecture that this is the case.)



Relativistic Laḿe functions: the special caseg = 2 1741

A highlight of this paper is subsection 2.3, where we show how the Lieb–Liniger
delta-function eigenfunctions emerge by fixingc > 0 (the repulsive delta-function coupling
constant), choosing

β(c, a) ≡ a − a2c/π (1.23)

and lettinga ↓ 0. (Thusβ converges to the upper limit of thek = 1 interval (1.20).) As
will be seen, the constraint (1.21) gives rise to the Bethe ansatz constraint occurring for the
(finite-volume,N = 2) delta-function eigenfunctions [5].

Of course, the obvious conjecture is that the relation will continue to hold forN > 2. In
the absence of suitable results on the elliptic relativisticN > 2 case, this conjecture cannot
be tested, however. On the other hand, it may point the way towards finding at least the
g = 2 elliptic relativisticN > 2 eigenfunctions. In particular, one may expect that the Bethe
ansatz equations from [5] are mirrored in more general constraint equations for the elliptic
eigenfunctions. This scenario is also plausible in view of theN > 2 results on the elliptic
non-relativisticintegerg eigenfunctions obtained by Dittrich and Inozemtsev [7, 8], and by
Felder and Varchenko [9, 10].

In subsection 2.4 we go a long way towards extending the ‘one-gap picture’ associated
with Hnr(2) (1.1) to our relativistic generalizationHrel(2) (1.2). To put the results in context,
let us begin by recalling that the orthogonality results obtained in subsection 2.2 have a bearing
on the problem of turning the A1OsHδ into bona fideself-adjoint operators on the Hilbert
space

H ≡ L2((0, π/r),dx). (1.24)

Taking the ordinary differential operatorHnr(2) as a paradigm, this re-interpretation consists
in viewing Hnr(2) as an operator that is essentially self-adjoint on the dense subspace
C∞0 ((0, π/r)) of H. But this is not the only way to associate self-adjoint operators onH
toHnr(2): we may shiftx over ia/2, so as to obtain a Schrödinger operator with a real-analytic
π/r-periodic potential 2℘(x + ia/2). This leads in a well known way to the consideration of
Floquet/Bloch eigenfunctions, whoseπ/r-multipliers exp(iθ), θ ∈ (−π, π ], may be fixed to
obtain orthogonal bases forH, see, e.g., [11, section XIII.16]. In this case one is dealing with
a one-gap potential (and actually with essentially the only one having this property).

In subsection 2.4 we similarly shift theHδ-eigenfunctions with6, z ∈ i(0,∞) over
ia/2 and fix theirπ/r-multiplier exp(iθ). Then the first question to answer is whether these
functions are once more orthogonal inH. We prove that forβ ∈ (0, a/2) each pertinent
pair of eigenfunctionsis orthogonal, whereas forβ satisfying (1.20) withk > 0 it is non-
orthogonal. Moreover, there exists a unique extra eigenfunction with6 ∈ i(−r, r] and
z − π/2r ∈ i(−a/2, a/2], which has the relevant multiplier and real eigenvaluesE−, E+

in spectral bands. The additional eigenfunction also belongs toH, and it is orthogonal to all of
the previous eigenfunctions forβ ∈ (0, a/2). Just as in subsection 2.2, we cannot prove that
the pertinent eigenfunctions arecompletein H, but we do expect that this is true. (ForHnr(2)
completeness follows from Floquet theory, cf [11], but no such theory exists for A1Os with
periodic coefficients at the present time. Conceivably, the ‘finite-gap integration’ picture of
the integerg eigenfunctions can be used to shed light on this issue, cf the paper by Krichever
and Zabrodin [12] where this picture is expounded.)

In section 3 we study the hyperbolic (r = 0) specialization. At face value, the parameters
z and6 in the constraint (1.21) still seem to be on a quite different footing whens(x) is
replaced by sh(πx/a). But in fact the hyperbolic constraint is essentially (i.e., up to scaling)
symmetric under interchange ofz and6. This property quickly leads to the main novel feature
of the hyperbolic regime (as compared with the elliptic regime): the (suitably renormalized)
eigenfunctions aresymmetricunder interchange ofx and a spectral variablep. Moreover,
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theBδ-eigenvalues take the quite simple form 2 ch(πp/a) and 2 ch(πp/β) for δ = − and +,
respectively. (As suggested by the latter result, the hyperbolic regime is also symmetric under
a ↔ β—a property that does remain intact for the elliptic generalization, see our previous
papers I and II. Since we are fixingg, the latter symmetry is not visible in the present paper,
however.)

Physically speaking, the shiftx → x + ia/2 in the hyperbolic setting amounts to changing
one of the two particles into an antiparticle: the repulsive interaction turns into an attractive one.
The band eigenfunctions from subsection 2.4 all converge to the unique particle–antiparticle
bound state occurring forg = 2. It is an amazing fact that the repulsive (Bose) delta-function
potential eigenfunctions on the line can be obtained not only as a scaling limit of the particle-
particle eigenfunctions (this amounts to the specialization of subsection 2.3), but also in two
distinct ways from the particle–antiparticle eigenfunctions. This state of affairs is detailed at
the end of section 3.

The trigonometric (a = ∞) specialization studied in section 4 leads in particular to
orthogonal polynomials that are basicallyq-Gegenbauer polynomials, cf II. This regime
is related by analytic continuation to the hyperbolic one, so that duality properties can be
easily obtained from thex ↔ p symmetry of the latter regime. In particular, the three-term
recurrence of the polynomials may be viewed as a consequence of the fact that the trigonometric
eigenfunctions are also eigenfunctions of an A1O acting on the spectral variable.

Section 5 contains the specialization to the rational caser = 0, a = ∞. The
duality property now consists in the pertinent eigenfunctions being also eigenfunctions of
the Schr̈odinger operatorHnr(2) (1.1), acting on the spectral variable and with℘(x) replaced
by β2/ sh2(βx). This result can also be obtained from a consideration of the non-relativistic
limit, the subject of section 6.

Section 6 gives rise to operators and eigenfunctions that have been known and studied
for a very long time. Nevertheless, the novel perspective on these quantities provided by their
generalizations in sections 2–4 is illuminating, and accordingly we spell out the relevantβ ↓ 0
limits in some detail.

2. The elliptic case

2.1. Eigenfunctions: algebraic aspects

It is readily verified that a functionH(x) of the form (1.18) is an eigenfunction of the A1OB+

(1.17), irrespective of the choice ofβ, z and6. Indeed, it follows from thes-A1E (1.11) that
H(x) is an eigenfunction ofeachof the two (commuting) summands ofB+. (TakeL = −1
andL = 1 in (1.11), respectively.) By the same token, for the specialβ-values

β = Ma M ∈ N∗ (2.1)

all functions of the form (1.18) areB−-eigenfunctions (withB− given by (1.16)).
For theβ-values

β = (M + 1/2)a M ∈ N (2.2)

this is no longer true, however. Nevertheless, they are also easily understood. (Note that
just as for theβ-values (2.1) the HamiltonianH− (1.12) amounts to an A1O with constant
coefficients.) In view of (1.14), an obvious choice to obtain joint eigenfunctions of the form
(1.18) is to takez = iβ and6 ∈ C. But this is not the only choice: using (1.11), one sees that

z = π/2r + iγ 6 = 2irγ /a (2.3)

yields a joint eigenfunction, too. (Thez-parametrization used here may seem strange, but it
will be convenient shortly.)
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Let us next require thatβ belong to one of theβ-intervals (1.20). (This amounts to choosing
parameters in the setD of I, see I(3.33)–I(3.35).) Consider now the quotient(B−H)(x)/H(x).
It reads

e−2βr

s(x)s(x + z)

(
s(x + iβ)s(x − iβ + z)e−iβ6 + (i →−i)

) ≡ E(x). (2.4)

Clearly, the functionE(x) is notx-independent in general. However, it is elliptic with
periodsπ/r, ia, so it reduces to a constant whenever it has no poles. Choosingz not congruent
to 0 (modulo the period lattice), each of the two terms has simple poles atx ≡ 0 andx ≡ −z.
But the residues can be made to cancel by imposing the constraint (1.21): whenever it is
fulfilled, we obtain a jointBδ-eigenfunction.

As a matter of fact, it is expedient to write6 as

6 = 2ir + iy (2.5)

and work with the spectral parametery. Accordingly, we introduce the joint eigenfunctions

H(x) = s(x + z)e2irx+ixy (2.6)

wherez andy are related by

s(z− iβ)

s(z + iβ)
= e−4βr−2βy. (2.7)

Since we may takex = iβ in (2.4), the associatedBδ-eigenvalues can now be written

E− = s(2iβ)

s(iβ)

s(z)

s(z + iβ)
eβy (2.8)

E+ = e2βr(e2izr+ay + e−2izr−4ar−ay). (2.9)

Next, we observe that equations (2.7)–(2.9) are invariant under the transformation group
generated by

z, y → z + ia, y + 2r (2.10)

z, y →−z,−y − 4r (2.11)

z, y → z + π/r, y. (2.12)

Clearly,H(x) (2.6) transforms as

H(x)→−exp(ar − 2izr)H(x) (2.13)

H(x)→−H(−x) (2.14)

H(x)→−H(x) (2.15)

under (2.10)–(2.12), respectively. Now we are primarily interested in realy, since this gives
rise to real eigenvalues and turns out to suffice for the Hilbert space aspects dealt with in
subsections 2.2–2.4. As we shall now detail, for any realy there are always (at least) two
linearly independent joint eigenfunctionsH(x) (2.6), corresponding to choices ofz that are
incongruent (modulo the period lattice).

The first case arises by choosingz ∈ π/2r +iR satisfying (2.7). (The corresponding ‘band
eigenfunctions’ play no role in subsections 2.2 and 2.3, but they are crucial in subsection 2.4.)
More generally, we assert that for a giveny ∈ R andall β > 0 a numberz of the form
π/2r + iγ, γ ∈ R, exists such that the constraint (2.7) holds; we assert in addition that such a
solution is uniquely determined.
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In order to prove this, we begin by noting that the product representation (1.7) entails

s(r, a;π/2r + iλ) = ch(rλ)

r

∞∏
k=1

1 + exp(−4kar) + 2 exp(−2kar) ch(2rλ)

(1− exp(−2kar))2
. (2.16)

From this we read off first of all that the right-hand side is an even function ofλ, which is
positive for realλ. To exploit this, we choosez = π/2r + iγ, γ ∈ R, in the constraint (2.7).
Then the left-hand side is positive, so we obtain a uniquely determinedy = f (γ ) ∈ R. Now
for 2β/a integer we can use (1.11) to deduce

f (γ ) = 2r(γ /a − 1) β = ka/2 k ∈ N∗. (2.17)

(Note this amounts to (2.3) fork odd.) Thus, for these specialβ-valuesf : R → R is
monotonically increasing and ontoR.

More generally, from (2.16) one readily infers that for allβ > 0 the function

mβ : R→ (0,∞) γ 7→ s(π/2r + iγ − iβ)/s(π/2r + iγ + iβ) (2.18)

is monotonically decreasing. (Consider∂γ lnmβ(γ ) to verify this.) Therefore, the function
f (γ ) is monotonically increasing, and in view of (2.10) it mapsR ontoR. Hencef (γ ) has
a single-valued real-analytic inverseγ (y) mappingR ontoR for all β > 0, and so the above
existence and uniqueness assertions follow.

Next, we observe that the transformation property (2.13) entails that we may as well
restrict attention toγ ∈ [−a/2, a/2], with the endpoints giving rise to the same functionH(x)
(2.6). Clearly, we have

f (−a/2) = −3r f (0) = −2r f (a/2) = −r (2.19)

so thaty varies over [−3r,−r]. Accordingly, we define the joint eigenfunctions

Hb(x, y) = s(x + π/2r + iγ (y))e2irx+ixy y ∈ [−3r,−r]. (2.20)

(Here, the superscriptb stands for ‘band’, cf subsection 2.4.) For later use we record the
β-independent functions

H1(x) ≡ Hb(x,−2r) = s(x + π/2r) (2.21)

H2(x) ≡ Hb(x,−3r) = Hb(x,−r) = s(x + π/2r + ia/2)eirx (2.22)

which correspond to (2.19).
We postpone a study of the eigenvaluesE− (2.8) andE+ (2.9) associated withHb(x, y)

(2.20) to subsection 2.4, and proceed with the second case: it arises by taking suitable
z ∈ i(0,∞). This choice is not as easily understood as the ‘band choice’z ∈ π/2r + iR
just treated. It will occupy us for the remainder of this subsection.

Let us begin by insisting once again on theβ-restriction (1.20). It entails that for realy
near∞ the constraint (2.7) can be solved by a uniquez(y) near iβ, located on the imaginary
axis above/below iβ for k even/odd. (Observe that forx ∈ iR the functions(r, a; x)/ sh(πx/a)
is positive, cf equation (1.6).) The question now arises whetherz(y) extends to a single-valued
real-analytic solution for arbitraryy ∈ R.

As will become clear shortly, this is a quite delicate matter, which depends on the choice
of β-interval. In our previous paper I, we restrictedy to an interval(K,∞), withK satisfying
a number of restrictions, including real-analyticity ofz(y) on (K,∞). Thus we could view
H(x) (2.6) (and itsg 6= 2 generalizations) as a well-defined real-analytic functionH(x, y)
on (K,∞). Here, we shall analyse the more general choicey ∈ R, indicating once more the
y-dependence explicitly. As will transpire, however, this may give rise to multi-valuedness
both forH(x, y) and forEδ(y). (This feature depends on the choice ofβ.)
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We are also aiming to clarify what happens with the eigenfunctions and eigenvalues
as β converges to the endpoints of the intervals (1.20). The obvious choice of jointBδ-
eigenfunctionsH(x, y) for these endpoints reads

H(x, y) ≡ s(x + iβ)e2irx+ixy 2β ∈ aN∗ (2.23)

cf the beginning of this section. (This choice is not only natural for continuity reasons, but also
for quantum-mechanical purposes, cf subsection 2.2.) Using the A1E (1.11), the associated
eigenvaluesEδ(y) are readily determined. (Note that the right-hand side of (2.8) is ill defined
for 2β/a integer andz = iβ.)

Returning toβ-values in the intervals (1.20), we begin our analysis by studying the function

y(z) = −2r − 1

2β
ln

(
s(z− iβ)

s(z + iβ)

)
(2.24)

resulting from (2.7). Takingk even and lettingz ascend the imaginary axis from iβ to
i(k + 1)a − iβ, we read off thaty(z) varies from∞ to−∞; halfway thez-interval we obtain

y(i(k + 1)a/2) = −r + kr (k even). (2.25)

Similarly, takingk odd and lettingz descend the imaginary axis from iβ to ika − iβ, the
functiony(z) varies from∞ to−∞, with

y(ika/2) = −2r + kr (k odd). (2.26)

For later use we note that both (2.25) and (2.26) yield a joint eigenfunction proportional to

H3(x) ≡ s(x + ia/2)eirx . (2.27)

Writing the eigenvalues (2.8)–(2.9) in the more informative form

E− = (−)k is(2iβ)

s(iβ)2
e−2βr

(
1

℘(z)− ℘(iβ)
)1/2

(2.28)

E+ = 2e2βr−2ar ch(2izr + ay(z) + 2ar) (2.29)

we read off invariance underz → −z + i(k + 1)a for k even andz → −z + ika for k odd.
At the symmetry points (2.25)/(2.26) the functionsH(x, y(z)) andH(−x, y(z)) are no longer
linearly independent, whereas they are independent otherwise. (This follows by inspection of
zeros.) Thus we may and will restrict attention toz varying over the open intervals

Ik ≡ i(β, (k + 1)a/2) k even (2.30)

Ik ≡ i(ka/2, β) k odd (2.31)

cf also the paragraph containing (2.10).
From (2.28) we now read off thatE− decreases monotonically from∞ to a minimum

value whenz goes from iβ to the other endpoint ofIk. But from (2.29) this conclusion cannot
be drawn; it is only evident thatE+ increases to∞ asz goes to iβ and that the ch argument
vanishes at the other endpoint (2.25)/(2.26). To establish whetherE+ is monotonic onIk, too,
we clearly need more information ony(z).

As it turns out, the behaviour ofy(z) depends onk, and the resulting case by case analysis
on which we now embark will also enable us to derive information on the inverse function
z(y) and on the state of affairs for the limitingβ-valuesa/2, a,3a/2, . . ., cf equation (1.20).
Taking firstk = 0, the interval betweenz− iβ andz + iβ is a subset of i(0, a). Using (1.5) we
infer

∂2
z ln(s(z)) = −℘(z)− 2ηr/π (2.32)
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so we may write

−2βy ′(z) = s ′(z− iβ)

s(z− iβ)
− s

′(z + iβ)

s(z + iβ)
=
∫ z−iβ

z+iβ
dt (−℘(t)− 2ηr/π) (k = 0). (2.33)

Now for t ∈ i(0, a) the integrand has a minimum att = ia/2, and via the product representation
(1.6) one can obtain the identity

−℘
( ia

2
; π

2r
,

ia

2

)
− 2ηr

π
= 4r2

∞∑
n=1

n

shnar
. (2.34)

(Compare with, e.g., [13, equations (2.93)–(2.98)] for details.) Therefore, the integrand is
positive, and soy ′(z) does not vanish forz between iβ and ia − iβ.

As a consequence, bothy(z) and iz decrease asz goes from iβ to ia/2, so thatE+ (2.29)
is monotonic onI0. Moreover, the inverse functionz(y) is well defined and real-analytic for
realy.

Now for theg = 2 case at issue, the parameterK used in our previous paper I may
be defined as the smallest number for which three requirements hold true: (i) the function
z(y) is real-analytic on(K,∞); (ii) the eigenvaluesEδ(y) separate points on(K,∞);
(iii) the functionsH(x, y) andH(−x, y) are linearly independent on(K,∞). Now linear
independence holds true fory > −r, but not fory = −r (cf the paragraph containing (2.10));
also, as we have just seen, the eigenvaluesEδ(y) are monotonic on(−r,∞). Thus we have

K = −r β ∈ (0, a/2). (2.35)

Next, we choosek = 1 in (1.20). Forz ∈ I1 (2.31) we now havez − iβ ∈ i(−a, 0) and
z + iβ ∈ i(a, 2a), so that (2.33) can no longer be used. But from (1.10) we deduce

s ′(z + ia/2)

s(z + ia/2)
− s

′(z− ia/2)

s(z− ia/2)
= −2ir (2.36)

so we may write

−2βy ′(z) =
∫ z−iβ

z+iβ−2ia
dt (−℘(t)− 2ηr/π) + 4ir (k = 1). (2.37)

In view of (2.34), the integral yields a number in i(0,∞), so thaty ′(z) 6= 0 for z between iβ
and ia − iβ. Thus,z(y) is well defined and real-analytic onR, and so we have

K = −r β ∈ (a/2, a). (2.38)

In this case, however,y(z) decreases and iz increases asz goes from iβ to ia/2, so that it is
not clear from (2.29) whetherE+ is monotonic onI1.

This is actually true, however. Indeed, using (2.37) the pertinent derivative can be written

2ir + ay ′(z) = − a

2β

∫ z−iβ

z+iβ−2ia
dt (−℘(t)− 2ηr/π) + [2ir − 2iar/β] (k = 1). (2.39)

Sinceβ ∈ (a/2, a), the term in square brackets yields a number in i(−∞, 0), just as the first
term on the right-hand side. Thus the derivative is non-zero, soE+ decreases asz goes from
iβ to ia/2.

Next, we determine what happens whenβ converges to the excluded valuesa/2 anda.
Fixing y ∈ R and lettingβ → a/2, it is clear from the above thatz(y)→ ia/2. The resulting
limit functions

H(a/2; x, y) = s(x + ia/2)e2irx+ixy y ∈ R (2.40)
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coincide with the functions (2.23) forβ = a/2. They are obviously joint eigenfunctions of
B− andB+ with eigenvalues

E− = 2e−ar/2 ch(a(y + r)/2) E+ = 2e−ar cha(y + r). (2.41)

Note also that

B+ = B2
− − 2e−ar β = a/2. (2.42)

We now fixy ∈ [0,∞) and letβ ↑ a. Then we deduce from (2.7) thatz(y) converges to
ia. The limit functions

H(a; x, y) = s(x + ia)e2irx+ixy y ∈ [0,∞) (2.43)

coincide with (2.23) forβ = a and yield eigenvalues

E− = E+ = 2 chay y ∈ [0,∞) (2.44)

in agreement with

B− = B+ = −e−ar (e−2irxTia + (i →−i)) β = a. (2.45)

Next, we fixy ∈ (−∞,−2r], yielding z(y) ↓ 0 for β ↑ a. Hence we get limit functions

H(a; x, y) = s(x)e2irx+ixy y ∈ (−∞,−2r] (2.46)

which aredifferentfrom (2.23), with eigenvalue

E− = E+ = 2 cha(y + 2r) y ∈ (−∞,−2r]. (2.47)

Finally, equation (2.7) entails

y ∈ (−2r, 0), β ↑ a ⇒ z→ ia + iay/2r (2.48)

yielding limit functions

H(a; x, y) = s(x + ia + iay/2r)e2irx+ixy y ∈ (−2r, 0) (2.49)

with eigenvalue

E− = E+ = 2 y ∈ (−2r, 0). (2.50)

After this study of theβ-interval (0, a], we continue by choosingβ ∈ (a, 3a/2).
Proceeding as before (cf equation (2.37)), we once again obtain

−2βy ′(z) =
∫ z−iβ

z+iβ−2ia
dt (−℘(t)− 2ηr/π) + 4ir (k = 2). (2.51)

But now the integral yields a number in i(−∞, 0), which can be made as small as we please
by choosingβ close toa and z near 3ia/2. On the other hand, thez-derivative of the
right-hand side is positive onI2 (2.30), so we deduce thaty ′(z) has a unique zeroz0 in
I2, providedβ is sufficiently close toa. Accordingly, the functiony(z) decreases from∞ to
y(z0) = r − d0, d0 > 0, and then increases tor asz ascends the imaginary axis from iβ to
3ia/2.

As a consequence, the inverse functionz(y) extends to a real-analytic monotonic function
on (r − d0,∞). More generally, it continues to amulti-valuedfunction onR, namely, triple-
valued fory ∈ (r − d0, r + d0), double-valued for the turning pointsr ± d0, single-valued
otherwise. Now linear independence ofH(x, y) andH(−x, y) for y ∈ (r − d0,∞) is readily
checked (from a comparison of zeros), so we have

K = r − d0 β ∈ (a, 3a/2). (2.52)



1748 S N M Ruijsenaars

Takingβ ↓ a, one readily obtainsd0→ r and three overlappingy-intervals with limits

y ∈ [0,∞) : H1(x, y) = s(x + ia)e2irx+ixy E+ = E− = 2 chay (2.53)

y ∈ (0, 2r) : H2(x, y) = s(x + ia + iay/2r)e2irx+ixy E+ = E− = 2 (2.54)

y ∈ (−∞, 2r] : H3(x, y) = s(x + 2ia)e2irx+ixy E+ = E− = 2 cha(y − 2r). (2.55)

These limits should be compared with theβ ↑ a limits (2.43)–(2.50). Specifically, it should
be noted that the functionH(a; x, y) equalsH1(x, y) (2.53) for y ∈ [0,∞), whereas for
y ∈ (−2r, 0) andy ∈ (−∞,−2r] it equals a multiple ofH2(x, y + 2r) andH3(x, y + 4r),
respectively.

Taking nextβ sufficiently close to 3a/2, it is clear from (2.51) that no zeros occur. Thus
the functionz(y) is a (single-valued) real-analytic function onR, and we deduce

d0 = 0 β ∈ [β0, 3a/2) β0 ∈ (a, 3a/2). (2.56)

The derivative (2.39) is easily seen to be non-zero forall β ∈ (a, 3a/2), so thatE+ (2.29)
is monotonic onI2, just asE− (2.28). Notingz(y) → 3ia/2 asβ ↑ 3a/2, we obtain limit
functions

H(3a/2; x, y) = s(x + 3ia/2)e2irx+ixy y ∈ R (2.57)

coinciding with (2.23) forβ = 3a/2, with eigenvalues

E− = 2e3ar/2 ch(3a(y − r)/2) E+ = 2ear cha(y − r). (2.58)

Proceeding with the choiceβ ∈ (3a/2, 2a), we obtain z − iβ ∈ ia(−1, 0) and
z + iβ ∈ ia(3, 4), so we have

−2βy ′(z) =
∫ z−iβ

z+iβ−4ia
dt (−℘(t)− 2ηr/π) + 6ir (k = 3). (2.59)

Thus y ′(z) is non-zero onI3 (2.31) andz(y) is well defined and real-analytic onR.
Correspondingly, we obtain

K = r β ∈ (3a/2, 2a). (2.60)

In contrast to previous cases,E+ is readily seennot to be monotonic onI3 whenβ is close to
2a. (The derivative 2ir + ay ′(z) changes sign nearz = 3ia/2.)

Fixing y ∈ R, we now letβ ↑ 2a. Then we obtain limit functions

H(2a; x, y) = e2irx+ixy ·

s(x + 2ia) y ∈ [2r,∞)
s(x + ia + iay/2r) y ∈ (0, 2r)
s(x + ia) y ∈ (−∞, 0]

(2.61)

with eigenvalues

E− = 2e4ar ·


ch 2a(y − 2r) y ∈ [2r,∞)
1 y ∈ (0, 2r)
ch 2ay y ∈ (−∞, 0]

(2.62)

E+ = 2e2ar ·


cha(y − 2r) y ∈ [2r,∞)
1 y ∈ (0, 2r)
chay y ∈ (−∞, 0].

(2.63)

It will be clear by now how this analysis can be extended toβ ∈ (2a,∞), so we omit
further details. In particular, defining

BM ≡ a(M,M + 1/2) ∪ a(M + 1/2,M + 1) M ∈ N (2.64)
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and fixingβ ∈ BM , one readily deduces thatz(y) extends to a monotonic real-analytic function
on ((2M − 1)r,∞), entailing

K 6 (2M − 1)r β ∈ BM. (2.65)

This information suffices for the orthogonality analysis on which we embark shortly.
Before doing so, we conclude this subsection by commenting on the ambiguities revealed

above. They show by example that there exists no jointBδ-eigenfunctionH(x, y) that is
single-valued and real-analytic for allβ > 0 andy ∈ R. (By contrast, for the hyperbolic case
such functions do exist, cf section 3.)

In this connection it is important to recall the uniqueness result obtained in appendix B
of I. It says that forβ/a irrational andy ∈ (L,∞) (with L > K), the jointBδ-eigenspace
corresponding to eigenvaluesEδ(y) is spanned by the functionsH(x, y) andH(−x, y). (Here,
the A1OsBδ are viewed as operators on the space of meromorphic functions.) Since such
β-values are dense, continuous interpolations are uniquely determined.

2.2. Eigenfunctions: orthogonality for realx

In this subsection we study the orthogonality properties of suitable linear combinations of the
joint Hδ-eigenfunctions

F(±x, y) ≡ ŵ(x)1/2H(±x, y) x ∈ (0, π/r) y ∈ R (2.66)

in the Hilbert spaceH (1.24). Here, we take the positive square root, so we may as well work
with H(±x, y) and the Hilbert spaceHŵ (1.22).

First of all, it should be emphasized that we need no restriction ony to ensure square-
integrability. Indeed, forβ satisfying (1.20) the functionsF(±x, y) clearly extend to real-
analytic functions onR; for theβ-values (1.19) one readily verifies (using equations (2.23),
(1.14) and (1.11)) that

F(x, y) = ik exp ix(y + 2r − k) x ∈ (0, π/r) y ∈ R β = ka/2 k ∈ N∗ (2.67)

so square-integrability is plain, too.
Since the A1OsHδ are formally self-adjoint, with real eigenvalues on the functions

F(±x, y), one might be inclined to expect that the standard boundary conditions giving rise
to orthogonal bases for the free cases (2.67) will also give rise to orthogonal bases whenβ

satisfies (1.20). As we will see, this expectation is not borne out by the facts, however.
Taking the differential operatorHnr(2) (1.1) as a lead, we recall it is already essentially self-

adjoint onC∞0 ((0, π/r)); its eigenfunctions are genericallynotsquare-integrable over(0, π/r)
and one must restrict attention to linear combinations that vanish atx = 0 and atx = π/r

(Dirichlet conditions). But the well-developed self-adjointness theory for differential operators
has no analog for analytic difference operators, and so we opt for a pragmatic approach: we
impose Dirichlet conditions in the relativistic case, too, and prove that orthogonality holds true
for k = 0, 1 in (1.20), and that it breaks down fork > 1. At the end of this subsection we
briefly return to other boundary conditions.

Correspondingly, our principal aim in this subsection is to investigate orthogonality
properties of the functions

ψn(x) = s(x + zn)e
i(n+2)rx + s(x − zn)e−i(n+2)rx zn ≡ z(nr) (2.68)

where we take

β ∈ BM n ∈ N n > 2M (2.69)

(so thatzn is a well-defined number between iβ and i(M + 1/2)a, cf equation (2.65)), in the
Hilbert spaceHŵ (1.22).
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To begin with, we read off from (2.68) that we have

ψn(π/r − x) = (−)nψn(x) (2.70)

whereasŵ(x) is clearly invariant underx → π/r − x. Thus we deduce that the inner product

(ψn, ψm) =
∫ π/r

0

ψn(x)ψm(x)

s(x + iβ)s(x − iβ)
dx (2.71)

vanishes whenn−m is odd, independently of the choice ofβ.
More generally, we are going to prove

(ψn, ψm) = 0 β ∈ B0 n > m > 0 (2.72)

whereas

(ψn, ψm) 6= 0 β ∈ BM M > 0 n > m > 2M n−m even. (2.73)

We establish these results by direct calculation (as opposed to our arguments in section 4 of I,
where we exploited the eigenfunction property).

To prove (2.72), we need to calculate the integral

Il(b, c, d) ≡
∫ π/r

0
dx

s(x + c)s(x − d)
s(x + ib)s(x − ib)

e2ilrx l ∈ Z c, d ∈ C (2.74)

with b ∈ B0. Denoting the integrand byF(x), one easily checksF(x + ia) = µF(x), where
the multiplier reads

µ ≡ exp(−2ir[c − d − ila]). (2.75)

Moreover,F(x) is π/r-periodic, so we can evaluate the integral via an elementary contour
integration. This yields

Il(b, c, d) = 2iπ

s(2ib)

1

(1− µ)
[
s(ib + c)s(ib − d)e−2lbr

−µs(ib − c)s(ib + d)e2lbr
]

b ∈ B0 (2.76)

forµ 6= 1, whereas forµ = 1 one obtains theµ→ 1 limit of the right-hand side. (Note the term
in square brackets vanishes whenµ (2.75) equals 1, as should be the case, of course. Observe
also that (2.74) is manifestly invariant underb → −b, whereas the (analytic continuation of
the) right-hand side of (2.76) is not an even function ofb.)

Since (2.72) holds true forn−m odd, we fix a pairn 6= m with n−m even. Then, using
(2.71), (2.68) and (2.74), we obtain

(ψn, ψm) = 2(I(m−n)/2(β, zm, zn) + I2+(m+n)/2(β, zm,−zn)). (2.77)

Substituting (2.76) and (2.75), and using

s(iβ − zj )/s(iβ + zj ) = −e−2(j+2)βr (2.78)

one now verifies the announced pairwise orthogonality (2.72).
Before turning to the proof of (2.73), we obtain an explicit norm formula forβ ∈ B0.

Indeed, takingl = 0 and lettingd → c in (2.76) and (2.75), one arrives at

I0(b, c, c) = π

rs(2ib)

[
2irs(ib − c)s(ib + c) + s(ib + c)s ′(ib − c)

+ s(ib − c)s ′(ib + c)
]

b ∈ B0 (2.79)

and using this result one readily deduces

(ψn, ψn) = 2π

rs(2iβ)

[
s(iβ + zn)s

′(iβ − zn) + s(iβ − zn)s ′(iβ + zn)
]

β ∈ B0 n > 0.

(2.80)
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(Note this converges to 2π/r for n→∞.)
In order to prove (2.73), we first observe that the integral (2.74) withb ∈ BM is well

defined, and can be reduced to the caseM = 0 by exploiting (1.11). Specifically, a routine
calculation yields

Il(b, c, d) = 2iπ

s(2ib)

1

(1− µ)
(
µ−Ms(ib + c)s(ib − d)e−2lbr − µM+1s(ib − c)s(ib + d)e2lbr

)
(2.81)

whereb ∈ BM . (Note this entails that analytic continuation of (2.76) yields a wrong answer,
just as it does for negativeb.) Now (2.77) follows forM > 0, too, so we can invoke (2.81) to
obtain (also using (2.78))

(ψn, ψm) = 4iπ

s(2iβ)
s(iβ + zn)s(iβ + zm)e

−(n+m+4)βrDnm (2.82)

where

Dnm ≡ QM(t+)−QM(t−) t± ≡ i(zm ± zn)/a + (1 +m/2)± (1 +n/2) (2.83)

with

QM(t) ≡ sh((2M + 1)art)/ sh(art). (2.84)

It is not difficult to see that this implies (2.73). Indeed, it is straightforward to verify that
QM(t) is increasing on(0,∞), so the differenceDnm can only vanish whent+ equalst− or
−t−. This yieldszn = i(1 +n/2)a or zm = i(1 +m/2)a, respectively. But sincezj , j > 2M,
is a number between iβ and i(M + 1/2)a, it cannot equal i(1 + j/2)a, and so (2.73) follows.

Let us now consider the specialβ-valueska/2, k ∈ N∗. Choosingk = 1, we can use
(2.23) to obtain

ψn(a/2; x) = s(x + ia/2)ei(n+2)rx + s(x − ia/2)e−i(n+2)rx

= 2is(x + ia/2)eirx sin(n + 1)rx n ∈ N n > 0. (2.85)

Obviously, these functions give rise to an orthogonal base for the Hilbert space

H1/2 ≡ L2((0, π/r), ŵ1/2(x) dx) ŵ1/2(x) ≡ 1/s(x + ia/2)s(x − ia/2) (2.86)

cf equation (1.14).
Choosing nextβ = (M + 1/2)a,M ∈ N∗, the functionŵ(x) (1.14) reduces to a positive

multiple of ŵ1/2. Moreover, we have (cf equation (2.23))

ψn((M + 1/2)a; x) = s(x + i(M + 1/2)a)ei(n+2)rx + s(x − i(M + 1/2)a)e−i(n+2)rx

= cMψn−2M(a/2; x) n ∈ N n > 2M (2.87)

so that these functions yield an orthogonal base forH1/2 as well.
Similarly, the choicesβ = Ma yield orthogonal bases (cf equation (2.23))

ψn(Ma; x) = s(x + iMa)ei(n+2)rx + s(x − iMa)e−i(n+2)rx

= dMs(x) cos(n− 2M + 2)rx n ∈ N n > 2M − 2 (2.88)

for the Hilbert space

H0 ≡ L2((0, π/r), s(x)−2 dx). (2.89)

Of course, these special cases are easily understood in terms of the A1OsHδ (1.12)–
(1.13): they reduce to ‘free’ A1Os and the sine- and cosine-bases serve to define associated
self-adjoint operators on the Hilbert spaceH (1.24).

By contrast, it should be mentioned that the above orthogonality results forβ ∈ B0 do
not suffice to rigorously conclude that theHδ-eigenfunctionsŵ(x)1/2ψn(x) correspond to
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commuting self-adjoint operatorsHδ on H. This is because we have not proved that the
functions{ψn}∞n=0 arecompleteinHŵ. Note also that in view of our non-orthogonality results,
the formal self-adjointness of the A1OsHδ is quite misleading. For further information on
this circle of problems we refer to section 4 of I and to [4, subsection 4.1].

We conclude this subsection by ruling out orthogonality for other choices of boundary
conditions andall β satisfying (1.20). First, consider the even functions

en(x) ≡ ŵ(x)1/2[H(x, nr) +H(−x, nr)] (2.90)

with (2.69) in effect. (They correspond to Neumann conditions.) We have

en(π/r − x) = (−)n+1en(x) (2.91)

soen andem are orthogonal as vectors inH whenevern−m is odd. Forn−m even, however,
the above calculations are easily modified to yield

(en, em) = 4iπ

s(2iβ)
s(iβ + zn)s(iβ + zm)e

−(n+m+4)βr (−QM(t+)−QM(t−)) (2.92)

cf equations (2.82)–(2.84). Thus we conclude

(en, em) 6= 0 β ∈ BM M > 0 n > m > 2M n−m even. (2.93)

By contrast, forβ > 0 satisfying the complementary restriction (1.19), the vectorsen give
rise to orthogonal bases forH. (One need only modify (2.85)–(2.88) in an obvious fashion to
check this.) Likewise, we can construct orthogonal bases{F(x, y)} for H by taking ally in
the setrθ/π + 2rZ with θ ∈ (−π, π ], cf equation (2.67). Since we haveF(x, y) ∈ H for all
β > 0 andy ∈ R, and sinceHδ takes real eigenvalues onF(x, y), one might guess that the
same boundary conditions give rise to orthogonality at least forβ ∈ (0, a/2).

With the above integrals at our disposal, it is quite easy to see that this is not the case.
Indeed, forβ ∈ B0 (2.64) we may fixy ∈ R andl ∈ Z to obtain

(F(·, y),F(·, y + 2lr)) = Il(β, z(y + 2lr), z(y)). (2.94)

Now we have|z(y + 2lr)− z(y)| < a, so thatµ (2.75) is a positive number not equal to 1 for
l 6= 0. From (2.76) we then have

(F(·, y),F(·, y + 2lr)) = 2iπ

s(2iβ)

s(iβ + z(y + 2lr))s(iβ − z(y))
1− µ dl(y) l ∈ Z∗ (2.95)

dl(y) ≡ 1− µ exp(4lβr)
s(iβ − z(y + 2lr))

s(iβ + z(y + 2lr))

s(iβ + z(y))

s(iβ − z(y)) . (2.96)

But using the constraint (2.7) one obtainsdl(y) = 1− µ, so that

(F(·, y),F(·, y + 2lr)) 6= 0 l ∈ Z∗ β ∈ B0 (2.97)

as announced.
Likewise, one may studyβ ∈ BM,M > 0, takingy > (2M − 1)r and l ∈ N∗ (say)

to avoid eventual multi-valuedness. Then (2.94) is still valid, and now one can use (2.81) to
deduce that the pertinent vectors are not orthogonal inH. Thus the ‘Floquet/Bloch’ boundary
conditions to hand violate orthogonality for allβ satisfying (1.20) when we insist on keeping
x real, as we have done throughout this subsection. Lettingx− ia/2 ∈ (0, π/r), however, the
state of affairs is different, cf subsection 2.4.
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2.3. The relation to the delta-function gas in finite volume

As announced in the introduction, the above eigenfunctions can be tied in with the well known
eigenfunctions of the (N = 2, centre-of-mass, finite-volume) repulsive delta-function Bose
gas. We proceed by supplying the details of the pertinent limiting transition. To this end we
fix c > 0 (the delta-function coupling constant), and introduce the functions [5]

Dn(x) ≡ i

(
c + ikn
c − ikn

)1/2

eixkn + c.c. n ∈ N. (2.98)

Here,kn ∈ (0,∞) is the unique solution of the equation

(n + 1)r = kn +
2r

π
Arctg(kn/c) n ∈ N (2.99)

and the square-root sign is fixed by requiring continuity forc ∈ (0,∞) and convergence to 1
for c → ∞. It is straightforward to verify that these functions are pairwise orthogonal inH
(1.24), with norms given by∫ π/r

0
dx |Dn(x)|2 = 2π

r
+

4c

c2 + k2
n

n ∈ N. (2.100)

Next, choosinga < π/2c from now on, we defineβ(c, a) by (1.23), so that 2β ∈ (a, 2a).
Then the functions

8n(a; x) ≡
[
s(r, a; x + iβ)s(r, a; x − iβ)

]−1/2
ψn(a, β; x) n ∈ N (2.101)

(with β ≡ β(c, a)) are pairwise orthogonal inH, as we have proved above. In the following
theorem we state the relevant limit for the functions8n(a; x), but we find it convenient to
prove a more general result.

Theorem 2.1.Fixing n ∈ N, one has

8n(a; x) = Dn(x) + O(a) a ↓ 0 x ∈ (0, π/r) (2.102)

where the bound is uniform on compact subsets of(0, π/r).

Proof. Since we have 2β(c, a) ∈ (a, 2a), the numbersz(nr) in the definition (2.68) ofψn(x)
lie on the line segment between iβ and ia/2. More generally, we have shown above that for a
fixed y ∈ R the equation (2.7) can be solved by a uniquez = z(a, β, y) on the line segment
between iβ and ia − iβ (cf the paragraph containing (2.37)).

We now fixy ∈ R and prove

s(x + z)

|s(x + iβ)|e
2irx+ixy = i

(
c + ik

c − ik

)1/2

eixk + O(a) x ∈ (0, π/r) a ↓ 0. (2.103)

Here, we havez = z(a, β, y) andβ = β(c, a), andk ∈ R is the unique solution of the equation

y = −r + k +
2r

π
Arctg(k/c). (2.104)

Moreover, the bound is uniform on compacts in(0, π/r). (Clearly, the assertion of the theorem
is a consequence of this more general result.)

In order to prove (2.103), it is expedient to reparametrizez as

z = iβ − iaf. (2.105)

Thus we have (cf equation (2.24))

y = −2r − 1

2β
ln

(
s(−iaf )

s(2iβ − iaf )

)
(2.106)
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and asy varies overR, f varies over(0, 1− 2ac/π). Now we may view the right-hand side
of (2.106) as a functionF(a, f ) defined fora ∈ (0, π/2c) andf ∈ (0, 1− 2ac/π). Doing
so, we assert that we have

F(a, f ) = F(0, f ) + O(a) a ↓ 0. (2.107)

Here we have introduced

F(0, f ) ≡ −2rf + c cot(πf ) f ∈ (0, 1) (2.108)

and the bound is uniform on compacts in(0, 1).
Taking the assertion just made for granted, we obtain a functionF(a, f ) that is jointly

continuous fora ∈ [0, π/2c), f ∈ (0, 1− 2ac/π). Moreover, we have

(∂f F )(a, f ) < 0 a ∈ [0, π/2c) f ∈ (0, 1− 2ac/π) (2.109)

see also the paragraph containing (2.37). From this it readily follows that for a giveny ∈ R
the equationy = F(a, f ) has a unique solutionf = f (a, y), which is continuous ina for
a ∈ [0, π/2c).

We now prove our assertion (2.107). To this end we exploit the product representation
(1.6). Recalling (1.23), it entails

s(2iβ − iaf )

s(−iaf )
= exp(4r[β2 + iaf ]/a)

sh(2π iβ/a − iπf )

sh(−iπf )

(
1 + O

(
exp

(
−2π2

ar

)))
= 1 + 4ra(1− f ) + 2ac cot(πf ) + O(a2) a ↓ 0 (2.110)

where the bounds are uniform on compact subsets of thef -interval(0, 1). Thus from (2.106)
we have

F(a, f ) = −2r +
1

2a
[4ra(1− f ) + 2ac cot(πf )] + O(a) a ↓ 0 (2.111)

so that our assertion (2.107) follows.
To proceed, we use (1.6) once more to deduce

s(x + iβ − iaf )

|s(x + iβ)| = −exp(−2irx − iπf + 2if rx) + O(a) a ↓ 0 (2.112)

where the bound is uniform for(x, f ) in compact subsets of(0, π/r)× (0, 1). In particular,
choosingf equal to the above solutionf (a, y), we obtain

s(x + iβ − iaf (a, y))

|s(x + iβ)| exp(2irx + ixy)

= − exp[−iπf (0, y) + 2if (0, y)rx + ixy] + O(a) a ↓ 0. (2.113)

Here, the bound is uniform forx in a compact subset of(0, π/r), andf = f (0, y) is the
unique solution of

y = −2rf + c cot(πf ). (2.114)

To conclude the proof, we now rewritef as

f ≡ 1

π
Arccot(k/c) = 1

2
− 1

π
Arctg(k/c) k ∈ R. (2.115)

Then one easily checks that (2.113) amounts to (2.103), whilst relation (2.114) turns into
(2.104). �

It should be pointed out that the limit relation just proved is not strong enough to rigorously
conclude that8n(a; x) converges toDn(x) in the Hilbert spaceH (1.24). Indeed, it does not
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exclude that|8n(a; x)| diverges asa ↓ 0 andx ↓ 0 orx ↑ π/r. To see that the behaviour at
the endpoints is a quite subtle matter, notice first of all that8n(a; x) vanishes atx = 0 and
x = π/r, sinceψn(x) (2.68) does. By contrast,Dn(x) is non-zero forx = 0 andx = π/r, so
that (2.102) isfalsefor x = 0 andx = π/r. Similarly, (2.103) is false forx = 0 andx = π/r;
for thesex-values the left-hand side actuallydivergesasa ↓ 0.

As a matter of fact, we do not know whether|8n(a; x)| remains bounded on [0, π/r]
for a ↓ 0. Even so, it can be seen that8n(a; ·) does converge toDn(·) in theH-topology.
Indeed, a reader familiar with Hilbert space estimates will have little difficulty verifying that
for L2-convergence to result from theorem 2.1, it is necessary and sufficient that one have

lim
a↓0

∫ π/r

0
dx |8n(a; x)|2 =

∫ π/r

0
dx |Dn(x)|2. (2.116)

Now both integrals are explicitly known from the norm formulae (2.80) and (2.100). A
third application of the product representation (1.6) then shows that (2.116) holds true. As a
consequence, one deduces Hilbert space convergence of theg = 2 eigenfunctions8n(a; ·) to
the delta-function eigenfunctionsDn(·).

To conclude this subsection, we would like to mention that (in contrast to the functions
{8n(a; ·)}∞n=0) the functions{Dn(·)}∞n=0 are known to becompletein H. Indeed, this follows
from a paper by Dorlas [14]; he actually proves completeness of the Bethe ansatz eigenfunctions
for arbitraryN .

2.4. The one-gap picture

Takingx → x + ia/2 in the A1OH− (1.12) and using the A1E (1.10), we obtain the formally
self-adjoint operator

H̃− =
(
s(x + ia/2− 2iβ)

s(x + ia/2)

)1/2

Tiβ

(
s(x − ia/2 + 2iβ)

s(x − ia/2)

)1/2

+ (i →−i). (2.117)

(Of course, the A1O H+ is invariant underx → x + ia/2.) Fixing β satisfying (1.20), the
H−-eigenfunctionsF(x, y) (2.66) give rise toH̃−-eigenfunctions by shiftingx to x + ia/2.
Omitting an irrelevant multiplicative constant, they can be written

F̃(x, y) ≡ w̃(x)1/2s(x − ia/2 + z(y)) exp(irx + iyx) (2.118)

w̃(x) ≡ 1/s(x − ia/2 + iβ)s(x + ia/2− iβ). (2.119)

Obviously, the functions̃F(x, y) belong to the Hilbert spaceH (1.24) for all realy. They
satisfy

F̃(x + π/r, y) = exp(iπy/r)F̃(x, y) (2.120)

so we obtain eigenfunctions with the sameπ/r-multiplier exp iθ by requiring

y ∈ rθ/π + 2rZ θ ∈ (−π, π ]. (2.121)

Now we first chooseβ ∈ (0, a/2). Thenz(y) is a single-valued real-analytic function
R→ i(β, a − β) (as we have shown in subsection 2.1), so we may introduce

φj (θ) ≡ F̃(·, rθ/π + 2jr) θ ∈ (−π, π ] j ∈ Z (2.122)

where the right-hand side is viewed as a vector inH. Using (2.118) and (2.74), we now obtain
the inner product

(φj (θ), φk(θ)) = Ik−j (a/2− β, ia/2− z(rθ/π + 2jr), ia/2− z(rθ/π + 2kr)). (2.123)
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Takingk 6= j , one sees that the quantityµ (2.75) is not equal to 1. Using equations (2.76),
(1.11) and (2.7), it can then straightforwardly be verified that

(φj (θ), φk(θ)) = 0 θ ∈ (−π, π ] j 6= k β ∈ (0, a/2). (2.124)

(This result should be compared with (2.94)–(2.97).)
In words, we have just proved that thẽH−-eigenvectorsφk(θ), k ∈ Z, are pairwise

orthogonal whenβ ∈ (0, a/2). But as we shall show shortly, they are not complete inH.
(This is true in spite of the fact that their limits forβ ↑ a/2 are manifestly complete; recall
z(y) → ia/2 for β → a/2.) Before doing so, we study the choices (1.20) withk > 0,
however.

Taking firstβ ∈ (a/2, a), the functionz(y) is still a single-valued real-analytic function
R→ i(a − β, β). Thus the vectorsφj (θ) (2.122) are again well defined, and we obtain

(φj (θ), φk(θ)) = Ik−j (β − a/2, ia/2− z(rθ/π + 2jr), ia/2− z(rθ/π + 2kr)). (2.125)

But when we now use the explicit formula (2.76), we find that the right-hand side is a non-zero
multiple of 1− µ2. Thus we deduce

(φj (θ), φk(θ)) 6= 0 θ ∈ (−π, π ] j 6= k β ∈ (a/2, a). (2.126)

Turning next to theβ-interval(a, 3a/2), we recall thatz(y) is not single-valued onR for
β close toa andy ∈ [r − d0, r + d0]. For j ∈ Z such thatrθ/π + 2jr does not belong to this
interval, we may and shall defineφj (θ) by (2.122). For such integers we again obtain (2.125),
and so we once again deduce non-orthogonality forj 6= k.

Now fixing y ∈ (r − d0, r + d0), we obtain three distinctz-values, each of which defines
a distinct vector inH. Their inner products with vectors corresponding to the sameθ , but
y-values outside the critical interval, do not vanish, as can readily be established via the
above calculation. Likewise, the three vectors are not pairwise orthogonal, the two vectors
corresponding toy = r − d0 are not orthogonal, and neither are the two(r + d0)-vectors.

Of course, forβ close to 3a/2 we haved0 = 0. Hence equation (2.122) is unambiguously
defined for arbitraryθ ∈ (−π, π ] and j ∈ Z, yielding pairwise non-orthogonal vectors.
Similarly, forβ ∈ (3a/2, 2a) no ambiguity occurs, and we can now use (2.81) withM = 1 to
deduce

(φj (θ), φk(θ)) 6= 0 θ ∈ (−π, π ] j 6= k β ∈ (3a/2, 2a). (2.127)

Clearly, this analysis can be extended to largerβ-values. In particular, it is not hard to check
that one has

(F̃(·, y), F̃(·, y + 2lr)) 6= 0 β ∈ BM M > 0 y > (2M − 1)r l ∈ N∗. (2.128)

Thus far, we have only taken the eigenfunctionsH(x, y), y ∈ R, into account. We
continue by studying the role of the band functionsHb(x, y) (2.20), keepingx real at first. Let
us begin by comparing the ranges of the eigenvaluesEδ for the two choices of eigenfunctions.
With (1.20) in force, we may use equations (2.28)–(2.29) wheny varies overR in H(x, y).
Omitting the positive prefactors, the resulting positive quantities

ε− ≡ (℘ (z)− ℘(iβ))−1/2 (2.129)

ε+ ≡ ch(2izr + ay + 2ar) (2.130)

vary over [(e3− ℘(iβ))−1/2,∞) and [1,∞), respectively.
Next, lettingy vary over [−3r,−r] in Hb(x, y), we still may use (2.29). But in (2.28)

we should omit the factor(−)k when we take the positive square root (as we do throughout
this paper). Indeed, from (2.8) one reads off that the band energiesE− flip sign asβ passes
the numbers(M + 1/2)a,M ∈ N. (Recall s(x) > 0 for x = π/2r + iλ with λ real, cf
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equation (2.16).) Keeping this change in mind, we are again reduced to finding the ranges of
ε− andε+ for

(z, y) = (π/2r + iγ, f (γ )) γ ∈ [−a/2, a/2]. (2.131)

The range ofε− is plain: it is given by [(e1 − ℘(iβ))−1/2, (e2 − ℘(iβ))−1/2]. For ε+ we
obtain the range of the function

ε+(γ ) ≡ − ch(−2γ r + af (γ ) + 2ar) (2.132)

with γ varying over [−a/2, a/2]. Now we have already seen thatf (γ ) is monotonically
increasing. Recalling (2.19) and noting thatf (γ ) is not linear inγ (since we require (1.20)),
we obtain a range [−κ,−1] for ε+, whereκ > 1 depends onβ.

The upshot is thatEδ(y) varies over an unbounded interval [E
(3)
δ ,∞) for H(x, y) and

over a band [E(1)δ , E
(2)
δ ] for Hb(x, y), with

0< E
(1)
− < E

(2)
− < E

(3)
− β ∈ a(l, l + 1/2) l ∈ N (2.133)

E
(1)
− < E

(2)
− < 0< E

(3)
− β ∈ a(l + 1/2, l + 1) l ∈ N (2.134)

E(1)+ < E(2)+ < 0< E(3)+ 2β ∈ a(k, k + 1) k ∈ N. (2.135)

Turning to the excludedβ-values, we can use (2.29) and (2.17) to deduce that theδ = + band
shrinks to a point. To be specific, we obtain

E(1)+ = E(2)+ = −2 exp[2r(β − a)] E(3)+ = 2 exp[2r(β − a)] β = ka/2 k ∈ N∗.
(2.136)

Similarly, for β − a/2 an integer multiple ofa, we read off from (2.8) that theδ = − band
shrinks to 0; theB−-eigenvalue onH3(x) (2.27) yields the limit ofE(3)− :

E
(1)
− = E(2)− = 0 E

(3)
− = 2 exp[2rβ(β − a)/a] β = (M + 1/2)a M ∈ N.

(2.137)

Finally, whenβ is an integer multiple ofa, we likewise obtain

E
(1)
− = E(2)− = 2(−)M exp[2rβ(β − a)/a]

E
(3)
− = 2 exp[2rβ(β − a)/a]

}
β = Ma M ∈ N∗. (2.138)

Having disposed of the algebra, we can proceed with analysis. Fixingβ ∈ (0, a/2), we
recall that we have already proved that the vectorsφj (θ) (2.122) are pairwise orthogonal inH
(1.24), cf equation (2.124). We now show that they do not yield a base forH.

To this end we define thẽH−-eigenfunctions (cf equations (2.118)–(2.119))

F̃b(x, y) ≡ w̃1/2(x)s(x − ia/2 +π/2r + iγ (y)) exp(irx + iyx) y ∈ (−3r,−r].
(2.139)

Of these there is a unique function that has theπ/r-multiplier exp(iθ), θ ∈ (−π, π ].
Specifically, this function reads

φb(θ) ≡ F̃b(x, rθ/π − 2r) θ ∈ (−π, π ]. (2.140)

The point is now that we have

(φb(θ), φk(θ)) = 0 θ ∈ (−π, π ] k ∈ Z β ∈ (0, a/2). (2.141)

Taking this for granted, it is plain that the vectors{φk(θ)}k∈Z are not complete inH, as asserted.
To substantiate (2.141), we invoke the integral (2.74) to write

(φb(θ), φk(θ)) = Ik+1(a/2− β, ia/2 +π/2r − iγ (rθ/π − 2r), ia/2− z(rθ/π + 2kr)).

(2.142)
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The quantityµ (2.75) is negative in this case, so we can use equation (2.76) to calculate the right-
hand side. Using equation (2.7), it is now routine to check that it vanishes, proving (2.141).

We would like to point out that theβ ↑ a/2 limits of the functionsφb(θ) exist, but do
not belong toH. (Indeed, forx ∈ (0, π/r) one hasw̃(x)1/2 → 1/s(x) asβ ↑ a/2, cf
equation (2.119).) We leave a study of non-orthogonality properties ofφb(θ) for β > a/2 to
the interested reader, and requireβ ∈ (0, a/2) for the remainder of this subsection.

We conjecture that the vectors

{φk(θ)}k∈Z φb(θ) θ ∈ (−π, π ] β ∈ (0, a/2) (2.143)

are complete inH, and hence give rise to an orthogonal base. Taking this for granted, it
follows in a well known way (cf [11, section XIII.16]) that we may also view̃H− as a self-
adjoint operator onL2(R), with purely absolutely continuous spectrum

[E(1)− , E
(2)
− ] ∪ [E(3)− ,∞) E

(j)
− =

is(2iβ)

s(iβ)2
e−2βr (ej − ℘(iβ))−1/2 j = 1, 2, 3 (2.144)

of multiplicity two.
On account of equations (2.21), (2.22) and (2.27), the functions at the spectral boundary

points may be taken to be

F̃1(x) ≡ w̃(x)1/2s(x + π/2r + ia/2) exp irx (2.145)

F̃2(x) ≡ w̃(x)1/2s(x + π/2r) (2.146)

F̃3(x) ≡ w̃(x)1/2s(x). (2.147)

Note thatF̃1 is aπ/r-periodic function, whereas̃F2 andF̃3 areπ/r-antiperiodic; furthermore,
F̃1 andF̃2 are even, whileF̃3 is odd.

3. The hyperbolic case

We continue by studying the hyperbolic specialization. Thuss(x) equalsaπ−1 sh(πx/a), cf
equation (1.8). In this case it is convenient to employ the variablesa+ anda− from I instead
of β anda. We also use the notation

sδ(x) = sh(πx/aδ) cδ(x) = ch(πx/aδ) eδ(x) = exp(πx/aδ) δ = +,−.
(3.1)

To bring out the remarkable self-duality property of this limiting case, we switch to the new
spectral variable

p ≡ a+a−y/π. (3.2)

Accordingly,B− (1.16) andB+ (1.17) turn into

B− = s−(x + ia+)

s−(x)
Tia+ + (i →−i) (3.3)

B+ = −(Tia− + (i →−i)). (3.4)

Similarly, taking firsta+ ∈ AM , with

AM ≡ a−(M,M + 1/2) ∪ a−(M + 1/2,M + 1) M ∈ N (3.5)

the joint eigenfunction (2.6) becomes

H(x) = π−1a−s−(x + z) exp(iπxp/a+a−) (3.6)
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wherez andp are related via

s−(z− ia+)

s−(z + ia+)
= e−(−2p). (3.7)

This entails

p′(z) = −1

2

(
cth

π

a−
(z− ia+)− cth

π

a−
(z + ia+)

)
= − i sin(2πa+/a−)

2s−(z− ia+)s−(z + ia+)
. (3.8)

Hence,p′(z) is non-zero andp(z) decreases from∞ to 0 asz goes from ia+ to i(M + 1/2)a−,
cf also equations (2.10) and (2.11) withr = 0, a = a−.

In the trigonometric case we will arrive at a relation similar to (3.7). We now digress
to derive useful consequences of this type of relation, employing a standard form that is not
cluttered by scale factors and reality restrictions.

Specifically, we start from a relation of the form

sh(α − t)
sh(α + t)

= e−2γ α, γ, t ∈ C α, γ, t 6= iπk/2 k ∈ Z. (3.9)

In this formulaα andγ appear to play different roles, but in fact (3.9) is equivalent to

sh(γ − t)
sh(γ + t)

= e−2α. (3.10)

Indeed, writing the left-hand side of (3.9) as(thα cht −sht)/(thα cht + sht) and solving for
thα, one obtains

thα thγ = th t. (3.11)

Conversely, equation (3.11) entails (3.9) and (by symmetry) (3.10).
Yet another relation equivalent to (3.9) reads

2 shα cht

sh(α + t)
= 1 + e−2γ . (3.12)

This will be used to get rid of the parameterz in eigenvalues. To get rid ofz in eigenfunctions,
we use the following consequence of (3.9):

2 sh(η + α) = [sh(γ + t) sh(γ − t)]−1/2(ch(η + γ )et − ch(η − γ )e−t ) η ∈ C. (3.13)

(This equation can be verified by writing 2 sh(η + α) = eηeα − e−ηe−α, and then using (3.10)
to write e±α in terms ofγ and t .) In the applications below the term in square brackets is
positive and it is readily verified that the positive square root is needed.

Returning now to relation (3.7), we note that it is of the form (3.9), withα = πz/a−, γ =
πp/a− andt = iπa+/a−. Invoking (3.13) withη = πx/a−, we can write

2s−(x + z) = [s−(p + ia+)s−(p − ia+)]
−1/2(qc−(x + p)− qc−(x − p)) (3.14)

where we have introduced the phase factor

q ≡ exp(iπa+/a−). (3.15)

Combining this with (3.6), it follows that the functions

K(x, p) ≡ 2[qc−(x + p)− qc−(x − p)] exp(iπxp/a+a−) (3.16)

areBδ-eigenfunctions, too. (These functions coincide with the functionsK1(x, p) given by
II(1.15).)
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The functionK(x, p) is manifestly symmetric underx ↔ p (self-duality), so it is also an
eigenfunction of the A1Os

B̂− = s−(p + ia+)

s−(p)
T̂ia+ + (i →−i) (3.17)

B̂+ = −(T̂ia− + (i →−i)) (3.18)

whereT̂α acts on functions ofp by

(T̂αF )(p) ≡ F(p − α) α ∈ C. (3.19)

The four eigenvalues involved can moreover be written

Eδ = 2cδ(p) Êδ = 2cδ(x) δ = +,−. (3.20)

To substantiate the last assertion, we note that by symmetry one need only check
Eδ = 2cδ(p). Now for δ = + this is evident from (3.18) and (3.16), whereas theδ = −
result is not immediate, but can be obtained directly from (3.17) and (3.16). A quicker way,
however, is to note that the elliptic formula (2.8) specializes to

E− = 2
s−(z)

s−(z + ia+)
c−(ia+)e−(p). (3.21)

Recalling (3.7) and the equivalence of (3.9) and (3.12), one deducesE− = e−(p) + e−(−p),
as asserted.

With the constraint relation (3.7) eliminated, it is evident from (3.16) that we are free to
choosea+ ∈ (0,∞). Takinga+ equal toka−/2, k ∈ N∗, from (3.16) we obtain

K(x, p) = 2eiπk/2[c−(x + p)− (−)kc−(x − p)] exp(iπxp/a+a−) (a+ = ka−/2).(3.22)

Hence we have

K(x, p) = cks−(x)s−(p) exp(iπxp/a+a−) (k even) (3.23)

K(x, p) = ckc−(x)c−(p) exp(iπxp/a+a−) (k odd). (3.24)

Defining the weight functions

ŵhyp,0(u) ≡ 1/s−(u)2 (3.25)

ŵhyp,1/2(u) ≡ 1/c−(u)2 (3.26)

it is evident that a suitable multiple ofK(x, p) yields the kernel of a unitary operator from
L2(R, ŵhyp,s(p) dp) ontoL2(R, ŵhyp,s(x) dx), with s = 0 for k even ands = 1/2 for k odd.

Next, we introduce

ŵhyp(u) ≡ 1/s−(u + ia+)s−(u− ia+). (3.27)

Then it can be shown that fora+ ∈ A0 (3.5) a suitable multiple ofK(x, p) (3.16) yields the
kernel of a unitary operator from the odd subspace ofL2(R, ŵhyp(p) dp) onto the odd subspace
of L2(R, ŵhyp(x) dx), whereas isometry is violated on the even subspace; fora+ ∈ AM with
M > 0 isometry is violated on both subspaces.

It should be noted that these results tie in with the elliptic orthogonality and non-
orthogonality results obtained in subsection 2.2. The proofs of the assertions in the previous
paragraph are, however, quite different, and involve some new machinery. This also applies to
the Hilbert space results paralleling those in subsection 2.4, to which we now turn. (We will
address these functional-analytic aspects elsewhere.)
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Taking x → x + ia−/2 in the jointBδ-eigenfunctionsK(x, p) (3.16), we obtain joint
eigenfunctions ofB+ (3.4) and the ‘crossed channel’ A1O

B̃− = c−(x + ia+)

c−(x)
Tia+ + (i →−i) (3.28)

with eigenvalues 2c+(p) and 2c−(p), respectively. Omitting a multiplicative constant, these
can be written

K̃(x, p) = 2[qs−(x + p)− qs−(x − p)] exp(iπxp/a+a−). (3.29)

Introducing

w̃hyp(x) ≡ 1/c−(x + ia+)c−(x − ia+) (3.30)

we now detail the state of affairs concerning isometry properties. First, we choosea+ ∈
(0, a−/2). Then a suitable multiple of̃K(x, p) yields the kernel of a unitary operator from
the even subspace ofL2(R, ŵhyp(p) dp) onto the odd subspace ofL2(R, w̃hyp(x) dx). The
odd subspace ofL2(R, ŵhyp(p dp) is mapped isometrically onto the orthocomplement in the
even subspace ofL2(R, w̃hyp(x) dx) of the constant functions. (Note thatB̃− has eigenvalue
2 cos(πa+/a−) on the latter, whileB+ has eigenvalue−2.)

For a+ > a−/2 anda+ 6= ka−/2, k ∈ N, these isometry properties break down. Again,
this is analogous to our elliptic results, cf subsection 2.4. Observe also that the even bound
state

K̃(x) ≡ 1 (3.31)

can be viewed as the limit of the band functionsHb(x, y) for r ↓ 0. More precisely, from the
product representation (1.6) one easily deduces

lim
r↓0
cr s(r, a;π/2r + x) = 1 cr ≡ exp(−π2/4ar)π/2a (uniformly on compacts).

(3.32)

Thus, when the functionsHb(x, y) (2.20) are multiplied by the renormalizing constantcr , they
all converge to 1 asr ↓ 0, uniformly onx-compacts.

To conclude this section, we consider the relation of the above functions to the infinite-
volume delta-function potential eigenfunctions. Of course, the formulae in subsection 2.3 are
easily specialized forr = 0, but the somewhat involved reasoning in the proof of theorem 2.1
can be bypassed by takingK(x, p) (3.16) as a starting point.

Indeed, when one substitutes

a+→ a− − a2
−c/π (3.33)

in the function

E(x, k) ≡ K(x, ka+a−/π)
4|s−(x + ia+)s−(ka+a−/π + ia+)| k ∈ R (3.34)

then it is quite easy to check directly that one has

E(±x, k) = i

(
c ± ik

c ∓ ik

)1/2

exp(±ixk) + O(a−) x ∈ (0,∞) a− ↓ 0. (3.35)

Furthermore, the crossed channel eigenfunction

Ẽ(x, k) ≡ K̃(x, ka+a−/π)
4|c−(x + ia+)s−(ka+a−/π + ia+)| k ∈ R (3.36)
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has almost the same limiting behaviour:

Ẽ(±x, k) = ±i

(
c ± ik

c ∓ ik

)1/2

exp(±ixk) + O(a−) x ∈ (0,∞) a− ↓ 0. (3.37)

There is yet a second, essentially different way to tie inK̃(x, p) (3.29) with the delta-
function eigenfunctions, however. Specifically, let us put

a+→ a−/2− a2
−c/2π (3.38)

in the function

F(x, k) ≡ K̃(xa+a−/π, k)
4|c−(xa+a−/π + ia+)s−(k + ia+)| x ∈ R. (3.39)

Then it follows from the same calculation as before that one has

F(x,±k) = ±
(
c ± ix

c ∓ ix

)1/2

exp(±ixk) + O(a−) k ∈ (0,∞) a− ↓ 0. (3.40)

As is well known, the odd part of the ‘distinguishable particle’ delta-function transform
yields the sine-transform onL2((0,∞)), whereas the even part yields the unitary operator on
L2((0,∞)) with kernel

D(y, p) = i(2π)−1/2

(
c + ip

c − ip
)1/2

exp(iyp) + c.c. y, p ∈ (0,∞). (3.41)

In view of the above limits, one needs theodd transform associated withK and theeven
transforms associated with̃K to obtain the kernelD in the pertinent limits. It should be
stressed that for none of these scaling limits there is an operator in sight that has the formal
limit

Hdelta≡ −d2/dy2 + 2cδ(y) (3.42)

of whichD(y, p) is an eigenfunction with eigenvaluep2. Rather, the existence of the transform
limits was suggested by considerations from scattering theory, cf [3, section 4C].

4. The trigonometric case

We proceed by studying the trigonometric specialization of the above elliptic results. Thus
s(x) reduces tor−1 sinrx, cf equation (1.9). Thea→∞ limit of the A1OB+ (1.17) does not
exist, so we wind up with the A1OB− (1.16). Omitting the prefactor exp(−2βr), we obtain
the trigonometric A1O

B = sinr(x + iβ)

sinrx
Tiβ + (i →−i). (4.1)

Instead of (1.20), we now have only oneβ-interval(0,∞), and the equations (2.9), (2.10) and
(2.13) have no trigonometric counterparts.

Choosing firstz = π/2r+iγ, γ ∈ R, in (the trigonometric specialization of) the constraint
(2.7), we obtain

chr(γ − β)
chr(γ + β)

= e−4βr−2βy. (4.2)

Thus we find a uniquely determined solutiony = f (γ ) ∈ (−3r,−r), yielding a B-
eigenfunction

Hb(x, y) = r−1 cosr(x + iγ (y))e2irx+ixy y ∈ (−3r,−r). (4.3)
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Clearly, we have

H1(x) ≡ Hb(x,−2r) = r−1 cosrx (4.4)

H2(x) ≡ 2r lim
y↑−r

e−rγ (y)Hb(x, y) = 2r lim
y↓−3r

erγ (y)Hb(x, y) = 1. (4.5)

Next choosingz ∈ i(β,∞), the constraint (2.7) entails

y ′(z) = r sin(2iβr)

−2β sin(r(z− iβ)) sin(r(z + iβ))
. (4.6)

Consequently,y ′(z) is non-zero andy(z) decreases from∞ to −r asz goes from iβ to i∞.
Switching to the new parameter

κ ≡ −iz ∈ (β,∞) (4.7)

we obtain theB-eigenfunctions

H(x, y) = r−1 sinr(x + iκ(y))eix(y+2r) y ∈ (−r,∞) (4.8)

with κ(y) uniquely determined by

shr(κ − β)
shr(κ + β)

= e−2β(y+2r) y ∈ (−r,∞). (4.9)

Comparing equations (4.9) and (3.9), we obtain equality forα = κr, γ = β(y + 2r) and
t = βr. From (3.13) (withη = −irx) it then follows that we may write

H(x, y) = i(2r)−1
[

shβ(y + 3r) shβ(y + r)
]−1/2[

ch(β(y + 2r)− irx)eβr

− ch(β(y + 2r) + irx)e−βr
]
eix(y+2r). (4.10)

Similarly, specializing (2.8) we deduce from (3.12) that the associated eigenvalue can be
rewritten

E = 2 chβ(y + 2r). (4.11)

Though we have assumedy ∈ (−r,∞) in deriving (4.10) and (4.11), it follows from
(2.11) and (2.14) that we also obtain aB-eigenfunction (4.10) with eigenvalue (4.11) for
y ∈ (−∞,−3r). Moreover, it is not hard to check that fory ∈ (−3r,−r) the functionH(x, y)
(4.10) amounts to the eigenfunctionHb(x, y) (4.3), so that theB-eigenvalue onHb(x, y) is
once again given by (4.11).

Next, we consider the eigenfunctions

ψn(x) = H(x, nr)−H(−x, nr) n ∈ N (4.12)

in relation to the Hilbert space

Hŵ = L2((0, π/r), r2[sin r(x + iβ) sinr(x − iβ)]−1 dx). (4.13)

Specializing (2.72) and (2.80), one readily obtains

(ψn, ψm) =
{

0 n 6= m
2π/r n = m. (4.14)

More is true: theB-eigenfunctionsψn are in fact an orthogonal base forHŵ.
To prove this, it suffices to show that the functions

Pn(x) ≡
[

sinr(x + iβ) sinrx sinr(x − iβ)
]−1
ψn(x) (4.15)

are total in the Hilbert space

L2((0, π/r), sinr(x + iβ) sin2 rx sinr(x − iβ) dx). (4.16)
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We switch to the functionsPn(x), since they are polynomials in cosrx of degreen. Taking
this assertion for granted, it is plain thatP0, P1, . . ., span the space (4.16).

To prove the assertion, we note thatPn(x) is clearly a rational function of the variable
z = eirx . The poles of the prefactor in (4.15) atz = ±1,±eβr and±e−βr are cancelled by zeros
of ψn, so thatPn(x) equals a Laurent polynomialQn(z, z

−1). NowPn(x) is even inx, soQn

is invariant underz↔ z−1. HenceQn may be viewed as a polynomial inz + z−1 = 2 cosrx.
Takingz→∞ one sees that the pertinent degree isn, so our assertion follows.

As a consequence of the orthogonal base property, it follows that the A1OB gives rise to
a self-adjoint operator in the Hilbert spaceHŵ. It should be stressed that it is the polynomial
character of the functionsPn(x) that renders completeness obvious in the trigonometric case.
There is no analog of this feature at the elliptic level, which is why completeness of the functions
{ψn}∞n=0 is left open in that case.

Specializing the non-orthogonality results for the even eigenfunctionsH(x, y)+H(−x, y)
with y = nr, n ∈ N, and for the Floquet/Bloch eigenfunctions (cf the end of subsection 2.2),
we also obtain non-orthogonality in the trigonometric regime. On the other hand, the former
eigenfunctions are obviously polynomialsRk of degreek = n+3 in cosrx, cf equation (4.10).
Therefore, one might be inclined to believe that there exists a weight functionW(x)on(0, π/r)
that differs fromŵ(x), such that the orthogonal polynomials associated withW(x) yield B-
eigenfunctions coinciding withRk for k > 3.

This contingency can be ruled out, however. To be sure, fory = −2r the eigenfunction
H(x, y) (4.10) reduces to a multiple of cosrx, and omitting the square-root factor one can put
y = −3r ory = −r to obtain a constant eigenfunction, cf also equations (4.4) and (4.5). Thus
B does admit polynomial eigenfunctionsRk of degreesk = 0, 1, 3, 4, . . . . But we claim that
B has no degree-two polynomial as an eigenfunction.

Indeed, a straightforward calculation yields

B cos2(rx) = 2 ch(βr)(cos2(rx)− sh2(βr)). (4.17)

Thus,B has a non-trivial Jordan form in the invariant vector space spanned by the two functions
cos2 rx and 1, and so our claim follows.

We proceed by detailing a connection between the hyperbolic and trigonometric settings,
which naturally leads to duality properties of the latter. First, we observe that the hyperbolic
eigenfunctionH(x) (3.6) gives rise to the trigonometric eigenfunctionH(x, y) (4.8) via the
substitutions

a+→ β a− → π/ir πp/a− → β(y + 2r) z→ iκ. (4.18)

Comparing equations (3.3) and (4.1), we see that (4.18) entails

B− → B (4.19)

in agreement with (4.11). Similarly, from (3.4) we obtain

B+→−Q (4.20)

whereQ is the quasi-periodicity A1O

Q ≡ Tπ/r + T−π/r . (4.21)

Next substituting (4.18) inK(x, p) (3.16) and in the A1OsB̂− (3.17) andB̂+ (3.18), we
obtain

L(x, y) = 2[e−βr ch(irx + β(y + 2r))− eβr ch(irx − β(y + 2r))]eix(y+2r) (4.22)

B̃− = sh(β(y + 3r))

sh(β(y + 2r))
T̃r +

sh(β(y + r))

sh(β(y + 2r))
T̃−r (4.23)

B̃+ = −(T̃iπ/β + (i →−i)) (4.24)
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whereT̃α acts on meromorphic functions ofy by

(T̃αG)(y) = G(y − α) α ∈ C. (4.25)

The eigenvalues of̃B− andB̃+ onL(x, y) read

Ẽ− = 2 cosrx Ẽ+ = 2 ch(πx/β). (4.26)

Since we clearly have (cf equation (4.10))

H(x, y) = (4ir)−1[sh(β(y + 3r)) sh(β(y + r))]−1/2L(x, y) (4.27)

the functionH(x, y) is an eigenfunction of the analytic difference operator

H̃− =
(

shβ(y + 3r)

shβ(y + 2r)

)1/2

T̃r

(
shβ(y + r)

shβ(y + 2r)

)1/2

+

(
shβ(y + r)

shβ(y + 2r)

)1/2

T̃−r

(
shβ(y + 3r)

shβ(y + 2r)

)1/2

(4.28)

with eigenvalueẼ−. Hence it follows that(ψ0(x), ψ1(x), . . .) is an improper eigenfunction
of thediscretedifference operator

D =
(

sh(n + 3)βr

sh(n + 2)βr

)1/2

S

(
sh(n + 1)βr

sh(n + 2)βr

)1/2

+ h.c. (4.29)

on the Hilbert spacel2(N). Here,S is the right shift

(Sf )n ≡
{

0 n = 0
fn−1 n > 0

(4.30)

with f = (f0, f1, . . .) ∈ l2(N), and h.c. stands for Hermitian conjugate. To be quite precise,
(r/2π)1/2ψn(x) may be viewed as the kernel of a unitary operator froml2(N) onto Hŵ
(4.13), diagonalizing the bounded self-adjoint operatorD as multiplication by 2 cosrx, cf
also theorem IV.1 in II.

5. The rational case

The rational specialization of the above can be most easily obtained by lettingr ↓ 0 in the
trigonometric quantities. To begin with, this yields the rational A1O

B = x + iβ

x
Tiβ + (i →−i) (5.1)

cf equation (4.1). The (renormalized) band functions (4.3) reduce to constant functions, on
whichB has eigenvalue 2. From equations (4.8) and (4.9) we getB-eigenfunctions

H(x, y) = (x + iκ(y))eixy y ∈ (0,∞) (5.2)

with κ(y) given by

κ − β
κ + β

= e−2βy y ∈ (0,∞). (5.3)

Moreover, theB-eigenvalue reads

E = 2 ch(βy) (5.4)

cf equation (4.11).
Takingr ↓ 0 in (4.10), we can eliminateκ altogether:

H(x, y) = (x + iβcth(βy))eixy. (5.5)
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Alternatively, this formula follows directly from the constraint (5.3), since the latter amounts
to

κ(y) = βcth(βy). (5.6)

The odd combination

ψ(x, y) ≡ H(x, y)−H(−x, y) = 2x cos(xy)− 2β cth(βy) sin(xy) (5.7)

gives rise to an isometry fromL2((0,∞), dy) onto L2((0,∞), (x2 + β2)−1 dx) (after
multiplication by a suitable constant). The even combination has a non-integrable singularity
asy ↓ 0, and so it does not yield an isometry.

Turning to duality properties, we note first thatH(x, y) is an eigenfunction of the A1O

H̃+ = T̃iπ/β + (i →−i) (5.8)

with eigenvalue

Ẽ+ = 2 ch(πx/β). (5.9)

It is also easy to verify directly thatH(x, y) is an eigenfunction of thedifferentialoperator

H̃
(0)
− ≡ −

d2

dy2
+

2β2

sh2(βy)
(5.10)

with eigenvalue

Ẽ
(0)
− = x2. (5.11)

This can be understood fromH(x, y) (4.8) being an eigenfunction of the A1O H̃− (4.28) with
eigenvalue 2 cosrx: writing T̃r = exp(−rd/dy), subtracting 2 and dividing by−r2, we obtain
H̃
(0)
− andẼ(0)− for r ↓ 0, respectively.

Of course,H̃ (0)
− amounts to the hyperbolic specialization of the non-relativistic Lamé

operatorHnr(2) (1.1). This state of affairs can also be understood from a study of the non-
relativistic limit, with which we now proceed.

6. The non-relativistic limit

We conclude this paper by studying the non-relativistic limitβ ↓ 0. Beginning with the elliptic
case, we subtract 1 from the left-hand side and right-hand side of (2.7), divide byβ, and let
β ↓ 0 to obtain

is ′(z)/s(z) = y + 2r. (6.1)

Thus the function (2.6) has limit

H0(x) = s(x + z) exp(−xs ′(z)/s(z)). (6.2)

Clearly, it is an eigenfunction of theβ ↓ 0 limit

B(0)+ = −e−3ar (e−2irxTia + (i →−i)) (6.3)

of B+ (1.17), with eigenvalue

E(0)+ = 2e−2ar ch(2izr + ias ′(z)/s(z)). (6.4)

Writing Tiβ = exp(−iβd/dx) in e2βrB−, subtracting 2 and dividing byβ2, we obtain theβ ↓ 0
limit

B
(0)
− = −

d2

dx2
− s

′′(x)
s(x)

+ 2
s ′(x)
s(x)

d

dx
. (6.5)
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Using equations (2.8) and (2.7) to expandβ−2(e2βrE− − 2), it readily follows thatH0(x) is a
B
(0)
− -eigenfunction with eigenvalue

E
(0)
− = −℘(z) + 4ηr/π. (6.6)

(To verify this directly is not a trivial matter.)
The weight functionŵ(x) (1.14) has limit

ŵ0(x) = 1/s(x)2. (6.7)

Setting

H
(0)
δ ≡ ŵ0(x)

1/2B
(0)
δ ŵ0(x)

−1/2 δ = +,− (6.8)

we obtain

H
(0)
− = −

d2

dx2
− 2

s ′′(x)
s(x)

+ 2

(
s ′(x)
s(x)

)2

= − d2

dx2
+ 2[℘(x) + 2ηr/π ]

= Hnr(2) + 4ηr/π (6.9)

and also

H(0)
+ = e−2arTia + (i →−i). (6.10)

One can easily check that the constraint (6.1) and the eigenvalues (6.4) and (6.6) are
invariant under (2.10)–(2.12), and that the transformation properties (2.13)–(2.15) still hold
whenH(x) is replaced byH0(x). Choosing firstz ∈ π/2r + iR, we may use (2.16) to obtain
y = f0(γ ) ∈ R, with

f0(γ ) ≡ −2r + r th(rγ ) + 4r
∞∑
k=1

exp(−2kar) sh(2rγ )

1 + exp(−4kar) + 2 exp(−2kar) ch(2rγ )
. (6.11)

Hencef0 is monotonically increasing and mapsR ontoR. It is not hard to see thatf0 satisfies
(2.19), so we need only chooseγ ∈ [−a/2, a/2] andy ∈ [−3r,−r], as before. The band
eigenfunctions are then again given by

Hb0(x, y) = s(x + π/2r + iγ (y))e2irx+ixy y ∈ [−3r,−r] (6.12)

with γ (y) the inverse off0(γ ); also, (2.21) and (2.22) still apply whenHb is replaced byHb0.
Letting nextz ascend the imaginary axis from 0 to ia, it is clear thaty varies overR from

∞ to −∞, with y(ia/2) = −r; furthermore,y(z) is monotonically decreasing in view of
(2.32) and (2.34). Denoting the inverse byz0(y), we get jointB(0)δ -eigenfunctions

H0(x, y) = s(x + z0(y))e
2irx+ixy y ∈ R. (6.13)

As before, we have

H3(x) ≡ H0(x,−r) = s(x + ia/2)eirx (6.14)

cf equation (2.27).
In contrast to the relativistic case, theHnr(2)-eigenfunctionŝw0(x)

1/2H0(x)are not square-
integrable over(0, π/r), since 1/s(x)2 has a non-integrable singularity atx = 0 andx = π/r.
Consider next the functions

8n(x) ≡ ŵ0(x)
1/2[H0(x, nr)−H0(−x, nr)]

= 1

s(x)
[s(x + zn)e

i(n+2)rx + s(x − zn)e−i(n+2)rx ] x ∈ (0, π/r) (6.15)
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with zn ≡ z0(nr) ∈ i(0, a/2) given by

is ′(zn)/s(zn) = (n + 2)r n ∈ N. (6.16)

The function in square brackets vanishes atx = 0 and isπ/r-periodic (antiperiodic) forn
odd (even). Hence8n(x) does give rise to a vector in the Hilbert spaceH (1.24). Note
that (the analytic continuation of)8n(x) is even, as opposed to its relativistic generalization
ŵ(x)1/2ψn(x), which is odd for realx. (This parity change can be readily understood by
comparing the functionsx 7→ x2 andx 7→ x(x2 + ε2)1/2, ε > 0.)

It is not hard to see that the differential operatorHnr(2) gives rise to an essentially self-
adjoint operator on the subspaceC∞0 ((0, π/r)) of H, and that the vectors8n(·) are in the
domain of the self-adjoint closureH nr(2). Using the Weyl–Kodaira–Titchmarsh theory we
expect one can show they are actually an orthogonal base of eigenvectors forH nr(2), but to our
knowledge the details have not been worked out in the literature. (Of course, only completeness
is at issue; orthogonality is plain in the differential operator setting.)

Taking completeness for granted, we can exploit the eigenvectors to associate a self-adjoint

HamiltonianH
(0)
+ with the A1OH

(0)
+ (6.10), by setting (cf equation (6.4))

H
(0)
+ 8n ≡ E(0)+,n8n E(0)+,n = 2e−2ar ch(2iznr + (n + 2)ar) n ∈ N (6.17)

extending linearly, and taking the closure. It should be observed that the A1O H
(0)
+ has

constant coefficients, whereas the eigenfunctions8n(x) are not in any sense ‘free’.
To be sure, we have a similar state of affairs at the relativistic level, cfH− (1.12) and

H+ (1.13). In that case, though, the pertinent eigenfunctionsŵ(x)1/2ψn(x) of the defining
A1OH− are singled out in the infinite-dimensional eigenfunction space by requiring that they
be eigenfunctions of the ‘free’ A1O H+, too, cf the end of subsection 2.1. By contrast, for
the Schr̈odinger operatorHnr(2) the eigenfunctions span a two-dimensional space, and self-
adjointness requirements uniquely determine the relevant eigenfunctions. To our knowledge,
the existence of a self-adjoint, commuting operatorH

(0)
+ with a very simple action (namely,

by the A1O H
(0)
+ (6.10)) on a core forH nr(2) has not been observed before, neither for the

elliptic potential 2℘(x) nor for its hyperbolic specialization, which we study below.
Before doing so, we add some remarks concerning the band functions (6.12). First, we

recall their role in the spectral analysis of the operator

H̃nr(2) ≡ − d2

dx2
+ 2℘(x + ia/2) (6.18)

viewed as a self-adjoint operator onL2(R) in the obvious way. The key point is that besides
the functionsH0(x + ia/2, y), y ∈ R (cf equation (6.2)), the functionsHb0(x + ia/2, y), y ∈
(−3r,−r], are the only eigenfunctions of the differential operator on the right-hand side of
(6.18) that have a real eigenvalue and aπ/r-multiplier that is a phase. (This well known
fact follows from a consideration of the discriminant of the periodic Schrödinger operator
(6.18) at hand, but a quite short proof will be given in a moment.) Thus it follows thatH̃nr(2)
has a purely absolutely continuous spectrum [−e1,−e2] ∪ [−e3,∞) with multiplicity two, cf
[11, section XIII.16] and references therein.

Comparing this state of affairs to our findings in subsection 2.4, the reader will see why
the completeness conjecture made there is plausible. A suitable generalization of the well
known lore on periodic Schrödinger operators to A1Os with periodic coefficients might settle
this open problem.

With the above formulae at our disposal, it is actually quite simple to demonstrate the key
point just mentioned. First, we note that the eigenvalue−℘(z) takes all values in(−∞,∞)
as z varies over the rectangle with corners 0, π/2r, π/2r + ia/2 and ia/2 (with the first
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corner excluded, of course). Thus we need only consider the functionsH0(x)/s(x) (given
by equation (6.2)) and their complex conjugates forz on the rectangle. The latter have the
same eigenvalue−℘(z) and are linearly independent of the former unlessz equals one of the
last three corners. (A second eigenfunctionEj(x) independent ofHj (x)/s(x), j ∈ {1, 2, 3},
can be easily constructed via reduction of order, butEj(x + π/r) does not equalµEj(x) for
someµ ∈ C.) Hence it suffices to prove that they-value given by (6.1) is not real forz on the
horizontal sides of the rectangle.

Now for z between ia/2 and ia/2 +π/2r we may write

s ′(z)
s(z)
= −ir +

∫ z

ia/2
(−℘(w)− 2ηr/π) dw z− ia/2 ∈ (0, π/2r) (6.19)

cf equations (2.32) and (2.36). The integral equals 0 forz = ia/2 +π/2r and the integrand
decreases monotonically asw goes from ia/2 to ia/2 +π/2r. Since−e3− 2ηr/π is positive
(cf equation (2.34)), we deduce that the integral yields a positive number forz between ia/2
and ia/2 +π/2r. Therefore, the associatedy-value has a non-zero imaginary part.

It also follows from the previous paragraph that−e2 − 2ηr/π is a negative number.
A fortiori,−℘(w)− 2ηr/π is negative forw ∈ (0, π/2r]. Now for z between 0 andπ/2r we
have

s′(z)
s(z)
=
∫ π/2r

z

(℘ (w) + 2ηr/π) dw z ∈ (0, π/2r) (6.20)

so it follows thats ′(z)/s(z) is positive. Hencey is not real, and the proof is complete.
Proceeding with the hyperbolic specialization, we letr ↓ 0 in the above formulae,

obtaining the operators

B(0)+ = −Tia − T−ia H (0)
+ = Tia + T−ia (6.21)

B
(0)
− = −

d2

dx2
− π

2

a2
+

2π

a
cth

(
πx

a

)
d

dx
(6.22)

H
(0)
− = −

d2

dx2
+

2π2

a2 sh2(πx/a)
= sh−1(πx/a)B

(0)
− sh(πx/a). (6.23)

The constraint (6.1) becomes

cth(πz/a) = −iay/π (6.24)

which amounts to

exp(2πz/a) = y + iπ/a

y − iπ/a
. (6.25)

ThusH0(x) (6.2) can be rewritten

H0(x, y) = a

π

1

(a2y2 + π2)1/2

[
ay sh

(
πx

a

)
+ iπ ch

(
πx

a

)]
eixy (6.26)

and the eigenvalues become

E(0)+ = 2 ch(ay) E
(0)
− = y2. (6.27)

A suitable multiple of the odd combination

ψ0(x, y) ≡ H0(x, y)−H0(−x, y)

= 2a

π

1

(a2y2 + π2)1/2

[
ay sh

(
πx

a

)
cos(xy)− π ch

(
πx

a

)
sin(xy)

]
(6.28)
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yields an isometry fromL2((0,∞), dy) onto L2((0,∞), sh−2(πx/a) dx). The even
combination does not vanish forx → 0, so it does not give rise to an isometry.

Comparing the above hyperbolic formulae and the rational specialization in section 5, one
reads off that they are related via the substitutions

x ↔ y β → π/a. (6.29)

From this the pertinent duality property of the jointB(0)δ -eigenfunctionH0(x, y) (6.26) is clear:
it is also an eigenfunction of the A1O

H̃ ≡
(
y − 2iπ/a

y

)1/2

T̃iπ/a

(
y + 2iπ/a

y

)1/2

+ (i →−i) (6.30)

with eigenvalue

Ẽ = 2 ch(πx/a). (6.31)

(The arbitrary-g generalization of this non-relativistic-hyperbolic versus relativistic-rational
duality was first pointed out in [3, subsection 3B2].)

Just as in section 3, we can also takex → x + ia/2 to get operators

B̃
(0)
− = −

d2

dx2
− π

2

a2
+

2π

a
th

(
πx

a

)
d

dx
(6.32)

H̃
(0)
− = −

d2

dx2
− 2π2

a2 ch2(πx/a)
= ch−1(πx/a)B̃

(0)
− ch(πx/a). (6.33)

TheB̃(0)− -eigenfunction

H̃0(x, y) = a

π

1

(a2y2 + π2)1/2

[
ay ch

(
πx

a

)
+ iπ sh

(
πx

a

)]
eixy (6.34)

gives rise to an isometry from the even subspace ofL2(R, dy) onto the odd subspace of
L2(R, ch−2(πx/a) dx), whereas the oddL2(R, dy)-subspace is mapped isometrically onto
the orthocomplement in the evenL2(R, ch−2(πx/a) dx)-subspace of the constant functions.
(The bound state energy equals−π2/a2, cf equation (6.32).)

We continue by specializing to the non-relativistic trigonometric regime. This can be done
in three distinct ways, each of which yields the same results: we can takea ↑ ∞ in the elliptic
formulae, perform a suitable analytic continuation in the hyperbolic formulae, or letβ ↓ 0 in
the formulae of section 4. We now detail the latter option.

The A1OB (4.1) yields the non-relativistic limit

B(0) = − d2

dx2
+ r2 + 2r cot(rx)

d

dx
(6.35)

corresponding to the Schrödinger operator

H(0) = − d2

dx2
+

2r2

sin2(rx)
= sin−1(rx)B(0) sin(rx). (6.36)

The constraints (4.2) and (4.9) become

r th(rγ ) = y + 2r rcth(rκ) = y + 2r (6.37)

respectively. Eliminatingγ andκ yields theB(0)-eigenfunction

H0(x, y) = 1

r

1

(y2 + 4ry + 3r2)1/2

[
(y + 2r) sin(rx) + ir cos(rx)

]
eix(y+2r) (6.38)

with eigenvalue

E(0) = (y + 2r)2. (6.39)
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The odd eigenfunctions

ψ(0)
n (x) = H0(x, nr)−H0(−x, nr) n ∈ N (6.40)

give rise to an orthonormal base for the Hilbert space

L2((0, π/r), r3(2π sin2(rx))−1 dx). (6.41)

(Just as in section 4, completeness follows from the functions sin−3(rx)ψ(0)
n (x) being

polynomials in cosrx of degreen.) Theβ ↓ 0 limit of (4.17) reads

B(0) cos2(rx) = r2(cos2(rx)− 2) (6.42)

and is readily checked directly from (6.35).
Using (4.28) one deduces thatH0(x, y) is an eigenfunction of the dual A1O

H̃
(0)
− =

(
y + 3r

y + 2r

)1/2

T̃r

(
y + r

y + 2r

)1/2

+

(
y + r

y + 2r

)1/2

T̃−r

(
y + 3r

y + 2r

)1/2

(6.43)

with eigenvalue 2 cosrx. The discrete difference operator

D(0) =
(
n + 3

n + 2

)1/2

S

(
n + 1

n + 2

)1/2

+ h.c. (6.44)

on l2(N) is then diagonalized as multiplication by 2 cosrx on the Hilbert space (6.41) via the
unitary with kernel(ψ(0)

0 (x), ψ
(0)
1 (x), . . .).

Finally, we turn to the rational case. As before, this most degenerate case can be reached
via various paths, yielding the same results: one gets the operators

B(0) = − d2

dx2
+

2

x

d

dx
H(0) = − d2

dx2
+

2

x2
= 1

x
B(0)x (6.45)

andB(0)-eigenfunctions and -eigenvalues

H0(x, y) =
(
x +

i

y

)
eixy E(0) = y2. (6.46)

TheH(0)-eigenfunctionH0(x, y)/x is manifestly self-dual (symmetric underx ↔ y). The
even combination

8(0)(x, y) = 2 cos(xy)− 2 sin(xy)/xy (6.47)

yields the kernel of an isometry onL2((0,∞)), whereas the odd combination does not give
rise to a bounded operator onL2((0,∞)).

Note added. After completion of this paper a preprint by Billey [15] appeared that bears out the scenario sketched in
the paragraph below (1.23). More precisely, she shows thatN > 2 elliptic relativistic eigenfunctions can be found
via a suitable (nested) Bethe ansatz, provided the couplingg is an integer. Unfortunately, it is not obvious that her
g = 2 Bethe ansatz equations and eigenfunctions can be made to converge to those of Lieb and Liniger by appropriate
substitutions, but we have little doubt that this is feasible.
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