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Abstract We introduce a unique model for a fermion-
antifermion pair interacting via Dirac oscillator coupling in
the presence of an external uniform magnetic field. This
model is based on an exact solution of the corresponding form
of a fully-covariant two-body Dirac equation (one-time). The
dynamic symmetry of the system allows to study in 2 + 1
dimensions and we choose the interaction of the particles
with the external uniform magnetic field in the symmetric
gauge. The corresponding equation leads 4 × 4 dimensional
matrix equation for such a static composite system. For spin
antisymmetric state of the fermion-antifermion pair, we per-
form an exact solution of the matrix equation and obtain rela-
tivistic Landau levels of a fermion-antifermion pair interact-
ing via Dirac oscillator coupling. The results show that such
a composite system behaves like a single relativistic quantum
oscillator carrying total rest mass of the particles. We discuss
several interesting features of this system and show that the
obtained energy spectrum agrees well with the previously
announced results for one-body systems. We think that the
introduced model in this manuscript has a great potential for
many theoretical and experimental applications.

1 Introduction

The Dirac oscillator has been introduced in terms of a new
type interaction in the Dirac equation [1–3] (also see [4]) and
it has been shown that this interaction has a great potential
for many theoretical and experimental applications [5–13].
This form of the Dirac equation is linear in both momentum
and spatial coordinate [1,2] and solution of this instance of
the Dirac equation gives a simple quantum oscillator solution
with a strong spin-orbit coupling term in the non-relativistic
limit [3,5]. This is why it has been called as Dirac oscil-
lator (DO) [3,6]. The electromagnetic potential associated
with this interaction has been obtained [7] and it has been
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shown that the DO interaction is a physical system due to the
fact that it corresponds to the interaction of the anomalous
(chromo) magnetic moment with a linearly growing electric
field [7]. The DO interaction is regarded as an alternative
confinement potential for heavy quarks in quantum chromo-
dynamics (QCD) [7,8] and the DO system can describe the
relativistic dynamics of quarks in mesons and baryons [7–11]
since the DO interaction is normally utilized in the context of
many-body theory [2,9]. Therefore, a well-established math-
ematical model for a tight-binding fermion-antifermion sys-
tem can be useful to better understand the physics of compos-
ite systems such as mesons [9]. The potential of applications
of the DO system has been enhanced after achieving the first
experimental microwave realization of the one-dimensional
DO system [12]. This experiment has been relied on a rela-
tion of the DO system to a tight-binding system (coupled
dielectric disks) [12] and the obtained results are in good
agreement with the theoretical predictions [12,13]. Two-
dimensional DO has been used to describe the relativistic
dynamics of charge carriers in monolayer graphene [14–16]
and one of the most important aspects of the DO is that it has
found many application areas in various branches of physics
such as mathematical physics [17–23], nuclear (or subnu-
clear) physics [24–26] (also see [27,28]) and quantum optics
[18,29–32]. The DO has been also studied in the context of
minimal length uncertainty [33,34]. The DO is an exactly
solvable system and this important fact makes the DO is a
useful system to determine the influence of spacetime topol-
ogy on the dynamics of the corresponding systems [5,35–40].
However, in many areas of the modern physics, a quantum
oscillator is used to determine the dynamics of the interacting
particles [6].

On the other hand, a phenomenological way to describe
the dynamics of many-body systems is to use one-time
equations including free Hamiltonians for each particle plus
interparticle interaction potentials [41,42]. In the relativistic
quantum theory, the history of such equations goes long way
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back [43,44] but there are still different relativistic many-
body equations in use today in the literature [43–48]. In this
study, we will use the corresponding form of a fully-covariant
two-body Dirac equation (FCTBE) [9,48–54], derived from
quantum electrodynamics (QED) with the help of action prin-
ciple [47], in order to obtain relativistic Landau levels for a
composite system formed by a fermion-antifermion (ff) pair
interacting via DO coupling. The FCTBE is a one-time equa-
tion including the most general electric and magnetic poten-
tials [48–54]. This equation leads a 16 × 16 matrix equa-
tion in 4-dimensions [52–54] and the separation of angu-
lar and radial variables requires group theoretical methods
[52–55]. It has been announced that the well-known energy
spectrum for one-electron atoms or some ff systems can
be obtained via perturbative solution of the FCTBE [9,52–
54] in 4-dimensions. Recently, it has been shown that the
FCTBE can be exactly solvable for low dimensional systems
[48] and some systems that have dynamical symmetries [49–
51], without considering any group theoretical method. The
FCTBE has been used to describe the dynamics of an exci-
ton (electron-hole pair) in a monolayer free standing medium
and the lifetime of the exciton has been obtained simultane-
ously besides its binding energy [48]. Moreover, this equa-
tion has been solved exactly for an electron-hole pair that
they interact via attractive Coulomb potential in a monolayer
dielectric medium and the results show that, in principle, one
can actively tune both binding energy and decaytime of an
exciton during photo-excitation experiments by adjusting the
dielectric substrates [51]. The FCTBE is also appropriate to
study in curved spacetime backgrounds. Recently, this equa-
tion has been used to determine the effects of cosmic strings
on the unstable composite systems such as ortho-positronium
(spin symmetric quantum state of an electron-positron pair)
and it has been shown that an ortho-positronium system has
a great potential to prove the existence of the cosmic strings
in the universe [49]. In the relativistic quantum theory, two-
body systems have been studied for a very long time [43–48],
however there is a few investigation about the dynamics of
ff (or ff) systems with DO couplings [9,56–58]. Moreover,
we could not find exact results for the relativistic dynam-
ics of a ff pair interacting via DO coupling in the literature.
On the other hand, exact results for the dynamics of matter-
antimatter systems in the presence of an external magnetic
field are very important in the context of relativistic quan-
tum theory [50], since we know that the magnetic fields exist
at almost every point in the universe [50] (but we do not
know the origin of the magnetic field in the universe [50]).
Therefore, determination of the influence of external mag-
netic fields on the dynamics of an interacting ff system is
very important in QCD and QED [50].

In this manuscript, we introduce a well established model
to determine the relativistic Landau levels of a ff pair inter-
acting via DO coupling. In order to acquire this, we write

the FCTBE for arbitrary two Dirac particles (massive) with
DO couplings. We investigate the relativistic dynamics of
such a composite system in 3-dimensional flat spacetime
background by choosing the interaction of the particles with
the external uniform magnetic field in the symmetric gauge,
since this system has translational symmetry [50]. We sepa-
rate center of mass motion coordinates and relative motion
coordinates. Then, we arrive at a 4 × 4 dimensional matrix
equation, resulting a set of coupled equations for a static ff
pair interacting via DO coupling under the influence of an
external uniform magnetic field. We solve this set of cou-
pled equations for spin antisymmetric state (s = 0) of such
a pair and obtain an energy spectrum in closed-form. The
results show that such a ff pair behaves like a single rel-
ativistic quantum oscillator carrying total rest mass of the
particles. We discuss several interesting features of this sys-
tem by comparing the results and their limits with the previ-
ously announced results for related one-body systems. We
show that the obtained results agree well with the previ-
ously announced theoretical and experimental results for DO
(one-body). Therefore, we think that our results can provide
a suitable basis for many new theoretical and experimental
applications.

2 Mathematical model

In this part of the present manuscript we introduce a model
Hamiltonian for a ff pair interacting through DO interaction
in the presence of an external uniform magnetic field in 2+1
dimensional flat spacetime background, without considering
Coulomb type charge-charge interaction. To acquire this, we
start with the generalized form of the FCTBE written for
arbitrary of two Dirac particles [48–54],

{
H (1) ⊗ γ 0(2) + γ 0(1) ⊗ H (2)

}
χ (x1, x2) = 0,

H (1) =
[
γ μ(1)

π
(1)
μ + ib1I2

]
, H (2) =

[
γ μ(2)

π
(2)
μ + ib2I2

]
,

π
(1)
μ =

(
∂
(1)
μ + i

e1A
(1)
μ

h̄c
− �

(1)
μ

)
, π

(2)
μ =

(
∂
(2)
μ + i

e2A
(2)
μ

h̄c
− �

(2)
μ

)
,

b1 = m1c

h̄
, b2 = m2c

h̄
, (μ = 0, 1, 2.) ,

∂μ = (∂0, ∂1, ∂2.), (1)

here, the superscripts (1) and (2) refer to the first fermion
with massm1 and second fermion with massm2, respectively,
I2 is the 2-dimensional unit matrix, χ (x1, x2) is the bi-local
composite field that is constructed by Kronocker product (⊗)

of arbitrary massive of two Dirac fields as in the following,

χ (x1, x2) = χ1 (x1) ⊗ χ2 (x2) , (2)

h̄ is the reduced Planck constant, c is the speed of light,
e1 and e2 represent to the charges of the particles, �μ and
Aμ stand for the spinor connections and vector potentials,
respectively. Here, it is important to underline that the γ 0
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means γ μλμ in everywhere in Eq. (1) and the λμ is a time-
like vector λμ = (1, 0, 0) [59] (normal vector of the two-
dimensional spacelike subspace). This equation includes spin
algebra spanned by Kronocker product of the Dirac matri-
ces [47]. Dynamic symmetry of the system that under con-
sideration allows to study in 2 + 1 dimensional spacetime
background. In terms of cartesian coordinates, this space-
time background is represented by the following line element
[50],

ds2 = c2dt2 − (dx2 + dy2), (3)

for which the spinor connections in Eq. (1) vanish [60]. We
can choose the interaction of the arbitrary charged of two
Dirac particles with the external uniform magnetic field in
the symmetric gauge [50], for which the vector potentials in
Eq. (1) become as in the following,

A(1)
t = 0, A(1)

x = − B0 y1
2 , A(1)

y = B0x1
2 ,

A(2)
t = 0, A(2)

x = − B0 y2
2 , A(2)

y = B0x2
2 . (4)

Here, B0 is the amplitude of the external uniform magnetic
field and spatial coordinate pairs (xi , yi (i = 1, 2.)) corre-
spond to the spatial coordinates of the particles confined on
a spatial plain. According to the signature (+,−,−) in Eq.
(3) we can choose the Dirac matrices in terms of the Pauli
spin matrices (σ x , σ y, σ z) as in the following [48,50,51],

γ t (1,2) = σ z, γ x (1,2) = iσ x , γ y(1,2) = iσ y,

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
, (5)

since they are independent from the coordinates of the parti-
cles (see also [49]). Now, we can introduce two dimensional
of two DOs (arbitrary massive) via the non-minimal substi-
tution terms as follows [3],

∂(1)
x → ∂(1)

x + m1ω1

h̄
γ 0(1)

x1, ∂(1)
y → ∂(1)

y + m1ω1

h̄
γ 0(1)

y1,

∂(2)
x → ∂(2)

x + m2ω2

h̄
γ 0(2)

x2, ∂(2)
y → ∂(2)

y + m2ω2

h̄
γ 0(2)

y2,

(6)

here, ω1(2) is the frequency of the oscillator with mass m1(2).
Then, we separate the center of mass motion coordinates
and relative motion coordinates via the following expressions
[48],

Rμ = 1

M

(
m1x

(1)
μ + m2x

(2)
μ

)
, rμ = x (1)

μ − x (2)
μ ,

x (1)
μ = m2

M
rμ + Rμ, x (2)

μ = −m1

M
rμ + Rμ,

∂(1)
xμ

= ∂rμ + m1

M
∂Rμ , ∂(2)

xμ
= −∂rμ + m2

M
∂Rμ , ∂(1)

xμ
+ ∂(2)

xμ
= ∂Rμ .

(7)

3 Coupled equations for the components of bi-spinor

In this section, we obtain a set of coupled equations in terms
of the relative radial coordinate for a ff pair interacting via
DO coupling in the presence of an external uniform magnetic
field. Provided that the interaction is time-independent and
momentum of the center of mass is a constant of motion we
can define the bi-spinor χ as follows,

χ (R0,R, r) = e−iwt eik.Rψ (r) , ψ (r) =

⎛
⎜⎜⎝

ϕ1 (r)
ϕ2 (r)
ϕ3 (r)
ϕ4 (r)

⎞
⎟⎟⎠ , (8)

here, w is the total frequency that determined according to the
proper time (R0) of the system [47], k relates with the center
of mass momentum as h̄k, R is the spatial position vector of
the center of mass and r is the relative spatial vector between
the ff pair. By assuming the center of mass is rest (h̄k = 0)
at the origin (R1 = R2 = 0) of the background, we obtain
the following matrix equation for a ff pair (e1 = e, e2 =
−e)1 interacting through DO coupling in the presence of an
external uniform magnetic field,

− (
γ t ⊗ γ t ) iεψ + i

mc

h̄

(
I2 ⊗ γ t + γ t ⊗ I2

)
ψ

+ (
γ x ⊗ γ t − γ t ⊗ γ x ) ∂xψ

+ (
γ y ⊗ γ t − γ t ⊗ γ y) ∂yψ

+iκx
(
γ y ⊗ γ t + γ t ⊗ γ y) − iκy

(
γ x ⊗ γ t + γ t ⊗ γ x ) ψ

+ξ x
((

γ xγ t ) ⊗ γ t + γ t ⊗ (
γ xγ t )) ψ

+ξ y
((

γ yγ t ) ⊗ γ t + γ t ⊗ (
γ yγ t )) ψ = 0,

ε = w

c
, κ = eB0

2h̄c
, ξ = mω

2h̄
,

(9)

with the help of Eqs. (4), (5), (6), (7), (8) and (1). In Eq. (9),
x and y are the spatial coordinates for the relative motion of
the ff pair confined on a spatial plain. By multiplying the Eq.
(9) with γ t ⊗ γ t from left (note that

(
γ t ⊗ γ t

)2 gives 4 × 4
dimensional unit matrix), one can obtain the following 4 × 4
dimensional matrix equation,

⎛
⎜⎜⎜⎝

ε − M ∂− −∂− 0
−∂+ ε 0 −∂−
∂+ 0 ε ∂−
0 ∂+ −∂+ ε + M

⎞
⎟⎟⎟⎠ψ (r) + (ξ − κ)

⎛
⎜⎜⎜⎝

0 r− r− 0
r+ 0 0 r−
r+ 0 0 r−
0 r+ r+ 0

⎞
⎟⎟⎟⎠ ψ (r) = 0,

M = 2mc

h̄
, ∂± = ∂x ± i∂y , r± = x ± iy.

(10)

Now, we can construct to possible spin states of such a
ff pair. To end this, we can use the following expressions

1 This case requires that ω1 = ω,ω2 = −ω and m1 = m2 = m [9,61].
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[48,50],

∂∓ = e∓iφ
(

∓ i

r
∂φ + ∂r

)
, r∓ = re∓iφ,

here, ∂+ and ∂− stand for the spin raising and spin lowering
operators, respectively, and r is the relative radial distance
between the particles. Afterwards, we can obtain a set of
coupled equations for the components of the transformed
spinor,

ψ (r) �⇒
(
ϕ1 (r) ei(s−1)φ, ϕ2 (r) eisφ, ϕ3 (r) eisφ, ϕ4 (r) ei(s+1)φ

)T
,

as follows,

εψ1 (r) − Mψ2 (r) + 2∂rψ3 (r) + 2�rψ4 (r) = 0,

εψ2 (r) − Mψ1 (r) + 2s

r
ψ3 (r) = 0,

εψ3 (r) + 2s

r
ψ2 (r) − 2

(
1

r
+ ∂r

)
ψ1 (r) = 0,

εψ4 (r) − 2�rψ1 (r) = 0,

� = (ξ − κ) , (11)

two of which becomes algebraic for the following definitions,

ψ1 (r) = ϕ1 (r) + ϕ4 (r) , ψ2 (r) = ϕ1 (r) − ϕ4 (r) ,

ψ3 (r) = ϕ2 (r) − ϕ3 (r) , ψ4 (r) = ϕ2 (r) + ϕ3 (r) .

In Eq. (11), s represents to total spin of the composite system
formed by a ff pair. It is known that one of the mathematical
difficulties in the many-body problems is the total angular
momentum of the corresponding composite systems [44,50].
As can be seen in Eq. (11), we can obtain a complete and
analytical solution of this set of equations when s = 0. For
antisymmetric spin state (s = 0) of such a ff pair, we can
introduce a dimensionless independent variable that reads
z = �r2. In terms of the variable z, the equation system in
Eq. (11) becomes as follows,

εψ1 (z) − Mψ2 (z) + 4�

√
z

�
∂zψ3 (z) − 2�

√
z

�
ψ4 (z) = 0,

εψ2 (z) − Mψ1 (z) = 0,

εψ3 (z) − 2√
z
�

ψ1 (z) − 4�

√
z

�
∂zψ1 (z) = 0,

εψ4 (z) − 2�

√
z

�
ψ1 (z) = 0;

(12)

in which, all of the other spinor components can be expressed
in terms of the ψ1 (z).

4 Non-perturbative energy spectrum

In this part of calculations, we obtain relativistic Landau lev-
els of a spinless composite system consisting of a ff pair inter-
acting via DO interaction, without considering any approxi-
mation. By solving the equation system in Eq. (12) for ψ1 (z)
we obtain the following wave equation,

∂2
z ψ1 (z) + 1

z
∂zψ1 (z) +

(
ε2 − M2

16�z
− 1

4z2 − 1

4

)
ψ1 (z) = 0.

Via an ansatz that reads ψ1 (z) = 1√
z� (z), this wave equa-

tion can be reduced into the well-known shape of the Whit-
taker differential equation,

∂2
z � (z) +

(
ε2 − M2

16�z
− 1

4

)
� (z) = 0. (13)

Solution function of Eq. (13) is obtained as follows [50,62,
63],

� (z) = NW�,τ (z), � = ε2 − M2

16�z
, τ = 1

2
, (14)

here, N is the normalization constant and W�,τ (z) is the
Whittaker function [50,62,63]. However, this solution func-
tion can only be reduced to polynomial of degree n with
respect to the variable z provided that the following condi-
tion is satisfied [50,62,63],

1

2
+ τ − � = −n, (15)

in which, n is the principal quantum number (non-negative
integer). Eq. (15) leads to the quantization condition for the
formation of the composite system that under consideration.
Now, one can obtain a non-perturbative energy spectrum with
the help of the parameters in Eq. (9), Eq. (10), Eq. (11) and
Eq. (14),

En = ±m∗c2

√
1 + ωh̄

m∗c2 n
∗, m∗ = 2m,

ω = 4
(
ω − ωc

2

)
, ωc = |e|B0

mc
, n∗ = (n + 1) , (16)

here, ωc is the cyclotron frequency [30,50]. Also, the spinor
components can be obtained, in terms of the variable z, as in
the following,

ψ1 (z) = N
W�,τ (z)√

z
,

ψ2 (z) = N
M

ε
√
z
W�,τ (z),

ψ3 (z) = N

⎡
⎣ 2

ε

√
1
�

+ 4
√

�z

ε

(
1

2
− �

z

)⎤
⎦W�,τ (z)

123



Eur. Phys. J. C (2021) 81 :100 Page 5 of 7 100

−N
4
√

�

εz
W�+1,τ (z),

ψ4 (z) = −N
2
√

�

ε
W�,τ (z),

which satisfy the coupled equations in Eq. (12). The Eq.
(16) gives relativistic Landau levels of a static and spinless
composite system formed by a ff pair interacting via DO
coupling and shows that such a pair behaves like a single
relativistic quantum oscillator carrying total rest mass of the
particles (m∗). In Eq. (16), one can see that the second term
in square root does not vanish even for n = 0 quantum state
of such a pair. In Eq. (16), we see that the influence of exter-
nal uniform magnetic field on this ff pair is to decrease the
oscillation frequency by half of the cyclotron frequency (see
[64]). Also, Eq. (16) shows that the dynamics of such a ff pair
remains unchanged except for a special value of the strength
of external uniform magnetic field, B0 = m∗ωc

|e| , since the
result oscillator stops oscillating for this special strength of
the external uniform magnetic field. This means that the total
energy of such a ff pair closes to the total rest mass energy
(m∗c2) of the ff pair when ω ≈ ωc/2 for any physically
possible quantum state of this system. Also, it is clear that
such a composite system (in the external uniform magnetic
field) is mapped onto a single relativistic oscillator oscillat-
ing with a different oscillation frequency without magnetic
field. The energy spectrum given in Eq. (16) can be reduced
into the previously obtained results for relativistic Landau
levels of a 2+1 dimensional DO provided that m∗ → m and
n∗ → n. Therefore, we think that the suggested model in this
manuscript is appropriate for many different theoretical and
experimental applications (for more details see [64]). Here,
it is important to underline that the introduced model in this
manuscript is appropriate only for massive ff systems (see Eq.
(7)). A ff system with DO interaction was studied firstly by
Moshinsky and his collaborators [9,56,57] and they obtained
perturbative energy expressions. However, it has been shown
that these energy expressions can give the mass spectrum for
mesons. Therefore, the obtained exact spectrum in Eq. (16)
can be very useful to determine the mass spectrum of mesons
[9,56,57].

5 Results and discussion

In this manuscript, we introduce a unique model for a ff pair
interacting via DO coupling in the presence of an external
uniform magnetic field. This model is based on an exact solu-
tion of the corresponding form of a fully-covariant two-body
Dirac equation (one-time). This equation includes spin alge-
bra spanned by Kronocker product of Dirac matrices. The
translational symmetry (see [50]) of the system that under
consideration allows to study in 2 + 1 dimensional space-

Fig. 1 Dependence of the total energy of a spinless composite system
formed by a fermion-antifermion pair interacting via Dirac oscillator
interaction (∝ ω) in the presence of an external uniform magnetic field
on the effective coupling strength (ω) that holds such a pair together.
Here, ω = 4

(
ω − ωc

2

)
, ωc = |e|B0

mc and m = c = h̄ = 1

time background. The considered composite system con-
sists of an interacting ff pair and as is usual with two-body
problems we separate the center of motion coordinates and
relative motion coordinates. Afterwards, we construct pos-
sible spin eigenstates of such a static ff pair by exploiting
the angular symmetry of the polar space. As we mentioned
before, one of the main difficulties in the solution of many-
body quantum systems is total angular momentum of the
corresponding composite systems [44] (this problem may
not appear for some topologies [49]). In Eq. (11), it can be
seen that an exact solution of this set of coupled equations
may not be possible if s �= 0. We solve this set of equations
for spin antisymmetric state (s = 0) of such a ff pair and
we obtain an energy spectrum in closed-form. The obtained
spectrum is given in Eq. (16) and it shows that such a com-
posite system behaves like a single relativistic oscillator car-
rying total rest mass (m∗) of the ff pair. In Eq. (16), one
can see that the total energy (En) of the composite system
closes to the total rest mass energy (m∗c2) of the particles
when external magnetic field and oscillator frequency (cou-
pling strength between the particles) are very weak. In Eq.
(16), it is also clear that the coupling terms do not vanish for
such a ff pair in the ground state (n = 0). We can also see
that, the obtained total energy value closes to the total rest
mass energy of the system when the strength of external uni-
form magnetic field closes to m∗ωc

|e| . Therefore, the dynamics

of this interacting ff pair remains unchanged except for the
B0 = m∗ωc

|e| value. Also, our results can be reduced into the
previously announced results for the relativistic Landau lev-
els of a 2 + 1 dimensional DO provided that m∗ → m and
n∗ → n (see Eq. (16) and see [64]). Eq. (16) shows that a
composite system formed by a ff pair under the influence
of an external uniform magnetic field maps into a DO oscil-
lating with a different frequency (ω) in the absence of the
external uniform magnetic field (ωc = 0), since this external
field decreases the coupling strength between ff pair by half
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of the cyclotron frequency (ωc
2 ). This property of the obtained

energy spectrum agrees well with the results obtained for the
relativistic Landau levels of a 2 + 1 dimensional DO (see
[64]). The obtained energy spectrum (Eq. (16) agrees well
with the results of the first experimental microwave realiza-
tion of the one-dimensional DO (see Eq. (16) and [12]) and
theoretical predictions for one-dimensional DO (see Eq. (16
and [13]) when m∗ → m. Here, it is important to remem-
ber that our result (Eq. (16)) does not include spin coupling.
Due to the this fact, it may not be very useful to discuss the
similarities between the obtained results in this manuscript
and the quantum optical models such as Jaynes-Cummings
(or anti-Jaynes-Cummings) model, since the entanglement
of the spin with the orbital motion is very important in these
models of quantum optics. On the other hand, the thermody-
namics properties of one-dimensional DO has been studied
in [13] and such a discussion is also valid for our results (by
substituting m∗ → m) in the absence of the external uni-
form magnetic field. Now, we can discuss the dependence
of the total energy of such a pair on the coupling strength
between the particles and the strength of the external uni-
form magnetic field. In Eq. (16), the ω can be considered as
an effective coupling strength between ff pair in the presence
of an external uniform magnetic field since we have obtained
that the presence of this external field decreases the strength
of the coupling between the ff pair. The dependence of the
total energy (En) on the ω can be seen in Fig. 1, in which
total energy of such a composite system increases when ω

increases. It is also clear that the energy of this composite sys-
tem decreases when the strength of the external uniform mag-
netic field increases. According to the our results, ωc > 2ω

case can be possible if the external magnetic field (uniform)
is very strong. This case may also be possible if the strength
of coupling between the particles is very weak. In both cases,
especially, the excited states of such a composite system can-
not be steady states and hence the corresponding modes can
decay exponentially in time [48–51,65] if |ω|h̄ > m∗c2.
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