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The paper reviews theoretical backgrounds of an approximate treatment of relativistic effects
within the tight-binding (TB) linear muffin-tin orbital (LMTO) method for ab initio electronic
structure calculations of solids. The formalism employs two-component spinors and an orbital
basis set of the scalar-relativistic approximation. The developed theory is applied to selected
metallic systems and its results are compared to those of a fully relativistic TB-LMTO method.

Keywords: electronic structure calculations; density functional theory; relativistic effects;
spin-orbit interaction; random alloys; itinerant magnetism

1. Introduction

It is well known that the role of relativistic effects in electronic properties of solids
is pronounced especially for systems with heavy elements (5d transition metals,
actinides). In magnetic solids, however, this role becomes non-negligible even for
systems consisting of light elements. In particular, the spin-orbit (SO) interaction
in 3d transition metals and their alloys is responsible for a number of important
properties of itinerant magnets, such as magnetocrystalline anisotropy, galvano-
magnetic phenomena [1], or imperfect spin polarization of carriers in halfmetallic
ferromagnets [2].

Existing ab initio approaches to an accurate treatment of the relativistic effects
employ inevitably four-component wave functions within the Kohn-Sham-Dirac
(KSD) theory [see 3, 4, and references therein]. This leads—even in cases with
weak SO interaction—to profound changes of the whole formalism in comparison
to usual non-relativistic or scalar-relativistic descriptions. The purpose of this paper
is twofold. First, we sketch briefly (Section 2) an easy modification of the scalar-
relativistic tight-binding (TB) linear muffin-tin orbital (LMTO) method [3, 5] that
takes into account the SO interaction but retains a number of features of the original
formalism. Second, we check reliability of the developed technique (Section 3) by
performing selfconsistent calculations for several non-magnetic and spin-polarized
bulk systems and by comparing their results to those of the fully relativistic TB-
LMTO method [3, chap. 6].
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2. Theory

2.1. Kohn-Sham-Dirac Hamiltonian and its approximations

A relativistic density functional theory neglecting diamagnetic effects [6] leads to
the KSD equation for a one-electron four-component wave function Ψ(r) describing
non-interacting electrons in an effective spin-dependent potential

HKSDΨ = EΨ, HKSD = cα · p + (β − I4)mc2 + V0(r)I4 + Bxc(r) ·Σβ, (1)

where the 4×4 matrices α, β, I4 and Σ are defined (in a 2×2 block-wise notation
and with the Pauli spin matrices σ) as

α =

(

0 σ

σ 0

)

, β =

(

1 0
0 −1

)

, I4 =

(

1 0
0 1

)

, Σ =

(

σ 0
0 σ

)

. (2)

The V0(r) and Bxc(r) denote the spin-independent part of the potential and the
exchange-correlation magnetic field, respectively [3, chap. 6]. After separating the
large (Φ) and the small (Υ) components of the bispinor Ψ,

Ψ =

(

Φ
Υ

)

, (3)

and after exclusion of the small component, the resulting equation Heff(E)Φ = EΦ
is obtained for the large component with an effective energy-dependent Hamilto-
nian

Heff(E) = p · σ c2

2mc2 + E − V0(r) + Bxc(r) · σ p · σ + V0(r) + Bxc(r) · σ. (4)

In atomic Rydberg units (used in the rest of the paper): 2m = 1, ~ = 1, e2/(4πǫ0) =
2, hence c ≈ 2 × 137.

For valence electrons of a typical solid, one can neglect their energy range (∼
1 Ry) and the exchange splitting Bxc (∼ 0.1 Ry) against 2mc2 ≈ 75 kRy in the
denominator in equation (4). This yields an approximate equation for the two-
component spinor Φ with an energy-independent Hamiltonian of the form

HΦ = EΦ, H = p · σ ω−1(r)p · σ + V0(r) + Bxc(r) · σ,

ω(r) = 1 + c−2 [E0 − V0(r)] , (5)

where E0 is an energy inside the valence band and ω(r) denotes the relativistic
mass enhancement factor. The use of the energy-independent Hamiltonian H (5)
for the large component Φ is compatible with the neglect of the small-component
contribution to the electron density which is justified only for valence states of not
too heavy atoms.

In the scalar-relativistic approximation (SRA) [7], equation (5) is replaced by

HSRAΦ = EΦ, HSRA = p · ω−1(r)p + V0(r) + Bxc(r) · σ. (6)

Note that for magnetic fields Bxc of a constant direction along the z axis, the spin
operator σz commutes with the HSRA and the two components of Φ are not mixed
in equation (6). The HSRA follows from the H (5) by omitting the second term
in a well-known relation of the Pauli-matrix algebra σµσν = δµν + i

∑

λ εµνλσλ,
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where µ, ν, λ ∈ {x, y, z}. The SO interaction is then defined as the difference of
Hamiltonians H (5) and HSRA (6), i.e.,

HSO = H − HSRA =
{[

∇ω−1(r)
]

× p
}

· σ. (7)

The effect of the HSO can be included as a correction to the HSRA [8]. Neverthe-
less, this procedure takes properly into account the singular behavior of the mass
enhancement factor ω(r) (5) for points close to the atomic nuclei which is the main
origin of SO splittings.

2.2. Orbitals and Hamiltonians in the LMTO method

Here we derive a matrix representation of the Hamiltonians HSRA, HSO and H of
Section 2.1 in the framework of the LMTO method and within the atomic sphere
approximation (ASA) [3, 8]. We assume a spin-polarized system with a collinear
spin structure and with the spin polarization along the z axis.

The LMTO orbitals |χRLs〉 derived from the HSRA have the form

|χR
′L′s′〉 = −

∑

RLs

|φRLs〉
(

K̇ − J̇S0
)

RLs,R′L′s′

+
∑

RLs

|φ̇RLs〉
(

K − JS0
)

RLs,R′L′s′
, (8)

where R is the site index, L = (ℓ,m) is the orbital index, s = ↑, ↓ is the spin index,
and |φRLs〉 and |φ̇RLs〉 denote the phi and phi-dot orbitals (non-zero only inside the
R-th atomic sphere). The symbol S0 denotes the matrix of canonical LMTO struc-
ture constants with matrix elements S0

RLs,R′L′s′ = δss′S0
RL,R′L′ and the symbols

J,K, J̇ , K̇ abbreviate diagonal matrices with elements given by Wronskians,

JRLs,R′L′s′ = δRLs,R′L′s′ {J, φ}RLs , K̇RLs,R′L′s′ = δRLs,R′L′s′ {K, φ̇}RLs ,

etc. [3, chap. 2]. Note that the matrices (K − JS0) and (K̇ − J̇S0) are diagonal in
the spin index and the orbitals |χRLs〉, |φRLs〉 and |φ̇RLs〉 have to be understood
as spin-orbitals (two-component non-relativistic spinors) with a trivial dependence
on the spin variable:

〈rs̄|φRLs〉 = δs̄s 〈r|φRLs〉, 〈rs̄|φ̇RLs〉 = δs̄s 〈r|φ̇RLs〉,
〈rs̄|χRLs〉 = δs̄s 〈r|χRLs〉. (9)

The angular dependence of the orbitals 〈r|φRLs〉 and 〈r|φ̇RLs〉 is given by real
spherical harmonics YL(r̂) while their radial amplitudes will be denoted as gRℓs(r)
and ġRℓs(r), respectively.

The overlap matrix O and the matrix representing the SRA Hamiltonian in the
basis of the LMTO orbitals |χRLs〉 (8) are given by

O =
(

K̇ − S0J̇
)(

K̇ − J̇S0
)

,

HSRA =
(

K̇ − S0J̇
)

Eν

(

K̇ − J̇S0
)

−
(

K̇ − S0J̇
)

(

K − JS0
)

, (10)

where Eν denotes a diagonal matrix of the energies Eν,RLs used for the linearization
and where terms containing the small parameters pRLs of the LMTO theory were
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omitted [3, chap. 2]. In deriving these results, normalization and orthogonality of
the spin-orbitals |φRLs〉 and |φ̇RLs〉 were used:

〈φRLs|φR
′L′s′〉 = δRR

′ δLL′ δss′ , 〈φ̇RLs|φR
′L′s′〉 = 0. (11)

The factorized form of the overlap matrix (10) leads to an explicit definition of
the basis of orthonormal LMTO orbitals |χorth

RLs〉:

|χorth
R

′L′s′〉 = |φR
′L′s′〉 +

∑

RLs

|φ̇RLs〉hRLs,R′L′s′ ,

h = −
(

K − JS0
)

(

K̇ − J̇S0
)−1

. (12)

The SRA Hamiltonian is then represented in the orthonormal LMTO basis by

Horth
SRA = Eν + h = C +

√
∆S0

(

1 − γS0
)−1 √

∆, (13)

where C, ∆ and γ denote diagonal matrices of the standard LMTO potential
parameters CRLs, ∆RLs and γRLs.

Let us evaluate matrix elements of the HSO (7) between two orbitals |φRLs〉
and |φRL′s′〉 where 〈r|φRLs〉 = gRℓs(r)Yℓm(r̂). We assume a spherically symmetric
potential V0(r) = VR(r) inside the R-th atomic sphere; the matrix elements are:

〈φRL′s′ |HSO|φRLs〉 =

=
∑

µνλ

εµνλ 〈s′|σλ|s〉
∫

gRℓ′s′(r)Yℓ′m′(r̂)
rµ

r

[

ω−1
R

(r)
]′

pν gRℓs(r)Yℓm(r̂) d3r

=
∑

λ

〈s′|σλ|s〉
∫

Yℓ′m′(r̂)LλYℓm(r̂) d2r̂

∫

rgRℓ′s′(r)gRℓs(r)
[

ω−1
R

(r)
]′

dr,

where Yℓm(r̂) are real spherical harmonics, the prime denotes radial derivative,
and the components Lλ of the angular orbital momentum operator L = r×p were
used. Note that the matrix elements vanish for ℓ 6= ℓ′. The final expression for
matrix elements between all phi orbitals can be written as [7]

〈φR
′L′s′ |HSO|φRLs〉 = δR

′
R δℓ′ℓ ξRℓ,s′s 〈L′s′|L · S|Ls〉, (14)

where we introduced the spin operator S = σ/2 and the SO parameters ξRℓ,s′s

defined by

ξRℓ,s′s = 2

∫ sR

0
rgRℓs′(r)gRℓs(r)

[

ω−1
R

(r)
]′

dr, (15)

where sR denotes the R-th atomic sphere (Wigner-Seitz) radius. The resulting SO
matrix elements (14) bear a form originating apparently from a simple ξL ·S term;
they are, however, more general for magnetic systems due to the spin dependence
of the SO parameters (15).

The matrix representations of the HSO in the original (8) and the orthogonal
(12) LMTO bases can respectively be written as

HSO =
(

K̇ − S0J̇
)

ξ
(

K̇ − J̇S0
)

, Horth
SO = ξ, (16)
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where ξ denotes a site-diagonal matrix of the SO parameters ξRℓ,s′s according to
equation (14). In deriving relations (16), matrix elements of the HSO between the
orbitals |φRLs〉 and |φ̇RL′s′〉 (and also between |φ̇RLs〉 and |φ̇RL′s′〉) were omit-
ted which corresponds to a neglect of varying SO-coupling strength for energies
inside the valence band [8]. The form of the omitted matrix elements is similar
to equations (14) and (15) but their inclusion spoils many simple relations of the
TB-LMTO theory.

Matrix elements of the full Hamiltonian H = HSRA + HSO in the orthonormal
LMTO basis follow from equations (13) and (16); they are finally given by

Horth = Eν + h = C +
√

∆ S0
(

1 − γS0
)−1 √

∆,

Eν = Eν + ξ, C = C + ξ, (17)

so that the only effect of the SO interaction is a trivial change of two potential
parameter matrices: the RLs-diagonal matrices Eν and C of the SRA are replaced
by the Rℓ-diagonal matrices Eν and C with intermixed indices of the magnetic
(m) and spin (s) quantum numbers.

2.3. Screening transformations and Green’s functions

The formulation of the TB-LMTO method rests on two points [5]. First, the site-
diagonal potential function matrix Pα(z) in a general screened LMTO representa-
tion (superscript α) is introduced, which in the present case acquires the form

Pα(z) =
[√

∆ (z − C)−1
√

∆ + γ − α
]−1

. (18)

Here z is a complex energy and the α on the r.h.s. denotes a diagonal matrix
of m- and s-independent screening constants αRℓ. Second, the matrix of screened
structure constants Sα is defined by means of the original (canonical) structure con-
stants S0. The relation of both screened quantities [Pα(z), Sα] to their unscreened
counterparts [P 0(z), S0 – corresponding to all αRℓ = 0] is given by

Pα(z) = P 0(z)
[

1 − αP 0(z)
]−1

, Sα = S0
(

1 − αS0
)−1

. (19)

Detailed discussion of the screening transformations can be found in [3, chap. 3].
The TB-LMTO Green’s functions (GF) include the resolvent G(z) of the Hamil-

tonian Horth (17) and an auxiliary GF matrix gα(z):

G(z) =
(

z − Horth
)−1

, gα(z) = [Pα(z) − Sα]−1 . (20)

These definitions lead to an important expression for the resolvent [3, chap. 3]:

G(z) = λα(z) + µα(z)gα(z)µ̃α(z), (21)

where the quantities λα(z), µα(z) and µ̃α(z) denote Rℓ-diagonal matrices

µα(z) =
1√
∆

[1 + (α − γ)Pα(z)] , λα(z) = µα(z)
γ − α√

∆
,

µ̃α(z) = [1 + Pα(z)(α − γ)]
1√
∆

. (22)
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All these relations are essentially identical with their SRA counterparts; the
only difference is due to the non-diagonal nature of the matrices C, Pα(z), λα(z),
µα(z) and µ̃α(z). However, these matrices remain diagonal in the site index R.
Consequently, all basic GF techniques developed within the SRA can easily be
modified for the present case with SO interaction. This refers, e.g., to the coherent
potential approximation (CPA) for disordered alloys [3, 9].

2.4. Physical one-particle quantities

Quantum-mechanical averages of one-particle operators for a many-electron non-
interacting system in thermodynamic equilibrium can be expressed by means of
the one-particle density matrix ρss′(r, r′). Its definition employs the orthonormal
basis (12) and the spectral density matrix of the Hamiltonian Horth (17):

D(E) = δ(E − Horth) =
i

2π
[G(E + i0) − G(E − i0)] . (23)

The valence contribution to the one-particle density matrix at zero temperature is
then equal to

ρs1s2
(r1, r2) =

∑

R
′L′s′

∑

R
′′L′′s′′

〈r1s1|χorth
R

′L′s′〉 〈χorth
R

′′L′′s′′ |r2s2〉

×
∫ EF

EB

DR
′L′s′,R′′L′′s′′(E) dE, (24)

where the energy integration is performed between the bottom of the valence band
EB and the Fermi energy EF.

Let us now evaluate the ρs1s2
(r1, r2) by means of the phi and phi-dot orbitals

up to terms linear in the phi-dot orbitals, i.e., in accuracy consistent with equation
(10). The procedure starts by substitution of equation (12) into (24). The next
step employs the identity (E − Horth)D(E) = 0 and equation (17) to express
hD(E) = (E −Eν)D(E) [and similarly for D(E)h]. In displaying the final formula
we assume that the vectors r1 and r2 lie inside the atomic spheres R1 and R2,
respectively, and we employ the trivial spin-dependence of the phi and phi-dot
orbitals (9):

ρR1s1,R2s2
(r1, r2) =

=
∑

L′L′′

〈r1|φR1L′s1
〉 〈φR2L′′s2

|r2〉
∫ EF

EB

DR1L′s1,R2L′′s2
(E) dE

+
∑

L′L′′

〈r1|φ̇R1L′s1
〉 〈φR2L′′s2

|r2〉
∫ EF

EB

[(E − Eν)D(E)]R1L′s1,R2L′′s2
dE

+
∑

L′L′′

〈r1|φR1L′s1
〉 〈φ̇R2L′′s2

|r2〉
∫ EF

EB

[D(E)(E − Eν)]R1L′s1,R2L′′s2
dE. (25)

Since the matrix Eν is site-diagonal, evaluation of quantum-mechanical averages of
operators local in the real space requires only site-diagonal elements of the resolvent
or the spectral density matrix, i.e., GRLs,RL′s′(z) or DRLs,RL′s′(E).

This can be illustrated, e.g., by the local RLs-resolved densities of states (DOS)
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nRLs(E) that are equal to

nRLs(E) = DRLs,RLs(E) = − 1

π
ℑGRLs,RLs(E + i0). (26)

Another application of equation (25) concerns the valence spin-resolved electron
density ̺Rs(r) = ρRs,Rs(r, r) for vectors r inside the R-th atomic sphere:

̺Rs(r) =
∑

L′L′′

〈r|φRL′s〉 〈φRL′′s|r〉
∫ EF

EB

DRL′s,RL′′s(E) dE

+
∑

L′L′′

〈r|φ̇RL′s〉 〈φRL′′s|r〉
∫ EF

EB

[(E − Eν)D(E)]RL′s,RL′′s dE

+
∑

L′L′′

〈r|φRL′s〉 〈φ̇RL′′s|r〉
∫ EF

EB

[D(E)(E − Eν)]RL′s,RL′′s dE. (27)

The Ls-resolved valence charges inside the R-th sphere are obtained by integra-
tion of equation (27) over the sphere volume:

QRLs =

∫ EF

EB

DRLs,RLs(E) dE =
1

2πi

∮

C

GRLs,RLs(z) dz, (28)

where C denotes the usual closed complex contour around the occupied part of the
valence band [3, chap. 10]. The z-component of the local spin magnetic moment (in

units of the Bohr magneton µB) is equal to M spin,z
R

=
∑

L(QRL↑ − QRL↓), while
the z-component of the local orbital magnetic moment (in µB) is given by

Morb,z
R

=

∫ EF

EB

∑

LL′s

〈L′|Lz|L〉DRLs,RL′s(E) dE

=
1

2πi

∮

C

∑

LL′s

〈L′|Lz|L〉GRLs,RL′s(z) dz. (29)

The sums in equation (29) contain terms with ℓ = ℓ′ and m 6= m′ due to the use
of real spherical harmonics, see text below equation (9).

The charge and spin selfconsistency within the ASA is based on the spherically
symmetric part ˜̺Rs(r) of the valence spin-resolved electron density ̺Rs(r) (27).
In full analogy to the SRA [3, chap. 5], the final form of ˜̺Rs(r) involves radial
amplitudes gRℓs(r) and ġRℓs(r) of the orbitals |φRLs〉 and |φ̇RLs〉:

˜̺Rs(r) =
1

4π

∑

ℓ

[

m
(0)
Rℓs g2

Rℓs(r) + m
(1)
Rℓs gRℓs(r)ġRℓs(r)

]

. (30)

Here the energy moments m
(0)
Rℓs and m

(1)
Rℓs can be formulated as real or complex

energy integrals, namely,

m
(0)
Rℓs =

∫ EF

EB

ℓ
∑

m=−ℓ

DRLs,RLs(E) dE =
1

2πi

∮

C

ℓ
∑

m=−ℓ

GRLs,RLs(z) dz, (31)
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and

m
(1)
Rℓs =

∫ EF

EB

ℓ
∑

m=−ℓ

[(E − Eν)D(E) + D(E)(E − Eν)]RLs,RLs dE

=
1

2πi

∮

C

ℓ
∑

m=−ℓ

[(z − Eν)G(z) + G(z)(z − Eν)]RLs,RLs dz. (32)

The core contribution to the electron density is constructed from all components
of the bispinor Ψ(r) and it is based on a numerical solution of coupled radial Dirac
equations [see 3, 4, and references therein].

3. Applications

3.1. Numerical implementation

Numerical implementation of the above formalism is similar to the original SRA
technique [3, chap. 10] as well as to the TB-LMTO techniques appropriate for the
KSD Hamiltonian in the non-magnetic [10] and magnetic [11] cases. The local spin-
dependent exchange-correlation potential was parametrized according to Ref. [12],
the valence basis set comprised spd-orbitals for transition-metal systems while spdf -
orbitals were included in the case of plutonium. The energy E0 in the ω(r) (5) was
kept in the middle of the occupied valence spectrum and energy integrals were
performed using 14 nodes along a semicircle complex contour. The Brillouin-zone
(BZ) integrals were calculated by means of a homogeneous k-mesh corresponding
to more than 5 × 104 sampling points in the full BZ.

3.2. Non-magnetic systems

Results of various approaches are compared in Fig. 1 for species-resolved DOS of
a random face-centered cubic (fcc) Cu0.75Au0.25 alloy treated in the CPA. One can
see that the Cu DOS is very little influenced by the SO interaction in contrast to
the Au DOS which exhibits a single broad peak at energy about 0.45 Ry below the
EF in the SRA (top panel of Fig. 1a) that becomes strongly modified by the SO
coupling. The SO-split Au DOS is practically identical in the simple theory based
on equation (17) (bottom panel of Fig. 1a) and in the full KSD theory (Fig. 1b)
[3, chap. 7]. Similar degree of agreement of both approaches (not shown here) was
obtained for the Bloch spectral functions of the random Cu0.75Au0.25 alloy as well
as for the band structure of pure fcc Au.

3.3. Spin-polarized systems

The calculated spin and orbital magnetic moments in ferromagnetic 3d transition
metals (Fe, Co, Ni) and their two random alloys (Co0.5Ni0.5, Co0.5Pt0.5) are sum-
marized in Table 1. The values obtained by the present approach agree reasonably
well with those of the fully relativistic TB-LMTO method [11]; minor differences
are seen for the orbital moments in the Co-Pt case, most probably due to a heavy
element (Pt) in the alloy. However, the profiles of spin-polarized DOS calculated
by both approaches exhibit very good agreement with each other, as follows from
comparison of Fig. 2a and [11, fig. 3 and 4].
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Figure 1. Calculated local DOS in a random fcc Cu0.75Au0.25 alloy: (a) in the SRA (13) (top) and in
the SRA with inclusion of SO interaction (17) (bottom); (b) based on the KSD Hamiltonian.

Table 1. Calculated local spin and orbital magnetic moments in

selected itinerant ferromagnets.

system element Mspin,z (µB) Morb,z (µB)

bcc Fe Fe 2.23a, 2.23b 0.036a, 0.043b

fcc Co Co 1.65a, 1.63b 0.067a, 0.069b

fcc Ni Ni 0.65a, 0.64b 0.047a, 0.049b

fcc Co0.5Ni0.5 Co 1.66a, 1.63b 0.067a, 0.066b

fcc Co0.5Ni0.5 Ni 0.67a, 0.65b 0.043a, 0.045b

fcc Co0.5Pt0.5 Co 1.88a, 1.86b 0.080a, 0.052b

fcc Co0.5Pt0.5 Pt 0.32a, 0.34b 0.058a, 0.080b

fcc Pu Pu 4.51a, 4.5c −2.23a, −2.4c

aPresent work, the SRA+SO Hamiltonian (17).

bRef. [11], the KSD Hamiltonian.

cRef. [13], the KSD Hamiltonian.

The most stringent test of reliability of the developed approximate scheme re-
quires a system with strong exchange and SO splittings. For this reason we have
chosen fcc plutonium (δ Pu) in its experimental equilibrium volume and in a hy-
pothetical ferromagnetic state, and treated it using the standard local spin-density
approximation as done in Ref. [13]. Comparison of the resulting magnetic moments
(Table 1) and of the spin-polarized DOS (Fig. 2b and [13, fig. 8]) indicates that
the simple LMTO Hamiltonian (17) describes successfully a substantial part of the
combined effect of spin polarization and SO coupling in this actinide system.

4. Conclusions

The developed approach represents a conceptually easy way of treating the spin-
orbit interaction within an existing formalism of the all-electron scalar-relativistic
TB-LMTO method. More tests are desirable in order to assess limits of its validity;
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Figure 2. Calculated spin-polarized DOS in the SRA with inclusion of SO interaction (17): (a) local
d-orbital DOS in a random fcc Co0.5Pt0.5 alloy; (b) total and f -orbital DOS in fcc Pu.

the first results reported here show that the range of reliability includes (but need
not be confined to) 3d transition-metal based non-magnetic and magnetic materi-
als. One can thus expect that the described technique will be useful especially in
cases with weak or moderate spin-orbit coupling as encountered, e.g., in systems
with potential applicability in spintronics [2].
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