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1 Introduction

In a macroscopic system, near-equilibrium phenomena can often be described by classical

hydrodynamics. When the microscopic theory contains weakly coupled U(1) gauge fields,

long-range correlations mediated by those fields are possible. Maxwell’s equations in matter

give an effective description of such correlations in terms of classical gauge fields. These

equations are useful when the coupling between electromagnetic and thermal/mechanical

degrees of freedom can be neglected. We would like to understand the effective description
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of relativistic systems in which macroscopic electromagnetic degrees of freedom are coupled

to the macroscopic thermal and mechanical degrees of freedom. This amounts to coupling

Maxwell’s equations in matter to hydrodynamic equations. When the matter is electrically

conducting and electric fields are neglected, such classical effective theory is usually called

magneto-hydrodynamics (MHD).

Our motivation it two-fold. From a fundamental point of view, a number of recent de-

velopments in relativistic hydrodynamics have pushed the boundaries of the “traditional”

theory, as described for example in the classic textbook [1]. These include: a system-

atic derivative expansion in hydrodynamics [2], an equivalence between hydrodynamics

and black hole dynamics [3], the manifestation of chiral anomalies in hydrodynamic equa-

tions [4], the relevance of partition functions [5, 6], elucidation of the role of the entropy

current [7, 8], new insights into relativistic hydrodynamic turbulence [9], convergence prop-

erties of the hydrodynamic expansion [10], and a classification of hydrodynamic transport

coefficients [11]. It is reasonable to expect that the above insights will also lead to an

improved understanding of the “traditional” MHD. For example, there does not appear to

be an agreement in the current literature on such basic question as the number of transport

coefficients in MHD.

From an applied point of view, recent years have seen relativistic hydrodynamics ex-

pand from its traditional areas of astrophysical plasmas and hot subnuclear matter into the

domain of condensed matter physics. Examples include transport near relativistic quan-

tum critical points [12], in graphene [13, 14] and in Weyl semi-metals [15]. For conducting

matter, MHD is a natural extension of such hydrodynamic models.

In what follows, we will outline the construction of classical relativistic hydrodynam-

ics with dynamical electromagnetic fields, starting from equilibrium thermodynamics. In

order to write down the hydrodynamic equations, we will assume that the system is locally

in thermal equilibrium. We will further assume that the departures from local equilib-

rium may be implemented through a derivative expansion such that the parameters which

characterize the equilibrium (temperature, chemical potential, magnetic field, fluid veloc-

ity) vary slowly in space and time. At one-derivative order, transport coefficients such

as viscosity and electrical conductivity appear in the constitutive relations. We are not

aware of previous treatments that list all one-derivative terms in the constitutive relations

of magnetohydrodynamics.

For parity-preserving conducting fluids in magnetic field, we find eleven transport

coefficients at one-derivative order. One transport coefficient is thermodynamic, and de-

termines the angular momentum of charged fluid induced by the magnetic field. Three

transport coefficients are non-equilibrium and non-dissipative: these are the two Hall vis-

cosities (transverse and longitudinal), and one Hall conductivity. There are also seven non-

equilibrium dissipative transport coefficients: two electrical conductivities (transverse and

longitudinal), two shear viscosities (transverse and longitudinal), and three bulk viscosities.

The constitutive relations for the energy-momentum tensor are given in eqs. (3.1), (3.11),

and for the current in eqs. (3.2), (3.12). The dissipative coefficients have to satisfy the

inequalities in eq. (3.19) imposed by the positivity of entropy production, or alternatively

by the positivity of the spectral function. As a simple application of the hydrodynamic
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equations, we study eigenmodes of small oscillations near thermal equilibrium in constant

magnetic field.

We start in section 2 with a discussion of equilibrium thermodynamics in the presence

of external electromagnetic and gravitational fields. In section 3, we will discuss hydrody-

namics, again when electromagnetic and gravitational fields are external. The magnetic

fields are taken as “large” and electric fields as “small” in the sense of the derivative ex-

pansion. The smallness of the electric field is due to electric screening. Our procedure will

improve on existing studies by taking into account the effects of polarization (magnetic,

electric, or both), electric fields, and by enumerating all transport coefficients at leading or-

der in derivatives. In section 4 we discuss hydrodynamics with dynamical electromagnetic

fields, as an extension of hydrodynamics with fixed electromagnetic fields. As a simple

example, one can study Alfvén and magnetosonic waves in a neutral state (including their

damping and polarization), and waves in a dynamically charged (but overall electrically

neutral) state. We compare our results with the recent “dual” formulation of MHD in

section 5, and with some of the previous studies of transport coefficients of relativistic

fluids in magnetic field in the appendix.

2 Thermodynamics

Let us start with equilibrium thermodynamics. For a system in equilibrium subject to an

external non-dynamical gauge field Aµ and an external non-dynamical metric gµν , we write

the logarithm of the partition function Ws = −i lnZ as

Ws[g,A] =

∫
dd+1x

√
−g F , (2.1)

and we will call F the free energy density. [Conventions: metric is mostly plus,

ε0123=1/
√
−g.] For a system with short-range correlations in equilibrium and for exter-

nal sources A and g which only vary on scales much longer than the correlation length,

F is a local function of the external sources, and Ws is extensive in the thermodynamic

limit. The density F may then be written as an expansion in derivatives of the external

sources [5, 6]. The current Jµ (defined by varying Ws with respect to the gauge field)

and the energy-momentum tensor Tµν (defined by varying Ws with respect to the metric)

automatically satisfy

∇µTµν = F νλJλ , (2.2a)

∇µJµ = 0 , (2.2b)

owing to gauge- and diffeomorphism-invariance of Ws[g,A]. The object Ws[g,A] is the

generating functional of static (zero frequency) correlation functions of Tµν and Jµ in

equilibrium. Of course, the conservation laws (2.2) are also true out of equilibrium, being

a consequence of gauge- and diffeomorphism-invariance in the microscopic theory.

Being in equilibrium means that there exists a timelike Killing vector V such that the

Lie derivative of the sources with respect to V vanishes. The equilibrium temperature T ,
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velocity uα and the chemical potential µ are functions of the Killing vector and the external

sources [5, 6]

T =
1

β0

√
−V 2

, uµ =
V µ

√
−V 2

, µ =
V µAµ + ΛV√
−V 2

. (2.3)

Here β0 is a constant setting the normalization of temperature, and ΛV is a gauge parameter

which ensures that µ is gauge-invariant [16]. The electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ can be decomposed in 3+1 dimensions as

Fµν = uµEν − uνEµ − εµνρσuρBσ , (2.4)

where Eµ ≡ Fµνuν is the electric field, and Bµ ≡ 1
2ε
µναβuνFαβ is the magnetic field, satisfy-

ing u·E = u·B = 0. The decomposition (2.4) is just an identity, true for any antisymmetric

Fµν and any timelike unit uµ. Electric and magnetic fields are not independent, but are

related by the “Bianchi identity” εµναβ∇νFαβ = 0, which in equilibrium becomes

∇·B = B·a− E·Ω , (2.5a)

uµε
µνρσ∇ρEσ = uµε

µνρσEρaσ . (2.5b)

Here Ωµ ≡ εµναβuν∇αuβ is the vorticity and aµ ≡ uλ∇λuµ is the acceleration. In equi-

librium, the acceleration is related to temperature by ∂λT = −Taλ. Relations (2.5)

are curved-space versions of the familiar flat-space equilibrium identities ∇·B = 0 and

∇×E = 0.

In order to write down the density F in the derivative expansion, we need to specify

the derivative counting of the external sources A and g. The natural derivative counting for

the metric is g ∼ O(1) (assuming we are interested in transport phenomena in flat space),

while the derivative counting for A depends on the physical system under consideration.

As an example, consider an insulator, such as a system made out of particles which

carry electric/magnetic dipole moments, but no electric charges. In such a system, there

is no conserved electric charge, and the above µ is not a relevant thermodynamic variable.

If we are interested in thermodynamics of such a system subject to external electric and

magnetic fields, we are free to choose B ∼ O(1) and E ∼ O(1) in the derivative expansion.

The free energy density is then

F = p(T,E2, E·B,B2) +O(∂) . (2.6)

The leading-order term is the pressure, whose dependence on E and B encodes the electric,

magnetic, and mixed susceptibilities. For the list of O(∂) contributions to F , see ref. [17].

As another example, consider a system that has electrically charged degrees of freedom

(a conductor), such that µ gives a non-negligible contribution to thermodynamics. In

equilibrium, ∂λµ = Eλ−µaλ is satisfied identically, which suggests that counting µ ∼ O(1)

leads to E ∼ O(∂). This is a manifestation of electric screening. The magnetic field, on

the other hand, may still be counted as O(1). The counting B ∼ O(1) and E ∼ O(∂) is

the relevant derivative counting for MHD. The free energy density is then

F = p(T, µ,B2) +
5∑

n=1

Mn(T, µ,B2)s(1)
n +O(∂2) , (2.7)

– 4 –



J
H
E
P
0
5
(
2
0
1
7
)
0
0
1

n 1 2 3 4 5

s(1)
n Bµ∂µ(B

2

T 4 ) εµνρσuµBν∇ρBσ B·a B·Ω B·E

C − + − − +

P − − − + −
T − + − + −
W 3 5 n/a 3 4

Table 1. Independent non-zero O(∂) invariants in equilibrium in 3+1 dimensions.

where s
(1)
n are O(∂) gauge- and diffeomorphism-invariants, and the coefficients Mn need

to be determined by the microscopic theory, just like the pressure p. Following ref. [17],

we list the invariants s
(1)
n in table 1. The rows labeled C, P, T indicate the eigenvalue

of the invariant under charge conjugation, parity, and time reversal. The last row shows

the weight w of the invariant under a local rescaling of the metric: gµν → g̃µν = e−2ϕgµν ,

and sn → s̃n = ewϕsn. The invariant s
(1)
3 does not transform homogeneously under the

rescaling, and can not appear in a conformally invariant generating functional. Hence,

we expect that in a conformal theory M3 = 0. The coefficient M5 is the usual magneto-

electric (or electro-magnetic) susceptibility; similarly M4 may be termed magneto-vortical

susceptibility. For the rest of the paper, we will adopt the derivative counting B ∼ O(1)

and E ∼ O(∂), as is appropriate for MHD.

As an example, consider a parity-invariant theory in magnetic field. The only O(∂)

thermodynamic coefficient is the magneto-vortical susceptibility MΩ ≡ M4, which affects

〈Tµν〉 and 〈Jµ〉 when there is non-zero vorticity, and higher-point equilibrium correlation

functions of Tµν and Jµ when there is no vorticity. We define static (zero frequency)

correlation functions of Tµν and Jµ by varying the generating functional (2.1) with respect

to gµν and Aµ in the standard fashion. For example, in flat space at constant temperature

T0, constant chemical potential µ0, and constant magnetic field B0 in the z-direction, one

finds the following static correlation functions at small momentum

〈T txJz〉 = −kxkzMΩ , 〈T txT yz〉 = −iB0kzMΩ . (2.8)

The first expression may be used to evaluate the magneto-vortical susceptibility MΩ in a

system that is not subject to magnetic field, and is not rotating.

3 Hydrodynamics with external electromagnetic fields

3.1 Constitutive relations

Hydrodynamics is conventionally formulated as an extension of thermodynamics, in the

sense that hydrodynamic variables are inherited from the thermodynamic parameters. This

is a strong assumption, and we expect the hydrodynamic description only to be valid for

B � T 2, otherwise new non-hydrodynamic degrees of freedom (such as those associated

with Landau levels) must be taken into account. Let us start by taking E and B fields
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as external and non-dynamical. In hydrodynamics, the thermodynamic variables T , uα,

and µ are promoted to time-dependent quantities. Out of equilibrium, they no longer

have a microscopic definition, but are merely auxiliary variables used to build the non-

equilibrium energy-momentum tensor and the current. The expressions of Tµν and Jµ in

terms of the auxiliary variables T , uα, and µ are called constitutive relations; they contain

both thermodynamic contributions (coming from the variation of F), and non-equilibrium

contributions (such as the viscosity). It is worth noting that thermodynamic contributions

and non-equilibrium contributions to the constitutive relations may appear at the same

order in the derivative expansion. The constitutive relations are then used together with

the conservation laws (2.2) to find the energy-momentum tensor and the current. While

in thermodynamics eqs. (2.2) are mere identities reflecting the symmetries of Ws, solving

eqs. (2.2) in hydrodynamics can be a challenging endeavour leading to rich physics.

We will write the energy-momentum tensor using the decomposition with respect to

the timelike velocity vector uµ,

Tµν = Euµuν + P∆µν +Qµuν +Qνuµ + T µν , (3.1)

where ∆µν ≡ gµν + uµuν is the transverse projector, Qµ is transverse to uµ, and T µν is

transverse to uµ, symmetric, and traceless. Explicitly, the coefficients are E ≡ uµuνT
µν ,

P ≡ 1
3∆µνT

µν , Qµ ≡ −∆µαuβT
αβ and Tµν ≡ 1

2(∆µα∆νβ + ∆να∆µβ − 2
3∆µν∆αβ)Tαβ .

Similarly, we will write the current as

Jµ = Nuµ + J µ , (3.2)

where the charge density is N ≡ −uµJµ, and the spatial current is Jµ ≡ ∆µλJ
λ.

Using the equilibrium free energy (2.7), one can isolate O(1) and O(∂) contributions

to the energy-momentum tensor and the current:

E = ε(T, µ,B2) + fE ,

P = Π(T, µ,B2) + fP ,

N = n(T, µ,B2) + fN ,

T µν = αBB(T, µ,B2)

(
BµBν − 1

3
∆µνB2

)
+ fµνT ,

where ε = −p + T (∂p/∂T ) + µ(∂p/∂µ), Π = p − 2
3αBBB

2, n = ∂p/∂µ, and the magnetic

susceptibility is αBB = 2∂p/∂B2. The terms fE , fP , fN , fµνT , Qµ, and J µ are all O(∂), and

contain both equilibrium and non-equilibrium contributions, fE = f̄E + fnon-eq.
E etc, where

the bar denotes O(∂) contributions coming from the variation of Ws.

3.2 Field redefinitions

Out of equilibrium, the variables T , uα, and µ may be redefined. Such a redefinition is often

referred to as a choice of “frame”, see e.g. ref. [18] for a discussion. Consider changing the

hydrodynamic variables to T ′ = T+δT , u′α = uα+δuα, µ′ = µ+δµ, where δT , δuα, and δµ

are O(∂). The same energy-momentum tensor and the current may be expressed either in
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terms of T , uα, µ, or in terms of T ′, u′α, µ′ (note that B2 = B′2+O(∂2)). Physical transport

coefficients must be derived from O(∂) quantities which are invariant under such changes

of hydrodynamic variables. A direct evaluation shows that the following combinations are

invariant under “frame” transformations:

f ≡ fP −
(
∂Π

∂ε

)
n

fE −
(
∂Π

∂n

)
ε

fN , (3.3a)

` ≡ Bα

B

(
Jα −

n

ε+ p
Qα
)
, (3.3b)

`µ⊥ ≡ Bµα
(
Jα −

n

ε+ p− αBBB2
Qα
)
, (3.3c)

tµν ≡ fµνT −
(
BµBν − 1

3
∆µνB2

)[(
∂αBB

∂ε

)
n

fE +

(
∂αBB

∂n

)
ε

fN

]
. (3.3d)

Here Bµν ≡ ∆µν − BµBν/B2 is the projector onto a plane orthogonal to both uµ and

Bµ, all thermodynamic derivatives are evaluated at fixed B2, and B ≡
√
B2. When the

magnetic susceptibility αBB is T - and µ-independent, the stress fµνT is frame-invariant.

As an example, one can choose δT and δµ such that E ′=ε(T ′, µ′, B′2), N ′=n(T ′, µ′, B′2),

and further choose δuα such that Q′α = 0. This corresponds to the Landau-Lifshitz

frame [1]. The components of energy-momentum tensor and the current take the following

form in the Landau-Lifshitz frame:

P ′ = Π(T ′, µ′, B′2) + f , (3.4a)

J ′µ = `µ⊥ +
B′µ

B′
` , (3.4b)

T ′µν = αBB(T ′, µ′, B′2)

(
B′µB′ν − 1

3
∆′µνB′2

)
+ tµν , (3.4c)

where the frame invariants are given by eq. (3.3). In the Landau-Lifshitz frame, a non-zero

value of the pseudoscalar frame-invariant ` indicates a current flowing along the magnetic

field. In a constant external magnetic field such currents arise as consequences of chiral

anomalies [4]; in an inhomogeneous external field, an electric current flowing along the mag-

netic field can arise without chiral anomalies, owing to a non-zero magnetic susceptibility.

3.3 Thermodynamic frame

The energy-momentum tensor and the current derived from the static generating functional

Ws correspond to a different frame, termed in [6] the thermodynamic frame. Taking the

variation of the free energy (2.7), one finds the following equilibrium O(∂) contributions in

the thermodynamic frame:

f̄E =

5∑
n=1

εns
(1)
n , f̄P =

5∑
n=1

πns
(1)
n , f̄N =

5∑
n=1

φns
(1)
n ,

Q̄µ =

4∑
n=1

γnv
(1)µ
n , J̄ µ =

4∑
n=1

δnv
(1)µ
n , f̄µνT =

10∑
n=1

θnt
(1)µν
n , (3.5)
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n 1 2 3 4

v(1)µ
n εµνρσuν∂σBρ εµνρσuνBρ∂σT/T εµνρσuνBρ∂σB

2 εµνρσuνEρBσ

n 1–5 6 7 8 9 10

t(1)µν
n s(1)

n B〈µBν〉 v(1)

1
〈µBν〉 v(1)

2
〈µBν〉 v(1)

3
〈µBν〉 v(1)

4
〈µBν〉 Ω〈µBν〉

Table 2. Top: non-zero transverse O(∂) vectors that appear in the equilibrium energy flux Qµ and

in the equilibrium spatial current J µ. The vector v(1)µ
4 is the Poynting vector. Bottom: non-zero

symmetric transverse traceless O(∂) tensors that appear in the equilibrium stress T µν . For any two

transverse vectors Xµ and Y µ, the angular brackets stand for X〈µY ν〉 ≡ XµY ν+XνY µ− 2
3∆µνX·Y .

where the bar signifies equilibrium contributions, and the coefficients εn, πn, φn, γn, δn, θn
are all O(1) functions of the five thermodynamic coefficients Mn(T, µ,B2) and of the mag-

netic susceptibility αBB = 2∂p/∂B2. The explicit expressions are given in appendix A. The

one-derivative scalars s(1)
n are given in table 1. The one-derivative vectors v(1)µ

n and tensors

t(1)µν
n are listed in table 2. The table does not list all O(∂) vectors and tensors, but only

those that appear in the equilibrium Qµ and T µν . The frame invariants (3.3) then become

f =

5∑
n=1

Φns
(1)
n + fnon-eq. , ` =

5∑
n=1

Λns
(1)
n + `non-eq. , (3.6a)

`µ⊥ =

5∑
n=1

Γnv
(1)µ
n + `µ⊥non-eq. , tµν =

10∑
n=1

Θnt
(1)µν
n + tµνnon-eq. . (3.6b)

In the vector invariant, we have defined v(1)µ
5 ≡ s(1)

2 Bµ. The subscript “non-eq” denotes

non-equilibrium contributions which by definition vanish in equilibrium. The functions

Φn(T, µ,B2), Λn(T, µ,B2), Γn(T, µ,B2), Θn(T, µ,B2) are non-dissipative thermodynamic

transport coefficients. Explicitly,

Φn = πn − εn
(
∂Π

∂ε

)
n

− φn
(
∂Π

∂n

)
ε

, Λn 6=2 = 0 , Λ2 =
1

B

(
δ1 −

n

ε+ p
γ1

)
,

Γn64 = δn −
n

ε+p−αBBB2
γn , Γ5 = − 1

B2

(
δ1 −

n

ε+p−αBBB2
γ1

)
,

Θn65 = θn −
1

2
εn

(
∂αBB

∂ε

)
n

− 1

2
φn

(
∂αBB

∂n

)
ε

, Θn>6 = θn .

We see that the constitutive relations for energy-momentum tensor and the current con-

tain twenty-one thermodynamic transport coefficients Φn, Λ2, Γn, Θn. These twenty-one

coefficients are not independent, but can all be expressed in terms of only five parameters

Mn of the equilibrium generating functional.

Let us now write down the constitutive relations in the thermodynamic frame that is

a natural generalization of the Landau-Lifshitz frame. We will define the thermodynamic

– 8 –
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n 1 2 3 4 5 6

s(1)
n non-eq. uλ∂λT uλ∂λµ ∇·u bµbν∇µuν bλEλ − Tbλ∂λ(µ/T ) bλaλ + bλ∂λT/T

P + + + + − −

n 1 2 3

v(1)µ
n non-eq. Eµ − T∆µν∂ν(µ/T ) aµ + ∆µν∂νT/T σµνbν

P − − +

Table 3. Non-equilibrium scalars and transverse non-equilibrium vectors at O(∂), written in terms

of bµ ≡ Bµ/B. In addition to the vectors listed in the table, there are corresponding transverse

non-equilibrium vectors ṽ(1)µ
non-eq. ≡ εµνρσuνbρv

(1)
non-eq.σ. The table also shows the parity of non-

equilibrium scalars and vectors. Under time-reversal, the scalars s(1)n non-eq. are T-odd, the vectors

v(1)µ
n non-eq. are T-even, and the vectors ṽ(1)µ

n non-eq. are T-odd.

frame (primed variables) by redefinitions of T , µ, and uα that give

E ′ = ε(T ′, µ′, B′2) + f̄E , (3.7a)

N ′ = n(T ′, µ′, B′2) + f̄N , (3.7b)

Q′α = Q̄α . (3.7c)

In other words, in this thermodynamic frame the coefficients E , N , and Qα in the decom-

positions (3.1), (3.2) take their equilibrium values, derived from the equilibrium generating

functional Ws. The other coefficients take the following form in the thermodynamic frame:

P ′ = Π(T ′, µ′, B′2) + f̄P + fnon-eq. , (3.7d)

J ′µ = J̄ µ + `µ⊥non-eq. +
B′µ

B′
`non-eq. , (3.7e)

T ′µν = αBB(T ′, µ′, B′2)

(
B′µB′ν − 1

3
∆′µνB′2

)
+ f̄µνT + tµνnon-eq. . (3.7f)

3.4 Non-equilibrium contributions

With the equilibrium contributions out of the way, the next task is to find the non-

equilibrium terms in the constitutive relations (3.6). This amounts to finding one-derivative

scalars, vectors (orthogonal both to Bµ and to uµ), and transverse traceless symmetric ten-

sors that vanish in equilibrium. Note that non-equilibrium contributions (those that vanish

in equilibrium) are not the same as dissipative contributions (those that contribute to hy-

drodynamic entropy production). Every dissipative contribution is non-equilibrium, but

not every non-equilibrium contribution is dissipative.

The six independent non-equilibrium one-derivative scalars are given in table 3. The

scalar uλ∂λB
2 is not independent as a consequence of the electromagnetic Bianchi identity,

and can be expressed as a combination of ∇·u and BµBν∇µuν . Three scalar equations of

motion ∇µJµ = 0, uν∇µTµν + EµJ
µ = 0, and Bν∇µTµν + (E·B)(u·J) = 0 taken at zeroth

order provide three relations among the scalars. We choose to eliminate s(1)

1 non-eq., s
(1)

2 non-eq.,
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and s(1)

6 non-eq. and write the scalar and pseudo-scalar constitutive relations as

fnon-eq. = c1s
(1)

3 non-eq. + c2s
(1)

4 non-eq. + c3s
(1)

5 non-eq. ,

`non-eq. = c4s
(1)

3 non-eq. + c5s
(1)

4 non-eq. + c6s
(1)

5 non-eq. ,

with some undetermined transport coefficients cn.

The independent non-equilibrium transverse one-derivative vectors are given in table 3,

where the shear tensor is σµν ≡ ∆µα∆νβ(∇αuβ +∇βuα − 2
3∆αβ∇·u). We use the vector

equation of motion (2.2a) projected with Bµν at zeroth order to eliminate one of the

vectors,1 and write the vector constitutive relation as

`µ⊥non-eq. = c7 Bµν v
(1)ν
1 non-eq. + c8 Bµν v

(1)ν
3 non-eq. + c9 ṽ

(1)µ
1 non-eq. + c10 ṽ

(1)µ
3 non-eq. ,

The tilded vectors are defined as ṽµ ≡ εµνρσuνBρvσ/B.

There is a number of symmetric transverse traceless non-equilibrium one-derivative

tensors besides the shear tensor σµν . One such tensor is

σ̃µν ≡ 1

2B

(
εµλαβuλBασ

ν
β + ενλαβuλBασ

µ
β

)
. (3.8)

Other tensors can be formed by B〈µBν〉s(1)
n non-eq., or by symmetrizing Bµ with a transverse

non-equilibrium vector. Again, we eliminate three scalars and one vector by the zeroth or-

der equations of motion and write the tensor constitutive relation in terms of bµ ≡ Bµ/B as

tµνnon-eq. = c11σ
µν + b〈µbν〉

(
c12s

(1)

3 non-eq. + c13s
(1)

4 non-eq. + c14s
(1)

5 non-eq.

)
+ c15b

〈µv
(1)ν〉
1 non-eq. + c16b

〈µv
(1)ν〉
3 non-eq. + c17b

〈µṽ
(1)ν〉
1 non-eq. + c18b

〈µṽ
(1)ν〉
3 non-eq. + c19 σ̃

µν ,

with some undetermined transport coefficients cn. Thus there are five equilibrium func-

tions Mn(T, µ,B2), and nineteen non-equilibrium functions cn(T, µ,B2) that determine

one-derivative contributions to the energy-momentum tensor and the current in strong

magnetic field. If the microscopic system is parity-invariant, all thermodynamic coeffi-

cients Mn vanish except for M4. In addition, the dynamical coefficients c3, c4, c5, c8, c10,

c14, c15, c17 must vanish by parity invariance. Thus a conducting parity-invariant system

in magnetic field has one thermodynamic coefficient M4, three “electrical conductivities”

c6, c7, and c9, and eight “viscosities” c1, c2, c11, c12, c13, c16, c18, and c19. We will see

later that the Onsager relations impose a relation between c2, c12, and c13, plus four more

relations among the parity-violating coefficients. This leaves eleven transport coefficients

(one thermodynamic and ten non-equilibrium) for a conducting parity-invariant system in

magnetic field in 3+1 dimensions. In a conformal theory, the tracelessness condition2 will

in addition impose c1 = c2 = 0.

1Namely, using the equation of motion (2.2a) with the constitutive relations for Tµν and Jµ derived

from the generating functional W =
∫√
−g p(T, µ,B2) + O(∂). The relation among the vectors that one

finds is v(1)µ
2 non-eq. = v(1)µ

1 non-eq.n/(ε+ p) +O(∂2).
2In a conformal theory subject to external fields gµν and Aµ, the trace of the energy-momentum tensor

receives an anomalous contribution Tµµ = κF 2 +O(∂4), where κ is a theory-dependent constant that counts

the number of charged degrees of freedom, and the terms O(∂4) are due to curvature invariants. It was

shown in ref. [19] that the conformal anomaly may be captured by a certain local term in the hydrostatic

generating functional, which for our purposes amounts to a term in p(T, µ,B2) proportional to κ.
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The constitutive relations may be simplified further if we note that the shear tensor

can be decomposed with respect to the magnetic field as

σµν = σµν⊥ + (bµΣν + bνΣµ) +
1

2
b〈µbν〉 (3S4 − S3) . (3.9)

Here σµν⊥ ≡
1
2

(
BµαBνβ + BναBµβ − BµνBαβ

)
σαβ is traceless, Σµ ≡ Bµλσλρbρ, and both are

orthogonal to the magnetic field Bµ. The scalars are S3 ≡ ∇·u and S4 ≡ bµbν∇µuν . The

tensor (3.8) then becomes

σ̃µν = σ̃µν⊥ +
1

2

(
bµΣ̃ν + bνΣ̃µ

)
, (3.10)

where σ̃µν⊥ is transverse to both uµ and Bµ, symmetric, and traceless.

For completeness, let us summarize the constitutive relations for a parity-invariant

theory in the thermodynamic frame. Defining MΩ ≡ M4, the energy-momentum tensor is

given by eq. (3.1) with the following coefficients:

E = −p+ T p,T + µ p,µ +
(
TMΩ,T + µMΩ,µ − 2MΩ

)
B·Ω , (3.11a)

P = p− 4

3
p,B2B2 − 1

3
(MΩ + 4MΩ,B2B2)B·Ω− ζ1∇·u− ζ2b

µbν∇µuν , (3.11b)

Qµ = −MΩε
µνρσuν∂σBρ + (2MΩ − TMΩ,T − µMΩ,µ)εµνρσuνBρ∂σT/T

−MΩ,B2εµνρσuνBρ∂σB
2 + (−2p,B2 +MΩ,µ − 2MΩ,B2B·Ω)εµνρσuνEρBσ

+MΩε
µνρσΩνEρuσ , (3.11c)

T µν = 2p,B2

(
BµBν − 1

3
∆µνB2

)
+MΩ,B2B〈µBν〉B·Ω +MΩB

〈µΩν〉

− η⊥σµν⊥ − η‖(b
µΣν + bνΣµ)− b〈µbν〉

(
η1∇·u+ η2b

αbβ∇αuβ
)

− η̃⊥σ̃µν⊥ − η̃‖(b
µΣ̃ν + bνΣ̃µ) , (3.11d)

and the current is given by eq. (3.2) with the following coefficients:

N = p,µ +MΩ,µB·Ω−m·Ω , (3.12a)

J µ = εµνρσuν∇ρmσ + εµνρσuνaρmσ +

(
σ⊥Bµν + σ‖

BµBν

B2

)
Vν + σ̃ Ṽ µ . (3.12b)

The current is written in terms of the magnetic polarization vector

mµ =
(
2 p,B2 + 2MΩ,B2B·Ω

)
Bµ +MΩΩµ , (3.13)

while the electric polarization vector vanishes at leading order in a parity-invariant sys-

tem. The comma subscript denotes the derivative with respect to the argument that

follows. Note that we are keeping O(∂2) thermodynamic terms in the constitutive rela-

tions (coming from the variation of M4s
(1)

4 ) that are needed to ensure that the conservation

laws (2.2) are satisfied identically for time-independent background fields. In writing down

the constitutive relations (3.11), (3.12), we have relabeled the non-equilibrium transport

coefficients as ζ1 ≡ −c1, ζ2 ≡ −c2, σ‖ ≡ c6, σ⊥ ≡ c7, σ̃ ≡ c9, η⊥ ≡ −c11, η‖ ≡ −c11 − c16,
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η1 ≡ −c12 + 1
2c11 + 2

3c16, η2 ≡ −c13− 3
2c11−2c16, η̃‖ ≡ −c18− 1

2c19, η̃⊥ ≡ −c19, and defined

V µ ≡ Eµ−T∆µν∂ν(µ/T ). The coefficients σ⊥, σ‖ are the transverse and longitudinal con-

ductivities, and η⊥, η‖ are the transverse and longitudinal shear viscosities. The coefficients

ζ1, ζ2, η1 and η2 may all be called “bulk viscosities”, of which only three are independent

due to the Onsager relation. The coefficients η̃⊥, η̃‖ are the two Hall viscosities, and σ̃ is

the Hall conductivity.3

When the external electromagnetic field vanishes, the system becomes isotropic, and

we expect to recover the constitutive relations of the standard isotropic hydrodynamics,

with shear viscosity η, bulk viscosity ζ, and electrical conductivity σ. Thus as B → 0 we

expect η⊥ = η‖ = −2η1 = 2
3η2 = η, η̃⊥ = η̃‖ = 0, ζ1 = ζ, ζ2 = 0, σ⊥ = σ‖ = σ, σ̃ = 0.

3.5 Eigenmodes

As a simple application of the hydrodynamic equations (2.2) together with the constitutive

relations (3.11), (3.12), one can study the eigenmodes of small oscillations about the thermal

equilibrium state. We set the external sources to zero, and linearize the hydrodynamic

equations near the flat-space equilibrium state with constant T = T0, µ = µ0, uα = (1,0),

and Bα = (0, 0, 0, B0). Taking the fluctuating hydrodynamic variables proportional to

exp(−iωt+ik·x), the source-free system admits five eigenmodes, two gapped (ω(k→0) 6= 0),

and three gapless (ω(k→0) = 0). The frequencies of the gapped eigenmodes are

ω = ±B0n0

w0
− iB2

0

w0
(σ⊥ ± iσ̃)− iDck

2 , (3.14)

where w0 ≡ ε0 + p0 is the equilibrium enthalpy density, and we have taken αBBB
2
0 � w0,

MΩ,µB
2
0 � w0 in the hydrodynamic regime B0 � T 2

0 . As the imaginary part of the

eigenfrequency must be negative for stability, this implies σ⊥ > 0. The mode has a circular

polarization (at k = 0), with δux and δuy oscillating with a π/2 phase difference. The anal-

ogous mode in 2+1 dimensional hydrodynamics was christened the hydrodynamic cyclotron

mode in ref. [12], which also explored its implications for transport near two-dimensional

quantum critical points.

For momenta k ‖ B0, the three gapless eigenmodes are the two sound waves, and one

diffusive mode. The eigenfrequencies in the small momentum limit are

ω = ±kvs − i
Γs,‖

2
k2 , (3.15a)

ω = −iD‖k2 , (3.15b)

where vs is the speed of sound. As in ref. [18], we can write the coefficients in terms of

the elements of the susceptibility matrix in the grand canonical ensemble. The non-zero

elements of the 3× 3 susceptibility matrix are χ11 = T (∂ε/∂T )µ/T , χ13 = χ31 = (∂ε/∂µ)T ,

3The actual Hall conductivity, measured as a response to external electric field, must be obtained after

the hydrodynamic equations with the constitutive relations (3.11), (3.12) have been solved. Doing so in a

state with constant charge density n0 and magnetic field B0 gives the Hall conductivity n0/B0, as expected

from elementary considerations of boosting the state in the plane transverse to B0. See eq. (3.24c) below.
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χ33 = (∂n/∂µ)T , and χ22 = w0, with derivatives evaluated at constant B2 in equilibrium.

The longitudinal diffusion constant is

D‖ =
σ‖w

2
0

n2
0χ11 + w2

0χ33 − 2n0w0χ13
.

The positivity of the diffusion constant implies σ‖ > 0. The speed of sound squared

expressed in terms of the elements of the susceptibility matrix is given by

v2
s =

n2
0χ11 + w2

0χ33 − 2n0w0χ13

det(χ)
,

and the damping coefficient is

Γs,‖ =
1

w0

(
4

3
(η1 + η2) + ζ1 + ζ2

)
+

σ‖w0

det(χ)

(n0χ11 − w0χ13)2

n2
0χ11 + w2

0χ33 − 2n0w0χ13
.

The expression for vs and D‖ in terms of the thermodynamic functions formally look the

same as in hydrodynamics without external O(1) magnetic fields [18]. All of vs, Γs,‖, and

D‖ depend on B0 through p = p(T, µ,B2) and the transport coefficients.

For momenta k ⊥ B0, the three gapless eigenmodes include two diffusive modes, and

one “subdiffusive” mode with a quartic dispersion relation,

ω = −iD⊥k2 , (3.16a)

ω = −i
η‖k

2

w0
, (3.16b)

ω = −i η⊥k
4

B2
0 χ33

. (3.16c)

The transverse diffusion constant is determined by the transverse resistivity. We define the

2 × 2 conductivity matrix in the plane transverse to B0 as σab ≡ σ⊥δab +
(
n0
|B0| + σ̃

)
εab,

and the corresponding resistivity matrix as ρab ≡ (σ−1)ab = ρ⊥δab + ρ̃⊥ εab, which defines

ρ⊥ and ρ̃⊥. The transverse diffusion constant is then

D⊥ =
w3

0χ33

det(χ)B2
0

ρ⊥ ,

again using MΩ,µB
2
0 � w0. Stability of the equilibrium state now implies η⊥ > 0, η‖ > 0.

For modes propagating at an angle θ with respect to B0, the gapless modes include

sound waves (unless θ = π/2), and a diffusive mode. For a fixed value of θ, the small-

momentum eigenfrequencies are ω = ±kvs cos θ − i
2Γs(θ)k

2, and ω = −iD(θ)k2, where

D(θ) = D‖ cos2 θ +
n2

0

v2
sw0χ33

D⊥ sin2 θ ,

Γs(θ) = Γs,‖ cos2 θ +

(
η‖

w0
+

(n0χ13 − w0χ33)2

χ33 v2
s det(χ)

D⊥

)
sin2 θ .

The coefficient Dc in the cyclotron mode eigenfrequency (3.14) at small B0 is

Dc =

(
± iv

2
sw0

2n0B0
+

(n2
0χ11−w2

0χ33)w0

2n2
0 det(χ)

σ +
3ζ+7η

6w0

)
sin2 θ +

η

w0
cos2 θ +O(B0) .

Note that the limits θ → π/2 and k → 0 in the eigenfrequencies do not commute.
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3.6 Entropy production

The simple flat-space eigenfrequency analysis in the previous subsection imposes certain

constraints on non-equilibrium transport coefficients. In order to find more general con-

straints, one method is to impose a local version of the second law of thermodynamics:

the existence of a local entropy current with positive semi-definite divergence for every

non-equilibrium configuration consistent with the hydrodynamic equations. We will not

attempt to construct the most general entropy current from scratch. Rather, we will use

the result of [7, 8] saying that the constraints on transport coefficients derived from the

entropy current are the same as those derived from the equilibrium generating functional,

plus the inequality constraints on dissipative transport coefficients. We take the entropy

current to be

Sµ = Sµcanon + Sµeq. ,

where the canonical part of the entropy current is

Sµcanon =
1

T
(puµ − Tµνuν − µJµ) , (3.17)

and Sµeq. is found from the equilibrium partition function, as described in [7, 8]. The

constraints on transport coefficients follow by demanding ∇µSµ > 0. Using conservation

laws (2.2), the divergence of the canonical entropy current is

∇µSµcanon = ∇µ
( p
T
uµ
)
− Tµν∇µ

uν
T

+ Jµ
(
Eµ
T
− ∂µ

µ

T

)
.

The Sµeq. part of the entropy current is explicitly built to cancel out the part of ∇µSµcanon

that arises from the equilibrium terms in the constitutive relations, i.e. the terms in Tµν

and Jµ derived from the equilibrium generating functional. In fact, ref. [8] has already

found Sµeq. in the case when the generating functional contains a contribution proportional

to B·Ω. We thus focus on non-equilibrium terms, and write the thermodynamic frame

constitutive relations (3.7) as Tµν = Tµνeq. +Tµνnon-eq. and Jµ = Jµeq.+Jµnon-eq.. The divergence

of the entropy current is then

∇µSµ =
1

T
Jµnon-eq.

(
Eµ − T∂µ

µ

T

)
− Tµνnon-eq.∇µ

uν
T

=
1

T

(
`µ⊥non-eq. +

Bµ

B
`non-eq.

)
Vµ −

1

T
fnon-eq.∇·u−

1

2T
tµνnon-eq.σµν .

Using the constitutive relations (3.11), (3.12), this leads to

T∇µSµ = σ‖
(B·V )2

B2
+ σ⊥(BµνVν)2 +

1

2
η⊥(σµν⊥ )2 + η‖Σ

2

+

(
ζ1 −

2

3
η1

)
S2

3 + 2η2S
2
4 +

(
2η1 + ζ2 −

2

3
η2

)
S3S4 , (3.18)

where again S3 ≡ ∇·u and S4 ≡ bµbν∇µuν . Demanding ∇µSµ > 0 now gives

σ‖ > 0 , σ⊥ > 0 , η⊥ > 0 , η‖ > 0 , (3.19a)
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together with the condition that the quadratic form made out of S3, S4 in the second line

of eq. (3.18) is non-negative, which implies

η2 > 0 , ζ1 −
2

3
η1 > 0 , (3.19b)

2η2

(
ζ1 −

2

3
η1

)
>

1

4

(
2η1 + ζ2 −

2

3
η2

)2

. (3.19c)

The coefficients η̃⊥, η̃‖, and σ̃ do not contribute to entropy production, and are not con-

strained by the above analysis. Thus, η̃⊥, η̃‖, and σ̃ are non-equilibrium non-dissipative

coefficients.

3.7 Kubo formulas

When the microscopic system is time-reversal invariant (i.e. the only source of time-reversal

breaking is due to the external magnetic field), transport coefficients can be further con-

strained by the Onsager relations. The retarded two-point functions of operators Oa and

Ob in a time-reversal invariant theory in equilibrium obey

Gab(ω,k, B) = εaεbGba(ω,−k,−B) , (3.20)

where εa and εb are time-reversal eigenvalues of the operators Oa and Ob. We take our

operators to be various components of Tµν and Jµ, and evaluate the retarded two-point

functions by varying one-point functions in the presence of the external source with respect

to the source. Namely, we solve the hydrodynamic equations in the presence of fluctuat-

ing external sources δA, δg (proportional to exp(−iωt + ik·x)) to find δT [A, g], δµ[A, g],

δuα[A, g], and then vary the resulting hydrodynamic expressions Tµν [A, g] and Jµ[A, g]

with respect to gαβ , Aα to find the retarded functions. Specifically,

GTµνTαβ = 2
δ

δgαβ

(√
−g Tµνon-shell[A, g]

)
, GJµTαβ = 2

δ

δgαβ

(√
−g Jµon-shell[A, g]

)
, (3.21a)

GTµνJα =
δ

δAα
Tµνon-shell[A, g] , GJµJα =

δ

δAα
Jµon-shell[A, g] , (3.21b)

where the subscript “on-shell” signifies that the corresponding hydrodynamic Tµν [A, g] and

Jµ[A, g] are evaluated on the solutions to (2.2), and the sources δA, δg are set to zero after

the variation is taken. The expressions (3.21) are to be understood as

δ(
√
−g Tµνon-shell) =

1

2
GTµνTαβ (ω,k) δgαβ(ω,k) ,

etc. This provides a direct method to evaluate the retarded functions, and allows both to

check the Onsager relations and to derive Kubo formulas for transport coefficients.4 The

constraint on transport coefficients we find by demanding that eq. (3.20) holds is5

3ζ2 − 6η1 − 2η2 = 0 . (3.22)

4Taken at face value, hydrodynamic correlation functions violate Onsager relations at non-zero ω and

non-zero k. However these violations do not affect the Kubo formulas and disappear in the limit B � T 2,

which corresponds to the validity regime of hydrodynamics.
5For parity-violating coefficients, we find c3 = 2

3
(c14+c15)−c4, c5 = −2(c14+c15), c8 = −c15, c10 = −c17.
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For the rest of the paper, we will assume that (3.22) holds, which leaves us with ten

non-equilibrium transport coefficients for a parity-invariant microscopic system. Using

eq. (3.22) to eliminate ζ2, the inequality constraint in eq. (3.19c) turns into

2η2(ζ1 −
2

3
η1) > 4η2

1 . (3.23)

We next list the expressions for transport coefficients in terms of retarded functions eval-

uated in flat-space equilibrium with external magnetic field in the z direction, as in

section 3.5. In the limit k → 0 first, ω → 0 second we find the following Kubo formulas.

The two-point function of the longitudinal current Jz gives the longitudinal conductivity,

1

ω
ImGJzJz(ω,k=0) = σ‖ , (3.24a)

while the two-point functions of the transverse currents Jx, Jy give the transverse

resistivities,

1

ω
ImGJxJx(ω,k=0) = ω2ρ⊥

w2
0

B4
0

, (3.24b)

1

ω
ImGJxJy(ω,k=0) =

n0

B0
− ω2ρ̃⊥

w2
0

B4
0

sign(B0) , (3.24c)

where the resistivities ρ⊥ and ρ̃⊥ were defined below eq. (3.16). Alternatively, the resistiv-

ities can be found from correlation functions of momentum density,

1

ω
ImGT0xT0x(ω,k=0) = ρ⊥

w2
0

B2
0

, (3.25a)

1

ω
ImGT0xT0y(ω,k=0) = −ρ̃⊥sign(B0)

w2
0

B2
0

, (3.25b)

assuming B2
0 � w0. The shear viscosities are given by

1

ω
ImGTxyTxy(ω,k=0) = η⊥ , (3.26a)

1

ω
ImGTxyTxx(ω,k=0) = η̃⊥ sign(B0) , (3.26b)

1

ω
ImGTxzTxz(ω,k=0) = η‖ , (3.26c)

1

ω
ImGT yzTxz(ω,k=0) = η̃‖ sign(B0) , (3.26d)

while the “bulk” viscosities may be expressed as

1

ω
δijImGT ijTxx(ω,k=0) = 3ζ1 , (3.26e)

1

3ω
δijδkl ImGT ijTkl(ω,k=0) = 3ζ1 + ζ2 , (3.26f)

1

ω
ImGO1O1 = ζ1 −

2

3
η1 , (3.26g)

1

ω
ImGO2O2 = 2η2 , (3.26h)
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where O1 = 1
2(T xx + T yy), and O2 = T zz − 1

2(T xx + T yy). Correlation functions at non-

zero momentum may be obtained in a straightforward way from the variational procedure

described earlier.

3.8 Inequality constraints on transport coefficients

Finally, let us show that the inequality constraints on transport coefficients derived from

demanding that the entropy production is non-negative can also be obtained from hydro-

dynamic correlation functions, without using the entropy current. The argument is based

on the fact that the imaginary part of the retarded function GOO(ω,k) must be positive

for any Hermitean operator O and ω > 0,

ImGOO(ω,k) > 0 . (3.27)

Now consider the operator O = aO1 + bO2, with real coefficients a and b, and Hermitean

operators O1, O2. The inequality (3.27) implies

Im
[
a2GO1O1 + abGO1O2 + abGO2O1 + b2GO2O2

]
> 0 ,

for ω > 0. This quadratic form in a, b must be non-negative for all a, b which implies

ImGO1O1 > 0, ImGO2O2 > 0 together with

(ImGO1O1) (ImGO2O2) >
1

4
(ImGO1O2 + ImGO2O1)2 . (3.28)

The two terms in the right-hand side of (3.28) can be related by the Onsager relation (3.20).

As an example, take O1 = 1
2(T xx + T yy), and O2 = T zz − 1

2(T xx + T yy). Evaluating the

correlation functions at k = 0 and ω → 0, the inequalities (3.27), (3.28) immediately imply

the entropy current constraint (3.19c). The constraints (3.19a), (3.19b) follow directly from

the Kubo formulas given in the previous subsection.

4 Hydrodynamics with dynamical electromagnetic fields

4.1 Dynamical gauge field

We now move on to systems where the gauge field Aµ is dynamical rather than external,

which will lead us to MHD. In external metric g, the (microscopic) generating functional is

Z[g] =

∫
DA eiS[g,A] ,

where S is the action. Let us couple the gauge field to an external conserved current Jµext.

We do this so that the new generating functional is

Z[g, Jext] =

∫
DADϕ eiS[g,A]+i

∫√
−g (Aµ−∂µϕ)Jµext , (4.1)

and W ≡ −i lnZ. The new field ϕ is a Lagrange multiplier which shifts under gauge

transformations and ensures that the external current is conserved. We define the energy-

momentum tensor and the current by the variation of the action:

δgS[g,A] =
1

2

∫ √
−g Tµνδgµν , δAS[g,A] =

∫ √
−g JµδAµ .
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Diffeomorphism invariance of W [g, Jext] implies ∇µ〈Tµν〉 = 〈F λν〉Jextλ . In what follows,

we will omit the angular brackets, writing the (non)-conservation of the energy-momentum

tensor simply as

∇µTµν = F λνJextλ . (4.2)

In the standard hydrodynamic approach, Tµν and Fµν will then be taken as dynamical

variables in the classical hydrodynamic theory. Note that the sign in the right-hand side of

eq. (4.2) is opposite compared to eq. (2.2a), owing to the fact that the current, rather than

the gauge field, is now external. In order to proceed with hydrodynamics, we need to spec-

ify a) the constitutive relations for the energy-momentum tensor to be used in eq. (4.2),

and b) the equations which determine the evolution of the dynamical gauge field Fµν .

4.2 Maxwell’s equations in matter

Classical equations specifying the dynamics of electric and magnetic fields are usually

referred to as Maxwell’s equations in matter. While we don’t have a recipe of deriving them

in a most general form in a model-independent way, a useful starting point is provided

by matter in thermal equilibrium. Maxwell’s equations for equilibrium matter may be

then amended to include the non-equilibrium and dissipative effects, such as the electrical

conductivity. To this end, as advocated in [20], we take the static generating functional

Ws[g,A] to be the effective action for gauge fields in equilibrium,

Seff [g,A] =

∫
d4x
√
−gF , (4.3)

where F is a local gauge-invariant function of the sources gµν and Aµ, and we have ignored

the surface terms. To leading order in the derivative expansion, F is simply the pressure.

We can always write F = −1
4FµνF

µν + Fm, where the vacuum action is −1
4FµνF

µν =
1
2(E2 − B2), and Fm is the “matter” contribution. The isolation of the vacuum term is

arbitrary, but it will allow us to make contact with the textbook form of Maxwell’s equations

in matter. Our (equilibrium) effective theory is then given by the partition function (4.1),

with S replaced by Seff , and the total action is

Stot[A,ϕ] = Ws[g,A] +

∫ √
−g (Aµ−∂µϕ)Jµext .

The current derived by varying the total action with respect to Aµ is Jµtot = Jµ + Jµext, or

Jµtot = −∇ν(Fµν −Mµν
m ) + nuµ + Jµext ,

where the polarization tensor Mµν
m is defined by δF

∫
d4x
√
−gFm = 1

2

∫
d4x
√
−gMµν

m δFµν ,

and the density of “free” charges is n ≡ ∂Fm/∂µ. The equation of motion for the gauge

field follows from δAStot = 0, or equivalently Jµtot = 0, and becomes

∇νHµν = nuµ + Jµext , (4.4)

where Hµν ≡ Fµν−Mµν
m . This is the desired equation that must be satisfied by electromag-

netic fields in equilibrium. Following the standard hydrodynamic lore and assuming that
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eq. (4.4) also holds for small departures away from equilibrium, one obtains hydrodynamics

of “perfect fluids”, now with dynamical electric and magnetic fields. For these perfect fluids,

equations (4.4) have to be solved together with the stress tensor (non)-conservation (4.2),

where Tµν is derived from the effective action (4.3).

In fact, eq. (4.4) is nothing but the standard Maxwell’s equations in matter. The

polarization tensor Mµν
m defines electric and magnetic polarization vectors Pµ and Mµ

through the decomposition

Mµν
m = Pµuν − P νuµ − εµνρσuρMσ . (4.5)

The antisymmetric tensor Hµν can be decomposed in the same way as the field strength Fµν ,

Hµν = uµDν − uνDµ − εµνρσuρHσ ,

which defines Dµ ≡ Hµνu
ν and Hµ ≡ 1

2ε
µναβuνHαβ , so that

Dµ = Eµ + Pµ ,

Hµ = Bµ −Mµ .

It is then clear that eq. (4.4) is the covariant form of Maxwell’s equations in matter: the

currents of ‘free charges’ are in the right-hand side, while the effects of polarization ap-

pear in the left-hand side through the substitution Eµ → Dµ, Bµ → Hµ in the vacuum

Maxwell’s equations. Action (4.3) is the action for Maxwell’s equations in matter.

As an example, consider the following “matter” contribution: Fm =pm(T, µ,E2, B2, E·B),

where pm is the “matter” pressure. The polarization tensor is then Mµν
m = 2∂pm/∂Fµν , and

the polarization vectors are

Pµ = χEEE
µ + χEBB

µ , (4.6a)

Mµ = χEBE
µ + χBBB

µ , (4.6b)

where the susceptibilities χEE ≡ 2∂pm/∂E
2, χEB ≡ ∂pm/∂(E·B), and χBB ≡ 2∂pm/∂B

2

all depend on T , µ, E2, B2, and E·B. This gives the standard constitutive relations,

expressing D and B in terms of E and H,

Dµ = εmE
µ + βmH

µ ,

Bµ = βmE
µ + µmH

µ ,

where εm ≡ 1 + χEE + χ2
EB/(1−χBB) is the electric permittivity, µm ≡ 1/(1−χBB) is the

magnetic permeability, and βm ≡ χEB/(1−χBB). We will also use εe ≡ 1+χEE, which

coincides with the electric permittivity if χEB = 0.

4.3 Hydrodynamics

We take the MHD equations to be as follows:

∇µTµν = F λνJextλ , (4.7a)

Jµ + Jµext = 0 , (4.7b)

εµναβ∇νFαβ = 0 . (4.7c)
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The last equation is the electromagnetic “Bianchi identity”, expressing the fact that the

electric and magnetic fields are derived from the vector potential Aµ. The second equation

(Maxwell’s equations in matter) can be rewritten as ∇ν(Fµν−Mµν
m ) = Jµfree + Jµext which

defines Jµfree, the current of “free charges”. While eqs. (4.7a) and (4.7c) are true microscop-

ically, the Maxwell’s equations in matter (4.7b) are written based on the above intuition

of the equilibrium effective action. Note that ∇µJµfree = 0 is a consequence of (4.7b), and

is not an independent equation. The hydrodynamic variables are T , uα, µ, as well as the

electric and magnetic fields which satisfy uαE
α = 0, uαB

α = 0. Hydrodynamic equa-

tions (4.7) must be supplemented by constitutive relations, which express Tµν , Jµ (or Jµfree

and Mµν
m ) in terms of the hydrodynamic variables. These constitutive relations will contain

equilibrium contributions coming from the equilibrium effective action (4.3). In addition,

the constitutive relations will contain non-equilibrium contributions, such as the electrical

conductivity and the shear viscosity.

Taking the divergence of eq. (4.7b) and using Jµext = −Jµ gives

∇µTµν = F νλJλ ,

∇µJµ = 0 ,

which shows that the variables T , uα, and µ satisfy exactly the same equations (2.2) as they

did in the theory with a non-dynamical, external Aµ. Thus in order to “solve” the MHD

theory (4.7) one can i) solve the hydrodynamic equations with an external gauge field (4.7)

to find T [A, g], uα[A, g], µ[A, g], and ii) solve Jµ[T [A, g], uα[A, g], µ[A, g], A, g]+Jµext = 0 in

order to find Aµ[Jext, g], and iii) use the constitutive relations to find the energy-momentum

tensor Tµν [Jext, g] =Tµν [T [A[Jext, g], g], uα[A[Jext, g], g], µ[A[Jext, g], g], A[Jext, g], g]. MHD

correlation functions may then be obtained through variations with respect to the external

sources Jλext and gµν .

An equivalent way to understand the classical effective theory (4.7) is to promote the

real-time generating functional to the non-equilibrium effective action [20], i.e. to write

Stot[A,ϕ] = Wr[A, g] +

∫ √
−g (Aµ−∂µϕ)Jµext ,

where Wr[A, g] is low-energy, real-time generating functional for retarded correlation func-

tions in the theory with a non-dynamical Aµ. The functional Wr[g,A] is non-local due to

the gapless low-energy degrees of freedom (sound waves etc). However, for the purposes of

MHD we do not need the actual generating functional, but only the equations of motion

for the effective action Stot. These equations of motion are Jµ[A, g] + Jµext = 0, where

Jµ[A, g] is the on-shell current in the theory with a non-dynamical Aµ. One can then solve

the theory as described in the previous paragraph.

We will thus adopt the simplest hydrodynamic effective theory (4.7) where the con-

stitutive relations for Tµν and Jµ are the same as in the case of external non-dynamical

electromagnetic fields. Under this “mean-field” assumption, transport coefficients which

are naively independent would still be related by the conditions originating from the static

generating functional.
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Further, any solution T [A, g], uα[A, g], µ[A, g] to the MHD equations is also a solution

to the hydrodynamic equations (2.2) in the theory with a non-dynamical Aµ. Thus the

entropy current with a non-negative divergence on the solutions to (2.2) will also have non-

negative divergence when evaluated on the solutions to the MHD equations (4.7). This

means that the entropy current in MHD may be taken the same as the entropy current in

the theory with a non-dynamical gauge field [20], and we do not need to perform a separate

entropy current analysis beyond what was already done in section 3.

To sum up, with the MHD scaling B ∼ O(1), E ∼ O(∂), the equilibrium effective

action is given by eq. (2.7),

Seff =

∫ √
−g

(
−1

2
B2 + pm(T, µ,B2) +

5∑
n=1

Mn(T, µ,B2)s(1)
n +O(∂2)

)
. (4.8)

For a parity-invariant theory, only the M4 term in the sum contributes. The constitu-

tive relations for the energy-momentum tensor and the current were already found in the

previous section, where now we have p(T, µ,B2) = −1
2B

2 + pm(T, µ,B2). The energy-

momentum tensor appearing in eq. (4.7) and the current Jµ satisfying Jµ + Jµext = 0 take

the form (3.1), (3.2), and the constitutive relations for a parity-invariant theory in the

thermodynamic frame are given by eqs. (3.11), (3.12).

We will find it useful to modify the above effective theory by giving dynamics to

the electric field. To do so, we add an O(∂2) term 1
2εeE

2 to the effective action (4.8),

where εe is the electric permittivity which we take constant. This term is one of the many

O(∂2) terms, and we add it as a “ultraviolet regulator” which improves the high-frequency

behaviour of the theory. When studying the near-equilibrium eigenmodes of the system,

this term will affect the frequency gaps, but not the leading-order dispersion relations of

the gapless modes. With this new term, the following contributions have to be added to

the constitutive relations (3.11), (3.12):

TµνEl. = εe

(
1

2
E2gµν + E2uµuν − EµEν

)
,

JµEl. = −εe∇λ
(
Eλuµ − Eµuλ

)
.

The current JµEl. contains the kinetic term for the electric field in Maxwell’s equations, as

well as the “bound” current due to electric polarization.

4.4 Eigenmodes

As a simple application of the above MHD theory, one can study the eigenmodes of small

oscillations about the thermal equilibrium state. As we did earlier, we set the external

sources to zero, and linearize the hydrodynamic equations near the flat-space equilibrium

state with constant T = T0, µ = µ0, uα = (1,0), and Bα = (0, 0, 0, B0). For simplicity, we

will take the magnetic permeability µm constant, though it is straightforward to find how

the eigenfrequencies below are modified for non-constant µm = µm(T, µ,B2).
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Neutral state. We begin with the neutral state at µ0 = 0 and n0 = 0. The system

admits nine eigenmodes, three gapped, and six gapless.

Let us start with the familiar case of vanishing magnetic field in equilibrium. The sys-

tem is then isotropic, with shear viscosity η, bulk viscosity ζ, and conductivity σ ≡ σ⊥ = σ‖.

The fluctuations of δT , δui decouple from the fluctuations of δµ, δEi, δBi. The eigenmodes

include two transverse shear modes with eigenfrequency ω = −iηk2/(ε0+p0), and longitu-

dinal sound waves with v2
s = ∂p/∂ε and Γs = (4

3η + ζ)/(ε0 + p0). In addition, there is a

longitudinal charge diffusion mode which becomes gapped because of non-zero electrical

conductivity,

ω = − iσ
εe

− i
(

σ

∂n/∂µ

)
k2 .

Thus, charge fluctuations in a neutral conducting medium do not diffuse. Instead, what

diffuses are the transverse magnetic and electric fields: there are two sets of transverse

conductor modes whose eigenfrequencies are determined by

ω

(
ω +

iσ

εe

)
=

k2

εeµm

.

Recall that εe is the electric permittivity and µm = 1/(1−2∂pm/∂B
2) is the magnetic

permeability, so
√
εeµm is the elementary index of refraction. The conductor modes have

the following frequencies at small momenta:

ω = − iσ
εe

+
ik2

σµm

, ω = − ik2

σµm

.

The gapless conductor mode is responsible for the skin effect in metals.

We now turn on non-zero magnetic field and consider modes propagating at an angle θ

with respect to B0. Thermal and mechanical fluctuations now no longer decouple from

electromagnetic fluctuations. There is one longitudinal gapped mode, and two transverse

gapped modes,

ω = −
iσ‖

εe

+O(k2) , ω = − iσ⊥ ± σ̃
εe

+O(k2) .

In writing down the transverse eigenfrequencies, we have assumed B2
0 � ε0 + p0.

All six gapless modes have linear dispersion relation at small momenta. Two of the

gapless modes are the Alfvén waves,

ω = ±vAk cos θ − iΓA

2
k2 , (4.9a)

whose speed and damping are determined by

v2
A =

B2
0

µm(ε0+p0) +B2
0

, ΓA =
1

ε0+p0

(
η⊥ sin2 θ + η‖ cos2 θ

)
+

1

µm

(
ρ⊥ cos2 θ+ρ‖ sin2 θ

)
,

(4.9b)

where ρ‖ ≡ 1/σ‖, and ρ⊥ was defined below eq. (3.16). In writing down the damping coeffi-

cient, we have taken B2
0 � ε0+p0, the corrections of order B2

0/(ε0+p0) are straightforward

to write down. The other four gapless modes are the two branches of magnetosonic waves,

ω = ±vmsk −
iΓms

2
k2 , (4.10a)
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whose speed is determined by the quadratic equation

(v2
ms)

2 − v2
ms(v

2
A + v2

s − v2
Av

2
s sin2 θ) + v2

Av
2
s cos2 θ = 0 , (4.10b)

where v2
s = (s/T )/(∂s/∂T ) = ∂p/∂ε is the speed of sound at n0 = 0. The two solutions

of (4.10b) correspond to the sound-type (or “fast”) branch, and the Alfvén-type (or “slow”)

branch. At θ = 0, the slow branch turns into a second set of Alfvén waves, while the fast

branch becomes the sound wave. See e.g. ref. [21] for an early derivation of vA and vms in

relativistic MHD. The damping coefficients of the magnetosonic waves are straightforward

to evaluate, but are quite lengthy to write down in general, and we will only present them

in the limits of small B0 and small θ. As B0 → 0, the damping coefficients become

slow: Γms =
η

ε0+p0
+

1

σµm

, (4.10c)

fast: Γms =
1

ε0+p0

(
4

3
η + ζ

)
. (4.10d)

On the other hand, as θ → 0, the damping coefficients become

slow: Γms =
η‖

ε0+p0
+
ρ⊥
µm

, (4.10e)

fast: Γms =
1

ε0+p0

(
10

3
η1 + 2η2 + ζ1

)
. (4.10f)

We have again taken B2
0 � ε0 +p0, the corrections of order B2

0/(ε0+p0) are straightforward

to write down. At θ = 0, both polarizations of Alfvén waves have the same damping.

Let us now consider gapless modes propagating perpendicularly to the magnetic field,

i.e. taking θ → π/2 first, k → 0 second. These include sound waves

ω = ±kvπ/2 −
iΓπ/2

2
k2 , (4.11a)

where vπ/2 is the non-zero solution of eq. (4.10b) at θ = π/2. In the limit of small B0 it

reduces to v2
π/2 = v2

s = (s/T )/(∂s/∂T ) = ∂p/∂ε, in equilibrium. The damping coefficient is

Γπ/2 =
1

ε0+p0

(
ζ1 −

2

3
η1 + η⊥

)
, (4.11b)

assuming B2
0 � ε0+p0. The other four gapless modes at θ = π/2 are purely diffusive,

ω = −
iη‖

ε0+p0
k2 , (4.12a)

ω = −
iρ‖

µm

k2 , (4.12b)

ω = − iη⊥
ε0+p0

k2 , (4.12c)

ω = − iρ⊥
µm

k2 . (4.12d)

In writing down (4.12c) and (4.12d) we have again taken B2
0 � ε0+p0.
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Charged state offset by background charge. We now consider a state with a non-zero

value of µ0, which gives rise to a constant non-zero charge density n0. In order to ensure

that the equilibrium state is stable, we will offset this equilibrium value of the dynamical

charge density by a constant non-dynamical external background charge density −n0. This

can be achieved by choosing the external current in the hydrodynamic equations (4.7) as

Jµext = (−n0,0). In the particle language, this would correspond to a state where the

excess of electrically charged particles over antiparticles (or vice versa) is compensated by

a constant charge density of immobile background “ions”. Even though the system is overall

electrically neutral, its dynamics is not equivalent to that of the system with µ0 = 0, n0 = 0:

for example, the fluctuation of the spatial electric current has a convective contribution

n0 δui. More formally, when analyzing hydrodynamic modes, the limits n0 → 0 and k → 0

do not commute. We now find six gapped modes and three gapless modes.

To get some intuition about the gapped modes, let us set all transport coefficients to

zero, as well as set B0 = 0. Then at small momenta there are two longitudinal gapped

modes whose frequencies are determined by

ω2 = Ω2
p + v2

sk
2 ,

where Ω2
p ≡ n2

0/[(ε0+p0)εe], and vs is the speed of sound that the charged fluid would have,

if the electromagnetic fields were not dynamical, see section 3.5. These modes are the

relativistic analogues of Langmuir oscillations, and Ωp is the relativistic “plasma frequency”

which gaps out the sound waves. In addition, there are four transverse gapped modes whose

frequencies are determined by

ω2 = Ω2
p +

k2

εeµm

.

These are electromagnetic waves in the fluid, gapped by the same plasma frequency Ωp as

the sound waves. If we now turn on the transport coefficients, the gaps are determined by

ω

(
ω +

iσ‖

εe

)
= Ω2

p , ω

(
ω +

i(σ⊥ ± iσ̃)

εe

)
= Ω2

p ,

indicating the damping of plasma oscillations. At non-zero B2
0 � ε0 + p0, the gaps will

receive dependence on the magnetic field.

At B0 = 0 the system is isotropic. The gapless modes (B0 → 0 first, k → 0 second)

include two transverse shear modes with quartic dispersion relation, and one longitudinal

diffusive mode,

ω = − iηk4

n2
0µm

, ω = − iσχ33w
3
0

n2
0 det(χ)

k2 ,

where again w0 ≡ T0s0 +µ0n0, and the susceptibility matrix χ was defined below eq. (3.15).

At non-zero B0, the three gapless modes all have quadratic dispersion relation at small

momenta. There are two propagating waves with real frequencies

ω = ±B0 cos θ

n0µm

k2 , (4.13)
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where θ is the angle between k and B0, and one diffusive mode. For B2
0MΩ,µ � ε0 + p0,

the diffusive frequency is

ω = −i χ33w
3
0

det(χ)

(
σ‖ cos2 θ

n2
0

+
ρ⊥ sin2 θ

B2
0

)
k2 . (4.14)

For gapless modes propagating at θ = π/2 at small momenta (θ → π/2 first, k → 0

second), we again find the diffusive mode ω = −iD⊥k2, with the same coefficient D⊥ as

in section 3.5. In addition, at θ = π/2 there are two “subdiffusive” modes with quartic

dispersion relation,

ω = −i η⊥k
4

n2
0µm

, ω = −i
η‖k

4

n2
0µm

.

The eigenfrequencies are noticeably different from the ones in a theory with fixed, non-

dynamical electromagnetic field discussed in section 3.5. Compared to the case of n0 = 0

earlier in this section, one can say that non-vanishing dynamical charge density gaps out

the magnetosonic waves, and turns Alfvén waves into waves whose frequency is quadratic

in momentum.

4.5 Kubo formulas

We can find MHD correlation functions following the same variational procedure outlined

in section 3.7. As the total current vanishes by the equations of motion, the objects whose

correlation functions it makes sense to evaluate in MHD are the energy-momentum tensor

Tµν and the electromagnetic field strength tensor Fµν . It is straightforward to evaluate

retarded functions in flat space, in an equilibrium state with constant T = T0, µ = µ0, uα =

(1,0), and constant magnetic field. We solve the hydrodynamic equations in the presence of

fluctuating external sources δJext, δg (proportional to exp(−iωt+ ik·x)) to find δT [Jext, g],

δµ[Jext, g], δuα[Jext, g], δFµν [Jext, g] and then vary the resulting hydrodynamic expressions

Tµν [Jext, g] and Fµν [Jext, g] with respect to gαβ , Jαext to find the retarded functions. The

metric variations are performed as usual,

GTµνTαβ = 2
δ

δgαβ

(√
−g Tµνon-shell[Jext, g]

)
, GFµνTαβ = 2

δ

δgαβ

(√
−g F on-shell

µν [Jext, g]
)
.

The subscript “on-shell” signifies that Tµν and Fµν are evaluated on the solutions to (4.7)

with the constitutive relations (3.11), (3.12). Further, recall that the external current must

be conserved, which can be implemented by choosing δJ0
ext = ki δJ

i
ext/ω + 1

2n0δg
µ

µ . The

coupling AµJ
µ
ext then implies that iω δ/δJ lext(k) produces an insertion of F0l(−k), while

ikmε
nmlδ/δJ lext(k) produces an insertion of 1

2ε
nmlFlm(−k). For example, for electric field

correlation functions we have

GTµνF0l
= iω

δ

δJ lext

Tµνon-shell[Jext, g] , GFµνF0l
= iω

δ

δJ lext

F on-shell
µν [Jext, g] ,

and similarly for the magnetic field.6

6Alternatively, one can introduce an antisymmetric “polarization source” Mµν
ext, by taking the conserved

current as Jµext = ∇νMµν
ext. The coupling AµJ

µ
ext then becomes 1

2
Mµν

extFµν upon integration by parts, and

correlation functions of Fµν may be obtained as variations with respect to Mµν
ext.
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Choosing the external magnetic field in the z-direction, we find the same Kubo formu-

las (3.25) and (3.26). The electrical resistivities may also be expressed in terms of correla-

tion functions of the electric field. In the zero-density state with µ0 = 0, n0 = 0 we find

1

ω
ImGFz0Fz0(ω,k=0) = ρ‖ , (4.15a)

at small frequency, where ρ‖ ≡ 1/σ‖. Similarly, for the transverse resistivities we find

1

ω
ImGFx0Fx0(ω,k=0) = ρ⊥ , (4.15b)

1

ω
ImGFx0Fy0(ω,k=0) = −ρ̃⊥ sign(B0) , (4.15c)

where again w0 ≡ ε0+p0, and ρ⊥, ρ̃⊥ were defined below eq. (3.16). We have taken

B2
0 � w0, otherwise there is a multiplicative factor of w0(w0−B2

0MΩ,µ)µ2
m/(w0µm+B2

0)2 in

the right-hand side of (4.15b), (4.15c). In a charged state (offset by non-dynamical −n0),

the correlation functions change, for example GFx0Fy0(ω,k=0) = iωB0
n0
, while σ‖ can be

found from

1

ω
ImGT0zT0z(ω,k=0) = σ‖ . (4.16)

Retarded functions at non-zero momentum may be found from the above variational pro-

cedure. For example, the function GFx0Fx0(ω,k) in a state with n0 = 0 and with k ‖ B0

has singularities at the eigenfrequencies of Alfvén waves for small momenta.

5 A dual formulation

As this paper was being completed, an interesting article [22] (abbreviated below as GHI)

came out which approached magnetohydrodynamics from a different perspective. The dual

electromagnetic field strength tensor Jµν ≡ 1
2ε
µναβFαβ was taken as a conserved current,

and the constitutive relations were written down for Jµν , rather than for the electric current

Jµ as was done in MHD historically. This “dual” construction follows the earlier work of

ref. [23] which studied a similar MHD-like setup for “string fluids”. The paper [22] identifies

six transport coefficients in MHD, compared to eleven transport coefficients (in a parity-

preserving system) found here. In this section we revisit the analysis of GHI, and show

that the dual formulation allows for the same eleven transport coefficients we described

earlier in sections 3 and 4.

5.1 Constitutive relations

The conservation laws are taken as follows:

∇µTµν = Hν
ρσJ

ρσ , ∇µJµν = 0 . (5.1)

These are the same equations (4.7a), (4.7c) we had earlier. The conserved external current

is taken as Jµext = 1
2ε
µνρσ∂νΠext

ρσ , where Πext
µν may be viewed as the dual of the external

polarization tensor Mµν
ext. The coupling AµJ

µ
ext then becomes 1

2Πext
µν J

µν upon integration
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by parts, and correlation functions of Jµν may be obtained as variations with respect to

Πext
µν . The tensor H in (5.1) is H = 1

2dΠext, or in components Hαβγ = 1
4∂αΠext

βγ + (signed

permutations).

In order to relate the GHI thermodynamic parameters to ours, we can compare equi-

librium currents. The currents at zeroth order in derivatives are given by

Tµν = (εd + pd)uµuν + pd g
µν − µd ρd h

µhν +O(∂) , (5.2a)

Jµν = ρd(uµhν − uνhµ) +O(∂) . (5.2b)

The subscript “d” for “dual” is used to differentiate the parameters from those used earlier

in the paper. The currents can be compared with our eq. (3.11) and the dual of eq. (2.4)

at zeroth order:

Tµν =

(
wm +

B2

µm

)
uµuν +

(
−1

2
B2 + pm +

B2

µm

)
gµν − BµBν

µm

+O(∂) , (5.3a)

Jµν = uµBν − uνBµ +O(∂) , (5.3b)

where wm ≡ Tpm,T +µpm,µ = Ts+µn is the enthalpy density, and µm = 1/(1−2∂pm/∂B
2) is

the magnetic permeability. Using h2 = 1, we can identify ρd = B, µd = B/µm, hµ = Bµ/B,

pd = −1
2B

2 + pm +B2/µm, up to O(∂) terms. Out of equilibrium, hµ and µd are auxiliary

dynamical variables (without a unique microscopic definition) designed to capture the

dynamics of the magnetic field. The entropy density is sd = pm,T + µ
T pm,µ, as follows from

εd + pd = Tsd + µdρd. The energy densities coincide, εd = −p + Ts + µn = ε, again with

p = −1
2B

2 + pm(T, µ,B2).

At order O(∂), our constitutive relations can not be directly compared to those of

GHI because of different hydrodynamic variables. However, we can compare the number of

transport coefficients. The comparison may be done based on the entropy current argument

which we review below.

In a particular hydrodynamic “frame”, the one-derivative contributions to the GHI

constitutive relations are given in eq. (3.4), (3.5) of ref. [22],

Tµν(1) = δfd ∆µν
d + δτd h

µhν + `µdh
ν + `νdh

µ + tµνd , (5.4a)

Jµν(1) = mµ
dh

ν −mν
dh

µ + sµνd , (5.4b)

where ∆µν
d = gµν + uµuν − hµhν , and the coefficients δfd, δτd, `µd , tµνd , mµ

d , sµνd are all

O(∂). The quantities `µd , tµνd , mµ
d , sµνd are all transverse to both uµ and hµ, the tensor

tµνd is symmetric and traceless, and the tensor sµνd is anti-symmetric. We do not write the

subscript on the temperature and fluid velocity, even though the GHI’s T and uµ differ from

ours at O(∂). Further, GHI impose charge conjugation as a constraint on the dynamics.

5.2 Entropy production

The “canonical” entropy current in the GHI formulation is analogous to eq. (3.17),

Sµd =
1

T
(pdu

µ − Tµνuν − µdJ
µνhν) . (5.5)
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This does not take into account the O(∂) contributions to thermodynamics: as we have seen

earlier, the only non-trivial thermodynamic susceptibility in a parity-invariant theory is odd

under charge charge conjugation C, and gets eliminated if C is imposed as a symmetry of

hydrodynamics.

Upon using the conservation equations (5.1) together with the zeroth-order constitutive

relations (5.2), the divergence of the entropy current (5.5) is

∇µSµd = −Tµν(1) ∇µ
(uν
T

)
− Jµν(1)

[
∇µ
(
µdhν
T

)
+
uαH

α
µν

T

]
.

Substituting the first-order constitutive relations (5.4), we find

T∇µSµd = −δfd (S3 − S4)− δτdS4 − `µd Σµ −
1

2
tdµνσ

µν
⊥ −m

d
α Y

α − 1

2
sd
ρσZ

ρσ . (5.6)

Using the notation similar to section 3.6, we have the scalars S3 ≡ ∇·u, S4 ≡ hµhν∇µuν ,

as well as σµν⊥ ≡
1
2

(
∆µα

d ∆νβ
d + ∆να

d ∆µβ
d −∆µν

d ∆αβ
d

)
σαβ and Σµ ≡ ∆µλ

d σλρh
ρ. We have

further defined

Y λ ≡ ∆λρ
d

[
T∂ρ(µd/T ) + 2uαH

α
ρσh

σ − µdh
α∇αhρ

]
,

Zαβ ≡ ∆αρ
d ∆βσ

d

[
µd(∇ρhσ −∇σhρ) + 2uαH

α
ρσ

]
.

In order to ensure that the entropy production in eq. (5.6) is non-negative, GHI demand

δfd = −ζ⊥(S3 − S4) , δτd = −2ζ‖S4 , `µd = −η‖Σµ ,

tµνd = −η⊥σµν⊥ , mα
d = −r⊥Y α , sρσd = −r‖Zρσ ,

(5.7)

with six non-negative coefficients ζ⊥, ζ‖, η⊥, η‖, r⊥, r‖. This clearly gives ∇µSµd > 0.

Note however that while demanding eq. (5.7) is sufficient to ensure non-negative en-

tropy production, there are more ways besides eq. (5.7) to make the right-hand side of

eq. (5.6) non-negative. These other options will give rise to extra transport coefficients.

Indeed, consider the following coefficients of the O(∂) constitutive relations:

δfd = −f1S3 − f2S4 , (5.8a)

δτd = −τ1S3 − τ2S4 , (5.8b)

`µd = −η‖Σµ − η̃‖Σ̃µ , (5.8c)

tµνd = −η⊥σµν⊥ − η̃⊥σ̃
µν
⊥ , (5.8d)

mα
d = −r⊥Y α − r̃⊥Ỹ α , (5.8e)

sρσd = −r‖Zρσ . (5.8f)

The tilded vectors are defined as Ṽ µ = εµναβuνhαVβ , and the tilded shear tensor is

σ̃µν⊥ ≡
1

2

(
εµλαβuλhασ

βν
⊥ + ενλαβuλhασ

βµ
⊥

)
,
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as in eq. (3.8). The tensor sρσd has only one degree of freedom, hence it contains only one

transport coefficient. The divergence of the entropy current (5.6) is then

T∇µSµd = f1S
2
3 + (τ1+f2−f1)S3S4 + (τ2−f2)S2

4

+ η‖ΣµΣµ +
1

2
η⊥(σµν⊥ )2 + r⊥YµY

µ +
1

2
r‖(Z

ρσ)2 . (5.9)

The three tilded coefficients do not contribute to entropy production in eq. (5.6) due to

Ṽ µVµ = 0 and σ⊥µν σ̃
µν
⊥ = 0, and can take any real values,

η̃‖ ∈ R , η̃⊥ ∈ R , r̃⊥ ∈ R . (5.10)

Demanding that ∇µSµd in eq. (5.9) is non-negative now implies

η⊥ > 0 , η‖ > 0 , r⊥ > 0 , r‖ > 0 , (5.11a)

together with the condition that the quadratic form in the first line of eq. (5.9) is positive

semi-definite. The latter gives

f1 > 0 , τ2 − f2 > 0 , f1(τ2 − f2) >
1

4
(τ1 − f1 + f2)2 . (5.11b)

Thus there are eleven apriori independent non-equilibrium transport coefficients listed in

eqs. (5.8) that are consistent with non-negative entropy production, provided the con-

straints (5.11) are satisfied. The coefficients r̃⊥, η̃⊥, η̃‖ are odd under charge conjuga-

tion C, and can be eliminated if one demands C-invariance of hydrodynamics. An implicit

assumption of ref. [22] amounts to choosing f1 = −f2 = ζ⊥, τ1 = 0, τ2 = 2ζ‖.

5.3 Kubo formulas

Assuming time-reversal covariance, the above transport coefficients can be further con-

strained by the Onsager relation (3.20). In order to find the retarded functions, we can use

exactly the same variational procedure as in section 4.5:

GTµνTαβ =
2 δ

δgαβ

(√
−g Tµνon-shell[Π

ext, g]
)
, GJµνTαβ =

2 δ

δgαβ

(√
−g Jµνon-shell[Π

ext, g]
)
,

(5.12a)

as well as

GTµνJαβ = 2
δ

δΠext
αβ

Tµνon-shell[Π
ext, g] , GJµνJαβ = 2

δ

δΠext
αβ

Jµνon-shell[Π
ext, g] . (5.12b)

Again, the subscript “on-shell” signifies that Tµν and Jµν are evaluated on the solutions

to the conservation equations (5.1) with the constitutive relations (5.8). We use the above

prescription to evaluate correlation functions at zero spatial momentum, which gives rise

to Kubo formulas. Demanding that the correlation functions satisfy (3.20) now gives the

Onsager relation

τ1 = f1 + f2 . (5.13)
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We further find the following Kubo formulas for transport coefficients in the constitutive

relations (5.8). The resistivities are given by

1

ω
ImGJxyJxy(ω,k=0) = r‖ , (5.14a)

1

ω
ImGJxzJxz(ω,k=0) = r⊥ , (5.14b)

1

ω
ImGJyzJxz(ω,k=0) = r̃⊥ sign(B0) , (5.14c)

the “shear viscosities” are given by

1

ω
ImGTxzTxz(ω,k=0) = η‖ ,

1

ω
ImGTxyTxy(ω,k=0) = η⊥ , (5.14d)

1

ω
ImGT yzTxz(ω,k=0) = η̃‖ sign(B0) ,

1

ω
ImGTxyTxx(ω,k=0) = η̃⊥ sign(B0) , (5.14e)

and the “bulk viscosities” are given by

1

ω
ImGTxxTxx(ω,k=0) = f1 + η⊥ , (5.14f)

1

ω
ImGTxxT zz(ω,k=0) = f1 + f2 , (5.14g)

1

ω
ImGT zzT zz(ω,k=0) = τ1 + τ2 . (5.14h)

Correlation functions at non-zero momentum may also be found by using the above varia-

tional procedure.

5.4 Mapping of transport coefficients

We can compare the correlation functions of Tµν and Jµν evaluated using (5.12) with the

correlation functions found in section 4.5. If the two approaches to MHD (section 4 and

section 5) compute the same physical objects GTµνTαβ etc, the results should agree. Com-

paring correlation functions at zero spatial momentum allows one to relate the transport

coefficients in the constitutive relations (5.8) to transport coefficients introduced in sec-

tion 3, see eq. (3.11), (3.12). Doing so in the (dynamically) neutral state with n0 = 0 gives

the following relations. The resistivities are related by

r‖ =
1

σ‖
, r⊥ =

σ⊥
σ2
⊥ + σ̃2

, r̃⊥ = − σ̃

σ2
⊥ + σ̃2

, (5.15a)

the “shear viscosities” η⊥, η̃⊥, η‖, η̃‖ agree, and the “bulk viscosities” are related by

f1 = ζ1 −
2

3
η1 , f2 = ζ2 −

2

3
η2 , (5.15b)

τ1 = ζ1 +
4

3
η1 , τ2 = ζ2 +

4

3
η2 . (5.15c)

The Onsager relation (3.22) maps to the Onsager relation (5.13), as expected. The entropy

current constraints (3.19) map to the entropy current constraints (5.11), as expected.
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Finally, the mapping of transport coefficients (5.15) can be used to compare the eigen-

frequencies of small oscillations of the (dynamically) neutral state found in eq. (4.9), (4.10)

to those found in ref. [22]. Using the map of thermodynamic parameters spelled out below

eq. (5.3), the speed of Alfvén waves agrees with ref. [22]. The damping coefficient of Alfvén

waves in eq. (4.9) agrees with ref. [22] when B2/µm � ε + p. The speed of magnetosonic

waves in eq. (4.10b) agrees with ref. [22]: in order to see this, note that the assumption

of constant magnetic permeability amounts to assuming that the equation of state takes

the form pd = 1
2µmµ

2
d + F (T ), or p = − 1

2µm
B2 + F (T ), with some F (T ). In general, the

speed of magnetosonic waves derived from the formalisms of section 4 and section 5 will

not agree, except when B2/µm � (ε + p). One reason is that the chemical potential for

the electric charge is treated as a thermodynamic variable in section 4, hence the magne-

tosonic wave speed will in general depend on the charge susceptibility (∂n/∂µ)µ=0. This

thermodynamic derivative is not present in the formalism of section 5. Finally, note that

the transport coefficient τ1 contributes to damping of fast magnetosonic waves, for example

at θ = 0 we have Γms = (τ1 + τ2)/(Tsd), in agreement with eq. (4.10f).

6 Discussion

In this paper we have presented the equations of relativistic magnetohydrodynamics, by

which we mean the hydrodynamics of a conducting fluid in local thermal equilibrium,

with dynamical electromagnetic fields. MHD is naturally formulated in a derivative ex-

pansion with magnetic field B ∼ O(1). Electric screening does not imply that the electric

field vanishes: rather, it implies E ∼ O(∂) is subleading in the derivative expansion. We

have adopted the simplest “mean-field” formulation in which the constitutive relations

in the theory with dynamical electromagnetic fields are inherited from the theory with

external electromagnetic fields. Our main focus was on transport coefficients. For a parity-

symmetric microscopic system, we find eleven transport coefficients at one-derivative order.

One transport coefficient is thermodynamic: it is a part of the equation of state in curved

space, and contributes to flat-space correlations. Transport coefficients of this type in rel-

ativistic hydrodynamics were first identified in [2] where they appeared at second order in

derivatives. In 2+1 dimensional hydrodynamics, thermodynamic transport coefficients can

already appear at first order in derivatives [24]. Of the remaining ten transport coefficients,

three are non-equilibrium and non-dissipative, and seven are non-equilibrium and dissipa-

tive. There are more transport coefficients for parity-violating fluids, as listed in section 3.

We now comment on questions not discussed in detail in the main body of the paper.

Angular momentum generated by the magnetic field. The thermodynamic transport

coefficient MΩ determines the response of equilibrium magnetic polarization to vor-

ticity, as can be seen from eq. (3.13). One way to view MΩ is to note that a system

of charged particles in external magnetic field will develop angular momentum. One

can see this in the thermodynamic framework of section 2. For a bounded system,

the equilibrium energy-momentum tensor obtained by varying the equilibrium free

energy (2.1), (2.7) with respect to the metric will have a boundary contribution after
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the variation MΩB·δgΩ is integrated by parts [17]. The surface momentum density

Qαs = MΩε
αµνρuµBνnρ (where nµ is the unit spacelike normal vector to the bound-

ary) will give rise to angular momentum induced by the magnetic field. Consider a

system at rest in flat space at constant temperature, charge density, and constant

magnetic field B. The angular momentum L derived from the energy-momentum

tensor only receives a boundary contribution, and one finds

L

V
= 2MΩB ,

where V is the spatial volume. In this sense MΩ determines “angular momentum

density”. As the coefficient MΩ is odd under charge conjugation C, this generation of

angular momentum only happens in a C-invariant theory if the equilibrium state has

non-zero charge density. Similarly, for a system not subject to the magnetic field, in

flat space, which rotates uniformly with small (namely |ω|R� 1 where R is the size

of the system) angular velocity ω, the magnetization density is m = 2MΩ ω. More

generally, the susceptibility MΩ provides a macroscopic parametrization of gyromag-

netic phenomena such as the Barnett and Einstein-de Haas effects.

Previous work on transport coefficients. Papers [25, 26] studied transport coefficients

for relativistic fluids subject to an external magnetic field. While this does not

correspond to MHD in the sense described in this paper (we define MHD as a theory

in which magnetic field or its auxiliary is a dynamical degree of freedom), a fluid in

external field is a fundamental building block for MHD. Parts of refs. [25, 26] overlap

with our section 3. Some of our results differ from those in refs. [25, 26]: the analysis

of thermodynamics, the number of transport coefficients, constraints on transport

coefficients imposed by the positivity of entropy production, and some of the Kubo

formulas. The details are given in appendix B.

Dual formulation of magneto-hydrodynamics. In section 5 we compared our results

with the recent “dual” formulation of MHD in ref. [22]. We found the same number

of transport coefficients in the two approaches, provided the bulk viscosity missed in

ref. [22] is restored, and the constraint of C-invariance imposed in ref. [22] is lifted. It

would be interesting to investigate the relation between the “dual” and “conventional”

formulations of MHD further, in particular with regard to the description of electric

charge fluctuations.

Applicability regime. The MHD described in this paper treats electromagnetic fields

classically. This means that the electromagnetic coupling constant must be small so

that quantum fluctuations of the electromagnetic field can be ignored. The applica-

bility regime of MHD also includes B � T 2 (or restoring the fundamental constants

~ceB � (kBT )2), as is necessary to restrict the hydrodynamic degrees of freedom to

those inherited from thermodynamics. We do not have a method to systematically

incorporate the effects of larger magnetic fields within the MHD description of sec-

tion 4. The classical hydrodynamic theory also ignores statistical fluctuations, which
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are known to invalidate classical second-order hydrodynamics in 3+1 dimensions (and

classical first-order hydrodynamics in 2+1 dimensions). Understanding the effects of

statistical fluctuations in magnetic field requires further work.

Transport coefficients at strong coupling. While the small electromagnetic coupling

allows one to treat magnetic fields classically, other interactions in the theory do not

have to be small. For strongly interacting non-abelian gauge theories in external

U(1) magnetic field, methods of gauge-gravity duality provide a window into non-

equilibrium physics, both within and outside the hydrodynamic regime. Some of

the hydrodynamic transport coefficients discussed in this paper were evaluated in

holographic models in refs. [26, 27]. The full set of transport coefficients for fluids in

external magnetic field has not yet been explored holographically.

Higher-order terms. We have not taken into account the terms beyond first order

in the derivative expansion. In conventional hydrodynamics, higher-order terms are

required to render the theory causal [28] (see e.g. [2, 29] for more recent discussions).

We expect that a causal formulation of MHD will involve higher-order relaxation

times as well as the electric field dynamics.

Note added. We have communicated with the authors of ref. [22], and it is our under-

standing that the missing bulk viscosity will be added in an updated version of ref. [22],

and that the Kubo formulas for bulk viscosities will agree with ours. We have also commu-

nicated with the authors of ref. [26], and it is our understanding that the Kubo formulas

for viscosities in an updated version of ref. [26] will agree with ours.
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A Equilibrium T µν and Jµ

The coefficients εn, πn, φn, γn, δn, θn in the equilibrium energy-momentum tensor and the

current (3.5) have the following expressions in terms of the five parameters Mn(T, µ,B2) of

the generating functional (2.7). The O(∂) correction to the energy density is determined by

ε1 = −M1 + TM1,T + µM1,µ + 4B2M1,B2 + T 4M3,B2 ,

ε2 = −M2 + TM2,T + µM2,µ ,

ε3 =
4B2

T 4

(
M1 − TM1,T − µM1,µ − 4B2M1,B2

)
− 4B2M3,B2 ,

ε4 = −2M4 + TM4,T + µM4,µ ,

ε5 = TM5,T + µM5,µ +
4B2

T 4
M1,µ +M3,µ ,
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where the comma denotes the partial derivative: M1,T ≡ (∂M1/∂T ) evaluated at fixed µ

and B2, etc. The O(∂) correction to the pressure is determined by

π1 = 0 ,

π2 = −2

3
M2 −

4

3
B2M2,B2 ,

π3 = −4

3
B2M3,B2 +

4B2

3T 4

(
M1 − TM1,T − µM1,µ − 4B2M1,B2

)
,

π4 = −1

3
M4 −

4

3
B2M4,B2 ,

π5 = −4

3
B2M5,B2 +

4B2

3T 4
M1,µ .

The O(∂) correction to the charge density is determined by

φ1 = M1,µ − T 4M5,B2 ,

φ2 = M2,µ ,

φ3 = M3,µ + TM5,T + µM5,µ + 4B2M5,B2 ,

φ4 = −αBB +M4,µ ,

φ5 = 0 .

The O(∂) correction to the energy flux is determined by

γ1 = −M4 ,

γ2 = 2M4 − TM4,T − µM4,µ ,

γ3 = −M4,B2 ,

γ4 = −αBB +M4,µ .

The O(∂) correction to the spatial current is determined by the magnetic susceptibility,

δ1 = −αBB ,

δ2 = αBB − TαBB,T − µαBB,µ ,

δ3 = −αBB,B2 ,

δ4 = αBB,µ .
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The O(∂) correction to the stress is determined by

θ1 = 0 ,

θ2 = M2,B2 ,

θ3 = M3,B2 −
1

T 4

(
M1 − TM1,T − µM1,µ − 4B2M1,B2

)
,

θ4 = M4,B2 ,

θ5 = M5,B2 −
1

T 4
M1,µ ,

θ6 = 2M2 ,

θ7 = −M2 + TM2,T + µM2,µ ,

θ8 = M2,B2 ,

θ9 = −M2,µ ,

θ10 = M4 .

B Comparison with previous work

B.1 Comparison with Huang et al.

In this appendix we will comment on how our work relates to some earlier studies of

transport coefficients, for the benefit of the reader who might want to compare different

approaches. Ref. [25], abbreviated below as HSR, studied relativistic hydrodynamics of

parity-invariant fluids in external non-dynamical magnetic field. HSR enumerated the

transport coefficients, giving a relativistic version of the classification in the book [30], §13,

and derived the Kubo formulas for transport coefficients in an operator formalism. Parts

of the HSR paper overlap with our section 3.

Our counting of non-equilibrium transport coefficients for parity-invariant systems

agrees with HSR. Denoting the transport coefficients in ref. [25] with the subscript HSR,

the relations to our transport coefficients are as follows:

η⊥ = η0,HSR , η̃⊥ = −2η3,HSR , η‖ = η0,HSR + η2,HSR , η̃‖ = −η4,HSR ,

η1 = −1

2
η0,HSR −

3

8
η1,HSR −

3

4
ζ⊥,HSR , ζ1 = ζ⊥,HSR ,

η2 =
3

2
η0,HSR +

9

8
η1,HSR +

3

4
ζ⊥,HSR +

3

2
ζ‖,HSR , ζ2 = ζ‖,HSR − ζ⊥,HSR ,

σ⊥ = κ⊥,HSR , σ‖ = κ‖,HSR , σ̃ = −κ×,HSR , (B.1)

assuming the convention ε0123 = 1. This lists eleven transport coefficients compared to

ten HSR coefficients, hence under this mapping the eleven transport coefficients are not

independent. Indeed, the comparison (B.1) implies ζ2 = 2η1 + 2
3η2, which is precisely our

Onsager constraint (3.22). Thus our counting of non-equilibrium transport coefficients in

section 3 agrees with that of HSR.

There are also some differences between our section 3 and HSR. In terms of the setup,

the HSR treatment neglects electric fields, while we include them and explain how to do so

systematically. Related to that, the treatment of polarization effects in HSR was incom-

plete. A direct way to obtain the equilibrium energy-momentum tensor and the current in
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the presence of external fields is by varying the corresponding generating functional with

respect to the metric and the gauge field, as was done for example in ref. [17]. As a result,

HSR did not include the thermodynamic transport coefficient, denoted in section 3 as MΩ,

and did not distinguish between the Landau-Lifshitz and thermodynamic frames. In the

Landau-Lifshitz frame, MΩ would contribute to all frame invariants in eq. (3.6) inducing

O(∂) contributions to pressure, electric current, and spatial stress.

We also find that our constraints on transport coefficients imposed by the positiv-

ity of entropy production differ somewhat from those presented in HSR. Rewriting our

constraints (3.19) in terms of the HSR coefficients, we find

η0,HSR > 0 , η0,HSR + η2,HSR > 0 ,
1

3
η0,HSR +

1

4
η1,HSR +

3

2
ζ⊥,HSR > 0 ,

3η0,HSR +
9

4
η1,HSR +

3

2
ζ⊥,HSR + 3ζ‖,HSR > 0 ,

18ζ‖,HSRζ⊥,HSR + 4ζ‖,HSRη0,HSR + 3ζ‖,HSRη1,HSR + 8ζ⊥,HSRη0,HSR + 6ζ⊥,HSRη1,HSR > 0 ,

κ⊥,HSR > 0 , κ‖,HSR > 0 .

(B.2)

On the other hand, the constraints coming from the second law in ref. [25] state that all the

dissipative HSR transport coefficients must be positive. We find that the constraints on

dissipative transport coefficients (B.2) are in fact weaker. In other words, the constraints

of ref. [25] are too restrictive: some of the dissipative transport coefficients in the HSR

notation can be negative, while still satisfying (B.2), and therefore still leading to positive

entropy production.

Finally, there are differences between our Kubo formulas and those of HSR. In par-

ticular our Kubo formulas for conductivities transverse to the external magnetic field are

markedly different. Comparing the correlation functions in the neutral state (n0 = 0), the

HSR Kubo formulas give the conductivities κ⊥,HSR and κ×,HSR in terms of the iω coefficient

of the retarded current-current correlation functions at zero momentum. On the other

hand, our Kubo formulas (3.24b), (3.24c) show that the coefficient of iω vanishes, while

the subleading coefficient in the small-ω expansion is determined by the resistivity rather

than the conductivity. In the charged state, the term n0/B0 in our eq. (3.24c) describes the

standard Hall effect in the plane transverse to the magnetic field. The Hall effect appears

to be missing from correlation functions in ref. [25].

B.2 Comparison with Finazzo et al.

In ref. [26] (abbreviated below as FCRN), the authors considered hydrodynamics with

fixed non-dynamical magnetic field, and derived Kubo formulas for transport coefficients

that appear in the energy-momentum tensor in the Landau-Lifshitz frame. FCRN use

a variational approach to find the retarded functions of the energy-momentum tensor,

and appendix B of FCRN overlaps with our section 3. FCRN follow ref. [25] in their

constitutive relations for the energy-momentum tensor, so the comments in section B.1

apply to FCRN as well, where FCRN agree with ref. [25]. In particular, FCRN did not

include the thermodynamic transport coefficient MΩ that appears in the equilibrium free

energy at one-derivative order.

– 36 –



J
H
E
P
0
5
(
2
0
1
7
)
0
0
1

FCRN use mostly the same convention for transport coefficients as HSR:

η0,FCRN = η0,HSR, η1,FCRN = η1,HSR, η4,FCRN = η4,HSR, ζ⊥,FCRN = ζ⊥,HSR, ζ‖,FCRN = ζ‖,HSR,

while η2,FCRN = −η2,HSR, η3,FCRN = −2η3,HSR, assuming the convention ε0123 = 1. The

translation to our convention for transport coefficients can be done through eq. (B.1). The

convention for the variational retarded correlation functions used by FCRN differs from

ours by an overall minus sign.

We agree with FCRN’s Kubo formulas for η0,FCRN, ζ⊥,FCRN, and ζ‖,FCRN. Our Kubo

formulas for η2,FCRN and η3,FCRN differ from those in ref. [26] by a minus sign. Our Kubo

formula for η4,FCRN differs from that in ref. [26] by a factor of 1/4. Our Kubo formula

for η1,FCRN + 4
3η0,FCRN differs from that in ref. [26] by a factor of 2. Ref. [26] does not

derive Kubo formulas for electrical conductivities in external magnetic field, so we can not

compare those.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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