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ABSTRACT

We find numerical solutions of the coupled system of Einstein–Maxwell equations with a

linear approach, in which the magnetic field acts as a perturbation of a spherical neutron star.

In our study, magnetic fields having both poloidal and toroidal components are considered, and

higher order multipoles are also included. We evaluate the deformations induced by different

field configurations, paying special attention to those for which the star has a prolate shape.

We also explore the dependence of the stellar deformation on the particular choice of the

equation of state and on the mass of the star. Our results show that, for neutron stars with mass

M = 1.4 M⊙ and surface magnetic fields of the order of 1015 G, a quadrupole ellipticity of the

order of 10−6 to 10−5 should be expected. Low-mass neutron stars are in principle subject to

larger deformations (quadrupole ellipticities up to 10−3 in the most extreme case). The effect

of quadrupolar magnetic fields is comparable to that of dipolar components. A magnetic field

permeating the whole star is normally needed to obtain negative quadrupole ellipticities, while

fields confined to the crust typically produce positive quadrupole ellipticities.

Key words: gravitational waves – stars: magnetic fields – stars: neutron.

1 I N T RO D U C T I O N

The measured periods and spin down rates of soft-gamma repeaters

(SGR) and of anomalous X-ray pulsars (AXP), and the observed

X-ray luminosities of AXP, indicate that these neutron stars have

extremely high magnetic fields, as large as 1014–1015 G (Duncan &

Thompson 1992; Thompson & Duncan 1993; Mereghetti & Stella

1995; Kouveliotou et al. 1999; Woods & Thompson 2006). Fur-

thermore, if these sources are the central engine of gamma-ray

bursts, as suggested in (Usov 1992; Kluzniak & Ruderman 1998;

Wheeler et al. 2000), their magnetic field might even be larger.

Up to now, about 10 highly magnetized neutron stars, the ‘magne-

tars’, have been identified in our Galaxy, but their actual number

may be larger, and it has been suggested that a fraction of pulsars

(�10 per cent, Kouveliotou et al. 1999) would possibly become

magnetars at some stage of evolution. The discovery of magnetars

has triggered a growing interest in the study of the structure, dy-

namics and evolution of neutron stars with large magnetic fields,

and has raised a number of interesting issues. For example, quasi-

periodic oscillations have been detected in the aftermath of the gi-

ant flares of SGR 1806−20 and SGR 1900+14, and it is not clear

whether they are associated to crustal modes, or to modes of the

magnetic field (or both); if the spacing between the observed fre-

quencies would be explained, one may gain information on the inter-

⋆E-mail: valeria.ferrari@roma1.infn.it

nal structure of the star (Israel et al. 2005; Samuelsson & Andersson

2005; Strohmayer & Watts 2005; Sotani, Kokkotas & Stergioulas

2007).

In addition, magnetars may be interesting sources of gravitational

waves, especially if they possess a toroidal magnetic field; indeed,

as suggested by Jones and Cutler (Jones 1975; Cutler 2002), a large

toroidal component tends to distort the star into a prolate shape,

leading to a secularly unstable object: the wobble angle between

the angular momentum and the star’s magnetic axis would grow

on a dissipation time-scale, until they become orthogonal. This may

produce a copious flux of gravitational waves, potentially detectable

by the advanced version of gravitational wave detectors LIGO and

VIRGO (Cutler 2002).

In order to understand magnetars’ structure and dynamics, it is

necessary to model their equilibrium configuration in the frame-

work of general relativity, including both poloidal and toroidal mag-

netic field components. Toroidal fields should form during the first

seconds after core collapse, when the star is likely to be rapidly

and differentially rotating: the fluid motion would drag the poloidal

field lines creating large toroidal fields (Usov 1992; Kluzniak &

Ruderman 1998; Wheeler et al. 2000); in addition, convective mo-

tions prevailing in the early life of a neutron star could also create

toroidal fields by dynamo processes (Duncan & Thompson 1992;

Thompson & Duncan 1993; Mereghetti & Stella 1995; Kouveliotou

et al. 1999; Oron 2002; Bonanno & Rezzolla 2003). These toroidal

components are expected to survive when the protoneutron star

cools down and the crust forms. We also stress that large toroidal

C© 2008 The Authors. Journal compilation C© 2008 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
8
5
/4

/2
0
8
0
/1

0
3
4
9
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Relativistic models of magnetars 2081

components contribute to explain the giant flares in current models

of SGRs (Duncan & Thompson 1992; Thompson & Duncan 1993;

Mereghetti & Stella 1995; Kouveliotou et al. 1999). In Flowers

& Ruderman (1977) it has been shown that a purely poloidal mag-

netic field is unstable, and decays on a time-scale much shorter

than the star’s life (see also Braithwaite & Spruit 2006 and refer-

ences therein, and Pons & Geppert 2007); however, as discussed

in (Braithwaite & Spruit 2006), a magnetic field configuration

with prevailing toroidal component is also expected to be unsta-

ble on a short time-scale. Thus, both toroidal and poloidal magnetic

fields have to be included to construct accurate, and stable, mod-

els of magnetars. Although these stability studies are Newtonian,

we do not expect that General Relativistic analysis give different

results.

In recent literature, magnetars equilibrium configurations have

been studied by solving Einstein–Maxwell equations, coupled with

the hydrodynamics equations, in full general relativity (Boquet et al.

1995; Bonazzola & Gourgoulhon 1996; Cardall et al. 2001). How-

ever, the numerical schemes used in most cases require circularity

of the space–time, i.e. the existence of two hypersurface-orthogonal

Killing vectors, and this assumption automatically excludes fields

with both poloidal and toroidal components, since they break circu-

larity. Therefore, in (Boquet et al. 1995; Bonazzola & Gourgoulhon

1996; Cardall et al. 2001) only poloidal magnetic fields have been

considered.

A different approach has been used in Ioka & Sasaki (2004) and

Konno, Obata & Kojima (1999); Konno et al. (2000), where equi-

librium configurations have been studied using a perturbative tech-

niques, i.e. solving Einstein–Maxwell hydrodynamics equations,

linearized about a spherically symmetric background, and expand-

ing the perturbed equations in tensor harmonics. Toroidal fields have

been included in the analysis only in Ioka & Sasaki (2004), but this

work is based on very restrictive assumptions: the magnetic field is

assumed to vanish outside the star. Poloidal and toroidal fields have

also been considered in the framework of Newtonian gravity in a

recent work (Yoshida & Eriguch 2006; Yoshida et al. 2006; Haskell

et al. 2007).

In this paper we construct equilibrium configurations of neutron

stars with strong magnetic fields in general relativity. Since magne-

tars rotate very slowly, we restrict to non-rotating stars. However,

rotation can play an important role in the early phases of the stel-

lar evolution; therefore, it will be included in future developments

of this work. We follow a perturbative approach, generalizing the

work of Konno et al. (1999) to include toroidal magnetic fields, with

a magnitude comparable with that of the poloidal fields. We start

solving the relativistic Grad–Shafranov equation, to which Maxwell

equations can be reduced, in the background of a non-rotating star;

we impose a set of boundary conditions which correspond to differ-

ent magnetic field configurations, and construct the corresponding

stress–energy tensor. The magnetic field perturbs the star, which

is consequently deformed; to compute the stellar structure and its

deformation, we then solve the Einstein–Maxwell hydrodynamics

equations linearized about the spherically symmetric background

of the non-rotating star, having the electromagnetic and the fluid

stress–energy tensors as a source. We compare the deformation in-

duced by a magnetic field with that which would be produced by

rotation, and find that effect of magnetic fields is dominant for mag-

netars as SGR and AXP. We discuss how the magnetic field profile

and the corresponding stellar deformation depend on the stellar mass

and on the equation of state (EOS) of the fluid composing the star,

comparing different stellar models. In current literature, only the

l = 1 multipole of the electromagnetic potential is usually consid-

ered. In this paper we also solve the relevant equations for the l = 2

multipole.

The main features of the perturbative approach are described in

Section 2. The results of the numerical integrations of the relativistic

Grad–Shafranov equation, and of the equations of stellar perturba-

tions, are reported and commented in Section 3 for different field

configurations and different stellar models. In Section 3 we also

discuss the effects of the l = 2 multipole. Conclusions are drawn in

Section 4.

2 S T RU C T U R E O F A S TAT I O NA RY,

A X I S Y M M E T R I C N E U T RO N S TA R

W I T H P O L O I DA L A N D TO RO I DA L

M AG N E T I C F I E L D S

In what follows we shall assume that the magnetized fluid com-

posing the non-rotating neutron star can be described within the

framework of ideal magnetohydrodynamics (MHD), i.e. that there

is no separation of charge currents flowing through the star. It should

be mentioned that, although this assumption is appropriate inside

the fluid core, it may not apply to the stellar solid crust. The mag-

netic field and the deformation it induces on the star are treated as

stationary and axisymmetric perturbations of a spherically symmet-

ric background. We consider perturbations up to order O(B2). We

shall follow the notation and the formalism introduced in Konno

et al. (1999), generalized to include toroidal magnetic fields.

Before proceeding with the perturbative approach, in the next sub-

section we shall summarize some general properties of stationary,

axisymmetric magnetized stars, which will be useful in subsequent

sections. These properties and their proofs can be found in the liter-

ature, but are scattered in different papers (Carter 1973; Bekenstein

& Oron 1978; Bekenstein & Oron 1979; Ioka & Sasaki 2003); here

we report them in a unified and consistent way.

2.1 Some properties of stationary, axially symmetric

magnetized stars

We consider a stationary, axisymmetric space–time describing a

magnetized star, with coordinates

xμ = (t, xa, φ) (a = 1, 2), (1)

where η = ∂/∂t and ξ = ∂/∂φ are Killing vectors. The coordinates

xa can be, for instance, spherical coordinates (r, θ ), or cylindrical

coordinates (r, z). Any stationary, axisymmetric quantity, such as

the vector potential or the fluid 4-velocity, are independent of t and

φ, i.e. Aμ = Aμ(xa), uμ = uμ(xa).

The electric and magnetic field are defined as

Eμ ≡ Fμνuν, Bμ ≡ −
1

2
ǫαβγ δuβ Fγ δ, (2)

where Fμν ≡ ∂μAν − ∂νAμ. It may be noted that since ∂tAμ =
∂φAμ = 0, Ftφ = 0. We define the local angular velocity of the fluid

as

(xa) ≡
dφ

dt
=

uφ

ut
. (3)

The components ua of the fluid velocity are called meridional cur-

rents. Furthermore, we define the quantities

�(xa) ≡ ημ Aμ = At, �(xa) ≡ ξμ Aμ = Aφ . (4)

The ideal MHD hypothesis implies that the electric field, measured

by a comoving observer, vanishes:

Eμ = Fμνuν = 0. (5)
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2082 A. Colaiuda et al.

An axially symmetric magnetic field is poloidal if its non-vanishing

space components are

(Ba, 0) ; (6)

it is toroidal if
(

0, 0, Bφ
)

. (7)

2.1.1 Vanishing meridional currents

If meridional currents vanish ua = 0, and equation (5) gives

Ea = Fat u
t + Faφuφ = (Fat + Faφ)ut = 0

⇒
F1t

F2t

=
F1φ

F2φ

= −. (8)

As Fat = ∂a� and Faφ = ∂a�, equation (8) becomes

∂a� = −∂a�. (9)

Furthermore, from (8) we have

∂1�∂2� − ∂2�∂1� = 0, (10)

which implies (assuming the domain where � and � are defined is

simply connected) that � = �(�). From equation (9) then it follows

that

d�

d�
= −. (11)

As shown by Carter (see theorem 7 of Carter 1973, and its corollary;

see also Bonazzola et al. 1993), if the space–time is stationary and

axisymmetric, and if meridional currents are zero, then Aa = 0.

Therefore, the vector potential is

Aμ = (�, 0, 0, �), (12)

the electromagnetic tensor becomes

Fμν =

⎛

⎝

0 �,a 0

−�,a 0 �,a

0 −�,a 0

⎞

⎠ , (13)

and the magnetic field is

Bα = ǫαβμνuβ Fμν = (0, Ba, 0) , (14)

since gat = gaφ = 0 when ua = 0 (Carter 1973). Thus, if meridional

currents vanish the magnetic field is poloidal.

2.1.2 Non-vanishing meridional currents

Let us now consider the general case ua �= 0. Equation (5) gives

Et = Ftaua = −ua
∂a� = −uμ

∂μ� = −
d�

dτ
= 0

Eφ = Fφaua = −ua
∂a� = −uμ

∂μ� = −
d�

dτ
= 0, (15)

i.e. �, � are constant along the fluid flow. Then

u1�,1 + u2�,2 = 0

u1�,1 + u2�,2 = 0,
(16)

which implies � = �(�). We introduce the quantity

̄(�) ≡ −
d�

d�
, (17)

so that

∂a� = −̄∂a�. (18)

Note that in general ̄ �= . Indeed

Ea = − (∂a� + ∂a�) ut + Fabub

= (̄ − )∂a�ut + Fabub = 0 a, b = 1, 2; (19)

thus, if Fab �= 0, then ̄ �= .

From equation (16) it also follows that

�,2 = −
u1

u2
�,1, (20)

which, differentiated with respect to x1, gives

−
(

u1

u2

)

,1

�,1 =
ua

u2
∂a�,1. (21)

Using the continuity equation

uα
α = −

d

dτ
ln(

√
−gn), (22)

where n is the baryon number density, equation (21) can be trans-

formed as follows:

d

dτ
ln(�,1) = ua

∂a ln(�,1) = −u2

(

u1

u2

)

,1

= −uα
α +

uαu2
,α

u2
=

d

dτ
ln(nu2

√
−g). (23)

If we now define

C ≡
�,1

nu2
√

−g
, (24)

we find

d

dτ
C = uaC,a = 0 ⇒ u1C,1 + u2C,2 = 0, (25)

which, together with equation (20) implies that C is a function of �

only, i.e. C = C(�).

By replacing �,1 = C(�)nu2
√

−g in equation (19) we find

F12 = −(̄ − )Cnut
√

−g. (26)

Then, if  and ̄ do not coincide, F12 �= 0; consequently, the mag-

netic field has both poloidal and toroidal components.

A possible interpretation of ̄ is the following (see e.g. Ioka &

Sasaki 2004). From equation (26) we find

 = ̄ +
F12

Cnut
√

−g
,

from which we see that the fluid angular velocity  has two con-

tributions: the first, ̄, can interpreted as due to the stellar rotation,

the second is clearly due to the electromagnetic field. Although this

interpretation is purely conventional, since we are considering a

non-rotating star, we shall assume ̄ = 0, and consequently A0 =
� = 0. Thus the form of the vector potential is

Aμ(r , θ ) = (0, Ar , Aθ , �) . (27)

2.1.3 Electromagnetic current and Lorentz force

The Lorentz force is defined as

fμ ≡ Fμν J ν, (28)

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 2080–2096
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Relativistic models of magnetars 2083

where the electromagnetic current Jμ is given by

J μ =
1

4π
√

−g
(
√

−gFμν),ν . (29)

The stress–energy tensor of a perfect fluid with an electromagnetic

field is

T μν = T
μν

fluid + T μν
em , (30)

where

T
μν

fluid = (ρ + p)uμuν + pgμν ,

T μν
em =

1

4π

(

Fμα Fν
α −

1

4
gμν Fρσ Fρσ

)

. (31)

By projecting the equation Tμν
;ν = 0 orthogonally to uμ, we find

the relativistic Euler equation in presence of a magnetic field:

(ρ + p)aμ + p,μ + uμuν p,ν − fμ = 0, (32)

where aμ = uνuμ;ν . Let us now consider the φ component of this

equation. Under the stationarity and axisymmetry assumption it be-

comes

(ρ + p)aφ + uφua p,a − fφ = 0; (33)

being

aφ = uμuφ;μ = uauφ,a − uμuνŴφμν

= uauφ,a +
1

2
uμuνgμν,φ = uauφ,a, (34)

using the first law of thermodynamics, ua p,a = ρ+p

n
uan,a , equa-

tion (33) gives

fφ =
ρ + p

n
ua(nuφ),a . (35)

If meridional currents are zero, f φ = 0.

2.2 The equations for the vector potential Aµ

The background geometry of the star in coordinates (t, r, θ , φ) is

ds2 = −eν(r )dt2 + eλ(r )dr 2 + r 2(dθ2 + sin2 θdφ2)

= g(0)
μνdxμdxν, (36)

u(0)μ = (e−ν/2, 0, 0, 0), (37)

where ν(r),λ(r) are the solution of Einstein equations for an assigned

EOS. If a magnetic field is present, from the expression of Fμν in

terms of the electric and magnetic field Fμν = uμEν − uνEμ +
ǫμναβuαBβ we see that, if Eμ = 0, then Fμν = O(B); consequently,

also the vector potential Aμ is of order O(B). By using a function

�(r, θ ) such that �,θ = Aθ , we can gauge away the θ component

of the vector potential (27). By introducing the function �(r, θ ) ≡
e(ν−λ)/2 (Ar − �,r ), it then becomes

Aμ = (0, e

(

λ−ν)/2
�, 0, �

)

, (38)

with � and � of order O(B).

The magnetic field induces motion in the fluid, and consequently

induces a perturbation on the components of the 4-velocity δuα ,

on the pressure and energy density (δp and δρ, respectively), and

on the metric δgμν . Since Tμν
em = O(B2), linearizing the equation

Tμν
ν = 0 (and using the vanishing of the space components of uα

when the magnetic field is absent), it is easy to see that δuα = δp =
δρ = O(B2). In a similar way, from the linearized Einstein equations

it can be shown that δgμν = O(B2). Thus, from equation (35) we see

that, since δua = O(B2), the φ-component of the Lorentz force is

f φ = O(B4) and for this reason hereafter we shall set it equal to zero.

This condition will be used to further simplify the expression of the

vector potential. We stress that the condition f φ = 0 comes from the

fact that f φ = O(B4), but we do not assume that meridional currents

are zero. If we compute f φ from Maxwell equations and impose

f φ = 0 we find

fφ = (�,θθ + cot θ�,θ )�,r − �,θr�,θ = 0, (39)

therefore, if we define

�̄ ≡ sin θ�,θ , (40)

we have �̄,θ�,r − �̄,r�,θ = 0; this equation implies �̄ = �̄(�),

and consequently, since �̄ = O(B) and � = O(B), we can write

�̄ = ζ�, where ζ is a constant of order O(1). The equation

ζ� = sin θ�,θ (41)

is satisfied by

� = ζa

� = sin θa,θ ,
(42)

with a = a(r, θ ). Thus, the vector potential can be written as

Aμ =
(

0, ζe(λ−ν)/2a, 0, sin θa,θ

)

. (43)

As a consequence, the magnetic field takes the following form:

Bμ =
e−λ/2

sin θ

(

0,
eλ

r 2
(sin θa,θ ),θ , −(sin θa,θ )r ,

−ζ sin2 θe(λ−ν)/2a,θ

)

.

(44)

From this expression we see that the coefficient ζ (or the dimen-

sionless quantity ζR, where R is the radius of the star) represents

the ratio between the toroidal and the poloidal components of the

magnetic field. Since, as discussed in Section 1, a magnetic field

configuration with prevailing toroidal component is expected to be

unstable, we will not consider configurations with ζR ≫ 1.

Assuming the form (43) of the vector potential, we find (neglect-

ing the metric perturbations, which contribute to higher orders of

B)

fa = (sin θa,θ ),a
J̃ φ

r 2 sin2 θ
, (45)

where

J̃ φ ≡ Jφ − ζ 2 e−ν

4π
sin θa,θ . (46)

We shall now show that fa can be written as (ρ + p) times the

gradient of a function of (r, θ ). Let us consider the a-components

of Euler equation:

(ρ + p)aa + p,a + uaub p,b − fa = 0. (47)

We remind that

ui ≡ δui = O(B2) , g0i ≡ δg0i = O(B2),

fa = Faμ J μ = O(B2).

Consequently, the term uaubp,b is O(B4). We shall now compute aa

and p,a up to terms of order O(B2).

The acceleration is

aa = uμua;μ = ubua,b − uμuνŴaμν ≃
1

2
uμuνgμν,a

=
1

2

[

(u0)2g00,a + 2u0ui g0i,a + ui u j gi j,a

]

≃
1

2
(u0)2g00,a . (48)
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2084 A. Colaiuda et al.

We also find

gμνuμuν = −1

= (u0)2g00 + 2u0ui g0i + ui u j gi j ≃ (u0)2g00, (49)

then

aa =
1

2
(ln(−g00)),a . (50)

From the first principle of thermodynamics, written for a barotropic

EOS p = p(ρ), we find

p,a = (ρ + p)

(

ln
ρ + p

n

)

,a

. (51)

If we introduce the function

χ = ln

(

√
−g00

ρ + p

n

)

, (52)

using equations (45), (50) and (51), equation (47) becomes

(ρ + p)χ,a = (sin θa,θ ),a
J̃ φ

r 2 sin2 θ
. (53)

This equation is equivalent to equation (12) of Boquet et al. (1995).

From (53) we find

χ,12 − χ,21 = (sin θa,θ ),1

(

J̃ φ

r 2 sin2 θ (ρ + p)

)

,2

− (sin θa,θ ),2

(

J̃ φ

r 2 sin2 θ (ρ + p)

)

,1

= 0,
(54)

hence

J̃ φ

r 2 sin2 θ (ρ + p)
= F(sin θa,θ ). (55)

By expanding in powers of B we find

J̃ φ

r 2 sin2 θ
(

ρ(0) + p(0)
) = c0 + c1 sin θa,θ + O(B2), (56)

thus, the φ component of the electromagnetic current can be written

as follows:

Jφ = ζ 2 e−ν

4π
sin θa,θ

+[c0 + c1 sin θa,θ ]
(

ρ(0) + p(0)
)

r 2 sin2 θ + O(B2). (57)

In the next section we will expand a(r, θ ) in Legendre polynomials;

if we assume c1 �= 0, different harmonic components of the field

couple. Following Ioka & Sasaki (2004), Konno et al. (1999), Konno

et al. (2000), Haskell et al. (2007), hereafter we shall assume c1 =
0. With this simplification,

Jφ = ζ 2 e−ν

4π
sin θa,θ + c0

(

ρ(0) + p(0)
)

r 2 sin2 θ, (58)

where c0 is a constant of order O(B). The r, θ components of the

current are simply

Ja =
ζe−(λ+ν)/2

4π sin θ

(

−
eλ

r 2
(sin θa,θ ),θ , (sin θa,θ ),r

)

. (59)

The electromagnetic current is the sum of two parts:

Jμ = J p
μ + J t

μ (60)

with

J p
μ =

(

0, 0, 0, c0r 2 sin2 θ
(

ρ(0) + p(0)
))

J t
μ = −

ζe−ν/2

4π
Bμ.

(61)

Jp
μ is the source of the poloidal field (which does not depend on ζ );

Jt
μ is the source of the toroidal field (proportional to ζ ) and it is

parallel to the magnetic field. Note that

(i) since Jt
μ ∝ Bμ, it follows that FμνJtν = 0;

(ii) when Jp
μ = 0 (i.e. when c0 = 0), then f μ = FμνJν = 0; therefore

in this case the magnetic field is force-free.

If outside the star we assume there is vacuum, currents must

vanish. As the poloidal current is proportional to ρ(0) + p(0), it auto-

matically vanishes; conversely, the toroidal current vanishes only if

ζ = 0, i.e. if the toroidal field vanishes. Therefore, in vacuum only

poloidal fields (with no current) are allowed.

If outside the star there is a magnetosphere, the situation is dif-

ferent because currents can be present, and consequently toroidal

fields can exist, and also because the ideal MHD assumption breaks

down. In any event, since the matter density in the magnetosphere

is very low, any significant Lorentz force would result in a large ac-

celeration acting on the particles and disrupting the configuration,

unless the magnetic field is very close to a force-free solution.

2.3 The relativistic Grad–Shafranov equation

If we expand the function a(r, θ ) in Legendre polynomials,

a(r , θ ) =
∞

∑

l=1

al (r )Pl (θ ), (62)

the vector potential (43) and the magnetic field (44) become

Aμ =
(

0, ζe(λ−ν)/2
∑

l

al Pl , 0,
∑

l

al sin θ Pl,θ

)

Bμ =
∑

l

(

0, −
eλ/2

r 2
l(l + 1)al Pl . − e−λ/2al,r Pl,θ , (63)

−ζe−ν/2al sin θ Pl,θ

)

. (64)

From Maxwell equations we find Jφ = 1

4π
F

μ

φ ;μ, which gives

Jφ = −
1

4π
sin θ

∑

l

Pl,θ

(

e−λal,rr +
ν,r − λ,r

2
e−λal,r

−
l(l + 1)

r 2
al

)

. (65)

Using the expansion (62), equation (58) gives

Jφ = ζ 2 e−ν

4π

∑

l

al sin θ Pl,θ + c0(ρ + p)r 2 sin2 θ

= ζ 2 e−ν

4π

∑

l

sin θa Pl,θ − c0(ρ + p)r 2 sin θ P1,θ . (66)

Note that the poloidal current (i.e. the term in c0) introduces an

l = 1 dipole component. The linearized relativistic Grad–Shafranov

equation (Ioka & Sasaki 2004) is found by equating equa-

tions (65) and (66) (see also Konno et al. 1999):

e−λa′′
1 +

ν ′ − λ′

2
e−λa′

1 +
(

ζ 2e−ν −
2

r 2

)

a1

= 4π(ρ + p)r 2c0, (67)

e−λa′′
l +

ν ′ − λ′

2
e−λa′

l +
(

ζ 2e−ν −
l(l + 1)

r 2

)

al

= 0 (l > 1). (68)
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Relativistic models of magnetars 2085

Hereafter we will consider only the solution of equation (67) cor-

responding to l = 1, in which case the vector potential (64) and the

magnetic field (64) become

Aμ =
(

0, ζe(λ−ν)/2a1 cos θ, 0, −a1 sin2 θ
)

Bμ =
(

0, −2
eλ/2

r 2
a1 cos θ, e−λ/2a′

1 sin θ,
(69)

ζe−ν/2a1 sin2 θ

)

. (70)

It is convenient to express the magnetic field in terms of the or-

thonormal tetrad components (i.e. those measured in a locally iner-

tial frame) in the background metric (36), i.e.

B(r ) = −
2a1

r 2
cos θ, (71)

B(θ ) =
e−λ/2a′

1

r
sin θ, (72)

B(φ) = ζ
e−ν/2a1

r
sin θ. (73)

2.4 Boundary conditions and matching with the exterior

Different choices of the boundary conditions and of the match-

ing conditions of the interior and exterior solutions of the Grad–

Shafranov equation, correspond to different physical configurations.

We shall consider the following cases.

(i) Magnetic field extending throughout the star. This configu-

ration has been studied in the literature in several papers (e.g. in

Konno et al. 1999; Ioka & Sasaki 2004); however, it conflicts with

the common belief that the neutron star core is superconductor. Ac-

tually, if the superconductor is of type II, the magnetic field extends

throughout the star, but it has a very complicated structure (it is

‘quantized’ in flux tubes). In type II superconductors the Lorentz

force vanishes and is replaced by the flux-tube tension. A correct

formalism describing the superfluid MHD equations is still under

debate. Thus, the smooth magnetic field we consider in this paper

is a rough representation of such configuration.

If we impose a regular behaviour at the origin [which implies

a1(r ≃ 0) = α0r2 + O(r4)], for each pair of assigned constants α0,

c0 the solution a1(r) is unique.

(ii) Crustal fields. If matter in the core is a type I superconductor,

the magnetic field will be arranged in macroscopic (non-quantized)

flux tubes and gradually expelled from the core depending on which

is the configuration that minimizes the system energy. In this case,

it may happen that the magnetic field is eventually entirely confined

in the crust, i.e. within

rc � r � R, (74)

where rc is the inner boundary of the crust and R is the stellar radius.

We choose rc = 0.9R. By imposing a regular behaviour near rc, i.e.

a1(r � rc) = α0(r − rc) + O((r − rc)
2), for each pair of assigned

constants α0, c0 the solution a1(r) is unique.

We shall assume that outside the star there is vacuum, currents

vanish and ζ = 0 (see equation 58). Equation (67) then reduces to
(

1 −
2M

r

)

a′′
1 +

2M

r 2
a′

1 −
2

r 2
a1 = 0; (75)

its general solution (decaying at infinity) is a pure dipole:

a1(r ) = −
3μ

8M3
r 2

[

ln

(

1 −
2M

r

)

+
2M

r
+

2M2

r 2

]

, (76)

where the constant μ is the magnetic dipole moment in geometrical

units. The corresponding magnetic field has the form

Bμ =
(

0, −2
eλ/2

r 2
a1 cos θ, e−λ/2a′

1 sin θ, 0

)

. (77)

On the surface of the star, the function a1(r) solution of equation (67)

has to be matched with the exterior solution (76), imposing the con-

tinuity of a1 and a′
1. The ratio α0/c0 is fixed by matching the quantity

a′
1/a1 (which does not depend on μ). Once this ratio has been deter-

mined, the constants α0, c0 are rescaled by a common factor, which

changes the constant μ (and then the global normalization of the

field) by the same amount. We fix this constant by assuming that

the magnetic field at the pole is Bpole = 1015 G. In this way, for each

assigned value of ζ we determine α0 and c0.

In previous papers on magnetized stars (Ioka & Sasaki 2004;

Haskell et al. 2007), boundary conditions have been imposed in such

a way that not only the toroidal, but also the poloidal component of

the magnetic field vanishes outside the star; as a consequence, the

parameter ζ can take only a discrete set of values, but this leads to

strong restrictions on the field configuration. In particular, one can-

not always model an exterior dipole field. Therefore, although this

approach is mathematically consistent everywhere, it has the draw-

back that it does not naturally produce realistic external magnetic

field configurations.

The matching conditions we impose at the boundaries are differ-

ent, and should be considered as an attempt to better approximate

realistic boundary conditions. Let us see why. We remind that out-

side the star we assume there is vacuum and ζ = 0. By comparing

(70) and (77) we see that if we choose a1, a′
1 to be continuous across

the stellar surface then Br , Bθ are continuous. However, if ζ �= 0

inside the star, Bφ is discontinuous because, having set ζ = 0 out-

side, it vanishes there. Such discontinuity corresponds to a surface

current

J surf
μ =

(

0, 0, −ζ
e−(λ+ν)/2

4π
a1 sin θδ(r − R), 0

)

. (78)

A true neutron star is surrounded by a magnetosphere, where fluid

energy density and pressure are small, but currents do not vanish.

There, the magnetic field has both poloidal and toroidal components,

and both match continuously across the stellar surface with their

interior correspondent. The values of a1, a′
1 which would ensure the

continuity of both components, would be different from those we

choose by imposing Bφ = 0 outside the star; however, with our

choice at least we allow the poloidal field, which extends all over

the space and decays as r−l−2, to be continuous, whereas outside the

star we switch off the toroidal component which extends only in the

magnetosphere and tends to zero smoothly at its edges.

A fully consistent magnetar model will need to include a special

treatment of the surface (a sort of boundary layer) and presumably

also the magnetosphere. In both regions ideal MHD is expected to

break down. However, for the present purposes the explicit nature

of these regions is probably not important.

The function a1(r), solution of equation (67), which describes the

vector potential inside the star, can have zeros at some points r = r̄i ;

conversely, the exterior, vacuum solution (76) never vanishes. This

happens also in the Newtonian limit; for example, in Perez-Azorin

et al. (2006) it has been shown that the solution of the equation cor-

responding to equation (67) with c0 = 0 is a linear combination of
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2086 A. Colaiuda et al.

the spherical Bessel functions

j1(x) =
sin x

x2
−

cos x

x
,

n1(x) = −
cos x

x2
−

sin x

x
, (79)

where x = ζ r. Such combination vanishes at given values of x. In

this case ζ , which has the dimensions of an inverse length, can be

interpreted as a sort of wavenumber of the solution.

In our case also, though we set c0 �= 0, the location of the points

where a1(r) vanishes depend on ζ . If r = r̄ < R is a zero of a1,

then Br (r̄ ) = 0 (see equation 70), and the magnetic flux is confined

within the spherical surface r = r̄ . This means that the field lines

inside the star are defined in disjoint domains. Although we do not

have a physical interpretation for this configuration, in our study we

will not exclude this possibility.

2.5 The ellipticity of the star

The stellar deformation, which we determine by solving the per-

turbed Einstein equations given in Appendix A, can be expressed

in terms of the stellar ellipticity. In the current literature there are

two different definitions of ellipticity, which correspond to two

conceptually different quantities. The surface ellipticity, esurf, is

(Chandrasekhar & Miller 1974; Konno et al. 1999, 2000)

esurf =
(equatorial radius) − (polar radius)

(polar radius)
. (80)

It describes the geometrical shape of the star. It should be men-

tioned that a slightly different definition has been employed in

Hartle (1967), Hartle & Thorne (1968), Benhar et al. (2005), i.e.

ẽsurf =
√

(esurf)2 + 2esurf. The surface ellipticity describes the ex-

ternal appearance of the star.

A different quantity is the quadrupole ellipticity, eQ, which is a

measure of the mass quadrupole of the star (Bonazzola & Gourgoul-

hon 1996; Cutler 2002; Haskell et al. 2007):

eQ = −
Q

I
, (81)

where I is the mean value of the moment of inertia of the star Ii j ,

and Q is its mass–energy quadrupole moment. For a stationary,

axisymmetric compact object, Q can be extracted by the far field

limit of the metric (Hartle & Thorne 1968; Thorne 1980). Indeed, it

is the coefficient of the 1/r3P2(cos θ ) term in the expansion of g00

in powers of 1/r and in Legendre polynomials Pl (θ ):

g00 → · · · − 2Q
1

r 3
P2(cos θ ). (82)

As discussed in Thorne (1980) and Laarakkers & Poisson (1999), in

the weak field limit the mass–energy quadrupole moment reduces

to

Q =
∫

V

ρ(r , θ )r 2 P2(cos θ )dV , (83)

where V is the star volume. In this limit, the quadrupole tensor of

the axially symmetric star can be expressed in terms of Q: Qi j =
diag(−Q/3, −Q/3, 2/3 Q), and the quadrupole ellipticity can also

be written in terms of the inertia tensor

eQ =
Izz − Iyy

Izz

. (84)

In the general case, the quadrupole ellipticity is a measure of the

entire stellar bulk deformation.

Since eQ and esurf are quantities with different physical meaning,

they are in general different. They coincide only in the case of a

constant-density star, in the Newtonian limit, as shown in chapter

16 of Shapiro & Teukolsky (1983).

It is worth stressing that the quadrupole ellipticity is the quantity

that should be used to evaluate the gravitational emission of a rotat-

ing star; moreover, it has been used to study the spin-flip mechanism

proposed by Jones and Cutler (Jones 1975; Cutler 2002).

3 R E S U LT S

In this section we present the results of the numerical integration of

equations (67), (A6) and (A5).

As a test, we have first run our codes for the polytropic star used in

Ioka & Sasaki (2004), endowed with mixed (poloidal and toroidal)

magnetic field, which vanishes outside the star. Thus, we impose

a1 = 0 on the stellar surface r = R, and solve the eigenvalue problem

to find the set of values ζ i for which this condition is satisfied.

We have reproduced the values of ζ i given in table 1 of Ioka &

Sasaki (2004) for different values of the stellar compactness, with

an accuracy better than 1 per cent. The corresponding magnetic

field profiles and stellar deformations (surface ellipticity and mass–

energy quadrupole) are also in full agreement with (Ioka & Sasaki

2004).

Furthermore, we have integrated the equations for the models con-

sidered in Bonazzola & Gourgoulhon (1996); there, non-rotating,

magnetized stars with only poloidal fields have been modelled by

solving numerically the full set of non-linear Einstein equations;

magnetic fields are either defined throughout the star, or confined in

the crust. Following (Bonazzola & Gourgoulhon 1996), we intro-

duce the magnetic distortion factor β, given by

eQ = β
M

2

M2
0

, (85)

whereM is the magnetic dipole moment, related to magnetic field

at the pole, Bpol, by

M ≡ Bpole R3 4π

2μ0

. (86)

Here, μ0 is the magnetic permeability. The normalization factorM0

is given by

M0 ≡
4π

μ0

G I 2

R2
. (87)

With this normalization, the coefficient β is dimensionless. More-

over, as eQ = O(B2) andM = O(B), β is nearly independent of B,

and indicates to what extent a star can be deformed by the magnetic

field. It is worth mentioning that the magnetic dipoleM defined in

(86) differs from the quantity μ defined in equation (76), since equa-

tion (86) has been derived in the context of Newtonian theory. As

in Bonazzola & Gourgoulhon (1996), we use the EOS of Wiringa,

Fiks & Fabrocini (1988), and consider an M = 1.4 M⊙ star.

When the magnetic field extends throughout the star, we find β =
0.505, while the authors of (Bonazzola & Gourgoulhon 1996) find

β = 1.01; when the field is confined to the crust, we find β ∼ 5, while

the authors of (Bonazzola & Gourgoulhon 1996) find a very large

value: β ∼ 102. However, if we compute β from the same equation,

but using esurf instead of eQ, we find β = 1.01 when the magnetic

field extends throughout the star, and β ∼ 102 in the case of crustal

fields, in agreement with (Bonazzola & Gourgoulhon 1996).

The reason why, when crustal fields are present, the factor β

computed using esurf is much larger than that computed using eQ,
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Relativistic models of magnetars 2087

is the following. The crust contains a very small fraction of stellar

matter therefore, although its deformation is large (because the field

lines are squeezed in a small region), it does not induce a big change

in the distribution of matter in the stellar bulk. As a consequence,

esurf ≫ eQ.

3.1 Deformations induced by different magnetic field

configurations

We shall now study how the stellar deformations induced by a mixed

(poloidal and toroidal) magnetic field depend on the field configura-

tion. To describe matter in the stellar core we use the EOS of Akmal,

Pandharipande & Ravenhall (1998) (denoted as APR2); we choose

a star with mass M = 1.4 M⊙ and a radius R = 11.58 km. The

magnetic field is normalized assuming that its value at the pole is

Bpole = 1015 G. For the different configurations discussed in Sec-

tion 2.4, we find the magnetic field structure, the surface and

quadrupole ellipticities esurf, eQ, and the maximal values of the in-

ternal poloidal and toroidal fields, Bmax
p and Bmax

t . The equations for

the stellar deformation and the procedure to compute esurf, eQ are

described in Appendix A.

We stress that it is important to determine if the magnetic star

has a an oblate or prolate shape, i.e. to determine the sign of eQ; in-

deed, as suggested by Jones and Cutler (Jones 1975; Cutler 2002), if

eQ < 0 the star could change its rotation axis due to viscous forces

(‘spin flip’) becoming an orthogonal rotator (with magnetic axis or-

thogonal to the rotation axis), and the process could be associated

to a large gravitational wave emission. In this respect, it is also im-

portant to determine the absolute values of the allowed quadrupole

ellipticities, because if the star rotates around an axis different from

the magnetic field symmetry axis, it emits gravitational waves with
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Figure 1. The profiles of B(r ) evaluated at θ = 0, and of B(θ ) and B(φ), evaluated at θ = π/2, are plotted as functions of the normalized radius inside the star.

The magnetic field is defined through the whole star. Each panel corresponds to a value of ζ : ζ = 0.15 km−1 in panel (a), ζ = 0.37 km−1 in (b), ζ = 0.40 km−1

in (c) and ζ = 0.30 km−1 in (d). Panel (d) refers to a value of ζ exterior to the ranges (89); thus in this case the magnetic field lines are defined in disjoint

domains (see text).

amplitude (Bonazzola & Gourgoulhon 1996)

h0 ∼
4G

rc4
2 I |eQ|, (88)

and frequency νGW = /(2π), where  is the angular velocity.

It is worth stressing that the current upper bound on neutron star

ellipticity, i.e. |eQ| � 10−6, is obtained by evaluating the maximal

strain that the crust of an old and cold neutron star can sustain

(Ushomirsky, Cutler & Bildsten 2000; Haskell, Jones & Andersson

2006). However, a large deformation may be induced by the effect

of strong magnetic fields in the very early phases of the stellar life,

when the crust has not formed yet. These deformation may persist

as the star cools down, leading to final configurations having an

ellipticity larger than the above limit. Let us now discuss the two

field configurations described in Section 2.4.

3.1.1 Magnetic field defined throughout the star

If the magnetic field is non-vanishing through the whole star (see

Section 2.4), we find that a1(r) has no nodes for r < R in two ranges:

range 1 : (0 � ζ � 0.2915),

range 2 : (0.369 � ζ � 0.46). (89)

If ζ lies outside these ranges, the field lines inside the star are defined

in disjoint domains, as discussed in Section 2.4.

In Fig. 1 we plot the magnetic field components versus the radial

distance, for r � R. B(r ) is evaluated at θ = 0, B(θ ) and B(φ) are

evaluated at θ = π/2. The plots are shown for four values of ζ

(in km−1): ζ = 0.15 in Fig. 1(a); this value is in the range 1, ζ =
0.37 in Fig. 1(b), ζ = 0.4 in Fig. 1(c); both values are in the range

2 and ζ = 0.3 in Fig. 1(d), which is outside the ranges 1 and 2.
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2088 A. Colaiuda et al.

Figure 2. The projection of the field lines in the meridional plane is shown for ζ = 0.15 km−1 (upper panel, left-hand side), ζ = 0.37 km−1 (upper panel,

right), ζ = 0.40 km−1 (lower panel, left-hand side) and ζ = 0.30 km−1 (lower panel, right-hand side). The dashed circle in the lower panel on the right-hand

side separates two disjoint domains. The magnetic field extends throughout the star.

Different values of ζ give qualitatively similar behaviours. We see

that when ζ approaches the lower bound of range 2, as in Fig. 1(b),

the field components become much larger than in the other cases. Of

course they cannot be arbitrarily large, since they must not exceed

the virial theorem limit B � 1018 G (Boquet et al. 1995). This is

a peculiar behaviour, which is not observed if one approaches the

other bounds of range 1 and 2, either from inside or from outside.

The reason for such behaviour is that the configuration with ζ =
0.369 km−1 is a singular limit. It corresponds to a configuration

in which a1(R) = 0, i.e. the magnetic field is confined inside the

star and vanishes outside. This is inconsistent with the boundary

condition we impose, i.e. Bpole = 1015 G. Thus, this singular value

is unacceptable. However, values of ζ approaching this limit can be

accepted, provided the virial limit is not violated. We mention that,

as long as B is smaller than the virial limit, the stress–energy tensor

of the electromagnetic field is smaller than that of the fluid, and the

perturbative approach we use is appropriate.

The field profiles shown in Fig. 1(d) refer to a case in which

inside the star the field lines are defined in disjoint domains: indeed,

they cannot cross the sphere r = 0.37;R since Br (r = 0.37R) = 0.

The projection of the field lines in the meridional plane is shown

in Fig. 2; the four panels refer to the same values of ζ considered in

Fig. 1. Fig. 2(d) corresponds to ζ = 0.3, i.e. to the case of disjoint

domains: field lines do not cross the dashed circle in the picture.

The ellipticities esurf and eQ are plotted in Fig. 3 as functions

of ζ ∈ [0, 0.5]. Continuous lines correspond to values of ζ inside

the ranges (89) (no nodes inside the star), while the dashed lines

correspond to values of ζ for which there is a node inside the star.

For small values of ζ (i.e. if the poloidal field prevails) the star

is oblate (esurf,Q > 0). As ζ increases, the toroidal part becomes

more important and the star becomes prolate (esurf,Q < 0). In other

words, the toroidal field tends to make the star prolate, while the

poloidal field tends to make it oblate; this behaviour has already

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 0  0.1  0.2  0.3  0.4  0.5

e

ζ (km
-1

)

eQ

esurf

esurf

eQ

Figure 3. Surface and quadrupole ellipticities as functions of ζ for a star with

mass M = 1.4 M⊙, and EOS APR2. The magnetic field extends throughout

the star. The dashed (solid) lines correspond to models for which a1(r) has

nodes (has no nodes) inside the star.

been discussed in the literature, see for instance (Ioka & Sasaki

2004). For larger values of ζ the behaviour is different. If we exclude

values close to the singular point ζ ≃ 0.369 km−1, we find that the

ellipticity is

|esurf,Q| ≃ 10−6–10−5. (90)

If we approach the value ζ = 0.369 from either sides, then

esurf,Q < 0, and the deformation can be much larger; the virial theo-

rem constraint, B � 1018 G, corresponds to

|esurf| � 2 × 10−3 , |eQ| � 10−3. (91)

Thus, for a large range of values of ζ , the magnetic field induces a

shape, either prolate or oblate, with |eQ| ∼ 10−6 to 10−5; however,
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Relativistic models of magnetars 2089

Table 1. Surface and quadrupole ellipticities and maximal values of the internal poloidal

and toroidal magnetic fields are tabulated for different values of ζ .

ζ (km−1) esurf eQ B
p
max/(1015 G) Bt

max/(1015 G)

0 6.572 × 10−6 3.642 × 10−6 4.579 0

0.05 6.057 × 10−6 3.364 × 10−6 4.522 1.112

0.1 4.580 × 10−6 2.582 × 10−6 4.341 2.132

0.15 2.349 × 10−6 1.447 × 10−6 3.998 2.948

0.2 −2.661 × 10−7 2.199 × 10−7 3.391 3.404

0.25 −2.643 × 10−6 −6.945 × 10−7 2.219 3.303

0.30 −3.433 × 10−6 −5.343 × 10−7 1.610 3.264

0.37 −1.106 × 10−3 −2.250 × 10−3 518.0 557.0

0.35 6.375 × 10−6 4.273 × 10−6 21.52 22.15

0.40 −2.220 × 10−5 −9.313 × 10−6 26.28 29.05

0.45 −1.062 × 10−5 −1.263 × 10−6 18.89 20.51

0.50 2.773 × 10−6 5.410 × 10−6 26.68 27.50

for very particular values of ζ , the star can have a strongly prolate

shape (eQ < 0), with |eQ| as large as 10−3.

In Table 1 we give, for selected values of ζ in the range [0,

0.5] km−1, the surface and quadrupole ellipticities, and the maximal

values of the internal poloidal and toroidal fields. It is interesting

to note that for values of ζ � 0.1, esurf ≃ 2eQ. We find a similar

behaviour when the ellipticity is induced by rotation and no mag-

netic field is present. Indeed, by integrating the equations of stellar

deformation to second order in the angular velocity as in Benhar

et al. (2005), we find that, for a large variety of neutron star EOSs,

esurf ≃ 2eQ for  � 0.1 ms, where ms =
√

M/R3.

3.1.2 Crustal fields

When the magnetic field is confined to the crust, we find that a1(r)

has no nodes inside the star for

0 � ζ � 1.085. (92)

a1(R) �= 0 for all values of ζ , therefore crustal field do not exhibit

the singular behaviour discussed in Section 3.1.1.

In the upper panel of Fig. 4 we show, for r � R, the profiles of B(r )

evaluated at θ = 0, and of B(θ ) and B(φ) evaluated at θ = π/2, for ζ =
0.5 km−1. Different values of ζ correspond to qualitatively similar

behaviours. We see that the interior field is one order of magnitude

larger than the surface field; this behaviour, peculiar of crustal fields,

is common to all values of ζ . The projection of the field lines in the

meridional plane is shown in the lower panel.

In Fig. 5 we show the ellipticities as functions of ζ ; continuous

lines correspond to values of ζ inside the range (92), dashed lines to

values outside that range. We see that, as discussed in the previous

section, the geometrical shape of the star is oblate for small values

of ζ (for which esurf > 0) and prolate for larger values: the surface

ellipticity is a monotonically decreasing function of ζ . Conversely,

the quadrupole ellipticity is always positive and, in modulus, much

smaller than esurf, even for values of ζ larger than those considered

in Fig. 5. We note that these results rule out the Jones–Cutler mech-

anism in the case of crustal fields, since it can only occur when

eQ < 0. As explained in Section 3, the reason why esurf ≫ eQ is

that, though the crust deformation is large since the field lines are

squeezed in a small region, it does not induce a big change in the

distribution of matter in the stellar bulk.

In Table 2 we give, for selected values of ζ in the range [0,

1.5] km−1, the surface and quadrupole ellipticities, and the maxi-

mal values of the internal poloidal and toroidal fields. Comparing

-2.5e+16

-2e+16

-1.5e+16

-1e+16

-5e+15

 0

 5e+15

 0.9  0.92  0.94  0.96  0.98  1

B
 (

G
)

r/R

B(r)

B(φ)

B(θ)

Figure 4. The profiles of B(r ), evaluated at θ = 0, and of B(θ ) and B(φ)

evaluated at θ = π/2, are plotted for ζ = 0.5 km−1 in the crust (upper

panel). The projection of the field lines in the meridional plane is shown in

the lower panel, for the same value of ζ .

Tables 1 and 2 we see that, for crustal fields, typical values of esurf

are two orders of magnitude larger than for fields extending through

the whole star. The quadrupole ellipticity is, typically, one order of

magnitude larger:

|esurf| ∼ 10−4−10−3 , eQ ∼ 10−5−10−4, (93)

with the exception of the models with ζ close to 0.369, for which

the deformation is larger in the case of fields extending throughout

the star.
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Figure 5. The surface (left-hand panel) and quadrupole (right-hand panel) ellipticities are plotted as functions of ζ for a star with mass M = 1.4 M⊙ and EOS

APR2, when the magnetic field is confined to the crust. The dashed (solid) lines correspond to models for which a1(r) has nodes (has no nodes) inside the star.

Table 2. Surface and quadrupole ellipticities and maximal values of the internal poloidal

and toroidal magnetic fields are given for different values of ζ in the case of crustal fields.

ζ (km−1) esurf eQ B
p
max/(1015 G) Bt

max/(1015 G)

0 7.483 × 10−4 2.921 × 10−5 27.80 0

0.2 7.031 × 10−4 2.693 × 10−5 26.65 2.081

0.4 5.731 × 10−4 2.086 × 10−5 23.29 3.924

0.6 3.744 × 10−4 1.310 × 10−5 18.00 5.616

0.8 1.313 × 10−4 6.352 × 10−6 11.19 7.361

1.0 −1.259 × 10−4 3.113 × 10−6 6.580 9.130

1.2 −3.653 × 10−4 4.798 × 10−6 8.216 10.91

1.4 −5.564 × 10−4 1.127 × 10−5 12.30 12.70

1.5 −6.257 × 10−4 1.581 × 10−5 15.79 13.59

3.2 Comparison between magnetic and rotational

deformations

Both rotation and magnetic field contribute to the ellipticity of the

star, i.e. esurf,Q = e
surf,Q + eB

surf,Q. It is interesting to compare the

two contributions, evaluated in the range of parameters typical of

observed magnetars (SGR and AXP), i.e. (Woods & Thompson

2006)

0.6 × 1014 � B � 7.8 × 1014 G, (94)

5.2 � T � 11.8 s, (95)

where T is the rotational period. It should be mentioned that, as ex-

plained in Cutler (2002), only eB
Q contributes to the spin-flip process,

which occurs when eB
Q < 0.

We have computed e
surf,Q for an M = 1.4 M⊙ star with EOS

APR2, using the codes, developed by some of us (Benhar et al.

2005), which describe the structure of a non-magnetized, rotating

star, up to O(3); eB
surf,Q have been computed using the approach

described in this paper.

In Fig. 6 we show |esurf| and |eQ| as functions of ζ , for the two mag-

netic field configurations described in Section 2.4: field throughout

the star (upper panels), and crustal fields (lower panels). The two

solid lines correspond the |eB
surf,Q| computed for Bpole equal to the

minimum and maximum values of the range (94). The shadowed

region corresponds to the rotation contribution, e
surf,Q, for rotation

periods in the range (95). The dashed lines correspond to T = 1

and 0.1 s, outside that range and smaller than the observed periods

of SGRs and AXPs: we show these values since they may possibly

occur in young magnetars. From Fig. 6 we see that for the observed

magnetars |eB
Q,surf| is typically larger than |e

Q,surf|. This behaviour is

magnified when crustal field are present (lower panels in Fig. 6).

The rotational contribution may significantly exceed that of mag-

netic field only for stars rotating faster (dashed lines). The solid line

minima in the pictures correspond to the points where eB
Q,surf = 0;

th ere the effects of the poloidal and toroidal fields balance and the

ellipticity changes sign.

3.3 Deformation of magnetized stars with different masses

and EOS

The results discussed in previous sections where obtained for a star

with mass M = 1.4 M⊙ and EOS APR2. We shall now see how the

results depend on the EOS and on the stellar mass. To this purpose,

as an example we shall consider three different EOSs:

(i) APR2 (Akmal et al. 1998), derived within the non-relativistic

nuclear many-body theory, assuming that the star is made of ordinary

nuclear matter; the maximum mass is Mmax = 2.202 M⊙.

(ii) G240 (Glendenning 2000), derived within the relativistic

mean-field theory and allowing for the presence of hyperons in co-

existence with ordinary nuclear matter; Mmax = 1.553 M⊙.

(iii) QS, based on the MIT bag model (Chodos et al. 1974) (with

B = 95 MeV fm−3, αs = 0.4, ms = 100 MeV), assuming that the

star is a bare quark star, i.e. composed entirely of deconfined quark

matter; Mmax = 1.445 M⊙.

G240 with hyperons is a very soft EOS, QS is very stiff (for

a comparative discussion of these EOSs see Benhar et al. 2004,

2005). Furthermore we shall consider the two magnetic field
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Figure 6. |esurf| and |eQ| are plotted as functions of ζ , for two magnetic field configurations: field throughout the star (upper panels), and crustal fields (lower

panels). The two solid lines refer to |eB
surf,Q| computed for Bpole = Bmin,max corresponding to the extrema of the range (94). The shadowed region corresponds

to e
surf,Q evaluated for rotation periods in the range (95). The dashed lines correspond to rotation periods of T = 0.1 and 1 s.

configurations discussed in Section 2.4, and two values of mass,

M = 1.2 and 1.4 M⊙.

In Fig. 7 we show esurf and eQ as functions of ζ , for M = 1.2 M⊙
(upper panels) and for M = 1.4 M⊙ (lower panels), for the selected

EOS, when the magnetic field extends throughout the star. We see

-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0  0.1  0.2  0.3  0.4  0.5

e
s
u
rf

ζ (km
-1

)

M=1.2 Mo

APR2
G240

QS
-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0  0.1  0.2  0.3  0.4  0.5

e
Q

ζ (km
-1

)

M=1.2 Mo

APR2
G240

QS

-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0  0.1  0.2  0.3  0.4  0.5

e
s
u
rf

ζ (km
-1

)

M=1.4 Mo

APR2
G240

QS
-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0  0.1  0.2  0.3  0.4  0.5

e
Q

ζ (km
-1

)

M=1.4 Mo

APR2
G240

QS

Figure 7. Surface and quadrupole ellipticities as functions of ζ for different EOSs and magnetic fields extending throughout the star. The stellar mass is M =
1.20 M⊙ (upper panels) and M = 1.40 M⊙ (lower panels).

that, as expected, softer EOS and smaller mass correspond to larger

deformations. For all masses and EOS, we find the same qualitative

behaviour shown in Fig. 3.

In Fig. 8, esurf and eQ are shown in the case of crustal fields.

We find that esurf depends strongly on the mass and the EOS. For an
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Figure 8. Surface and quadrupole ellipticities are plotted as in Fig. 7 in the case of crustal fields.

assigned EOS, changing the mass from 1.4 to 1.2 M⊙, esurf increases

by a factor of ∼10, and eQ by a factor of ∼2. If we fix the mass and

change the EOS we find

esurf,Q(G240)/esurf,Q(APR2) ∼ [2–4],

whereas

esurf,Q(APR2)/esurf,Q(QS) ∼ [10–100].

Finally, we find that for the stiffest EOS we consider (QS), for some

values of ζ the quadrupole ellipticity can become negative, whereas

this never occurs for APR2 and G240.

It should be stressed that when magnetic fields extend throughout

the star the dependence of the ellipticities on the EOS and on the

mass is considerably weaker (Fig. 7).

3.4 Higher order multipoles

In this paper we have focused on the study of dipole (l = 1) magnetic

fields, which decay as r−l−2 and therefore dominate far away from

the star. In this Section we solve the Grad–Shafranov equation (68)

for l = 2, including both poloidal and toroidal components:

e−λa′′
2 +

ν ′ − λ′

2
e−λa′

2 +
(

ζ 2e−ν −
6

r 2

)

a2 = 0. (96)

For fields extending throughout the star, we impose a regular be-

haviour near the origin: a2(r ≃ 0) = α0r3 + O(r5). In the case of

crustal fields the regularity condition is imposed near the crust–core

interface, i.e. a2(r � rc) = α2(r − rc) + O((r − rc)
2).

We assume that the field vanishes outside the star, i.e.

a2(r > R) = 0. Continuity of a2 (and then of Br ) on the stellar

surface, implies a2(R) = 0; thus we have to solve an eigenvalue

problem (like in Ioka & Sasaki 2004; Haskell et al. 2007), to se-

lect the discrete set of values ζ = ζ i for which the boundary con-

ditions are satisfied. The eigenfunction a2(r), which corresponds

to ζ i , has i nodes, one of which is located at the stellar surface.

We note that, since as mentioned in Section 2.3, only the current

Jt
μ contributes to al when l > 1, we do not have as much free-

dom as in the l = 1 case, when we used the constant c0 to impose

a′
2(R) = 0; consequently, a′

2 is discontinuous (and so is Bθ ) on the

stellar surface.

For a star with M = 1.4 M⊙, described by the EOS APR2, we

have determined the field configurations corresponding to the first

five eigenvalues ζ i . Since the field vanishes on the stellar surface,

we normalize B by choosing α0 such that the maximum value of

the magnetic field inside the star is Bmax = 1016 G, i.e. of the same

order of magnitude of the field considered in Section 3.1 for l = 1

(see Tables 1 and 2). Then we have solved the equations of stellar

deformation given in Section A2, finding the surface and quadrupole

ellipticities.

The projection of the field lines in the meridional plane is shown

in Fig. 9 for the first two eigenvalues. The upper panels refer

to fields defined throughout the star, the lower panels to crustal

fields.

In Tables 3 and 4 we give the first five eigenvalues ζ i and the

corresponding ellipticities, for fields extending throughout the star

and for crustal fields, respectively. In the first case the ellipticities

are always negative and of the order

|esurf,Q| ∼ 10−7−10−6, (97)

i.e. smaller than for the l = 1 fields. For crustal fields, ellipticities

are always positive and of the same order of magnitude as for l =
1, i.e.

esurf,Q ∼ 10−5. (98)
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Relativistic models of magnetars 2093

Figure 9. The projection of the l = 2 field lines in the meridional plane is shown for ζ = ζ 1 (left-hand panels) and ζ = ζ 2 (right-hand panels). The upper

panels refer to fields extending throughout the star, the lower panels to crustal fields.

Table 3. First eigenvalues ζi and the corresponding surface

and quadrupole ellipticities for l = 2 magnetic fields extend-

ing throughout the star.

ζ (km−1) esurf eQ

0.325 −5.07 × 10−6 −6.24 × 10−6

0.495 −1.78 × 10−6 −2.19 × 10−6

0.662 −9.37 × 10−7 −1.15 × 10−6

0.829 −5.80 × 10−7 −7.13 × 10−7

0.996 −3.95 × 10−7 −4.85 × 10−7

Table 4. First eigenvalues ζi and the corresponding surface

and quadrupole ellipticities for l = 2 crustal fields.

ζ (km−1) esurf eQ

1.705 1.75 × 10−5 2.16 × 10−5

3.397 1.64 × 10−5 2.01 × 10−5

5.091 1.60 × 10−5 1.96 × 10−5

6.787 1.58 × 10−5 1.94 × 10−5

8.482 1.56 × 10−5 1.92 × 10−5

4 C O N C L U D I N G R E M A R K S

In this paper we solve Einstein–Maxwell equations, using a per-

turbative approach, to study the structure of the magnetic field of

magnetars, and to find the deformation it induces on the star. We

extend previous works on the subject (Ioka & Sasaki 2004; Konno

et al. 1999, 2000; Haskell et al. 2007) in several respects: we in-

clude toroidal fields inside the star, thus removing the assumption,

used in Boquet et al. (1995), Bonazzola & Gourgoulhon (1996),

Cardall et al. (2001), of circular space–time; we determine both the

surface ellipticity and the quadrupole ellipticity; we explore vari-

ous field configurations, corresponding to different boundary con-

ditions; we compare the effects produced by a magnetic field and

by rotation on the stellar structure; we study how different EOSs

and masses affect the magnetic field structure and the quadrupole

ellipticity it induces; we solve the equations for higher order (l = 2)

multipoles.

In summary, the main results of our study are the following.

(i) Crustal fields induce surface deformations much larger than

fields extending throughout the star, but the quadrupole deforma-

tions are comparable in the two cases. Typically, crustal fields pro-

duce oblate, rather than prolate shapes.

(ii) For particular values of the parameter ζ , representing the

ratio between toroidal and poloidal components, the magnetic field

inside the star and the deformation can be extremely large; such

configurations correspond to prolate shapes.

(iii) For the typical rotation rates of observed magnetars, the de-

formation induced by rotation is much smaller than that induced by

the magnetic field.

(iv) Neutron stars with the same magnetic field, but with softer

EOS or smaller mass, exhibit larger deformations.

(v) If the magnetic field extends throughout the star, the defor-

mations induced by higher order (l = 2) multipoles are one order of

magnitude smaller than the dipolar contributions; for crustal fields,

they are comparable.

As a future extension of this work, we plan to study the effect of

couplings between different multipoles, which we have neglected in

the present paper, and to determine their relative weights. Further-

more, the equilibrium configurations we have found will be used as

background models to study the oscillations of highly magnetized

neutron stars.
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A P P E N D I X A : T H E D E F O R M AT I O N S O F T H E

S TA R

The metric of a non-rotating star deformed by a magnetic field can

be written, up to O(B2), as (Ioka & Sasaki 2004)

ds2 = −eν (1 + 2[h0 + h2 P2(cos θ )]) dt2

+ eλ

(

1 +
2eλ

r
[m0 + m2 P2(cos θ )]

)

dr 2

+ r 2[1 + 2k2 P2(cos θ )](dθ2 + sin2θdφ2)

+ 2 [i1 P1(cos θ ) + i2 P2(cos θ ) + i3 P3(cos θ )] dtdr

+ 2 sin θ

[

v1

∂

∂θ
P1(cos θ ) + v2

∂

∂θ
P2(cos θ )

+v3

∂

∂θ
P3(cos θ )

]

dtdφ

+ 2 sin θ

[

w2

∂

∂θ
P2(cos θ ) + w3

∂

∂θ
P3(cos θ )

]

drdφ. (A1)

The perturbed quantities (hi (r), mi (r), mi (r), ki (r)) (i = 0, 2) and

(ii (r), vi (r) ii (r)) (i = 1, 2, 3) are found by solving the linearized

Einstein equations

δGμν = 8πδTμν . (A2)

The pressure p and the energy density ρ can be expanded as p =
p(0) + δp, ρ = ρ(0) + δρ, with

δ p(r , θ ) = δ p0 + δ p2 P2(cos θ ), (A3)

δρ(r , θ ) =
ρ(0)′

P (0)′ [δ p0 + δ p2 P2(cos θ )]. (A4)

A1 Deformation induced by a dipole (l = 1) magnetic field

As discussed in Section 2.3, a(r, θ ) = a1(r)P1(cos θ ); by expand-

ing the components (rr ), (rθ ), (θθ ) − sin−2 θ (φφ) of the perturbed

Einstein equation (A2) in spherical, tensor harmonics and by con-

sidering the l = 2 equations, which give the stellar deformation, we

have (Ioka & Sasaki 2004)

h′
2 +

4eλ

ν ′r 2
y2 +

[

ν ′−
8πeλ

ν ′

(

p(0)+ρ(0)
)

+
2

r 2ν ′ (eλ−1)

]

h2

=
ν ′

3
e−λa′2

1 +
4

3r 2
a1a′

1

+
1

3

(

−ν ′ +
2

ν ′r 2
eλ

)

ζ 2e−ν(a1)2 −
16π

3ν ′r 2
eλ j1a1, (A5)

y′
2 + ν ′h2 =

ν ′

2
e−λa′2

1

+
1

3

[

e−λ

r

(

ν ′ + λ′ +
2

r

)

+ e−νζ 2 −
2

r 2

]

a1a′
1

−
ν ′

3
e−νζ 2a2

1 −
4π

3
j1

(

a′
1 +

2

r
a1

)

, (A6)

where j1 = c0(ρ + p)r2 and

y2 ≡ h2 + k2 −
e−λ

6
a′2

1 −
2e−λ

3r
a1a′

1 −
2

3r 2
a2

1 . (A7)

Assuming regularity of h2 and y2 as r → 0 implies that near the

origin

h2 ≃ Ar 2, y2 ≃ Br 4, (A8)
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where

B =
(

−2πA +
16

3
πα2

0

)(

p(0)
c +

ρ(0)
c

3

)

−
4π

3
α0c0

(

ρ(0)
c + p(0)

c

)

+
α2

0ζ
2

6eνc
. (A9)

It is worth mentioning that the terms in a1, a′
1 which appear in the

definition of y2 equation (A7) are important: if they are not included

(i.e. if we define y2 ≡ h2 + k2), the asymptotic behaviour (A8) is

not satisfied.

The quantities h2, y2 inside the star can be decomposed as follows:

h2 = c1hh
2 + h

p

2 ,

y2 = c1 yh
2 + y

p

2 . (A10)

For magnetic fields extending throughout the star, h
p

2 and y
p

2 can be

found by integrating (A5), (A6) from r = 0 with, for instance, A =
1 and B given by (A9); hh

2 and yh
2 are the solutions of the associated

homogeneous equations (i.e. with a1 = a′
1 = 0).

When the magnetic field is confined to the crust, in the core

(defined conventionally by 0 � r � rc) a1 ≡ 0, and equations (A5),

(A6) are homogeneous; thus in this region h2 = hh
2, y2 = yh

2. On the

crust–core interface r = rc, we impose a1 = 0, a′
1 = constant. We

integrate the non-homogeneous equations starting at r = rc with the

initial conditions

h
p

2 (rc) = 0, y
p

2 (rc) = −
e−λ(rc)

6
[a′

1(rc)]
2. (A11)

The non-vanishing value for y
p

2(rc) follows from the requirement of

continuity of h2 + k2 at the crust–core interface (see equation A7).

The constant c1 in (A10) can be determined by matching the so-

lution inside the star with the analytical solution in vacuum (Konno

et al. 1999):

h2 = K Q2
2(z) + ĥ2(z)

y2 = −
2K

√
z2 − 1

Q1
2(z) + ŷ2(z) −

e−λ

6
(a′

1)2

−
2

3r
e−λ(a′

1a1) −
2

3r 2
(a1)2. (A12)

Here K is an integration constant, a1(r) is given by equation (76):

a1 = −
3μ

8M3
r 2

[

ln

(

1 −
2M

r

)

+
2M

r
+

2M2

r 2

]

, (A13)

Qn
m are the associated Legendre functions of the second kind:

Q2
2(z) ≡

z(5 − 3z2)

z2 − 1
+

3

2
(z2 − 1) ln

(

z + 1

z − 1

)

, (A14)

Q1
2(z) ≡

2 − 3z2

√
z2 − 1

+
3

2
z(

√

z2 − 1) ln

(

z + 1

z − 1

)

, (A15)

with z ≡ r

M
− 1, and

ŷ2 ≡
3μ2

8M4

7z2 − 4

z2 − 1
+

3μ2

16M4

z(11z2 − 7)

z2 − 1
ln

(

z − 1

z + 1

)

+
3μ2

16M4
(2z2 + 1)

(

ln
z − 1

z + 1

)2

, (A16)

ĥ2 ≡ −
3μ2

16M4

[

3z −
4z2 + 2z

z2 − 1

]

−
3μ2

32M4

[

3z2 − 8z − 3 −
8

z2 − 1

]

ln

(

z − 1

z + 1

)

+
3μ2

16M4
(z2 − 1)

(

ln
z − 1

z + 1

)2

. (A17)

We have checked, both analytically and numerically, that (A12) is

actually solution of (A5), (A6) in vacuum. Matching h2 and y2 at

r = R allows us to fix the constants c1 and K.

The integration constant K is related to the mass–energy

quadrupole moment of the star (see Section 2.5) by the relation

K =
5Q

8M3
+

3μ2

4M4
. (A18)

Indeed, the asymptotic limit of h2(r) for r → ∞ is

h2 →
Q

r 3
. (A19)

Finally, we can compute the surface ellipticity of the star (80) fol-

lowing the definitions of Chandrasekhar & Miller (1974) and Konno

et al. (1999):

esurf = −
3

2

(

δr2

r
− k2

)

= −
3

2

(

δ p2

r p(0)′ − k2

)

=
(

−
2c0a1

rν ′ +
3h2

rν ′ −
3k2

2

)

r=R

, (A20)

where δ p =
∑

l
δ pl Pl , δr =

∑

l
δrl Pl and

δ p2 = −
(

ρ(0) + p(0)
)

h2 +
2

3r 2
a1 j1. (A21)

Relation (A21) is a consequence of Euler equation. Indeed, from

equations (52), (53), (56), it follows that

ln

(√
−g00

ρ + p

n

)

= c0 sin θa,θ + constant. (A22)

If we perturb (A22), using the following relation which holds for a

barotropic EOS

δ p = nδ

(

ρ + p

n

)

,

we find (A21).

A2 Deformations induced by a quadrupole (l = 2)

magnetic field

We assume a(r, θ ) = a2(r)P2(cos θ ), and expand in spherical, tensor

harmonics the (rr)-, (rθ )-, (θθ ) − sin−2 θ (φφ)-components of the

perturbed Einstein equation (A2). We find that the l = 2 equations

are

h′
2 +

4eλ

ν ′r 2
y2+

[

ν ′−
8πeλ

ν ′

(

p(0)+ρ(0)
)

+
2

r 2ν ′ (eλ−1)

]

h2

=
3

7
ν ′e−λa′2

2 +
12

7r 2
a2a′

2 −
3

7

(

ν ′ +
2

ν ′r 2
eλ

)

ζ 2e−ν(a2)2,

(A23)

y′
2 + ν ′h2 =

3

14
ν ′e−λa′2

2

+
3

7

[

e−λ

r

(

ν ′ + λ′ +
2

r

)

−
3

7
e−νζ 2 −

2

r 2

]

a2a′
2

−
3

7
ν ′e−νζ 2a2

1 , (A24)
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where we have defined

y2 ≡ h2 + k2 +
3

14
e−λa′2

2 −
6e−λ

7r
a2a′

2 −
18

7r 2
a2

2 . (A25)

Assuming regularity of h2 and y2 as r → 0 implies that near the

origin

h2 ≃ Ar 2 , y2 ≃ Br 4, (A26)

where

B = −2πA

(

p(0)
c +

ρ(0)
c

3

)

. (A27)

The integration of equations (A23), (A24) and the determination of

Q and esurf can be performed as in the previous section.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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