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Nucleon-nucleon data below 300 MeV lab energy is described by a manifestly
covariant wave equation in which one of the intermediate nuclenns is restricted tu
its mass shell. Antisymmetrization of the kernel yields an equation in which the twa
mucleons are treated in an ezactly symmettic manner, and in which all sanplitudes
satisfy the Pauli principle ezactly. The kernel is modeled by the sum of one hoson
exchanges {OBE}, and four models, all of which fit the data very welk {y? = 3 per
data point) are discussed. Two models require the exchange of only the », ¢, p, and
w, but &lse require an admixture of ¥° coupling for the pion, while two other mnodels
restrict the pion coupling to pure 7%9%, but require the exchange of siz mesons.
including the i, and a light scalar-isovector ineson tefered to as oy Deuteron wave
functions resulting from these models are obtained. The singularities and relativistic
effects which are a part of this approach are discussed, and a complete development
of the theoty it presented.
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I OVERVIEW, RESULTS, AND CONCLUSIONS

A Introduction

With the discovery ol quarks, and the construction of powerful new facilities. such
as the 1 'mtinucus Electron Beam Accelerator Facility (CEBAF), we have the oppor-
funity to study and uaderstand the structure of strongly interacting matter at short
hatances {or high momentum transfers). One goal of such studies s the development
of an effective theory of strongly interacting partictes, tied to the underlying theory
of quarks and gluons {QUD), but including effective variables and degrees of freedom
which are efficient to deseribe strongly interacting matler at momentum transfers of a
few GeV/ie We do not at this time know what these effective degrees of freedom will
he  They may be the quarks and gluons themselves, or it may be that the mesons
and nncleons observed at [ow mementum transfers will continue to be the correct
variables to use at a few GeV To conipare these two pictures, or to test either one,
it 1s necessary to have simple, dynamical models which can be applied consistently
e a large variety of interactions.

Mondels which are to be used to study processes mvolving momentum transfers
of a few GeV should be relativistic. This means not only that the energies of all
particles must satisfy the relativistic energy relation, but also that it must be possible
t transform all amplitudes and wave functions [rom one Lorentz frame to another
This feature is essentinl if we wish to eliminate ali ambiguities which arise from frame
dependent choires, and treat recoil, spin orbit, and other significant effecis cortectly.

Relativistic convariance can be achieved either by (1) finding a way to hoost
amplitudes calculated in one special frame to an arbitrary frame, or by (2) using a
dynanucal theory which is covanant at every stage of the calculation The former
method, which we will refer to as Relativistic Hamiltonian Dynamics [1]. has been
teveloped by (oester, Keister. Polyzou, and their collaborators. and has been recently
applied 1o the calculation of the deuteron form factors (2] The use of light front

variahles seews to be a key to the success of this method. The latter method, which

will be refered to as Mamfestly Covapiant UDynamics, has been develaped by John Tjm
and his collaborators 3], who have wsed the Bethe-Salpeter [4] and the Blankenbecler
Sugar [5] equatinn, and by ene of us (F (.} using the spectator equation [} The
arllvantage of Relativistic Hamiltonian Dynamics is that the issue of Lorentz rovariance
is separated from the dynamics, so that any phenomenalogical, non-relativistic, or
semi-relativistic calculation can be made covartant A disadvantage, from our point
of view, is that no connection is made to an underlying field theory which is asswmed
to describe the physics Qne consequence of this is that field theory cannol he used 1~
develop the connertion between the electromagnelic current vperator and the strong
interaction physics, reducing the prediclive power of such calculations.

The work presented in this paper 15 an example of Maniestly Covariant Dynamics
The low energy nucleon-nucleon scattering amplitude is calculated using a relativistic
equabtion in which one particle is restricted to its mass shell, which we refer to as the
spectator equation. This equation was first introduced (7] in 1969, and studied on
several oceassions since then [8. 9], but this is the first time the equation has been
properly symmetrized for NN scatteting, and sclved exactly (A short account of
the present work can be found in Ref [10].} We believe that all of the thecretical
problems associated with the application of this equation to elastic NN scattering
have now been solved, and one of the principle purposes of this Paper is to preseni a
careful and detailed treatment of the theory in rather general terms. This is the main
thrust of Part II. A brief review of work leading up 1o the present paper is giver in
Sec. I.B below, which also discusses how this paper relates to other work in this field

A second principal purpose of this paper is to demonstrate that the refativistie
spectator equation can serve as basis of a successful relativistic phenomenalogy of low
energy NN scattering. We chose to describe the dynamics with a one hoson exchange
[OBE) model, primarily because the exchange of the lightest bosons s assncrated
with the longest range, perpherial part of the interaction, which is the only part of

the interaction we can hope to describe with such an approach  All shorter range



eilects are assumed 10 be accounted for by fupn fartors, which ate treated purely
rhenomenslogically Qur choice of the OBFE model is also consistent with cur use of
the spectator equation, which we helieve has a structure which tends to minimize the
comtributions from higher order irreduncable kernels (a fact which can be proved for
svalar theones) Other advantages of the OBE model are that OBE parateters have a
+Jear physival meaning, the dynamics is closely coupled to a field theory (permitting
the muulel to be extended consistently to other processes), and OBE models have
enjoyed considerable success in the past. A fit which requires only a few bosons may
Le better than vne which requires many; since the boson couplings are treated as
free parameters, extra bosons can always be added if there is a reason. Because of
this possibility, we were especially pleased to find that a quantitatively excellent fit
Lo all the data below 300 MeV can be found using only four bosons: =, ¢, p, and w
These fsur have long been regarded as playing a central role in NN scattering, and
it 1= hard (o imagine any reasonable OBE description without all of them, but to
our knowledge this 1s the first time a quantitatively accurate fit has been achieved
using only these four This is because the off-shell contributions which arise from
our relativistic treatment are large, and necessary to the fit, and this is the first time
these off-shell contributions have been carefully evaluated.

The fits to data, the OBE parameters, y? and other numerical results are pre-
sented in Sec LC, while Sec. I D includes a discussion of important off-shell and
relativistic effects. In these sections, four models are presented and discussed. Mod-
els IA and B are examples of the four boson case mentioned above, while Models 1A
and B are ones with six bosons (the four of Models I plus the 7 and ¢,, a spin zero.
isnspin one meson) chosen to keep off shell effects small. (The Models previcusly
descnibed mn Ref[10] are the same as the A versions given in this paper.) We find
that all of these models work very well, giving 2n excellent quantitative fit to the data
and phase parameters below 208 MeV, and a satisfactory fit over the entire range up

to 300 MeV This brings us to the third principle purpose of this paper, which is to

findl models which all agree with the ar-shell NN data. but have significantiy Liferent
off-shiell exirapotations. These can be used to siudy the sensitivily of electromagnetic
or hadronic probes to off shell effects and o determine which measurements will most
mpeove our understanding. In electron scattering experiments. such a program will
have the greatest impact when the current eperator 1s strongly constramed Ly the
steang interaction dynamics. Recently, we have learned how to construct thys current
aperator in a way which insures the conservation of current {11], and calculations
of the deuteron form factors and deuteron electrodisinlegration are underway The
connection to the underlying field theory has also been a useful guide toward devel-
oping a consistent relativistic multiple scatteting theory [12|, and calculations [13] of
# *(a scattering ohservables based on these ideas and the specific nucleon-nucleon
scattering amplitudes described in this paper are in good agreement with data.

This paper is organized into three major parts. This Part {I) includes a [ull intro-
duction, presentation of numerical results, discussion and conclusions  An attemipt
has been made to write this in a self conlatned manner, so that all the results can be
understood without referring to the other parts Part I, General Theory, presents
relativistic formalism applicable to any choice of relativistic kernel (potential), while
Part [il discusses the detail of the construction and treatment of the relativistic (JBE

kernel. Three appendices include more detailed discussion of technical points

B. Background and Overview

Manifestly Clovariant Dynamics {as defined in this paper) can be said to have
started with the introduction of the Bethe-Salpeter (BS) equation [4) in 1951. Some
people refer to any relativistic equation for the scattering amplhitude Af which is of

the linear form
M=V +]L‘(;M (o

{where 1" is the relalivistic kernel and ( the propagator) as a BS equation. When

we refer to the BS equation we will mean {a} thal the propagator (¢ describes the



propagation of two off-shell nucleons, and {b) that the integral operator includes the
integration over all four components of the relative momentum p = 2{py - pob the
total four-momentum P = p; + p; being fixed by energy-momentuin conservation
For two spin zero particles with mrnsses m; and mj, the BS propagator is therelore
{in the CM where P = (W.0) }
-1
(m? (1P + p — ie)(m} — (1P — p)* - te)
-1

TEGW g ] [ET - W - pt - o

where £, = /m! + ;11

I the kernel V includes all Feynman diagrams which are two body irreducable,

(1.2)

then the solution to (1 1) gives the exact result for the M matrix. In this sense, the
role of the BS equation 1s to reduce the nuinber of diagrams which must be summeid
in perturbation theory, but since the two body irreducable diagrams are still infinite
in number, the method may not converge in theoties where the elementary couplings
are large. Only when the series of wreducable diagrams can be shown to converge
more rapidly than the full Feynman series is the introduction of (1 1) an advantage

One case where this is true is the study of bound stales 15 quantum electrodynam-
ics (QED), or in any weak coupling theory A bound state pole can only be generated
by an infinite number of diagrams, since each individual disgram has no such pole.
In a weak coupling theory, a first approximation to the sum of irreducable diagrams
can be obtained from the lowest order diagrams, which are the one particle exchange
{OBE} diagrams. The bound state then emerges because the reducable diagrams gen-
erated from OBE (the so called ladder diagrams) are all of comparable size near the
bound state energy where the propagator & 1s large In strong coupling theories, the
ladder sum can still generate & bound state, but it is now less clear that this is a
good approximation to the actual problem because | may not be well approximated
by OBE diagrams.

The BS equation was originally applied to QED systems ln 1966, Blankenbecter
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and Sugar |5] introduced an equation {refered to here as the BBS equation) mure
suitable Lo theones where the coupling constant 1s large  They argued that, 15 a
good approximation, the two body propagator {12) could be replaced {for spin zers
particles) by

Gans - 7 [ ds et - (3P 1 pP¥mi - GP P

s - PP

nd md
_ Bt B MG )
‘2

EE B+ Ea We ]

1)

where P = {v/s + P2, P}is the total four momentum of the two particles if theyv are

both on their mass shell, § {m? — p?}) = sfm? — p?)8(p,), and the secand result an
{1 3y 18 specialized for the "M system This propagator i1s still covariant, but now
depends on only three continuous variables, the fourth vaniable (the relative energy
p.) being constrained by the mass-shell reguirement Blankeubecler and Sugar were
lead to the simpler propagator {1 3) from the vbservation that both {1 2y and (1 })
have the same elastic (umitarity) cut, and since the large contributions froan cedurabile
diagrams owe their origin to this cut, they reasoned that {1.3) should be sufticient 14
give a good description of low energy scattering and bound states.

Independently, it was observed [7] that when the kernel 1715 constructed s that
all ladder and crossed ladder diagramms are to be sumed by the integral equation.
using a propagator which restructs one particle to its mass-shell significantly inproves
the convergence of the resulting series for V. In the notation of this sectivn, this

propagator {for particle 1 on-shell} is

, b, (m? - (1P + p)?)

Gs = =57 np i

my — L Py e
S E W - p)

T IR R (14
QEUER (W E )P - i)

Note that this propagator also conslrains the fourth variable (p,) so that the resulting

integral equation, while covanant, depends only on the relative three-momeutum



This relativiste “quation. which will be referred 1n as the speclator equation, s the
one used in this paper.

Subsequent study has revealed moare about the telationship between these equa-
tens 1t was pointed out [14] that {1 3} and [1.4) are only speciai cases of an infinite
Taomly wf equations, all of which are covariant and three dimensional. Qne continuons
family of such equations {9] can be described by the propagator

208, [1742) - (457)4y)
h=m ——s 2o 2 773 {15)
A+ A,

where o 1s a parameter which can be varied continnovsly from —1 to I, and

1 2
Ay :mf - (;,Pi-p)
5 1 z

EN :nz;-k(ipfp) (16)

When o 1, the propagator (1.5} 15 identrcal to {1.4), and when a=0 the propagator
1s simular ta the BBRS propagator (1.3) For scalar theories with neutral particles if

has bLeen shown that

11} The fourth order kernel 1 derived from the consideration of box and crossed box
iagrams, is of order B {crossed box), where # 13 the mass of the exchanged
meson and m = my = my. If the exchanged mesen is much lighter than the
interacting particles, this means that there is a cancellation between the crossed
box and that part of the box net included in the first iteration of the OBE
diagrams  In short, we have the itonic situation where the use of a simpler
equation actually gives a hetter approximation order by order, to the sum of all

ladders and crossed ladders.

(i) This cancellation works for any value of the continucus parameter &«. However, if
lel=1, the adiabatic limtt of the 4 order kernel is local and energy independent.
On the other hand, the smaliest value of the 4** order kernel when evalueted af

threshold {initial and final particles at rest) occurs when a = ¢ {15].
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(i} If une ~f the masses. Usay my ), becoines very large. the cancellation eserled
above works ta all orders, and leads naturally 1o a relativistic ane hody eguation,
wilh =1, for the hghter particle (13 1 this case) moving in a putential “cre-

ated” hy heavier particle {This potential becomes mstantanecgus as m, - ).

Unfortunately, these results do not generalize to the case of particles with spin
exchanging charged mesons. However, wn the realistic case of spin % nuclecns exchang-
tng charged pions which salisfy a chirally covariani wteraction, the cancellaton rlues
accnr (9] in the 4% order kernel assorated with the spectator equation (1 4).

Furthermore. putting one particle (the spectatar) on shell does seem to have
some conceptual advantages. When this approach is extended to the three bady
system {16], relativistic Faddeev equations emerge which can be reduced to coupled
two dimensional integral equations in the usual manner. These equations salisfy the
requirement of cluster separability, when one particle is removed Lo infinity, the twn
Temainng ones interact as if the third were not present. Namyslowski has shown 17!
that the three body BBS equation does not have this desirable property  Finally, in
the study of electron scattering (18], or nucleon-nucleys scattering [12], it 1s natural to
treat some of the nucleons as spectators, and this approach to Lhe two body proldem
is well suited for extension to these other, more complex problems. In fact, the idea of
putting the spectator on its mass-shell originated from the study of eleciromagnetic
form factors [18]

Two studies of the application of the spectator equation o the two nucleon proh.
lem have been carried out. The non relativistic limit of the equations have heen
studied {8], and the paramelers of an OBE model have been determined approxi-
mately by fitting the non relativistic lmit of the kernel to the Reid potential {19). In
the non-relativistic limit, the equations have a simple form (c.f. Eq. (2.80) and Sec

.G
w?
(}3? ) ﬁ) EHIE = VI ) 4 gt
i e e L R e AT i17)
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cotresponding tu coupled equations for twa channels (+ and -} desciibing propaga-
tion of the off-shell nuclecn in its posifive { +} or negative { —} energy stale. (The
other nucleon is on-shell, and hence is always in a positive energy stale, the index
which could describe this is suppressed.) The asymptotic solution for ¢ (1) 1s there-
fore zero as expected; the § — ) channel is closed. Hence all binding energies and phase
shifts are determined by the asymptotic solutions for ¥* (1), which approximately

salisfies {he equation

z r+—q2
(V— - c) vhir) = (V”(rl + “—') vtr) (1.8)
2m

m

obtained hy neglecting V=~ and eliminating ¢{~'. [Note that V% = (V*‘)*.] One
interesting feature of the effective potential in Fq. {1.8) is that the quadratic term,
[V'*7|?/2m, is always repulsive, and dominates ¥'** at short range because of its more
singular structure. The fits to the Reid potential showed that this term could indeed
account for the repulsive core for practical (fitted) choices of the OBE parameters.
Another feature of the quadradic potential, not fully appreciated at the tune, was
that it makes very important spin and isospin dependent conttibutions, which can be
helpful 1n phenomenological fits

In otder to produce a successful phenomenology with a OBE model with only the
four basic mesons (1,6, p,w), it was necessary to introduce a mixed coupling for the

pion of the form (cf. Fq (3.3}

gu (At +Hil - 20 (_?2:7;']‘175 (1.9)

where p and p' are the four momenta of the final and imitial nucleon, respectively.
Note that (1.9) is independent of A, if both initial and final nucleons are on-shell,
and hence is sensitive only to off-shell contnbutions. The value A, = 0.41 emerged
from the non-relativistic fits in Ref [8]. The complete relativistic fits {Models [A and
B) presented here give A, =~ (.22

In a second study |20, the equations were solved exactly for a family of relativistic

deuteron wave functions One focus of this study was to see the effect of varying A, on
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deuleron properties. ‘The relativistic deuteron wave funrtions have fonr components,
in addition te the familiar & and D state, there are two small P state components
which play a role similar to the small lower compunents of the [hrac wave functwn
of the hydrogen atom (for example). It was found that the small, relativistic I’ state
componenls were very sensitive to A, as expected. When V=1, there 15 strang
coupling to negative energy states through the ofl diagonal 7° matrix, and the P
stales, a measure of the (—) channel strength, increase linearly with A, It was also
found that the exact solutions were mnsensittive Lo V-~ However sinve, this study wax
limited to the deuteron only, the wave functions deterinined were not constramed hy
other NN data.

This paper extends the work of Ref [20] to all partial waves We present fits
obtained by solving the spectator equation exactly for all VN scattering paraincters
below 300 MeV. [ A brief account of some of this work has already been presented in
Refl. [10].) The new deuteron wave functions we determine are therefore constrainedl
by all the low energy ¥ N data. Furthermore, the fits are quantilatively very good.
and the heliaty amphtudes which result can be used tu predsct the results of sther
processes {13].

Before turning to the tesults of this paper, we conclude this section with a discus-
sion of some of the objections which have been raised te using the spectator equation
for the NN problem. There seemn to be two principle objections, bath of which are

dealt with fully in this paper. These are

(i) The spectator equation puts one nucleon on shell, and therefore seems to treat

the two nucleons differently. How can this be consistent with the Pauli principle”

(1) The kernel has spurious singularities which appear i violate the requireinent of

hermiticity {21

The first objection can be eliminated completely and s discussed fully 1 Se-

I A The equations can be written in two equivalent forms  [n the first Form, (he
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Prepagala s vaken 1o be au average of a terin tn whick particle 1 is on-sheil and one
in which particle 2 is an-shelt Hence each particle is on-sheil for an equal fraction
of the propagation, and the equation n this form s manifestly symmetric. It is then
shown how to transferm the equalion inte a form i which only one particle is on-
shell. The resulting eyuation has a kernel which is explicitly antisymmetrized, and
this 1s the key. If the kernel is expheitly antisymmetrized, the propagator need not he.
Unfortunately, this point was not discussed correctly in Ref [8]. and a considerable
part of the effort n the preparation of this paper went into clarifying all of these
1ssues. The final result is that alf of Lhe amplitudes and equations used can be shown
tee b eractly conaistent with the Paukli principle

The resolution of the second abjection is less satisfying. 1t can be shown that the
spurions singularities in the kernels of oge order are cancelled by spurious singularities
n kernels of higher order [9]. and hence would automalically be cancelled if the kernel
could be caleulated to alf orders. ‘This means that one is justified in dropping the
singularities order by order to the extent this is possible, The imaginary parts can be
dropped by taking the ptincipal value of all singularities, and this solves the problem
of hermiticity in a simple way However. we have not yet found a way to eliminate
the real parts of the singularities without a major restructuring of the equations,
which would spoil theie sinplicity. Hence, after much consideration, we have decided
o treat the singularities numerically. One can see that the half off-shell solutions
have no singularities and that all observables are also singularity free, so that the
nel reselt is that one must live with the nuisance of doing principle value integrals
uver moving singularities. The quantitative effect of these singular principal value
vontributions can be infered from the differences between the models designated A
and those desiginated B The models A {previously described in Ref. [16]) have
the singularities removed using the “mixed” prescniplion described in Sec. [II €
and Appendix B, while the models B retain the principle value of the singularities,

as discussed above. We emphasize that the most straighiforward treatment of the

equations, and henre the prelerred appraach, is (o retain the singnlarities as a prmeipsle
value, and hience the B versions of the two models are preferred, the A versions
previously published are presented for camparison only. These issues and techniques
are discussed in considerable detail in Sec I11.C, andd in Appendix B. We find that the
singulanities do not produce targe numerical effects, but that there is sume sensitivity

We now present the principle nunerical results of Lthis paper

{*. Numerical results

Fits to the low energy nucleon-nucleon phase shifts obtained for Models | and
IT are shown in Fig 1 Our fits are compared with the full Bonn polential |22
(which includes boxes and crossed boxes|, and energy independent phase parameters
obtained from the Arndt-Roper SP89 [23] fits and from Bugg [24], both shown with
error bars.

While some differences between our four fits are visible, particularly for ¢, and
D, the differences are very small, and not significant statistically. We conchude that
the four models are essentially indistinguishable on the basis of AN data alone. This
view is supported by the A% given in Table I and the fits to actual data shown in
Figs. 2-6. The Table gives y? four seven energy bins below 325 MeV, and also for all
data in the energy ranges from 8-225 and 835 MeV. The y? for Models 1 and I are
compared with the full Born potential 122] and the purely phencmenological Argobne
V14 potential [25] (the VPI energy dependent phase shift fit from SPRY is shown for
reference). Not only are the 12 for the four models very similar {except for Models
IA and B at 300 MeV), but the A% for the fits below 200 MeV compare favorahbly
with the Bonn and Argonne V14 results. We conclude that all of cur Models give
excellent, state-of-the-art descriptions of the NN data below 200 MeV, and that the
quality of the fit begins to deteriorate only above 200 MeV, where Models [A and B
are somewhat less successful than Models I[TA and B.

Figures 2-6 were produced by Christopher Haas with the help of the VPI SAID

facility [26]. These figures support the conclusion that all the models are, for all
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practical purposes, indistingmshable, but also show some differences between our
models and the Bonn potential. The fits are excellent at lower energies (as the \V
indicate) but begin to give the wrong shape for the np Dy parameter (Fig. 3) and
the pp differential cross section (Fig. 4) abuve 300 MeV. Since we have not included
pion production mechanisms, it may not be surprizing or unexpected that the quality
of the fits should deteriorate as the pion production threshold (at Eis = 290 MeV}
is approached.

The parameters of the OBE kernels which produce these results are shown in
TFable Il Parameters which were varied during the fitting proceedure are given in
bold face; the others were fixed. For preceise definitions of all coupling constants,
see Eq (3 3), and for the form factors see Eqs. {3.11) and (3.13). Note that Models
I have 10 parameters while Models II have 13. All of the meson coupling constants
(including the pion) and & = ‘1 ratios (for the p and w) were varied in each case.
Additional variables were the masses of the ¢ {and o, for Models 1I), a form factor
mass commen to all mesons {An), and a form factor inass for the off-sheil nucleon
(An) Finally, off-shell mixing parameters A, were introduced for the pion {and 7),
as defined 1n Eq. (1.9}, and for the vector mesons, Eq (3.3}, but for Models I A, was
the only such parameter varied, while for Models Il only A, was varied. As previously
described, the essential difference between the models | and II 1s that A, = 0.22 in
Models 1, corresponding to an admixture of about 22% 4° coupling, while Modeis I
constram Y, = 0 {pure 1°4* coupling) and incorporate two extra mesons, the o, and
the . which adds three new parameters For comparison, the full Bonn potential
varies al least nine parameters. These are the three form factor masses associated
with the n NN, pN N, and * NA couplings, the mass of the o, and the NN couplings
of five mesons, the x, o, p, w, and §, the latter having a mass of 983 MeV, in agreement
with the scalar-isovector resonance observed at this energy.

Our values of & are considerably smaller than those obtained in Ref [22] Al

4r

models give numbers in the range of 13.4 - 13.5, compared to the value of 14.28

ubtained from older analyses of 7N scattering [27] Huwever, deSwart and lus oodlal-
oraters [28] have recently obtained, from a detailed analysis of low cnergy pp dala, a
valwe of 13.1 for the neatral pion couphing, and Arndt et of [29] recently obtamel.
from a new analysis of TN scattering data, a value of the charged coupling near 133
Qur value is consistent with these new results, although its low value prabably par
tially accounts for somewhat low value of the asymptotic 375 rativ which we ohtain
[30] (see Table [V below) Note that our value for the w cuupling constant 15 saall,
a reflection of the fact that the v, in this model, no longer needs to supply all of the
short range repulsion; some of it comes from relativistic effects  Perhaps the st
unusual result we obtain is the small value of the 4, for the Model I fits (The values
of f, are sinular for all of the models.) We suspect that the small g, values are related,
through chiral symmetry, to the presence of the ¥° coupling, but this effect 15 still
under study.

The fits are very sensitive Lo the value of A\, [If only four mesons are considered,
and this parameter 1s allowed to vary, il moves quickly to some value near 1125,
and the it deteriorates if it is moved significantly away from this value T+ get a
comparable fit with A, = U, it 15 necessary to add al least vne more meson. the m,
as was done in Models II.

The low energy scattering parameters are shown in Table II[, and properties of
the deuteron are shown in Table IV The deuieron binding energy, taken to be exactly
2 2246 MeV, was treated as a constraint to the fits, and attempts were made to als.
fit the scattering lengths, o, and effective ranges, r. Our values of these quantities
agree preceisely with the expenimental results reported i Ref [23, except fur r, anl
{for Models 11} r, which difter by 3 - 4 standard deviations In view of the wverall
quality of the low energy fits, we are not concerned by these differences  Arndt has
pointed out [31] that these nubers are sensitive to the procedure and range of data
used Lo extract them, and his rumbers {also shown in Table 1I1) are yuite differem

from those quoted in Ref. [22].



The non-relativistic deuteron magnetic moments agree well with the expernmen:
tal value, primanly because of cur low D state percentage (about 1%), but the
yradrupole moment and asymptotic /.5 ratio are both too low. The discrepancy
brtween our £ S ratio and the newly reported experimental determination of Rod-
ning and Knntson (32]. which is significantly smaller that the value reported in Ref.
22|, is only ? - 5 standard deviations Nevertheless, these low values, taken together
with tendency for ¢; to be too small {as shown in Fig. 1), suggests that our Models
have too hitle tensor interaction, and that this should be corrected if the models are
to be used for precision studies of the deuteron and its interactions.

The nse of non-relativistic formula {or Lhe calculation of magnetic and quadrupole
moments is unjustified if one wishes to make precision comparisons with experimental
results. The relativistic corrections to the magnetic moment have been a subject of
much discussion for many years [33], but there are also corrections to the quadrupole
mowent  The relativistic nnpulse approximation (RIA) to the electromagnetic form

factors, when expanded to crder ()7, yields the following corrections [34]

m

: 1 1
Apg = —[r d —y -, w1,
1ty \ﬁu r{u[‘/i. l [l \,4—2 I)

du 1w
dr( )—ﬁr

N 2P 1 PP T
A = oz nfr dr ( [éluw + wii) — ﬁu'w] + ji Zw .

N R A MR RO )|

(1.10}
where
- d? 6
w = (-—3;3 4 ;‘2 + me] w
dz
i = (—p + mefu
Juw

== i =2y, - 1 111
a n it i £ )

and u. w are the familiar 5 and [} state components of the deuteron wave function,
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1. 1, are the two small relativistic P state romponents defined in Ref  [20] and
disrussed helow, and ge, = (0830 is the isovector magnetic moment of the nwrleon

These correctians have been evaluated [or these madels, and are

Apg = 00407 {Model 1A)
= 0 0460 {Model 1B}
= 01272 {Model 1IA)
= (10258 {Madel 11B)
A = 00037 {Models 1A and 1B}
= 0.0020 {Model 11A)
= N.0023 (Model 1IB) (1.12)
Note that all of these are positive; gy is about 3 - 6% and AQy is l—l%l."'r_-. anid

all are many times larger than the expertmental errors in these quantities. The
corrected quantities are shown in parentheses in Table V. The correction to Qg5
not nearly large enough to bring it into agreement with experiment, while djiy s
much too large and spoils the agreement However, as the tensor force is increased,
st will decrease and (4 and the [}/5 ratio will increase, opening the possibility
for agreement. Before definitive conclusions can be drawn, a completely consistent
calculation of the deuteron moments should be completed. Such a calculation might
include contributions not contained in the formulae {1.10), such as contributions [rom
the pry exchange current, which is largely independent of the details of the nurlear
force model {35]-

The deuteron wave functions which result fromy Models I and 11 are shown in Fig
7. The relativistic models have wave functions with four components, as mentioned
above. The two small P state components v, and v, (for spin triplet and singlet) play
a role similar to the small components of the Dirac wave [unction of the hydragen

atom ‘FThe definition and nornalization of these wave functions is discussed fully in
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Rel [20], and generally in Sec [IC. They are normalized according o

€

fdr [ +a? 42t v} + (1) =1 (1.13}
[1]

where the firsi term in (1 13} is the reduction of the first term on the RHS of Eq.
(2 50} and (17} is a shorthand for the second term on the RHS of that equation. The
probabilities of each of the four components of the wave function are given in Table
1V: the remaining probability {not given) is the contribution of the interesting term
{1}, which anises from the dependence of the relativistic kernel on the total energy
(see Sec 1IC), and is about 1%

Note that the v, wave function is negligible for most purposes, and that the size
" of the u, wave [unclion is sensitive to A,, as discussed in Ref. 120]. 1t's probability
is about 1% in Model I and about a7 in Model IL While these are very small
percentages, the v, wave {unction in momentuin space is comparable to the others
above 500 MeV, and thus may play a role in observables sensitive to such large
momentum components.

The OBE parameters were determined by an automatic fitting routine which
minmmized * as determined from the error mateix based on the SP§9 fit supplied to
us by D Arndt [31). Briefly, we minimnized the quantity

N N LA A T AR A Y (1.14)

J

where &, are the SP8Y phase parameters, &, are the calculated phase parameters, p, | is
the error matrnix, x3 1 the x? of the SP89 fit (given in Table 1) and the sum over and
7 depends on the energy range and angular momentum states which are included 1n
the fit. The sum (1.14) included phase parameters upto J =4, and used daia binned
around the seven energies listed in Table 1. In each case, the fitting procedure was
started by first fitting the phase shifts directly, which 1 equivalent 1o keeping only
the diagonal elements of {1 14), and taking v = 0. This always gives & very large

\? per data point (values below 15 are almost impossible to achieve, and numbers
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n the vicinty of 20 jndicate a very good liby but vonverged quite efficrently to the
cortect region 1n parameter space  The fithing was then continued by first adding
the deuteron binding energy as a constraint (by adjusting the o coupling constant 1o
give the exact value for the binding energy) and then muninuzing the full expression
(1.14), including the curreluted errors which come from the off diagonal termis. This
latter procedure is much slower {apparautly the the surface determined by (1 L4) s
not smooth}, but keeps the minunization from wandering into a regien where the fit
to the actual data is not as good, which will happen if correlated crrors are 1gnored
in the final stages Unfortunately, the y* obtained [rom (i 14) is only a quadratic
approximation to the true value, and hence 15 only accurate at the 20-30% level,
so the final \* presented in Table I was calculated directly from the data using the
SAID facility [26] Since our fit was made using {1.14), the values reported in Table
I might be improved by doing a complete fit to the actual data, but we expe:t any
such improvements, or any changes in the OBE parameters which would result, to be

smakl

D. Relativistic effects in NN scattening
In this subsection we will discuss the relativistic eflects which arise i our tezar-

ment of low energy nucleon-nucleon scattering. These effects anse from four soarves

» negative energy channels,

retardation in the meson propagators and form factors,

off-shell factors in the meson-nucleon couplings, and

relativistic energy factors in the nucleon propagator

The importance of contributions from the negative energy channels is easily stud-
ied by shutting off the ' and 17*~ potential terms in the coupled equations Fagure

8 shows how the J = 0,1 phase parameters for Mcdel LA change when 17 15 set
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ls zers (ddatte] |ine). am when bah § and L' are set to zero {«lashed F.ine],
leaving vnly 1** The same results for Madel 114 are shown in Fig 9. Note that
i hath cases the effects of 4 = are small, but nat completely negligible, while the
lwest arder eflects of the negative energy channel, measured by the sensitivity Lo
1 are quite significant The negative energy channel makes large contributions to
the scattering amplitudes in both models.

Iu view of the discussion following Eq. (1 8}, it is not surptizing thal the negative
energy channels are unportant in Model IA, where A, ig non-zero, bui it was not
=xpected that thay would also be mportant m Model HA, where A, is zeto. The
explanation for this is suggested by Fig. 10, which shows how these phase parameters
vary with A, and A, Setting A, to zero 1n Madel TA produces and effect on most of the
phase parameters very similar to setting V*- t zero {except for some of the P waves
and ¢;. where the quantitative size of the two effects is somewhat different ), showing
that the 1'% contnbutions anse, in large part, from the ¥ coupling of the pion.
However, the figure also shows that the phase parameters in the singlet channels are
quite sensilive to \,, and that reducing A, from 10 to 0.8 in thege channels produces
an effect comparable to changing A, from 0.23 1o zero, but in the opposite direction.
Since bath Madels If have a value of A, close to 0.8, the effect of 1+~ in Models
It appears to he due. at least m part, ta this off-shell sensitivity of the p coupling.
(The dotted line in Fig. 10 shows the effect of turning off the “;‘% term in Lhe vector
prepagators. Nole that this effect is pot large. }

In any case. we find that the effect of the negative energy channels is always
repulsive. in agreement with Ref. [8]. and our discussion following Eq (1.8). This
is in contrast with the results nf Fleischer and Tjor [3] and Hippchen and Holinde
[36] Mlsing the Bethe-Saipeter equation, Fleiacher and Tjon found thai the negative
Fnergy states are attractive in the 'S, channel (in all other channels the effect js
regative, in agreement with our tesults). Hippchen and Holinde confirmed this by

ralculating the pair term contributions from box and crossed box diagrams using the
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Bomn [22] parameters The differences between these results and ours can e traced
to states i which both nucleons have negative energy  In our approach, these states
are rompletely suppressed at the level of the OBE approxmmation. but appear in the
TBE (and higher urder) kernels, where, as was found in Rel [9], they are cancelled by
ather TBE (and higher order) mechanisnes which arise fram chiral jnvariance

The size of the remaining relativistic effects temized abuve are shown m Fig
11, which gives the J = 0.1 phase parameters for Model 1A in a sequence nf four
approximations corresponding to turning off relativistic effects sequentially. The full
caleulation is the solid curve, and the one to which all viher curves should he com-
pared. The long dashed curve shows the eftect of shutting off the retardation factors
in the meson propagalors and formm factors Specifically, the retardatian terms are the
energy difference factors of the form (Ep — Eu¥ and (W — E, - E,)® which occur in
the meson four vector momentum transfer, which appears in the denominators 1Jj:)
and 5{:] of the mesun propagators given in Eq. {3.14), and also in the meson farm
factors. Shutting off these terms has a large effect, particularly on tLhe ¢, parameter
Next, the dotted curve shows the effect of shutting off both the retardation terns
and the negative energy channel {by setting V'*~ and v+~ equal to zero). Note that
tetardation and negative en=1gy effects tend to cancel in the § and D) states, hut n
the P waves the effect of the negative energy channel is larger, and is the dominant
effect in the *P, channel Finally, the last curve {the short dashed line} is the non.
relativistic result, which is obtained when terms proportional to W - E,, W - F.
and E, - E, are droped in the numerator of the V** matrix elements, and when 1he
lactor 2E; — W in the g+ prepagator, given in Eq. (2.89), is replaced by E(k® - p?).
These effects are large in the S and 1 states, but negligible in the P states. We
conclude that all of these relativistic effects are significant, but that they sometimes
cancel In total, our results show that relativistic effects are very significant, even at
low energy.

Because non-relativistic nodels have been found which alse fit low energy nucleon-
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nucleon scattering, we know that we could compensate for these relativistic effects
to some extent by refitting the meson parameters. Thus the difference between rel-
ativistic and noun-relativistic models shows up ultimately i the differences beiween
the values of coupling constants and inasses required to fit data, in the dynamical
degrees of freedom required, and in the applications of any two nucleon force model
to the description of other processes (interactions with external probes, and the three
nucleon problem, for example). In this respect, we have already emphasized that ina-
jor differences are the {comparatively) small size of the w coupling constant needed
in our fit, and the fact that we find in possible to fit the data with only four mesens.
We also expect significant differences to arise when our models are used to describe
other physical processes.

We have looked at the sensitivity of our fits 1o small variations in the parameters
Each of the parameters was changed by 10%, and the effect on the fits examined.
Those paraineters which produced the largest change in the ! were Apucteons 9n.
oy o, % and A, Increasing A..ceon INCreases the atiraction in the 5 waves, and
changes the shape of the ' P, phase shiit. The shape of the ' P, phase shift is also
quite sensilive to the value of A,. The change in g, had the greatest effect on the
J — 2 phase shifts, while an increase in g, increased the atiraction [as expected)
particularly in the 'Sy and *P; channels, and an increase in g, had a particularly
large repulsive effect on the *F; and ?P; channels. The principal effect of an increase
i %, was attractive in the 'Sy channel and repulsive in the ? Py channel. While these
changes individually produced a large effect, many of these effects are correlated, so
these parameters are not necessazily those most preceisely defined by the fit. The
pion mixing parameter A, was quite well fixed by the Model I fits, but a 10% change
in this parameter did not have a large effect on the phase shifts.

The last effect we will discuss is the virtual coupling which vccurs in the (formerly)
unvonpled channels in which L = J This coupling is discussed in Sec 11 Briefly,

when one nucleon 15 off-shell, the difference in the energies of the two nucieons, p,.

need not be zero, and there exists states which change sign as p, -+ - p, Such states
are referred 1o as “odd” states (denoted by a subscript z) and the Pauh pricyple
requares that they be symmetric under interchange of ali sther quaninm nunibers,
the “wrong” symmetry for normal states. Since we assume suspin conservabion,
and parity conservation fixes L, the anly way to <onstruct a “wroug” synnnetry
state is to assign it a total spin different from the normal assigmment. Hence, for
example, we find that our isoscalar 'L, state 1s coupled to an “odd™ 1soscalar state
with *P, quantum numbers The odd states go 1o zerv when both particles are un
mass-shell (when p, = 0), and hence are closed virtual channels which orly vouple
to the physical states inside the interaction region. In this respect, they play a
tole simnilar to the negative energy states, but they are distinct effects not described
by the negative energy channel. In fact, each positive energy channel couples 10 a
corresponding negative energy channel, and hence in our relativistic formalisi the
physical isoscalar ' P, state is actually coupled to four channels {one 15 odd and the
other two the companion negative energy channels - see Sec. I1.I) The 'S, and *7,
states are exceptions to this rule, because angular momentum conservation prevents
the existence of companion *$5; and ' Fy states, so these states couple to enly one
other (negative energy) channel. Also, the coupled stales with J # L do not have
compenion odd states for a similar reason; it is impossible 1o construct coupled states
with total spin equal to zero. These states therefore have four channels: two physical
coupled states and two negative energy companion states

From the above discussion it is clear that the odd states effect only those chanoels
with J = L > 0. The effect on these channels of turning off the odd siates is shown i
Fig. 12. The effect is tiny in all but the J = 1 states, where it 15 small and repulsive.

The next subsection summarizes the major conclusions of this work



E Conclusiens

The prindiple vonrlusions of this paper are summarized as follows:

The relativistsc spectator equations, with an OBF kernel, can be used to describe
bow energy NV scattering. We abtajn exceflent, state-of-the-art fits comparable

tu the best avaitahle.

o Maodels with Adifferent off-shell behavior have been found which fit the on-shell

data equally well. The existence of phase equivalent solutions, embedded in the
same formalisin, shows {once again) that on-shell data cannot uniquely deter-
nune the dynamics, and we plan to ook for other phase equivalent solutions.
These familres of salutions can be used to study the sensitivity of other physical

processes to off-shell effects.

We find that it is pnssible 1o fit the low cnergy NV data using an OBE model
with anly four mesons and 10 parameters (Models TA and IB). The existence
of such a fit suggests that the low energy NN data cannot alone determine the
roupling constants of other mesons which may be present, the role of inelastic
pravesses such as the virtual production of A and Roper resonances {which are
<urely present), or the size of box and crossed box comtributions. In particular,
we conclude that the g coupling is very poorly determined by such fits {beyond
the observation that it is small}. and that a successful OBE model can be found
which does not require a scalar, sovector meson. {Note that, although the #{983)

surely exists, jts coupling to the nucleon s completely unknown )

Our models include contributions from the negalive energy states of the propa-
gating nuclecns, retardation {energy dependence) in the meson propagators, and
off-shell eflects in the meson- N N vertex functions, all of which can be consid-
ered relativistic effects, and all of which are usually ignored in other calculations
These effects are all ndividually large, and their combined effect 15 large, even

though they tend to cancel. Perhaps more significantly, they da not appear to be
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eastly descrihed by a single meson. wr by a combimation of the four basic inesans
helieved 1o he essential to any OBE desrniptinn (1he r, aopoand w) We beliove
that this explains our ability to fit the date with only four exchanged mesons
However, because fits with non-relativistic models are possible, this lact in tsel

pravides only limited evidence for the impartance of relativistic effects

Two ohjections to the spectator formalism are addressed wn detajl First, st 1=

shown that the equations can be written in a mantfestly symmetric form, and
that this insures that the Paul principle is exactly satisfied Secondly, it is
shown how to handle the spurious singularitres which arise in the kernel The
differences between versions A and B of the two Models show the sensitivity of
the results to these singularities We find that phase equivalent fits can be found,
but that some of the coupling constants which enterge {rom the fits can dyifer

significantly

This concludes the introduction, overview, and conclusions of Part | In Part 1.
the relativistic spectator formalism is described 1n detail. The discussion applies t..
any imteraction kernel In Part 1iI. the details of the OBE kernels aclually uwsed m

this paper are descrihed

. GENERAL THEORY

In this part the relativistic wave equations and wave functions are presented
and it is proved that the theory is covanant, unitary (below the pion production
threshold), and treats the two nucleons symmetrically. Reduction of the equation
and amplitudes to a practical form suitable for numerical solution is then described.
This reduction involves first separating the 4-component channel which describes
propagation of the off-shell nucleon into twe 2-component channels in which the off.
shell nuclecn is either in jts positive energy ( + ) or negative energy { ) state A partial
wave decomposition of the resulling helicity amplitudes is then introduced. and the

kernel is hlack diagonalized into the three mdependent rhannels relerred to as singlef |
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triplet. and coupled

A Symunetric form of the equations
It is convenient 1o start with the two body equations for the scattering amplitude
in their fully symmetnc 16 x 1§ component form, with imtial aad final states labeled
by two Dirac indices {e,d}. The 4-momenta of the two particles are
1
Po=gPtp  Pspotp
1

1
PZZiP_P P=5(P|—P2) (2.1)

The syminetne form of the equations will contain amplitudes M in which particle 1
is on-shell in the final state, p2 = m?, and in which particle 2 is on-shell in the final
state, p} = m? These constraints fix the relative energy p, in a covariant manner. To
avoid a cumberson notation, the symbols in (2.1} will refer to the case when pl=m?,
and symbols with the caret, P.p1, P2, will denote the 4-momenta when Py =m? In

the CM sy.-stem. the following relations therefore hold

P=F=(wi)

Vo = N _

P=AE, —3W.7) P=GW - B, p)

p=(E, p} h=(W-E,p)
p=(W-E, -p) P=IE, -p§) (2.2}

where E, = {m? + 5 ?)}. Note that changing the sign of § maps § into -p.

Fot stmplicity, the equations will be given in the CM system, but they are mani-
festly covariant and the explicit form of the Lorentz transformation of the scattering
amplitudes which permits them to be boosted to an arbitrary frame will be given
in Sec B below. The symmetnc form of the two bady equations for the elastic

scattering amplitude M in a channel with 150spin I can then be written

I " i i
Maw ag tp.p's Py 5[1'9.,-..113-@.;':-"1 O Vg e p, —p;PiJ

1 Pk m i . B
5/ (gt B, Voo K PAGu, o, ps U, PYML etk F)

)
<

1 Pk om

2/ ap E, Vaa, ag, (0. k, P o k. PYM, gy (K5 P

(23

A second equation for AMip,p': P}, identical to the ahove except fur the substitution
p for p, completes the set The two equations form a coupled set fur the amplitides
Mip,p'; P) and Mp. ¢ P}, as Mustrated dragramatically 1n Fig. 13

The inhomogeneous term in Eq {2 3) has been explicitly antisymmetrized with
respect to interrhange of the two parlicles in the mfral state. Note that interchange oof
the two particles requires that alf § romponents of the relative momentam P orhange
sign; and that the spin and isospin indicies also be mterchanged  Since 1sospin mdn-je~
will be suppressed, their interchange has been represented by an explicrt factnr of
(-1)fin Eq {2.3).

The propagator (7 is the product of the posive ENErgy projection operator fog

the on-shell particle 1 and the usual Dirac propagator for the off-shell pariscle 2
) | L1
Garosdgglk; P} = Auiay (.-)P + k)(w”;ﬂ (;)P - k) KT
where, using the subscripts 1,2 to represent {01, a2} or 191, 3:)

{m + la,a,
Aiky) = —j?nL‘*'

v {m kw),dd
Craiky) = 2T Nalaa,
(k) m? - kg -1

{2 h}
The propagator cortesponding to propagation in which particle 2 is on-shel] s

“r r . l ; ] :
Cosas (ks P) = Cara P N B T PN S £

The overall effect of dividing the propagation equally between terins in whach parti-le

11s on-shell and those in which particle 2 is on-shell 15 (o praduce a coupled set of
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equations 1n which intermediate and final states are antisymmetrized if cne starts
with an imtial state which 1s properly antisymmetrized.

Before demonstrating this fact explicitly, note that Eq (2 3) can be formally
ublained from the Bethe-Salpeter equation by dividing the &, integration into two
eynal parts, closing one in the upper half plane and retairing only the contnibution
from the positive energy pole of particle 2, and closing the other in the lower half

plane an< retaining only the positive energy pale of particle 1 Formally
1
Gtk )l k) — iAl(kleﬂkz)Z}mﬁ;(mz —k7)
1
+§GJ[I"1PA2“€2J2"‘6+("’12 “k;) {2.7)
From the antisymmetrization of the inhomogencus term in Eq. {2.3} with respect to

interchange of the two particles in the initial state, it follows immediately that the

full scattering amplitude is also antisyinmetrized with respect to the initial state
Magportp, = F) = (= 1) Mogopurlp, 8 P) (28}

To prove that the final state is also antisymmetric, it is necessary to use the
identity
Vooraadp. 0 P} = Vag gal —p, - i P) 12.9)
which is always satisfied by the relativistic kernels (see Part III). Using this property,
and relation {2 6), Eq. {2 3} can be written
‘ L, . , :
Moo aalp. P P} = E[Vna-.ua'(il.ﬂ FIRA TS VAVRIVIETY & P)]
1y &%k m . . .
3 [ Gy £, Vem 2K P ek )Mo (k5 )
1 &k m
oz gr m,. N . . y , 0 ,
3 ] (o B, Vmen kP Yo e D)Mot~k 5 P)
(2.1

The second equation is again identical with preplaced by p. If, in this second equation,

the sign of s changed and o and (J are interchanged, one obtains an equation for
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Mo awl pops Pyoadentical o (2 1) bat with rhe inhomegenous term mnltiphed
by {--1) {and with M{k p’,P)and M(- k.p'. [") interchanged). Hence, smce the

solulwons are unique, it follows that
Mpgoag(-p o Py = (=1 Moy padp. p i P) 1211t

Hence the final state is alse antisymmetric. Using (2.11), Eq. (2.10) can be wrnitten
in a compact form

Moo golp. P P} = Vonopa(p. p'i P)

&Sk — .
S et kP Gy a5 ) Mg s P)
ke
(212

whete
— 1 . ’ 51"
PP P) = 3 [Vaarigirtp, 0, P) + -1 Vo as(—po s PI] (213)

This symmerized potential is shown diagramatscally in Fig. 14 The form (2.12} of the
equations will be used throught the remaimder of this paper While it appears ta he
asymumetric in the treatment of the two particles because it contains the propagator ¢/
nnly, the antisyimmetnzation of the potential (2.13) insures that the Pauli prmeiple 1
satisfied and that the particles are, in fact, treated identically. The reader can easily
confirm that the steps leading from (2 3) to (2.12) can be reversed, permilting the

recovery of the manifestly symmetric from (2.3) from (2.12).

B. Reduction of the on-shell particle

The next step is to sumplify Eq. (2.12} by exploiting the fact that particle 1 1s
an-shell. Use the expansion
Aatky) = 3 ulk, A puik, 4 (214
M
where the sum is over the two possible helicities A; = +1, and introduce the matrix

elements



Muwaa 0 P) = falp M) Muw par (PP 4 Jkavp Ay

Vi a2 P P) = Gald AW ao parip 'y Phua(B 7, A (215
Thas gives

Mo, sy uplp B PY = Viapa(p.p' P)
£k om

- (—-Z-N—F-E‘—*VMA,M,(J).’C,P}Gp,u,(kz)M.\A;ma'(k,P'iP} (2.16}

Note that the quantum numbers of the on-shell particle have been completely removed
from the propagator, which describes the propagation of the off-shell particle 2 only,
and that the particle states are now described by only 2»4=8 components. The
behavior of the amplitudes M and V under Lorentz transformations follows from the
corresponding behavior of M and V inttoduced in the last section. Introducing the
operators S{A), which represent the Lorentz transforinations A on the Dirac subspace

and satisfy
STHAWSIA) = A* 4" (2.17)
it follows that M and ¥ satisfy the transformation law

Saar{ A)5pa, (A1 Mayaz 00 (P B PISL L AAYS ;0 (A)
= Moo gp{Ap, Ap';AP) (2 18)

In applications, this can be used to boost the A matrix to its CM frame, so that it
is sufficient 1o carry out all numerical computations of M in the CM franie The u
spinors also have relatively simple transformation properties [34|
StAJu(pi. A) = u(Apy, M) Dy (Ry)
atpn A5 H(A) = DI L(RaJulap, X) (219)

where [} are the representations of the rotaijons on the spin % space, A and A are

helicities, summed over when indicies are repeated. and Ry and R), are the Wigner
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rotations, which depend on the four mwmenta py {and pi} and transformation A, as

follows

Hy = H.;pll AH,,

R, = H,;‘;.AHP; 1220
Here H,, iz the pure boost in the : direction, following a rotation ta the p, direction
which carries the four vector (m,[). }into (£, . p1) (see Appendix A} Using these
relations, the transformation law for the M and V amplitudes 1s

Sam(A) Mo gt PP S5004)

= D, (ROM, s, st Ap. AP, APYD, A ) ) (221)
The unitarity of the [} matrices
Do Ry) DUy (R = B 12
and the covariance of the volume integration

Pk R a
;—E = ]‘f‘km(m- e 12 23)
£

insures that Eq (2.16) 15 covariant

! Relativistic wave functions
it is sometimes convenient to use relativistic wave functions instead of scattermy,
amplitudes Wave functions satisfy a homogenecus wave equation. In this paper, the
relativistic scaliering wave function will be defined cnly when the initsal state is on

shell, and only in the CM system in which rase E, = I¥//2, and
2’ EP A¢3 4 ~ 1 r
Wap(p p'i P) = ;iz"’) 870 - P gl P 3. Az sy,
—Cap(p2 )My g PP PhugF 3, A)) (224

Note that reference Lo the hehcitses of the imtial on-shell pacticles (3] and \j) has

heen suppressed i ¢. It 15 easy to see that y satisfies the homegeneous equation

31



Ak :

o . y - o0 + . X 5 g -
franlp e pl Py f(zrm £ Vot n b Py gtk Py (225
The relativistic dewteran wave function has been defined previcusly [20]; discus-
sier of 1t will be included here for completeness 1t is assumed that the scattering

amphitude M develops a spin 1 pole at P? - ALL. so that it can be written

M., v aalppi P) = =% alp. P ALLLP) O‘;L.{p" P)
4 R,\.l;_.};j'[p. P {2.26}

where A, is the deuternn propagator, which has a pole at pP? = M}, R is a temainder

function non-singular at the pole, and the deuteran vertex functions are

O%alr. P) = [P44, Pic| aktn (227)
with |20
Y . [ P | - I
Iip. P} = Fy o f%@(:‘ﬁug;"‘)r t228)

The four invariant functwons F, ¢;, H and /. are functions of p? and P but are
uaiquely defined only at the pole. where P? = M2, and they become functions of P

only The deuteron propagator is

rp 1
AL fP) = (Qur - T‘fd;*) W (229)

Al the deuteron pole, the Brojection operator reduces to a sum over the three helicity

states of the deuteron.

PP,
MM =g, - fux )
);E..( AN = g — =25 {2.30)

d
Hence, substitwting {2.26} into (2.16). and going to the pole gives a homogeneous
equateon for the deuteron vertex function

_ﬂk m

Pl PU 0 = [ SNtk B Gy the) 0%, (5, Prg )

(2.31}

32

where P - I“fd.l,"l m the CM systern The relattvistic deuteron wave funrtion s

defined to he
Yanlp, P) = N Gaalpr) O‘\‘I,_;-(P‘ Py 232y
and it satesfies Eq. (2 25). the same equalion satisfied by the scaltertng wave functing

The choice of normalization constant ' will be drscussed in the next sectron

D Unitarity and normalization

The unitarity relation for M and the normalization of the bound state wave
function (2 32) can be obtained directly from the fundamental equation (2 16) T

this end it is convenient to suppress indicies and write (2.16) in the compart form
M=v [vgm (233)
Equivalently, taking the Dirac conjugate of this equating gives
T\E:V--IHTV 1234
where
M, s saip.p', P) = Togd,MI,\;_ﬂlu,(P.P'; LORa [215)

This operation has the effect of complex conjugating all of the invatiant functions
of which M is constructed, but does not otherwise alter the structure of M. For
example_ note that

T“[m + k”‘r"

— m 4+ k
k)= 4 217 M
Gilks) m? — k¥ 4 oo m? — k2 4 ¢

(236)

differs from @ caly in the 91gn of the ie prescription. Tt 15 assumed that the relativistic
kernel is real so that V = v
Use {2 34) to eliminate V under the mntegral in (2.33} and (2.13) to eliminate Vv

under the integral 1 {2.34) This gives the [ollowing two equations.
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M_—foM(;Mf/[f\ﬁ@VUM (2.37)

H:V—/ﬁ@Mff]—M'EVGM (2.38)

taking the difference of these Lwo equations gives the unitarity relation

M—M:-[ﬁ[ﬁ*—(;]mwzzjﬁ.’_\cm (2 39)

where
G - G = -1 AG = — 2rxi 8(m? — ki) 2m A(k;} {2.40)
Restoring the indicies and integrations gives explicitly

M, ssade 7 P1 - Magas(p b Pl

oW _ame a0 0 o
- —lq-“r_riﬁmzjlaﬁa—Mh,l‘w,{p.k;P).‘\glg,(kg]Mu;mB-(k.p;P)

(2.41)

where the superscript o on relative four-momenta specifies that both particles are on

sheli, so that in the CM system
k= 0. (2 42)

The normalization condition for the bound state wave function can also be ab-
tained [tom the non-linear Eq. {2 37). Substituting (2.26) into (2.37} gives terms
which contain double poles at P? = M}, and terms which contain single poles. The
double pole terms all cancel because of the bound state Eq. (2.31}. Similarly. the
terms involving single poles and the terms in M not singular at the pole also cancel
{ These terms include contributions from the smooth remainder term R and derivatives
of O with respect to P at P* = MZ? ) However, cancellation of all single pole terms
imposes a new condition on the vertex function O which depends on the propagator

and the energy dependence of the kernel

34

This condition arises from the requirement that the residue of the single poie on
the left-hand-side {LHS) Eq ¢2 37) must equal the residue of the pole on the right-
hand side {RHS) Terins which contribute to the residue su the RHS come frem the
energy dependence of the propagator  and the pritential ¥V near the pule. Expanding

these around P? = A2 gives

GLP) = Py + GCUPHPE - M+ -

V(P) = V(P) + VPP - MD & - (2 13)
where
2 Pead
CiPy= ' 344
1= 9piar, i, , (24

and similarily for V. Substituting these expansiens into (2.37) and equating resilues

gives
1= [fc:'{ﬁ’pr+[]fu*[}5)v or
+ fff G VB G r+[]fc vV @ 12 a5

where T |not to be confused with the I of Eq. {2.28] 1s a short representation fur the

deuteron vertex function (2 27)

T3y — O gluth)

T NN | .
Pi“; = EAAY (2 451
and, in this notation Eqs. {2.26) and {2.}1) are
rr
M= - .—=+R
M-t
r- *[VG'I‘ {247)
Using the wave equation for I and
G'(f’)—_(}'{:p)—ﬁ— (P (218
IMZ
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Eq (2 49) redures 1o

1-_--/1‘"(':_ﬂ2 (.'[‘—[ff(?v*(;%)(;[‘ {2.49)
202

[0 expanded form, and expressed in terms of the relativistic wave function defined in

2 32). this becomes

nro. [ (,E‘) B °
LI / £p E;V»"\..Jx(P.PJ Tj:m Yaanlp, P)

. Fp Tyt o m? s e [
- lMd/ E?Tl‘]a_ E',-P‘ET; by andp, PJV);,\'I_au-(P-P P V’\;B’A'[Pipl {2 50)
where the normalization constant was chosen to be

N = [Eﬂfd[Ew]a] {2.51)

Nute that the normalization condition {2.50) 1s covariant, and that it involves the
denvative of the potential with respect to £ This condition will be further reduced

below

E The relativistic R matrix
For applications to scattering problems it is convenient to introduce a reduced
malrix {which will be called R) which 1s real. The R matrix will be defined in such
a way that it salisfies the same equation (2 16} satisfied by M. but with the elastic

rul removed. The equation for R, in the compact notation of Sec. 11D, is
R:V—PfVGR {2 52)
where P represents the ptincipal value of the integral, so that
_[VGM=PfVGM+:'[VAGM {2.53)

where At; was defined in Eq. (2.4 Next. M s constructed from R by the operation
Ou{R)

M= Ou{R) - R —; f RAG M (2.54)

35

which ts carned cut on the variables of the initial state Applyimg this cperabiop 1.

Eq. {2.52) gives
On(R)} = OptV) 'P[ V 6 Up(R) (2 55)
or, using (2 51)

M:V—i[V:.‘.(’.'M PfVa,;M

-V - / VeM {2.56)

Since the solution of the {2.16) is unique, this procedure of construeting M from R
which solves {2 52} necessarily gives the correct scattering matrix

Furthermore, it can be confirmed that M determined from (2.54) satisfies the
anitanty relation provided only that R is real (R=R}. To prove this result. first

ohserve that M is also given by R
M=R+. [MaGR (257)
Substituting (2.57) into (2.54), and (2.54) ints (2.57} gives
M:R—ifﬁ.'_\(;M-r[jM'AGRAGM
H:Rw[ﬁacmvffﬁacnacm 12 58)
Subtracting the two equations yields the wnitasity relation {2.39).

The relation between R and M can he simplified after the partial wave expansions

have been introduced. However, the full relation (2 54) may be useful in applications

F. Separation of channels
It is now time to separate the four degrees of freedom of the off-shell particle
{which will be particle 2) into two channels, each with only two degrees of freedom
The means of carrying out this separation is through use of the familiar identity for

the nucleon propagator, which in the UM frame of the pair becomes
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. m o= | u -—k‘,z\ Jul -k A Ul'};. -\z)f(jf‘: -\z)l
ika) - o N [ui-&, L N2 LIIRT, 254
tatha) = | e W) W | t259)

ELIW

where ky and W are as defined m Eq. (22). Note that ths decompasition breals
the manufest covartance of the theory, the mixing between u and o spinors defined 1n
(2391 is frame dependent Because of this, most of the expressions ohtained in the
rest of this part will not be manifestly Lorentz invariant, and it 1s for this reason that
separation into channels is delayed as long as possible  All separations will be carried
out in the CM frame of the pair, where the expressions are simplest.

Channels involving « {2) spinor degrees of freedom of the off-shell particle will
be referred to as +(~) channels. Using {2.59), Eq. (2.16) reduces to two coupled

equations

Mf.‘,,\;_\,x;‘P-P":PJ = V:’."x;‘x,x-,lpm':P)

4k e . L
_f(.m, (Wl e PYC 0y M27% kg, PY) (260)

where summiation on the RHS is over repeated indicies and p, p' and p” take on the
values + or - corresponding to the two channels involved. These are directly related
to the p spin indicies introduced originally by Kubis [37], except that in Eq. (2.60)
an index is needed only for the off-shell particle, the on-shell particie is always in the
+ state The A's and p's refer to helicity states; the Kubis convention will be used

here, and is described in Appendix A. The propagators for each p spin channel are

1
+ -_—_— .
GT(k) = 2E, - W — 1
N .
G (k) = ¥ {2.61)

These M and V amplitudes (not 1o be confused with the M and V amplitudes intro-
duced in Sec. A above) ace related to the relativistic amplitudes M and V defined in

{215} by

38

1

- 4 2t - PSS oy
‘\::; \]1'}“]-1’ . PJ = ( E;, )“il( -p. '\E)Vl.x; padpy p'y P Mgl p'l \:.j

£,
Vot unlp pi Pl = (11__3__%; 2 AV gt ' Prugt p/ AL (20
TEEYP LY LN o E.',,E:,- AP A2 Y gy agipp . P
and simlarily for ¥ and V-~ in cases where the miteal channel involves a v p, 15}
spinaor.

Note thal the equations {2 60} have a form simlar Lo nen-relativistie equatpns
except {or the presence of the relativistic energy £y in the propagatur F and fur the
Presence of the extra (-) channel, which arises from the couphng to the v spinnurs
tequired by relalivity Otherwise, the equations are identical to what would arse in
a non-reiativistic hnt of {2 60), and ths will be discussed in Sec G below

The relativistic wave functions, unitanty relation, and nermalization comdition
all take on simple forms when re-expressed in terms of the coupled (+.-) ~hannels.

The relativistic scattering wave functions become, in the {'M system
; W . . S e . . .
Ynpip, p's P) = 2 [P P Phea(- BA) el ulp, P Pl F, A l} 2463

where

M‘*‘,{ ,\'A;(P- _P*i)]

r. _ 343 .
'I':\'{P:P.P) =(27P8p - r }é“;b,‘.\; - 2E, W “)"

U l - 4 x
Vaelpo P By = 5 MG (0 P) 12.64)

The homogeneous equalions satisfied by these wave lunctions are

: £k :
(2B, —Wielutw s’ Py = = [ 5 08 ks PYes, k)

o s Pk ,
~-Welip s P)= —j F*F l"n':.‘. ‘i(p, k, P]l,[";‘ h(fc‘p PP (265
Similarily, the bound state wave function is
Vansl® P) = vl e, Plugt=F 00 + %5, p. Pl Ay (2 66)

where summation over 1, is implied, and using the normalization constant Eq (251}
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mal PRI U, 11

Y T VB 1180
vl LTS ELZE, - Aly)
. balF 0% (p. P
dapadp Py = - /_;1:: ["_”L,_Z_L*"_p‘_’{"(,\) (2 67}
' Vi2m R2AL, ELM,

This defimtion is identical 1o that previcusly used in Buck and Gross [20]. and these
wave functions satisly the same coupled equations (2.65).

The unitarity relation, expressed in terms of the 4 awiplitudes, becomes

I MEY (P P = -k (‘;%Lz MO (ks P M gtk P)
fm M;Iﬁi_m;(p. PPI= -« tig% ML (p b P) M;,?.,.,;(k.p'; P}
{2.68)
where
P l_lé e T = (2.69)

Note that the phase of A7 -+ is completely determined by M**. This is becnuse Af- +
does not propagate to infinity (e position space), or have the elastic unitarity cut (in
momentuim spare).

Next, the normalization condition also takes a simple form in the coupled channe]

representation. Using the relations
= nd o e ’ T4 @ = L Ep
TP AN —F, ) = BF, A)outp, V) = LNy
(=5, A1°u (5. V] = 6(F, ¥ pyoul -5, ¥) = 0 (2 70)
gives
dar = f'PP Vi PL tp, P)

p dp' o LA Lo , o
-['[*(-E”T u'\l‘z.l“"P'éﬂ;l’h‘p\;],\,x;‘n"'p;P)‘I":flx;_,\'(f’;P)

{2.71}
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where sums cver repeated indicies are unphed. Note that | f the petential 1s inde ey
dent of M. the ¢+ and ¥~ wave functrons are orthagonal Funally, the relaiivisiie Rt
malrix can also be decomposed into (4, -} channels The 7% matrix elements are
constructed from R as in (2 62} and satisly Fq. {2 60) with the integrals replaced hy

principle values. The Afo+ matrix is related to Ro* by

A’f;’:\i,\,,\;(PI PPy = R;rl; .\,\',!PvP’?P]

Crd0, . . .
ﬂnj(—zﬁ-z Blnelb ki PY MY (ko ps P (272

where p = +. This shows that the phase of the half off-shell Af matrix is determine

by the on-shell Af matrix

G. Non-relativistic limits
The separation into channels puts the equations into a form idea] for taking non-
relativistic limits [n the extreme non relativistic linit, where all tetms of order p?/m?
are neglected, the coupled equations {2 60) reduce to a single equation for Af*+ unly-

Bk s

ﬂf++ = [+ _ ——
(2w k2 . k2 — e

(271
where
k! = mfam - ') 12.71)

is the square of the non-relativistic on-shell momentum.

If terms of ordet P’/m? are retained, hut higher order terms ignored, the ()
channel will make & contribution. If all of the potentials 174+ 17+~ ¢ 1"*]1. aned
""" are considered to be of the sante order in p?/m? (a debatable assutnplion), they

it follows that
Mo pre {(2.75)

and the comtnbution of the 3+ term to M** need be included only in leading order

Hence the equations become
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Ph pEr ALY VoAt l
LN R __/77 . -
" 2P {H R = mt |
d*k S * A
(2np R ke

Mt =¥V - {2.76)

The second eguation can be used to eliminate M ~* from the first, giving an equation

for A{*1 alone:

dak V++ Af++
F T S S R B ] / 277
M=V f(::r)“mkhkh.‘*—',qf (270
where
£k Vvt
V++ — Ftt ( ) ('2.78)

cff {2x) 2m
This shows that the ¥+~ terms add, to the diagonal elements of 1", the short
range repulsion (8} diacussed in Part 1

If position space wave functions and potentials are defined by the relations

1 L
Vir) = (3?}3[ &g €77V {q)
1 .
vl = (2:)3/1/ Ep 7 4p) 12.79)

where it is assumed that ¥ 1s local in the non-relativistic limit, so that V{p,p". P} =
V(p - p'), then the equations (2.65} for the wave functions assume a very simple and

transparent structure:

2 4
(Z —e+ V_z) vy = VY ey ¢tiei + Vi (r) 97 ()

m 4m
(2m+ e (r) = V HE) @t (r) + VT (r) ¢7ir) {2.80)
where ¢ = W-2m, and the ¥~ potential has been retained for completeness even
though it probably should be neglected when working to order p'/m?. To order

p?/m?, the solution to this coupled set of equations is

2 Vl
(V— e —,) PHr) = Vogglreten)

nm 4m

s

) v,
vo(r) = whir) i2.81)

2m

where
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vk v ant

Vegptir) = 1 (e 4~ - (2.42])

2m
These equations provide the intuitive interpretation of the role of the ¥* and will

be used in subsequent work to interpret results

H. Partial wave expansions

The equations can be further reduced by mtroducing partial wave expansizns for
the helicity amplitudes. The procedure of Jacob and Wick {38] will be followed here,
and many details can be found in appendix A

One advantage of the separation into + channels introduced in Sec. F is thal the
steucture of the partial wave expansion is independent of p and p" 10 i’ Henre.
these p spin indicies will be suppressed whenever it is convenient to do so

The partial wave expansion for all amplitudes { V" or M) s

Vaa (P P) = 0 < BIUMA, » Vo L (pok Py < JAIA A K
JAM

12 R3]
where the partial wave amplitudes 7 depend only un the magnitudes of F an:l E and
not on directions. The coupling coeficients are as introduced in Jacob and Wick

. 27+ 1 .
< pIIMNA; > = ¢ i Dif A b, — )

{20 +1 .
- __.i,r_., elM Awd‘;;,_\(ﬂl {18}

where A=X;-%; (The A dependence of the states |p A;A; > has been supressed n

(2.84) for convemence.} If the scaltering is resiricted {o the r-z plane, then ¢=U and
. i . . .
Vi unipk Pl = i glz-f + Dd{, 8V vy Pk P) 285}
where use was made of the addition theorem for the Jd’s.

4,8} = EDHA(Qﬁ)Dﬁn-lﬂL] (.86}
7]
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and the compact notation t2; will sometimes he used lor the arguments {¢,, 8, -o,)
o the Vs Using both expansicos (2 83) and (2.85), the addition theorem (2.86).

and the crihogonality relation
[ D Dl = b {2 87)
Mile Lipgealoan MADME T T M f
the cenpled equations {2 60} can be separated

Mf.olx'lj..\;.\;[P'P'-P) =1

(R PR
. fD” dk V20 ek PY g k) MY o (k. D5 P) (2.88)

LIV P 3| .

where there is ne sununation over J on the RHS. and the reduced propagators are

gt (k) 1 ( k? )

TP \2E, W
1ok
ky= - — | — 2.
g k) {h),(w) (2.89})

The ~quations (2 88) will be further reduced in the next section.
The partial wave expansion also simplifies the unitarity relation and the connec-
ticn beiween the M matrix and the R matrix. The unitarity relations {2 68) foc

partial wave amplitudes become

kEL
{(4r )’
kE,
T {472

I MU tp P P) = - MY ek PIMAL Stk P P)

D MY tpp' i P) = Mk PIMED (ki P) (290)

For on — shell, uncoupled amplitudes, the relations determine Af*+7 {k)

2
M k) = - %’;—]e'“'sines, (2.91)
k

Applying this to uncoupled amplitudes with the initial state on shell gives

MO p k Py = - |M*H (p. k; Pyl
M Hip kb Py = <M Y p k; Pl {2.92)

Far coupled amplitudes the phases can also be determined by matrix inversion.
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The relations for the R matrix alse siunplily [T the initial state 15 on-shell, the

general relations are

ﬂf:‘;{_h‘;[p,k;f’) = R‘;:x{ \,1;“7- kP
KB e .
S (—Lr?ﬁ,j,_,} elp kP ) {293
Again, if the amplitudes are uncoupled (2.93) has a simple solution

M p ki P) M g ks P)

R p.k: Py = i = 2.94
tr ! 1+ 2etraindy cosby )
In particular, for uncoupled channels,
ar)?
RY (k) = ’('LIE':,’ tandy (2 05)

[. Classification of states and block diagonalization of the eguations

The equations (2.88) can be further reduced and simplified by identifying conbina-
tions of helicity amplitudes which have definite parity and interchange symmetry In
Appendix A it is shown that the phases can be chosen so that the states [JAfA Y, =

transform under the parity operation P as follows
PIIMMA, = = (-1 WJIM - A - 2y 2y {2 U6)

where the subscript + refers to the + channel (with two u spinors) or the channel
(with one u and one v spinot) The extra phase on the RHS of (296). ¢ s a
consequence of the odd parity of the v spinnor, and is + for ( ) channels and - for
(-] channels. Similarly under interchange of the two particles, carried out by the
exchange operator Py, the phases are chosen so that

PolJMMd > = (1P " YJMA, >, (2.97)
where the bar over A; is used to mean thal the helicity of the particle is };, hut
that it is off-shell. Since the u spinnors are the same for both on-shell and off-shell
particles. this distinction is sometimes necessary only for (-) channels, where the bar
will locate the position of the ¢ spinnor. Hence, following Kubis, two combinations

of {~} channel states accur, referred to ns even {¢) and odd {o)
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Ads oo ok o0 1A, BN =5 [ual A vl A ) £ 1o (4 Jug( Ay
v Ve

(2 48)

Note in particular that the odd state is not 2ero, and that the phase of the wlerchange
aperatron Is the same for {+) and (-} channels.

[t is convenient to view the two terms which compase ¥ in Eq. (2 13) a5 & direct
and an exchange piece, as illustrated in Fig. 14 Then the interchange operation
{2.97) can be used to express the helicity amplitudes in terms of the direct part only.

Simplifying the notation for the pactial wave helicity amplitudes introduced in (2.85),
Vi (B & P) =< A AV A > (2.99)
it follows that

< AV AL S =

2change

B o~

[< ARGV > 1 < NIV, >]

[< MAlVZ X8 > =10 < A 02, N > ]

direce

B

(2.100)

where the notation ¥ ¥ will be used to denote direct amplitudes in whick particle
2.in the final state is on shell These are obtained from V by changing p, — —p,
("The proof of this relation is given m Appendix A.) The exchange term with particle
! on-shell has been expressed in terms of the direct term with particle 2 on-shell
[referred to as “alternating” contributions), thus “uncrossing” the final nucleon fines,
as illustrated in Fig. 15. The advaatage of this operation is that all potentials may
now be expressed in terms of the direct term only

Next, the parity relations may be used to reduce the number of independent
helicity amplitudes from 186 to 8§, Since only the ditect amplitudes are needed, these

8 amplitudes will be denoted:

e L L/ N I
L L Rl 7 Eu
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L L S B A - g

L A R N

L L S B N | 1

S IR | A I

L LA N A

T L B S L 12100
where e us + for VY% and ¥ - potenbials, and  for 1'%~ and 17+ potentials.

These parity relations, and the relations (2 LU0} obtaived using the partrcle inter-
change operation, may be used to decouple the original equations into three distinct
channels. Awmplitudes in which particle anic is on-shell i the final state will bLe de-
noted by ¢, as in Eq. (2.101), while those in which particie two in the final state js
on-shell will be denoted by $,, and are cbtained from §, by letting p, — P

Instead of using linear combinations ke {2.100), 1t was easier 1o progratu the |4
amplitudes given in Table V. These amplitudes all have definite sytmimetries under
parity and particle nterchange. as shown in the Table, and these symmetries perpmt
the recovery of the carrect combination for each channel {to be described heluw)
They also have certain properties on-shell, when the refative energy 1 the indial ¢
final state is zera. These properties are suinmanzed m Table V and will be explaine]
now._

The general form of any v, in Table V is

1 3 e oy Y i e . .
w=g {< MGV XN > 46 « MA Vil - X - x
A< M AT > 46 < Aol A ,}} (2 1u2)

If the final state 1s a plus channel, this expression shows that the phase under clange
of sign of p, is 8,. In particular, if 4 = —1, the amplitude will be zerq o shell where
Po =& If the final stale 15 a munus channel, the amplitude has no definite syminetry

under p, — -p, because of (2 98), but when P. = U1t couples to anly sne of 1he
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two lineas coanbinations LT PR depending ~n whether M-tz )ur | [uj,"l he
combination which survives s given in Table V; note that such amplitudes are not
necessanly zero on-shell.

Detertination of the hehavior under interchange &, -~ ~k, of the initial relalive
~uergy follows from the reflection symmetey given in Eq (2.9}, and in some cases, the
use of party. For amplitudes with A = Ay, reflection symmetry is sufficient, giving
the phase A&, if Vi =5, and 4,8, if Al # Ay In the former case, which applies to
Ui, vs, vy, and my, the p, and k, symmetries are identical. In the latter, which applies
to g, v, vy, and vy, the symmetry is identical for vy, and v1s. &nd opposite for vy
and v; Finally il A, # Az, reflection symmetry and parity are both needed, giving
the phase 6, 6,¢ if Al =X} and b,¢ if Al # A} In the [ormer, whick applies to v, vy,
12, and vg, the phase is opposite for v4 and vy, and the same for uy3 and v,4. In the
latter which applies to 2. g, 0, and vy, the phase is the same for v*+* and v~
potentials (¢ = 1) and the opposite for v*~ and v~ potentials fe = —1}

Examination of Table V shows that the potentials divide into four groups, de-

pending on their parity and interchange symmetry These are

sugleti5) P =(-11 =~y py=(1p oy
triplet(T) P={-1) = —7 plz:(—IPJ:—ﬂ
coupled(C) P -1 M=y P,y oy

virtual( V) P=(-1yY"'=gy p,= (-1 = -5 {2103)

In the (+ +) sector, with both the mitial and final states on-shell, parily requires that
states with the orbital angular momentum [ — J correspond to the usual uncoupled
channels The singlet states are those with an antisymmetric spin wave function,
which requires P,y = —P, and the triplet states have Pz = 7. The coupled channels,
with J = [ 1 1, have parity 5 and are spin triplet states because P13 = P. Finally,
the virtual states would have J = [ + | and total spin zero, which s impossible

on-shell These amplitudes, 13 — t1g, therefore play no role in the (++) sector, a fact
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which (allsws frone their anlisymmetry in p, and ko, as shown i Tahle V
Since parity and exchange symmetry are conserved by the equations, the potential
matrices which contribute {o each channel can be identified from Tabie V and Eq

[2.103} The equations {2.88} can then be written. for each channel, in the matrix

lorm
o
YR [dkpfg ar’ {2 1)
where  is the diagonal matnx
gt !
7|
§=|o—_ (2 5]
K
-
and the singlet potential matrix je
AR IR
ot vy~ \ vt LY
i , (2 1U6)
vy [ v
the triplet matrix is
CA A RS
n - -
i 13 \ vt ey
; .
vi=1 — _— . (2 1n7)
vt ut- ‘ u vl
vig" vy Ve vy

and the coupled matrix js



W our | et wgT
wtoy | vy g
v = . . (2.108)
"|+z+ “1}27 "1? g~
vt ovT vt ovrT

The equations {2.104) - (2.108) are the equations which are finally solved numerically.
While the construction of the equations presented 1n this section relied heavily
on the use of the symmetry relations, they can, of course, be directly constructed by
introducing the linear combinations of Table V directly into (2 88).
The remaining task of showing how the relativistic potentials of Table V are

constructed from relativistic meson exchange diagrains will be taken up in Part HI.

I{l. MESON EXCHANGE MODEL
The development in Part [f was very general, and holds for any choice of interac-
tion kernel {or relativistic potential). In this part, potentials constructed from a sum
of one-meson exchange contributions are discussed in detail. The form of the meson
exchange contributions are given, and the choice of form factors (or self energies}
is described. Antisymmetrization of the potentials introduces undersirable singular-
ities, and wethods for removing them and treating them are described Finally, the

structure of the partial wave expansions of the potentials is developed.

A Meson exchange amplitudes in Dirac space
The equations permit cne of the two nucleons 1o be off-shell, and this in turn
allows a more general form of meson-nucleon coupling that is possible when both
nucleons are on-shell. These additional degrees of [reedom are described by additional
mixing parameters, chosen so that the coupling to on-shell nucleons is independent of
these parameters Any dependence of the final results on these parameters is therefore

a direct mdication of the sensitivity of the dynamics 1o off-shell effects.
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The most general form of the direct vontnibution te the one ineson exchange kernel

in Dirac space, the first term i Eq (2.13), can be written

Voo = & g2[AeertPLPL) 8 Aaripa.pa)
' ; pi- e pm )

Fdpy.py ) Fipz, py) i31)

where g, and p, are the meson nucleon coupling constant and meson mass, re
spectively, of meson ¢, 8, is a factor which depends on the isospin of the exchanged

mesoi,

— roi=l
=17y = {_:, -0 fOT' tdovector mesony

8 =1 for rsoscalar mesons {32)

and F,(p, p') is the meson nucleon-nucleon form factor, which will be discussed e Sev
B below.

In this part, only the direct term need be considered; recall the discussion in Sec
Ii-T and Eq. (2100). However, it will be necessary to consider both the direct and
alternating amplitudes shown im Figs. 14 and 15. Note that the potential satssfies the
reflection property {2.9), required for the proof of antisymmetrization given i Sev
I-a

The vertex functions A will have the following forms for scalar, pseudascalar, anl

vector mesons:

Mpp) =1 [scalar)
Alp.p'l =3° +1(1 - /\.]%75 [preudoscalar)
R . . ,
Ap. P ) = 1+ &dl — LNy + —id™ip - pL
2m
(p+p
-1 - /\,}K,ﬂ—g"&’* [vector) (33
m

where, for vector mesons, the product in (3.1} includes the vector meson propagatnr

_ - AN A}
M@ Ay — Ay, - PP #;" B (34

5l



Note that if both 1he ital and final nuclean are ou-shelt, the psendascalar and
verter couplings are independent of the mixing parameters ), For the veclor case,

this Follows from the familiar Gordon decomposition

- ferie s B , + p'y ,
VT gt~ iy L”;;’?]utp) (3.5)

which halds onty on-shell. For pseudoscalar mesons. 4 =1 gives pure 7* coupling,
which conples strongly 10 "pair” terms, and for this choice the V4~ potentials will
be large. It was less clear before this work began what effect the vector mixing
parameters would have {note that they have ao effect if % = 01, and the sensitivity
of the results to these parameters came as a surprize, particularly in view of the size

of the vertor INEsOn masses.

B. Form flactors

As discussed in Part I, the meson exchange model is based on (he assumption
that the physics of low energy nucleon nucleon scattering is well described by proper
treatment of the long range or perphetial exchanges, and that ji Is insensitive to
the short range behavior, as long as sufficient convergence 15 provided so that the
~quation has solutions. The rale of (he {orm factors is to provide this Convergence in
a relativistically invariant fashion, and to parameterize the non-perpheral, short range
part of the interaction. If the assumptlions are cotrect, the overall results should be
insensitive tn the details of how the form factors are chosen, and it is consistent with
the basic philosophy adopted here to treat them phenomenologically in the simplest
possible way. Accordingly, the form factors will be taken to be scalar functions which
depend on three scalar varjables

It turns cut that cenvergence of the equations requires damping in all three of
these scalar variables Anticipating the applications of these calculations to elec-
tromagnetic interactions, where 1t IS convenient o interpeet the form factors as self

energies, the form factors will be writien in a factorized form
Elp.p'} = L(¢")htp*)hip?) {36)
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Fucthermore, note that the function A, whech describes the dependence of the form
factor F, on the off-shell nucleon mass, 15 a yhiversal function, a choice dictated by
the desire to he able (o interpret this function i terms «f madifications of the nucleon
self energy

The cannection between form faclors and self energies bollows frani the relatjons

EAL R S
e N e & 115
b4
M) 1 (37
m -k m—k+ E(p)

which give

. I
I(g%) = (u? - q’)[ﬁz—’ - l]

1
) = (m - M e ] 38)
Eip) = (m M{h’(p’) ] (
This interpretation suggests that the S, and A should satisfy the following require-

ments:

(1) £ should be only a function of 4%, and A a function only of * (This condition

is what lead to the factonization assumption| 3 6)).

(11) f. should decrease at most like a power of ¢% as g7 — oo , and have no zeros, so
that I, can be regarded as satisfying a multiply subtracted dispersion relation

with no infinities on the real axis. Similar conditions should hold for k.

(i}) filp?)=1, and A{m?)=1, so that the residue of the propagator at its pele is unity,

and the coupling constants are fully re-normalized.

A simple form which satisfies Lhese conditions is

- m%—mwtg]"
Ma = (AT 27 4 A,

where n=1 was chosen The parameter 4, is fixed by the requirement that the

(39)

logarithmithic derivative of fi{q"} at ¢?=0 be the same as the logarithmithic derivatrve

of the pure multipole

LX)



oA ATl "
INCRES (ﬁ;—) {3.10)

This gives A, = .17, giving a relativistically mvariant form factor depending on a
single parameter This parameter was chosen tu be d,,, a universal number for all

mesons. The final meson form factors are therelore

2
.

1042 _,2 1
e
The second form for f, shows that 1n the non-relativistic region, when —¢* = §7? <<
A2 (and assuming p} << A2) the form factor (3.11} approximates the monopole
form factor commonly employed in non-relativistic calculations. When g’ is large,
the monopole form {3.11) goes like ¢~*. However, since the relativistic form of ¢°
goes only like a single power of momentum at very high momentum the form (3.11)
also falls-off like the non-relativistic monopole at large § ?. Hence the form (3.11}

behaves in many ways like its non-relativistic counterpart

A7 — 'uz
NR Tt 312
f. A2+ ¢ !
which facilitates comparisons with non-relativistic treatments.

For the nucleon form factor A the same considerations apply, except that A is

chosen to reproduce the derivative of a pure monopole at p* = m?. This gives

'.’(.'li, - m?pP
24 —m?)?
T 9(AL, — m)AE — il + (m? - p?)?

h{p') =

(3.13}

which again shows that, in the non-telativistic imit when m? — p* << m?®, k behaves
like a pure monopole. but that at large p? it falls like p*, providing additional needed

convergence.
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C Singulanties and their remaval

53, corresponding 1o amphtndes

Unfortunately, the alternating diagram, Fig 1}
wherte particle 2 in the final state is un-shell, has singularities m the physical region.
Une of these is natural and expected, it is due to the possilality for physical mesan
production and occurs only when W > 2m ¢ g, However, the other is spurlous, atsl
arises from the process of separating out terms in which allernate nuclecns are o
shell. [n this section the origin of this singularity will ke described, and metheeds fur
its removal explamed.

in the UM system, 1L i=nominator of the meson propagator correspuoiding 1o

the alternating term is:

Dlzy = +{F + fc')z W - E, - Eu)

—p? - 2m? 4 2EE, - 2pkz — (W - 2E,)(W - 2Ey)

— D(-z) = (W = 2E, (W - 2F,) (3.14)

where 2 is the cosine of the angle between the two momenta p and k, and Diz) 15 the
denominator of the direct teem. The alternating term differs from the direct term n
that the sign of the relative energy of the final state 1s changed, which produces the
additional energy dependent term (W - 2E (W — 2E,1 It is this energy dependent
term which produces the singularities, and 1t [ollows that these singulanties are absent
unless both the initial and final states are off-sheli (W s 2E, and WV # 2E,)

The singularities occut at the zeros of D, which are at
W=E+Etw.. {315}

where w,_; is the on-shell energy of the meson. These singularities arise frum the

two time ordered contributions to meson exchange, shown i Fig 16, The one m

16a, corresponding to the plus sign in (3 15). is due o the possibility of real meson
B

production. Specifically, when W > 2Af ¢y, for any p there exists a k surh that the

exchanged meson can be physical, and integration over k in the integral equation wiil
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“ross the pole at TETY produsing an unagimary vontribution to Vo which includes
soine of the imaginary terms needed 1o descnibe real mesan production. While this
singularity is physical and welcomed, 1t is not particularly helpful since other produc-
fion meechanisms, such as those shown in Fig 17, ate needed to consistently describe
inelastic processes  Hence this singularity will be eliminated in this work. but will be
restored in the [uture when these equations are extended to treat inelasticities.

The second singulanity, shown in Fig 15b, and corresponding to the minus sign
in Eq (3.15), is spuncus 1t 1s due (o the fact that the off-shell nucleons can have
energies less than m, and if their energies are sufficiently small there is the possibility
that the physical on-shell nucleon could decay into a real meson and one of these low
energy, uff-shell nucleons. This vertex instability singulanity, which also produces an
imaginary contribution to ¥, is however not really present in the full theory because
# 1s cancelled by another unphysical process shown in Fig. 18. This is identical to
Fig. 16h. except that the meson is on-shell, and as k — |E] ncreases in the initial
slate, the energy of particle one, which is W — E, + w, increases until it equals Ey,
the on-shell energy of particle 1. At this point the pole in the propagator of particle 1
ts encountered and there is a singularity, and a corresponding imaginary contribution
te the integral equation. It can be shown that the two singularities from Fig. 16b
and Fig. 18 cancel, but since mechanisms cotresponding to Fig. 18 have not been
terluded in the integral equation described in Part 11, the cancellation cannot occut.

The solution to this problem is clearly to add additional contributions to the
integral equation so that the unwanted singularities are cancelled. Before describing
this. it will be demonstrated that the two singularities do indeed cancel. To see this,
consider the box diagram shown in Fig. 19. Here the initial state is on-shell, for
simplicity, so that E, = W/2, and the final state has particle 2 on shell. To see what

happens, it is sufficient to treat scalar parlicles, in which case the box is
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g

(m?—{ ‘% S e ){m? - ['%', Sk - we)(p® - gl — i) p? - —de)

Consider the k, integration  There are & poles in the complex k, plane. as shown
Fig 20 for the case when p' =~ 0. p and 4 are both small, but p > &, and W - 2E,
The alternating contribution to the polential, arses when the &, contour is closerd
in the lower half plane and the pole at k,=E¢- W/2, which cotresponds to particle |
on-shell, is retained. {Remember that antisymmetrization requires that the nucleon
pole contributions resulting from closing the contour in both the upper and lower
hall planes be retained - were it possible 10 keep those in the upper half plane oniy,
there would be no spurious singularities | Retaming this pole does give the leading
contribution, but when W > 2m + u, the meson pole in the upper half plane van

overtake the nucleon pole. This happens when
., 1.
w2+Ep---§u =§H - Eu

which is the condition (3.15) with the plus sign, corresponding to real meson produc-
tion. However, when both p and 4 are large, the meson pole in the lower half plane

can also overlap the nucieon pole. This occurs at
. 1,
wit gW = By - oW

which is (3.15) with the minus sign. This is Lhe spurious singulanty, and 1t is clear
that it will be eliminated if both the nucleon and meson poles in the lower half plane
are tetained. Alternatively, the two pole contributions correspond to the diagrams of
Figs. 16b and 18, and since they atise from singularities in the same hall plane, they
give cancelling singularities when both are retained Note that the same cannot he
said of the production singulanity, it pinches the nucleon pole and gives rise Lo the
cut associated with meson production.

While it might he desirable to elilminate the spurious singularity by retaining

the full meson pole contribution, this would complicate the equations by couphng to
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amplitudes in which both nucleons are off-shell A sunpler prescnption is 1o subtract
the most singular part, which vccurs when Luth the meson and nucleon are on-shell

For spin zero mesons, this gives:

: 2
- g T g

e —2 e —inb[Diz)| } =P =— 3 16
( Dz — e BB ]l) Dz} it

Note that the direct tesm has no singulanties, so the principle value has no effect on
this term. For the aiternating term, the defta function cancels the imaginary part of
the meson propagator, leaving the real principal value. This does not eliminate Lthe
singularity entirely, but the resulting potential is real and the singularity is integrable,
ensuring that the M matnx calculated from such an interaction is smooth. When
calculating the two meson exchange potential, the § function would be restored The
prescuiption (3.16) for removing the singulanty 1s the principal value prescription
refered to mn Part [

It is useful to test the numerical differences between slternative prescriptions for
removing the singularity To this end, and in order to produce a potential independent
of the total energy W', use may be made of the fact that a sufficient condition for
the Pauli principle to hold for the half off-shell amplidude, is that it hold for the
half cff-shell potentral. This follows from the discussion given in Sec. II-A, where
it was shown that the final state was properly antisymmetrized provided only that
the imtial state was antisymmetrized, and that the potential satisfies the reflection
property (2.9).

One prescription which meets these requirements is to choose
ﬁ(z} = DMz) [(energy independent prescription) (3.17)

This choice completely eliminates all singularites and any energy dependence from
the denominators of the meson prapagator It works because it holds if either the
initial or final state is on-shell (recall Eq. (3.14)}, and because it does not violate the

ceflection property (2.9). In the realistic case with spin, this prescription is applied
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only to the meson denominators m Eq 13 1}, the numerators are treated the same
way in both cases.

A third possible prescription consists of a combination of the principal value and
energy independent prescriptions  Since the denomnators for the direct and alter-
nating terins are equivalent whenever the initial and/ur final nucleon pairs are on the
mass shell, the two previous prescriptions can be combined by using the principat
value prescription for momenta below the on-shell pont and the energy independent
prescription for momenta above this point The physical meson production singular-
ities, which may occur at momenta below the on-shell point are thus treaied as in
the principal value prescription. The unphysical singularities. which always veeur at
momenta above the on-shell point are totally eliminated by using the energy inde-
pendent prescription  This “mixed prescription” was used in the Mudels tabeled A,
and previously reported in Ref. (10].

These three treatments of the Pauli principle give very simular numencal results,
showing that the singularities in the “principal value” prescription are net numencally
important. However, in applications the “prinaipal value”™ prescription is preferred it
gives a realistic description of the mesons near therr mass-shell, which can he probed
in electromagnetic interactions.

The fact that the singularities of the “principal value” prescniption are nel very
large numetically follows from the observation that they oaly occur at relatively high

momenta if p = k, the singulanties first occur at

W+ . )
p= O m=- {3 13}

For the worst case (W =2m, p=p,) this happens at

p = 367 MV {3 193

which is far off-shell in a region heavily damped by the wave function
The numerival procedure for calculating the principle value of the potentials s

explained in Appendix B.
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D Partial wave decompasition of the potantials
The final task is to construct the specific partial wave potentrals given in Tahble
V from the amphitudes (3.1). This construction proceeds in Lhree steps, which will
b described in this section More details can be found in Appendix (.

The steps are:

® anstruct helicity amphtudes for both the direct and alternating versions of

(310,

* project out the J™ partial wave using the inverse of the expansion given in Eq

(2 85);
® form the hnear combinations given in Table V.

The first step is carned out using the helicity spinors defined in Appendix A The
general form of the result is
. {Ep + m)(Ee +m) . g76, _
Vi lp b, Py= 2 TR Le 4 m) =—F
4y, A;A](P ) -1E,E;, z.: D,
AN S (1 ) 4 A e, “ml Ay > 1M (300

where the sum is over all mesons being exchanged, the factor 97 & wag defined in
Eq (313, D, is the denominator of the meson propagator (either the D or J de.
fined m Eq (3 14)), and £, is a shorthand notation for the product of form factors
Flip. k) Fip;. k;) The « >'s are matnx elements of the two component nucleon
spinots defined in Appendix C, and the It I'™ are angle independent (but helicity
dependent ) terms characteristic of each meson These terms, and the denominators
D, are different for the direct and alternating contributions

It is shown in Appendix C that
< Mdaley oA = T < AL (3.21)

where T 1s either 1 or - 3 and s independent of the angle §. Hence the two terms in

curly braces in (3 20) can be summed-
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Y SIS ¥ L} RS

[t is convenient to expand the [, (and [, for the a[remating potentialstin the following

sel of hasis functinns (which depend on ), and A

AN pk
Bf= 1y — PR

' (Ew + miE, + )

BE = AN K + 2hp [3.23)

F, + m E,+m
The form of the expansions depends on the p spin of the potentials For the 4 + or

* - potentials, the following expanston holds

L= ROVE] 4 RabTOT + Ro010; + R, 8,03

+ Rady é) + Reo] b + Repl d; + Re 975 (324}
and for the 1+~ apd 1°-+ potentials, the expansion is

I = 506 + 2876, + 5a8; pF 4 S48; oy

+ Sedl 07 + Segty + Srd[ 0F -+ Sed 0 13 29}

Tables VI and VII give the R's and S's for the direct and alternating contribution
from each meson. Note that these terms are mostly independent of 7 — cosfl; only
the factor o which appears in some of the vector T'T' terms contains one power of
z. which must be taken into account when carrying out the partial wave expansions
Note also that the off shell dependence of the potentials is apparant in the parameters
a,a' 0;,al, b and ¢. If both particles are on shell, all of the o' are zero.

Next, the partial wave projections of {3.20) which are needed follow from Eg

(2 85)

V':‘\;_,:,;(p,k, P)= 21rfdz d';.\[ﬂ]["\l\-l_l\}l;[p,k; Ia] 13 26}

These partial wave amplitudes are expanded in the form
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A

Voutp ki Pr= on

m- S ' .
QIE;E[JZ &8 < WA -

L F vy e fy :
xz‘g‘-D——{I,(x\,/\z.t\r\;l+-'f.()'1,f\z;'\1-"z)} (3.27)

whete the i, and [’ are mdependent of 8. Their explicit form can be found by
combining Fqs. (3.20)-(3.25), and using Tables VI and Vil, but we will not record
these intermediate results. Eq. (3.27) shows that all of the partial waves can be

expressed 1 terms of angular integrals of the form

] d] 2 2 -
A= e ) {3.28)

where seven angular combinations 4, (7 =1-17) of the form
d, = =" < LAdN A > daid), (3 29)

with m = 0 ar 1, are requited to evaluate all angular integrals involving the direct
and exchange terms for each meson. These angular combinations are listed in Table

Vill. Other integrals which may be required can be obtained using the relations

d, =4, = (-1 (3.30)

.
Finally, the linear combinations of potentials given in Table V can be constructed
from the expansions (3.27). The final results can be written compactly in terms of

the angular integrals (3.28):

W= %ﬁh‘pi )h(ki:%y?é. % [4:B,. + AlB,] (3.31)
where A and B8 refer to A and B evaluated for the alternating terms with p, — —po.
as discussed in sections IL-1 and HI-C. The plus sign holds for those potentials even
in Pa, Us, Vg, Us — V12, 88 shown in Table V. The rest are odd in p, and the minus sign
i Eq. (3.31) is required. The non zero clements Bj. are shown in Teble IX. They
are sums of eight independent quantities 5, For the ++ and - — potentials, these

B.'s can be expressed in terms of eight independent combinations of the R’s defined

in Tables V1 and VII:
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By~ (R + Byl b (fy + ROT™ 4 idly v Redl'* v (R ¢ RU
By = (Ri+ Ra)T* 4 {Hs+ RAT [ Hs + Ra)l/" — (R Redl!”
By = —( By + R)T™ — (Hy+ R = (Hs v RellT™ — {87 + Re)!
By = B+ ROT™ - (Ra+ ROTT +(Rs + Rl + (Hy + Bal?!
B, = (R, ~- Hs + Rg — Rg)Y’
By = (K, — H; — Hs + Ra)¥
Bg = (Hs— Ri+ Rs — R7)Y
By = (Rq— Ry~ Ra+ Re}Y (1.3
Sinulatly, for the +— and -+ potentials, eight independent combmations of the &'s
are required
By = (81 + Sut S + 58X + (S + 5s+ Se+ SrpXL
By =(—85 = Sy + S5+ 5a) X0+ (-5 S5+ S+ 57047
By = (=5, — 54 - 55 - S} X[ 4 (—55— S5 — S - SIX7
By =[5, + 84— 55 — S} X, + (84 53— 54— S1)X7
By = (5 - S+ 85— S) X} +{~52 + 524 S5 - Sr)X,
By = (=S + S+ Ss— SabX} + (52— St S S10X]
By =15 — 84— Sg + Se) X, + (- 57 + S5 — Sa + 37)X)
Br = (5, + 5= S + Sa) X, + (52— 5 — 8 + 50X, 1133

These expansions are given in terms of the following functions,

b BB o BB
m m m
oo BB oo B B
wm.m - T
. _kE k
A = rnzp M = m
o _PE N 4
X = m? o= m
. kp
Vo= - 330

m
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In Tabfe TX the syimbol 8, denates the contributions to B, independent of z, while
., dendes the rontributions propartional to =, i e. B,{ zcontnbution)=28,,.

T+ summarize, partial wave amplitudes of the potentials of Table V ate given hy
Eq {3 31) with the angular integrals defined in Eq. (3.28) and Table VIII, and the
B, expansion coefficients defined in Tabte [X, Eqs. §3.32) and {3.33}, and Tables VI
and V11
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APPENDIX A- STATE DEFINITIONS AND SYMMETRIES

L. Definition of helicity states.

Following the notation in Jacob and Wick [38], we define helicity spinors for
particle 1 from rest spinors (quantized along the {3 ditection} by

w7 A} = wdp. 8.6, \) = H, (0. 3) (A1)

where M, = Ryl,; L, is o pure boost in the = direction which carries the vector
{m.0 ) into 1£,,0.0,p). and R; is a pure rotation from the 3 direction to the p

direction characterized by polar angles @ and 4. We use the convention

As= Rep g = e g {A2}
The rest spinor is
~ 1
uy(0,A) = (o)i'\ >1 {Al}
64

where

I,; >y (:}) Fl 1= ('1') (Ad)

The helicity spinors for particle 2 (1n the CM frame) are oblained [rom those of

particle 1 by first transforming u,(p.0,0, Xy into w,
uz(p,0,0;1) = [—71]5“ PR u,{p.(H0; A} {AS)
and then performing the same rotation R; used for particle 1. Hence, if A7 -
Ryeo™h [
walF AL = H u,(0,4) (AR]
The description of off-shell particles also requires negative energy v spinors, hul
with three momenta in the opposite direction, so that the vy spinor helicity states are
obtained by charge conjugation from u, helicity spinors, and visa versa

valfa A} = g A)C &) (5, 3)

tlF2. AL = 8a(A)C 6] (5, M) (AT]
where & and () are phase factors We will eventually fix these at

R} = (1)

4= -1 (A%)

The reasons for these choices will be described below

In the applications described in this paper, the scattering will be confined to the
tz plane, with the initial state particles 1 and 2 moving in the +z and - direction,
respectively, and with the momentum components of patticle 1 in the final state
given by p = (psin 8.0, pcosf). With these conventions, the actnal spinors used n

this calculation are
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1
| ,X):N( _)|,\>,
P A7
n(pA) = N(‘i"”)u > (A9)

)
with i=lor 2, p = EP%;;, N = (Elz—;—"‘); and |A >, are given in Table X. This

convention differs from that of Kubis by an overall factor of (EP,’m)g
2. Panty transformations
First, cousider the transformation
V' =ehp {A10)

where P is the parity operator. This transformation leaves the x — z plane invariant,
but changes § — —y, and hence is equivalent to changing ¢ to 2r — ¢, and leaving 8
unchanged Since hehcities are invariant under rotations, it also changes helicities

to —A Explicit construction gives, on the Dhrac space,

—10y )
V= -0y = ) {All)
10,y

and therelore

Y oudp 8 d) = (-7 un(p8,2n — - 2)

Y owalp. 0 Ab = (=31 wafp. 8,2 — ¢, -4} (A12)

The ¥ parity transformation on the two particle direct product space (a and d are

Dhrac indices)
2.0, Ady > = uialp. 8,40 A ) @ uap(p, 0, ¢ Aa) (A13)
becomes

Y 8 g Mh o= (1Y P p 82w — 6 — Ay - g > (Al4)
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where in a two particle context A — &, Ay (and should not be coubused with the A
user previously to represent genenc one particle helicities)

For the negative energy spinors, the trapstormation laws (A1) become

X L
Youlp8.¢3) = __’!LL[_“;- Yop 8.2, - A) {AlS)
7 -A)
and similarly for v; With the choice of phase (A¥), the ratio g(Aj)jgl A) = -1, and
the transformation laws of the v spmors under Y panity differ fromi { A12) only by 1he

presence of an overall - sign  When particle 2 is in a negative energy state, the lisect

product representation 1s
g8, 0 M d > = wdp o A Q vaslp. 8,0, ;) [Al6)

where the - subscript refers to the - channel {with one u spinor and one v spinor)
and the bar over A is used to mean that particle 2 1s off-shell. Since the v spinor can
only accompany an off-shell particle, the 1dentification of the v spinor with particle ¥
in Eq. {A16) is unique. The ' parity transformation on minus channels s sipular 1

{A14}), but with an extra minus sigh
Yip g Mdy o = — (=11 Yp,8,2m — g, -2 — Ay 5 (ALT)

The presence of the additional manus sign wm {Al7), a consequence of cur phase
convention {A8), 1s a natural choice in view of the fact that the intrinsic panty of v
spinors is opposite {rom that of v spinors

‘The Y parity tesults can now be used to obtam Eq (2.96) {or the transiormatinn
of two particle states under parity. First, following Jacob and Wick, we define states
with good angular momentum by

L1 g = g
lpJMMds 2y = \/:——] sinddd [ o [T dy DR (a8

ir 2m
Ran (00,0, 0,4, >4 {A L%}

Operating by P = R;. Y, and recalling that P comnutes with the ratations, gives



2741
Elpd M 5y = \/—-_h;r f«w Dyt d 1) Ry 5, R,

an.0

Vip.u.G; A, >, {A19})

where JI7 is a shorthand notation for integration over the group elements o, 3, .

Next, intraduce

R = Rag RN, {A20)
and note that
Dida8.9) = 37 Dl ta 3, 9) DL (0, 7.0y (AZ1)
"
Hence. using
D0, 0) = L (r) = =17+ %6, (A22)

the relations {A14) and (Al7), and the completeness of the group integration 4¥/,

gives finally

s paaea [+ 1 ,
PlpdMAdy >y = &~ 1) —;[dun,{,,_,{a,ﬁ.vn—l}’ }

Ra grelp 0,0, =4, = ) ket

’

= (-1 pd M = A =2y >, (AZ3)

where € = 41 dor 4 states and 1 for - states. This completes the proof.

Finally, if the potential is invariant under parity, then
PIVP = v . {A24)

Taking matrix elements of this potential in the angular momentym representation,

and using {A23), gives immediately

SRR PR A I 15 L L S e | Ll I VD TN (AZ5)

where ¢} and ¢ are final (f) and nitial (t) state phases from Eq. {A23) Hence, as
0 Eq (2001). ¢ = ¢4/ is + for V** and V-~ potentials, and - for ¥+~ and V- +

polentials

3. Particle interchange

The particle interchange operator mnterchanges the momentum (all 4 components)
and spin of the two particles. In Sec 1.1 this was accemplished by changing the sign
of the relative momentum. p, and interchanging Dirac indices, o and A. On the direct
product space of nucleon spinors. the interchange 15 accomplished by interchanging
the Dirac indices only, smce this operation automatically interchanges the momentum

and helicity of the two particle state. Hence for the -+ channel
Prafp.0,0; 2307 >= ol p. 0,0, L) Q@ uialp, 0.0; 4y ) [A26)

Recalling the relation between w; and uy, Eq. {A5),

Paalp, 0.0 00 %2 > = [l 13 ™, (.0.0; 3)] @ wratp, 0,0, 0, )
_ [71]"‘7‘\’(—:"1": 1) [E—Zi-.i",'u!u(p‘ U,ﬂ;)g)]
[ [( _1)im e_'-'J:um(p_ 0,0; A, }]

= =1 M p 000; A0, > {A2T)

where J7* implies that J, operates only cn the Dirac space with index a and J, -

Jo+ Jf In the last step, use was made of the relation
et o {A2R)

which holds for states with half-integral spin.

For channels with a v spinot, a similar argument gives
Pualp0,0: 0% > = 12a(p, 0,0, 32) @ wap(p. 0.0; ;) {A29)
This is to be expressed in terms of the state
1. 0.0. 320 > = v1a(p.0,032) @ uaglp,0,0: 1) (A3N)

Hence we need the relation between vy and vy. Using the definitions (AT) gives

A9



vl 0L U; A ) = M i (p UL s Ay)
= A= 1) 38™ uy(p, 1, 0; Ay

-

= A2 e (s (p,0,0; Ay)

:6(*1J%_h€“ Dretp, 0,0 Ag). {A31}
Hence the interchange gives
Pratp, 0,0; A A » = S(—1)M Me™p 0,0 A4, >

The choice & = --1, Eq. (A8), insures that the + and - channels both behave in the
same way under particle interchange
Finally, using the definition {A18) of the good angular momentum states, and the

relations { A20)-{A22), we obtain immediately Eq. {2.97):
Prip MA Dk >1= (-1 pIMA A >, (A32)

The particle interchange operation was used in Sec. H-I, Eq. (2.100), to express
the exchange potentials in terms of direct potentials In the notation of Eq. (2.100},

the Dirac amphtudes for the ditect and exchange potentials are, from Sec. 1l-A

Vilee = Vil agr(Pos ko)
Ve hange = Vil —Pos o) (A33)

where all unnecessary variables are suppressed. Hence, if we let the operation Py,

denote interchange of Dirac indices only {to avoid confusion)

| = PizVairearl ~Por ko) = PraVieent (A34)

exchange

Hence, from {A32) we obtain immediately

< A Ae { V enge | M > =< ke | PraVirea | 4] >

exchange

=17 < Ay Faea | A0 > (A35)
This justifies the results in Eq. (2.100).
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4 Tie reversal

Tiine reversal mnvanance can be nsed to prove that the scatternng mavsix s sym-

metric Fer this purpose it is convenient to work wilh the uperator £ = AT where

T is the Dirac time reversal operator
103
T=0CyK - ( K | AMy
—ia;
where A is the operation of complex conjugation Hence, on the Dirac space
zZ =K [AIT)
and
Zlp, 8,9, 20 o= |p.t0.2x — ¢ Mg oy AR

Hence, on the angular momentum states

21 g
ZIPTMMA >, =y = [smedﬂf dé Dl (.0, -9} | p.8.2r — ¢ M -,

2IM b
— 5 [Csintds [T o Dlee, -er 1 pd 00N

= [pdMAA; >y A3y

where we use the fact that A and \ are integer. Now since Z 1s antiamdary, if the

M matnx i invaniant under T then supressing p, J and M,

< NAIMINA; > =< XNZMZ 7N, »

=< M LIMIA, (AdD)

APPENDIX B: PRINCIPAL VALUE INTEGRATION
AS shown in Tible VIH n[ld Eq, [3.28}, thl? parlla] wave Ller(,-mpn.s]t](]n 1;;[ lllr'
exchange contribution to the potential can be expressed in terms of integrals of the

form



= (B1)
Defining 2., such that E[:] =0or
2pkz, = g — 2m ¢ 2ELEL (W - 2B (W - 28, (B2)
then the integral becoines
U, A 2P ()
= —/P] T i) :
‘ Ik I, o -~z (B3

If the form factor mass is much larger than the mass of the exchanged meson (as is
the case tn the solutions presented in this paper), then f.’(q’(z)} is slowly varying
in the neighbothaod of the singularity at z — z(9% 2} = #*). Note, however, that
2" P s} may be rapidly varying near z,, patticalarly when 2, is near the boundaries
of the mtegration region.

The rumerical evaluation of 17 can be simplified by using a standard subiraction
technique to rewrite I as

. ;Lf‘ 2" PA N FHP()) - Filp®)) N fi"‘_”pj" d» 2P (B4)

dpk 14 Z, -1 2pk -1 Z, — 1
The frst term of (B4) is now a sinooth function of z with a removable singularity at
% The second term is singular but can be evaluated analytically.

In order to evaluate the second term of (B4}, it is convement to express :" in
terms of a sum of Legendre polynomials. This can be accomplished by using the
relentity

SR = Y 3P o) (B5)

£=0
where (3 = 0 for # pn — 28 < §  Recursion relations for the coefficients of this
expansion can be derived from the recursion relations for the Legendre polynomiais

The recursion telations for these coefficients are

n+f Lt

e
(pe- _ 7S

2(n +f}: e
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we n £ -2 gmet no+E 2y e

o= o — i - s e s (Bt
! Hn+ (-2 | € An+€-20) 43 7! ” )

i

The starting points for the evaluation of these recursion relations are

o2t = for all ¢

(A || farall ¢ -1 . (BT

sing Lhe expansion (B5), the integral

2" P 2)
PRALNALD

1
sr(z;)zPLd

Zo %
. ' Pelz)
N j' Zetz)
(‘,’:;C‘ P -12,~2z
=23 Q2 {B3)
'=p

where Q, is the Legendre function of the second kind

The use of (J, in numerical calculations involves same difficultjes The fiest of
these is that the Legendre function Q¢ has loganthmic singularities at z — +1 These
singularities are integrable, but since they are present in the kernel of an integral
equation and cannot be integrated analytically, it 1s necessary to require that the
singularities do not introduce convergence problems in the solution of the ntegral
equation. This can be done by “smoothing” the Legendre function. This 1= done by

defining a “smoothed” Legendre function of the second kind as

(B3

Lpe /1 42PAz) 1 da(z - 5)PY2)
Q"'(r}_QRC/- - 2/4 (z—z)2 + ¢

1T~ =+ ¢
The recursion relations for 1he Py can be used to obtain recursion relations for

Qs.(z). These recursion relations appear as a coupled set

2 — 1 f—1 201
7 Q. (2} - _‘rQe-z.a[I) + 7('—62-414_41‘]

-1 2t -1
; Ae-z.lc) - *-?—'n‘hq.(l') (B1o}

Qeelr) =

28—
Agfr) = —t,*l‘Az—l,z(l') -

where
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1 gt dzP(2)
Age = - — - B1i
tal ) 2[_1 (z -z +¢ ( l

The [unctions Qedz) and Ag{z) can be calculated for £ = 0,1 directly [rom (BY)

and (Bll) o give

1 e i+ 1)
Qo.lr) = iln [‘T"' =18
1 1 -1
Ag.lz) = e [tan’l i-;tr- — tan™! %]

Qrelz) = zQou(z)— 1 + ETAn_c(l')
Ayelz) = 2 Ao (®) — Qo.l7)

From the numerical standpoint, one further problem remains. Although Q. z)
can be easily evaluated from either explicit analytic forms of recursion relations near
the interval —1 <¢ z < | for the range of £'s needed here, these methods become
unstable for arguments of larger magnitude. However, a series expansion of Qr)

can be constructed for |z] > 1. Noting that we can expand the dencminator in {B9)

as
= Z for —[ <1,
— I+ ic oz + :f)"”" F + t€
the smoclhed Legendre function becomes
I Re L [ .
Qute) = 3 3 R [ 4
[t is convenient to rewrite the integral as
1 1
[ld:z"P((:) =£ dzz" Pl z) Pl z)
= Y(";Oj‘ dzPo_ae (2)P(2)
=0
1
= \ C',. -2, (B12)

241 =
where the orthogonality relation for the Legendre polynonmals has been used in the

last step Using
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1 coslrig)
E e
where
$ =tan " E

the series expansion for (g () becoines

1 X ,..r”gfhs[l ’f l—f'+1)(,n]
)= —_— 3¢
Qe Zf+l(1.z+E2)L§J o [.r +€]

Figure 21 shows a companison between the smuvthed Legendre funsction ¢4, (¢}
(solid line) and the Legendre function Q¢ x} (dashed linej for ¥ < ¢ < 4 apd « - 105
This clearly displays the smoothing of the loganthmuc singulanty at r - | The
oscillatory part of the function for —1 < x < 1 1s also modified by the smoothmg,
however In principle, the phase shift and bound state calculations are now funciins
ol the parameter e. This functional dependence is displayed in Fig. 22, where the
scalar scattering length a, is plotted as a function of e. This scattering length, which is
extremely sensitive to the paramenters of the model, is clearly becoming independent
of the value of ¢ for small values of ¢. The calculations shown in this paper are
performed with ¢ = 005 which is chosen to provide a gond compromise between
convergence 1n ¢ and convergence as a function of the number of gnd ponts used s

the solution of the integral equations

APPENDIX C: PARTIAL WAVE DETAILS
In Section 11I-I, the major steps in the calculation of the partial wave decompn
sition of the relativistic potentials were recorded This appendix gives a few of the
details.
The first step in calculating Lhe partial wave potentials is to consteuct the helioy
amplitudes Examination of the couplings given in (3 1} shows that this requires
computing the matrix elements of the following Dirac operators: 1,45, 47% 1. and

a*y,. The resulting matnix elements can all be easily expressed in terns of the 87
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ane b miroduced in Eq. (3 23), and will ned be given here. Uombiming these results
with the proper fecturs and mixing parameters, 1, gives the results summarized in
Tables VI and VII

In this ralculation the matrix elements
< NGV s =« A >y < AglA e,

= MAglaa - m|\A) > =< A le)] >, < Xalat1A] >, '

are encountered. Here the A, are the twe component sptnors summarized in Table X.

The ficst matrix element has already been given by Frkelenz (39, and can be written
ye ; I , 1
€ MBI, > = (1A N leos 204 (_xl =) om =4
. 1 Y|
\,(|A,+ Mlcos 20— (3, - X;) sin 59) (€2)

The second matrix element is clearly related to the total spin 5 of the state, but
Lerause the A's are helicities, and not projections of the spin in a fixed direction, care

must be taken Note that
amld —As=|) s (C3)
but that
oo A X x= A A > 42 X Z A {C4)

Hence the only amplitudes for which T, as defined in Eq {3.21}, is not automatically
I. are those involving linear combinations of the form «< A A loy - ofA’ X > Exam-
teation of Table V and Eq. {2.101) shows that the only amplitudes so affected are
1,5, v, and vy Furthermore, in these amplitudes the combinations which occur

are
11 1 11 [
Gy = { <5 ilﬂn'azli 7> ¢+ = 3 ifal'ﬂzl Y373 >(1}ffoul9)
{C5)
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where (", appears m vg, vy and (" appeats n vy, t5. Bxphet evaluation gives

. 11 . . IS N T BN
[ _-{<§§IE§>(—(,1—‘J(,)| Qiilf'é 72—>(2t11(,)1d0ﬂ(ﬂ]
1 , , i i 1
- {5“ raf -0 £203) - HIEEIES I(,)Ido,(ﬂ)
1 . | B -
:{[Wsyj((',;r,'g)+§:((',i('1)}dm,(n) ()
This shows that T = -3 for the term which multiplies the angular mtegral ), and

T = 1 for the term which multiplies d;. Farthermore, no additional terms involving
: = p-k accur together with a, - ¢;. This explains why in Table IX, only the terms
By Bys. Bip.and B,y have T = -3
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FIGIURES

FIG 1. Nucleon - nucleon np bar phase shifts The curves are for Madels 1A {solid),
1B (dash-cots], ITA (long dashes}, IIB [shert dashes}, an¢t the Bonn [22] tdots] The rrosses
and rircles (both with error bars) are the SP83 solutions of Arndt and Roper [23] and Bugy
[24), respectively  All phase parameters are in degrees, and the harizontal scale is the lab

kinetic energy of the incoming nucleon, jn MeV'

FIG 2. Differential np cross sections for various lab energies as a function of center

of mass angle. Curves are Model 1A {solid}, Medel THA (dots) and Bonn (dashes)

FIG.3. A few polarization transfer observables for np scattering as a function of center
of mass angle. Dr is the transfer of » type polarization from the beam to the recoil particle,
while Ry is the transfer of s type polarization from the beam to the recoil particle Curves

are labeled as in Fig 2.

FIG 4 Differential pp cross sections for various lab energies as a function of center of

mass angle. Curves are labled ag in Fig. 2.

FIG 5. A few polarization observables for PP scatteting as a function of center of mass
angle. D is the depolarization paraineter for = type beam to n type scattered particie, A is
the depolarization parameter for longitudinally polarized beam to s type for the scatterad
particle, R is the depolarization of s type hean to s type scattered particle, and A, is the

asymelfry tensor for n type heam and target. Curges are labeled as in Fig. 2
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FIG 6. Triple polarization parameters for pp scatering as a function of center of mass
angle. My, describes the correlatiuns of s type beam, » type recoil particle, and logintudi-
nally polarized scattered particle Af,,, is the correlation of longitudinally potarized beam

and scattered particle, and n type recoil particle. Curves are as in Fig. 2.

FIG. 7. Deuteron wave functions for Model IA (solid), IB (dash-dots), IIA (long
dashes), [1B (short dashes). The position space wave functions are shown in the two left
hand figures and the momentum space ones in the two right hand figures. The upper two
figures are Model IA only, and show the the behavior of the large component u. The lower
two figures are drawn so that the comparative sizes of of the smaller components, w, v,

and v,, can be studied.

FIG 8. ¥** and ¥*~ dependences for Model [A. Full calculation (solid), V77 =0

{dots), and V¥~ = }"~~ = 0 {dashes) are shown.

FIG ¢ V** apd V'*~ dependences for Model 1IA. Curves are as in Fig 8.

FI(3. 10. Dependences on A, and A, for Model IA. Full calculation (sclid), A. = 0
(dash-dots), A, = 0.8 (dashes), and the result of setting the ‘:ﬂ: terms in the p and w

propagators to zero {dots} are shown.

FIG 11. Relativistic effects {(Model IA). Full calculation (solid}, without retardation
{long dashes), without retardation and the (-} channel (dots), non-relativistic limit [short

dashes). See discussion in the text.

FIG 12  Depemdence of the J — L ~ 0 phase parameters on the virtual “odd” stares,
as discussed in the text Full result (solid) amd results when uild states are cmunutted forne

the coupled equations (dots) are shown

FIG. 13 Diagramatic representativn of the equatinns (2 3)

FiCG 14 Antisymmetrized potential [2.13}, with direct and exchange terins

FIG. 15. Diagramatic representation of how the exchange diagram with particle |
on-shell is transformed into a direct diagram with particle 2 on shell {refered to as an

“alternating” diagram}.

FiG. 16. Time ordered contributions to the alternating diagram shown in Fig 1% (a)
givea rise Lo real meson preduction, and (b) gives the spurious singulanities discussed m the

text

FIG. 17, Self energy contributions which also contribute to the real meson production

singularities

FIG 18. Time ordered diagram which generates singularities which cancel the spurious

singularities arising from Fig. 16b.

FIG. 19. Box diagram used to prove the cancellation of spurious singulariti=s

R3



FIt: 20 Location of the singulanties in the complex k, plane of the hox diagram

shown an Fig 19

FIG 21 Comparison of the smoathed Legendre lunction Qg (2} {solid] with the nos-

mal Legendre functions Qplz} (dashes) for 0 < 4 < 4.

FIG. 22 The scalar scattering length a, as a function of the smocthing parameter, ¢
tor small . all phase parameters are independent of ¢, and the figure shows that ¢ = 0.06

1s sufficiently small for convergence.

&4

TABLES

TABLE I.  Lowesi y? per data point ohtained for the four models, compared with the
Argonne 14 (Ref. [25]), the full Bonn results {Ref {22]), and the Arndt-Roper SPR9 fits
(Ref [23]}). Numbers are given for each energy bin and for the overall fit froms 8 to 225

MeV and from 8 to 325 MeV.

Energy 1A IB 1A IIB Argonne V14 Bunn (1987) VFPlatSPac)
10 145 1 66 135 143 2.18 161 132
25 112 £.22 108 1.27 2.3 194 0.87
50 2.57 2.56 2.26 2.49 3.20 2.84 152
100 1.62 1.68 1.70 2.29 122 1.35 1.31
150 177 211 191 226 2.98 2.08 1.45
200 1498 4.27 341 438 391 244 1.80
300 7.66 1042 590 6.27 2.45 541 151
8-225 2,18 2.36 2.05 2.38 258 208 144

8-325 341 3.96 2.85 3.13 260 297 144
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TABLE 1I. UBE jrameters for the four models Numbers m bold face were vaned TABLE i} Low energy parameters vomparsd with values reported by Acudt (31] el

. _— . [ i i o [22] Sc d effectjve ranges are
during the fitting procedure, others were not. All masses are in MeV, and all parameters hose experimental values reported in Hef. [22] Scattenng lengths an ctive ranges an

are defined preceisely in Part {IL {The numbers are given to the accuracy necessary Lo denoted by a and r, respec’ vely, with the subscript refering tu spin singlet (s} amd triplet

reproduce the deuteron binding energy and other low energy parameters to the precision “’ o . o . o
given 1 Table 11 Model [A Model IB Model IIA Model [IB Arndt experiment
Model [A Meodei IB Model I1A Model I1B a, S23.7477 -23.7475 -23 7485 -23 7489 -24.50 23 780 ¢ 0
r P 13.54403 13.41085 13.35T67 13.37T58 , 2.5984 25832 26118 2 6088 2 876 2 7500 1 0.US
Y 0.22557 0.21619 0.0 0.0 a¢ 54234 5.4103 5 4112 5 3820 5.402 5.420 t 0 w4
", 138.0 1380 138.0 138.0 T 1.7520 1.7372 17351 16954 1876 1.7590 t 0 005
7 gifax 6.40708 5.30321
Ag 0.0 00 TABLE IV. Deuteron properties. The relativistic deuteron wave function has fuur cum-
m, 548.8 548.8 ponents, with percentages given. These du not add up to 100%; the additional piece 15 the
o gifar 5.51322 5.51399 5.04720 4.86870 size of the < V' > term [from Eq. (1 13} arising from the energy dependence uf the ker-
™m, 516.0 523.0 514.0 6522.0 nel. The values of the magnetic and quadrupole moments given in parentheses include the
ay _qjl/nhr 0.32503 0.24372 relativistic corrections of Eq. {1.10) The experimental D/ § ratio is frum Ref [24].
. 573.0 428.0 T
my, Model JA Model 1B Model 1A Model I[IB Bonn Experimem
w y:/-lﬂ 9.85100 $.02487 9.83054 8.860849 i o -
% 5 95.020 94.802 95 284 94 797
Ko 0.14269 0.20702 0.15050 0.22069
% D 3.9657 40973 4 1463 +.5385 4 249 {51 2)
AL 10 1.0 1.0 1.0
% Py 0.4604 04674 01102 0.1369
m, 782.8 782.8 782.8 782.8
% P, 00075 0 0099 0.0088 0 0063
i gs/ﬂx 0.38291 0.26017 0.58084 6.60318
Total 99.454 99.376 949.549 99 479
N T.52626 B.7T84T 6.14920 5.06083 - —
A Lo 1.0 . 76218 0.82089 Ha 0.4575 0.8566 { 8564 0.8541 0.8555 0 A5TH08 t O 0DounL
. N " -
m, 760.0 760.0 760.0 160.0 (0.8Y82) (0.9025) (0.8834) (0 87949}
2 e 08 n : R .
Aucteon 1610.0 1600.0 1685.0 1675.0 Qq ("} 02666 0.2596 0.2691 0.26{4 0 2807 0.2859 1 0L.0003
Avmeson 2135.0 2610.0 1830.0 2185.0 L (0.2702)  (02633) (027 q02627) ) -
= - asymptogic /5 0.0248 0.0237 0.0244 00242 ¢ 02668 01266 ¢ U D004
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FABLE ¥V The 18 independlent amphtudes for which the final equations nre construsted
Amplitudes Symmetzies (g ={—)'"")
vt Vo

p. k.| P P p k| P Pia  p. k.

i &8 + + 5 |-n #n L El4n w0 5 f
= jlts - der s jid - B + % + S| -n ot L x| 4w w5 %
L T I N B S A B R 1 R T
ftdc-#atkiids -dal | -1 Fo £ Fl-n Fo £ Tl 4n ¥ 5 ETlen ¥ o5 8
v ropt @i dal 41 #n x| -0 tn o+ 5| 4n 4n 5 k) -a 4n 5 ¢
=it ettt hidsrd) | 40 k0 £ | -n T2 2| 4w ¥ 5 F | oa 40 &%
Heererititdedded [ 40 xn 2 x| -9 4s o+ L an e £ x| -n 2w & 0
SHésrdE MGt | 4 dn & F | 4n g0k S f-m kn 5 £]-n #w 5§

as

TABLE V1

(3.24) and (3.25) are constructed

The non-zern R's ancl 57's for scalar mesons foon which the s of Fos.

0* M esony

I Direct ‘ J;-\lternaling
[N Ry = -1 ‘
l_' I i Sy =1 |
v | Ra=1 |
0~ Mesons
l Direct 1 Alternating
Pt Rg=1 Rg= —(1- A\ jaa’
Rg = —(1 - Mo —d Re=1
Rr = 1= 3)a
}:l’g = ~{l - A)a
V- Sr=-1 S5 = {1 - X)d
Sy =1 - A5 S = (1 — A%
5. = -1
Sa=(1- 20
y-- Re=1 Bi= -1
Ry = -(1- 3%
Ra= Ra=11- X
where: a0 = E'—;%— a' = E*—;‘!}'—.andbzzﬂm



TABLE VIl

The non-zero R's and 5’s for vector mesons from which the I's of Eys

‘;; 5 = %,\,ta' + AL - A pbaga;
(3 24) and {3.25} are constructed - $2 = Abal
1~ Mesona $3 = fela ra’l - @ — {1 - AJbe S3= fela-a')—a S A - N
g o —(1 - A2bfa’ - ba,all i 21 - M)l
Direct Alternating { Péta” - baat 1 3l o
- Se= AL - A bl
Vil &= Ri=1-aa ) R
) §r = A That
Re=-T Re=-T . o
- V ._; Hy= 2
VoS =1 Sy=1+bal ) 7
X Ry =1(1- )k Ra= Ry - M Th
Sa=-T S¢=-T -
- Reg =2
Vool R=1 Ry= =T b o 21
B 2 )
- R =T Reg= -1 +¥ o= (1= MIBiL + bya)
Vi By = Dot Re= ~(1 - M1 + b.a]
Ry =2 Ry =2 vio| &= 1. a- 5(17!\')‘” B= X TH
R3=—C+[l—'\|‘3(ﬂ*ﬂ] R3=—C+(1—f\.)(a+bﬂ,u|—) RB; 7%[0-- a’}?+a—.\‘br + 01 ,.\l}ZbI(] .
Ry=-¢ Ry = *C+“_’\1HGJ+baid:] Ry = .\Ebiz
;= A, T{a - a’} Ry=XTa RT - a1 .‘I'b?a’
Rg = -\ Ta R = (1 — X 1b%a
o B = -had] ; - S
o - where,a:E"—;‘-.ﬂ':ﬂ;};‘",b:;“;,a.—&ﬁw.a',zgf‘i.ﬁ.::‘l.cf—‘lf;Ei anil
Ri=1+a-41-MNela+a'} | Ra= b +a - Mt —Aela+a') - dhja - o')? . . \ \
o= s'L-—i—J~
-Iia—a')? +{1 - A)¥[aa’ - b2a,a]] im
Ry = Ry = =M1 - \}ba.al
A I N ) Si= By (1o a0l - aal)
Sp = -2Ab,a!
53 =-2 Sa = -2
Se= 50 Sa= -8 41 x)at - 87
Sp-ATE S5=MTb
S5 = -\ Ta'

9l

ajd’

a,u;)



FAUBLEVIT Pl combmations J,, given in Eq (4 291, needen tor ue ungular incegrals.

dy = 2 e MM - duatd)

TABLE X, The two coinponent spinors of B, (AY)

initial state

4 AR S T adf | P2y 0 T \__;_ _ .y
L =dj, P{z) - T ) o ‘;:l
4 %[“*':]d{l i ’”di’_-ll s Pralel+ 85 Proaiy > (5) (3
4y cinfd!, = — sin 8, I (pyriz) - Proal=) . \
ds 247 2 Pyz) Weaf (v) ______("_-].. i
de TR A )] ] Asfr Proi(z) + L Praish) o final state .
d= 2vinfd]y = —z sin 044, z !Lf]‘%;_” {Pyoafz) — Pi_i(z)) A=l I
EES (imis) (o)

TABLE IX. The nun-zero elements B, expressed in terms of the B,'s defined in Eqs.
- k) ()
Y 1 2 3 1 5 6 7 - o
. B, By + By, By,
; 8, Bs, By By,
' By By,
: By By,
Y B B, + B, B,
" B, By By By,
" B B,
T — -3for By and By5, By and By 15
T = 1 for all other alements
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