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3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically
hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an
anisotropic electron distribution, propagation characteristics, like the critical density, will depend
on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such
plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then
function as a polarizer or a waveplate to dramatically alter the pulse polarization.

When the electron population in a plasma reaches rel-
ativistic energies, the dielectric properties can change
drastically enough for the plasma to become transpar-
ent to an electromagnetic (EM) wave that cannot pen-
etrate a low-energy plasma of the same density. When
the electrons are brought to these energies directly by
the electromagnetic pulse (of high intensity), the result-
ing phenomenon is called self-induced transparency [1].
The enhanced transparency, however, is an intrinsic char-
acteristic of a relativistically hot plasma independent of
the source of heating. In the era of high-power lasers,
when experimental studies of relativistic plasmas are pos-
sible for a staggering variety of applications (proton ther-
apy, material studies, laboratory astrophysics, basic dy-
namics), a detailed understanding of relativistic trans-
parency will be essential, both for a proper interpreta-
tion of experiments and as a new diagnostic tool. Ear-
lier theoretical studies of self-induced transparency dealt
with high amplitude propagating solutions in homoge-
neous and weakly inhomogeneous plasmas [2–6]. Most
recently, progress has been made in understanding the
plasma-wave interaction at the plasma-vacuum interface
and the onset of relativistic transparency as a high inten-
sity pulse irradiates a cold plasma slab [7–14].

In most studies on the subject, focused on determin-
ing how the transparency threshold scales with both the
plasma density and the intensity of the irradiating pulse,
the pulse serves the dual purpose of imparting relativis-
tic energy to electrons and simultaneously acting as a
probe of criticality. These experiments, concentrating on
the total electron energy, do not fully investigate the role
that the shape of the electron distribution could play in
determining the transparency threshold. The approach
is consistent with the commonly used explanation that
the relativistic mass increase, by lowering the plasma fre-
quency, raises the critical density below which the elec-
tromagnetic waves are able to propagate. Since the rel-
ativistic γ-factor is a gross measure of the overall en-

ergy, this explanation could not reveal if the propagation
characteristics are affected by the way the energy is parti-
tioned between different degrees of freedom. Because the
critical density for electromagnetic waves in warm non-
relativistic plasmas is independent of the shape of the
electron distribution, a similar conclusion in the relativis-
tic case may appear to be justifiable; most experiments
are designed and interpreted within this context.

However, one could envision an alternative system
setup in which a plasma is heated to relativistic tempera-
tures by a high-power pump pulse and then probed with
a low-amplitude pulse, allowing the properties of the cre-
ated distribution function to be tested without changing
the distribution itself. Indeed, several experiments have
used a transverse optical pulse to probe the system dur-
ing the laser-plasma interaction [15–18]. Characterizing
relativistic transparency’s effects on pulse propagation
enables the probe to serve as a diagnostic for the plasma
energy, temperature, and especially anisotropy. This in-
formation, in turn, is crucial to the interpretation and
prediction of the high-amplitude pulse’s behavior in the
plasma. The better characterization of a laser-produced
distribution has particular relevance to laboratory astro-
physics [19, 20] and ion acceleration from laser-irradiated
solid-density targets [21–23, 25, 41, 56].

In this Letter we demonstrate that relativistic trans-
parency is strongly affected by how the electron energy
is partitioned between different degrees of freedom. We
consider here the simplest problem: the propagation of
a low amplitude pulse through a preformed relativis-
tically hot anisotropic electron plasma (ion motion is
neglected) to explore its intrinsic dielectric properties
(unchanged by the weak pulse). We find that: 1) the
critical density for propagation depends strongly on the
pulse polarization, 2) two plasmas with the same den-
sity and average energy per electron can exhibit pro-
foundly different responses to electromagnetic pulses, 3)
the anisotropy-driven Weibel instability develops as ex-
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pected; the timescales of the growth and back reaction
(on anisotropy), however, are long enough that sufficient
anisotropy persists for the entire duration of the sim-
ulation, consequently impacting the optical properties.
Modified propagation characteristics add a qualitative
new element in developing a more advanced understand-
ing of laser-plasma interactions. Relativistic thermal
plasmas with electron anisotropy can naturally arise in
laser-irradiated targets. For ultra-thin targets, the heat-
ing is volumetric [1, 39, 45]; whereas for thick targets the
heating occurs at the front surface of the target and the
hot plasma is produced as a result of target expansion at
the rear side [42, 43, 45, 56], where a persistent double-
layer separates the cold electrons from the expanding
plasma [46]. In both cases, temperature anisotropy in
their electron populations is observed [40–42]; the most
direct support comes from 3D PIC simulations in the
thick-target regime that show the hot electron distribu-
tion in the expanding plasma [45].
Using a 3D-3V particle-in-cell simulation (three spa-

tial and three velocity dimensions), we study the dy-
namics of a low amplitude circularly polarized electro-
magnetic pulse incident on a finite slab of constant den-
sity electrons (ions fixed) with an anisotropic relativis-
tic temperature. The domain is 130µm×70µm×70µm
(4500 × 100 × 100 cells) and consists of vacuum regions
at −30µm < x < 0 and 8µm < x < 100µm and a plasma
region at 0 < x < 8µm. A circularly polarized Gaus-
sian pulse (full width half maximum (FWHM) of 50 fs)
of wavelength λ = 2 µm [59] enters the plasma from
negative x and focuses halfway into the target with in-
tensity FWHM of 11.8µm. The pulse has focal ampli-
tude of a = |e|E0/mecω = 0.2, where E0 is the elec-
tric field amplitude, ω is the wave frequency, c is the
speed of light, and me and e are the electron mass and
charge, respectively. The electron number density n
ramps up and falls off as a semi-Gaussian of FWHM
2.5µm, so that n = 2.7n∗ for 2.3µm < x < 5.7 µm.
Here n∗ ≡ meω

2/4πe2 is the classical critical density.
We use 120 electrons per cell to initialize an anisotropic
momentum distribution given by

f0 =
n

I(α, ǫ)
exp
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where 1/α is an effective temperature normalized tomec
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and ǫ introduces anisotropy into the distribution (when
ǫ 6= 0). In Eq. (1), n is the electron density, p is the elec-
tron momentum, and I is a dimensionless normalization
constant
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For ǫ > 0, the motion along the z-axis is always asso-

FIG. 1. Surfaces of constant intensity of the reflected and
transmitted pulses 140 fs after the pulse hits the target (top
panel). Ey and Ez cross-sections at z = 0 are given on
the bottom and side of the box, respectively, along with ni.
The magnetic field energy and

√

< p2y > / < p2z > are plotted
throughout the simulation time (bottom panel).

ciated with less energy than in the other directions. In
the simulation we use α = 2.0 and ǫ = 0.45, correspond-
ing with average particle energy < E >= 1.24 MeV,

and
√

< p2y > / < p2z > = 1.35. Here the brackets repre-

sent an average over the entire momentum space so that
< R >≡

∫

Rf0d
3p/(mec)

3.

The simulation begins (t = 0) with the leading edge of
the circularly polarized pulse at x = 0. In Figure 1, the
transmitted and reflected pulses are shown 140 fs into
the simulation. The pink surfaces denote surfaces of con-
stant E2 = 8.0 × 1022 (V/m)2, whereas the images on
the bottom and side of the box represent Ey and Ez at
z = 0. The ion number density is also projected onto the
bottom and side of the box to show where the plasma re-
sides. The simulation results are quite spectacular: the
plasma acts as a powerful polarizer; it reflects almost all
of the parallel component (to the axis of anisotropy z),
Ez ≡ E‖, while it transmits much of the perpendicu-
larly polarized component, Ey ≡ E⊥. The latter hotter
direction is favored for propagation [60].

Since an anisotropic electron distribution is sub-
ject to the Weibel instability [27], we have carefully
monitored the growth of energy stored in the mag-
netic field of the system (

∫

B2/8πdV ). We have dis-
played in Figure 1 both the magnetic energy and
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FIG. 2. Ratio of critical densities, n⊥/n||, as a function of ef-
fective electron temperature 1/α and the degree of anisotropy
ǫ. The solid lines indicate the contours of constant average
electron energy.

√

< p2y > / < p2z > as functions of the simulation time.

Note that
√

< p2y > / < p2z > starts slightly below the

analytically predicted value of 1.35 at t = 0, a discrep-
ancy of order 2%. This can be improved by increas-
ing the sampling resolution of the distribution function
(shrinking the px, py, and pz step-size). Recent work
has shown kinetic simulations of the relativistic Weibel
instability from thermal anisotropy [28, 29], which also
exhibit, similar to our results, a peak in magnetic field
energy right before falling to an asymptotic value. Here
we observe that the anisotropy persists in the plasma
over a sufficiently long timescale to be probed. The
pulse has already passed through the plasma well before
√

< p2y > / < p2z > has appreciably diminished.

We next calculate, analytically, the critical frequency
and density for the plasma distribution invoked in the
simulation [see Eq. (1)]. A simple linear analysis for
wave propagation will demonstrate the disparity in crit-
ical densities based on polarization. Some examples of
earlier studies of anisotropic plasmas are [30–32]. The
basic dynamics is contained in the covariant Vlasov and
Maxwell’s equations (the momentum four-vector pµ is
normalized to me, and c = 1):

[

pµ∂µ + qpνF
µν ∂

∂pµ

]

f(x, p) = 0, (3)

∂µF
µν = 4πJν , (4)

where f(x, p) is the electron distribution function, Jν =
q/m

∫

d4ppνf(x, p) is the four-current, and Fµν =
∂µAν − ∂νAµ is the electromagnetic field tensor, Aµ

being the potential four-vector. The summation con-
vention is used, with metric (+,−,−,−). We linearize
Eqs. (3) and (4), and assume perturbations of the form
f1, F1, A1 ∝ exp(−ikµx

µ), choosing kµ = (ω, k, 0, 0). In
a field-free plasma, and for the equilibrium distribution

given by Eq. (1), the two transverse modes Ay
1 and Az

1

are decoupled, each producing current only parallel to its
respective polarization. From these independent disper-
sion relations, the expression of the critical frequency for
each mode is derived by setting k = 0 and solving for ω:

ω2
(⊥,||) =

α(1− ǫ)(1,0)ω2
p0

I(α, ǫ)
(5)

∫

d3p
p2(y,z) exp
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√
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)

√
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√

1 + p2z + (1− ǫ)(p2x + p2y)
,

where ωp0 ≡
√

4πne2/me is the plasma frequency. The
subscripts ⊥ (||) for the modes with nonzero Ay (Az)
indicate the direction of the electric field in relation to
the axis of anisotropy. One can readily find the critical
densities for each mode directly from Eq. (5): n(⊥,||) =
(ωp0/ω(⊥,||))

2n∗, again with n∗ ≡ meω
2/4πe2.

The expressions for ω⊥ and ω|| become more tractable
in the case of weak anisotropy, i.e, for ǫ << 1. To the
leading order,

ω2
(⊥,||) =

α2ω2
p0

K2(α)

[

∫ ∞

α
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]
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z

)
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(7)

where Ki is the modified Bessel function of the second
kind of order i. For the isotropic distribution (ǫ = 0),
naturally n|| = n⊥. Notice that n⊥ > n|| for ǫ > 0; the
critical density is lower for a wave whose electric field
is polarized along the axis of anisotropy, that is, the
colder direction in this simulation. This result is con-
sistent with the presented simulation, where the density
was n = 2.70n∗. For the simulation’s laser frequency,
n⊥ = 2.74n∗ and n|| = 2.50n∗, so that only the y-
component should pass through. Figure 2 shows how the
disparity in critical densities between the two polariza-
tions, calculated from Eq. (5), increases both with ǫ and
effective temperature 1/α. The solid lines indicate the
contours of constant < E >, and the ratio n⊥/n|| changes
considerably along these contours; the relativistic trans-
parency varies rapidly with temperature anisotropy even
when the average energy is kept constant.
Qualitatively, the effect can be understood by con-

sidering a single electron whose momentum p0 changes
by δp due to the interaction with the laser field. The
corresponding change in the electron velocity is δv =
[γ2δp − p0(p0 · δp)]/γ3, where γ =

√

1 + p20 and all
momenta are normalized to mec. This change and the
resulting electron current is smaller by a factor γ2 for
δp ‖ p0 than for δp ⊥ p0. Thus, the plasma will be
more transparent for the electric field polarized along the
hotter direction, because this field will induce a smaller
electron current.
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FIG. 3. Plots of the incident pulse (at t = 0), the transmitted
pulse through the relativistic plasma (at t = 190 fs, α = 8.0
and ǫ = 0.45), and the transmitted pulse through the non-
relativistic plasma (at t = 280 fs, α = 500 and ǫ = 0.45) are
denoted in black, red, and green respectively. The inset rep-
resents the relativistic distribution function in (py, pz) space.

The anisotropy-induced discrepancy in the critical den-
sities has a profound effect on wave propagation; this is
true even when the plasma is transparent (low density)
to arbitrary polarization. For demonstration, we conduct
a 3D-3V simulation, complementary to the earlier one, in
which a linearly polarized Gaussian pulse is incident on a
finite length sub-critical plasma with an anisotropic dis-
tribution. A less energetic electron distribution is used
(α = 8.0, ǫ = 0.45, n|| = 1.38, n⊥ = 1.46,< E >= 0.67
MeV; represented in (py, pz) space in the inset of Figure
3) to demonstrate that even more moderate energies can
still exhibit this pronounced effect, and now the density
n = 1.05n∗ is chosen so that both n < n⊥ and n < n||.
The pulse is polarized at a 45 degree angle to the axis
of anisotropy, so that Ey = Ez in the incoming pulse.
The pulse width has FWHM 50 fs, peak a = 0.1, λ = 1.0
µm, and intensity FWHM 11.8µm. The simulation do-
main now consists of a vacuum region at x < 0 and a
plasma region at 0 ≤ x ≤ 12µm. The density ramps up
and falls off as a semi-Gaussian of FWHM 0.7µm, so that
n = 1.05n∗ for 1.1µm < x < 10.9 µm.

The incoming pulse can be decomposed into two
modes: one polarized along the axis of anisotropy and
the other perpendicular to it. These modes are decou-
pled and have two different critical densities. For a cold
plasma, the phase velocity vp = ω/k = (1 − n/n∗)

−1/2

is determined by the critical density n∗. By analogy,
due to the difference between n|| and n⊥, we expect a
considerable discrepancy in phase velocities between the
two modes, particularly because the density is close to
critical. In Figure 3, following the pulse before (black)
and after (red) it passes though the plasma, we see that
the induced phase separation of the two modes changes

the pulse from linear to elliptical polarization, highlight-
ing the expected discrepancy in vp; in this scenario the
plasma serves as a waveplate. Both of our simulations
demonstrate how a relativistic plasma can change the
polarization of an electromagnetic wave; naturally the
excess (shortage) of the wave angular momentum is com-
pensated by the corresponding loss (gain) by the plasma.

Figure 3 clearly demonstrates that anisotropy-induced
polarization change is essentially a relativistic phe-
nomenon. In a non-relativistic anisotropic plasma the
group velocity depends on the polarization, but the crit-
ical density does not. Consequently, the linear polar-
ization of the wave remains essentially unaffected after
the initial pulse (black) propagates through the plasma
(green). The parameters for the non-relativistic simula-
tion are α = 500 and ǫ = 0.45 with an average kinetic
energy ≈ 0.002 MeV, much smaller than the rest mass
energy. We also set n = 0.75n∗ to ensure that both polar-
izations penetrate the plasma and reduce the amplitude
to a = 0.05. The relativistic anisotropic plasma, in stark
contrast, changes the linear polarization to elliptical.

An investigation of the interaction of electromagnetic
waves with relativistically anisotropic plasmas, thus, re-
veals a new qualitative phenomenon: the propagation
characteristics (critical density, effective refractive index)
of the wave are controlled not only by plasma density and
average electron energy, but also by how the energy is
partitioned between different degrees of freedom, i.e, by
anisotropy. An anisotropic plasma emerges as an effective
polarizer; it will filter out the electric field of the pulse po-
larized in the “colder” direction, and pulses of the same
frequency, polarized in the hot direction, will be prefer-
entially transmitted. Even if the plasma is transparent
for all polarizations, the discrepancy in the critical den-
sities causes spatial separation of the modes, manifested
as an altered polarization of the pulse so that the plasma
here serves as a waveplate.

Besides facilitating the examination of the plasmas
generated in the thin and thick target laser-plasma sys-
tems, our results are relevant for interpreting the data
from probe pulses simultaneously incident on the plasma
with the pump pulse. Polarization shifts in the probe
pulse over time serve as a measure of the temperature
anisotropy evolution. Such shifts could, in fact, compete
with Faraday rotation of the probe pulse used in magnetic
field measurements [33]. One could also envision utiliz-
ing anisotropic plasma as the basis for new optical de-
vices used for beam polarization or polarization smooth-
ing [26, 34–36]. Differential propagation characteristics
can even affect high-harmonic and synchrotron transmis-
sion through dense laser-irradiated targets [37, 38].
Finally, the findings of this paper, in particular the

impact of temperature anisotropy on relativistic trans-
parency, can potentially play a pivotal role in under-
standing phenomena in high-energy astrophysics. It is
well-known, for example, that compressive shocks in jets
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and relativistic flows (associated with active galactic nu-
clei and gamma-ray bursts (GRBs)) can heat plasmas
to relativistic temperatures [47–50]. Any anisotropy in
the shock heating could affect the radiation traversing
this hot medium. In particular, the forward and reverse
shocks typically associated with the optical and radio af-
terglows of GRBs could be prime candidates for exhibit-
ing anisotropy-induced polarization shifts [51]. Polariza-
tion dependences observed in the optical afterglows [52–
55] are usually attributed to magnetic fields, but ther-
mal anisotropy could also be a major contributing fac-
tor. These astrophysical systems along with high-power
laser-plasma experiments are best suited to showcase dif-
ferential propagation, as the effects are expected to be
spectacular for high temperature plasmas.
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EP/G055165/1 and EP/G056803/1) using HPC re-
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Texas. We acknowledge valuable discussions with Amir
Shahmoradi and Patrick Crumley. This work was sup-
ported by US DOE Contract No. DE-FG02-04ER54742,
NNSA Contract No. DE-FC52-08NA28512, and DOE
SCGF administered by ORISE-ORAU under Contract
No. DE-AC05-06OR23100 (D. J. S.).
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