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ABSTRACT

Relativistic properties of a Dirac Lagrangian density are compared with those of a Dirac

Hamiltonian density. Differences stem from the fact that a Lagrangian density is a Lorentz

scalar, whereas a Hamiltonian density is a 00-component of a second rank tensor, called the

energy-momentum tensor. This distinction affects the form of an interaction term of a Dirac

particle. In particular, a tensor interaction term of a Dirac Lagrangian density transforms to a

difference between a vector and an axial vector of the corresponding Hamiltonian density. This

outcome shows that fundamental principles can prove the V-A attribute of weak interactions. A

further analysis supports these results. Inherent problems of the electroweak theory are discussed.

Keywords: Dirac Lagrangian density; Dirac Hamiltonian density; Dirac generalized momentum; weak

interactions.
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1 INTRODUCTION

There is now a common agreement concerning

the crucial role of the variational principle

and of its Lagrangian density L(ψ(x), ψ(x),µ)
in the structure of a quantum field theory

(QFT) of a given elementary quantum particle.

This Lagrangian density is a Lorentz scalar.

For example: ”All field theories used in

current theories of elementary particles have

Lagrangians of this form” (see [1], p. 300).

Another support for this approach states that the

variational principle is ”the foundation on which

virtually all modern theories are predicated” (see

[2], p. 353). The Euler-Lagrange equations of

a given Lagrangian density are a vital element

of this theoretical structure. These equations

are partial differential equations that describe the

time-evolution of the relevant quantum particle.

The Noether theorem is an important element

of this theoretical structure. This theorem

connects a symmetry of a Lagrangian density

with a conservation law that the relevant

theory satisfies. For example, the Noether

theorem proves that a Lagrangian density that

does not depend explicitly on the space-time

coordinates yields a theory that conserves

energy, momentum, and angular momentum

(see [3], pp. 17-19). An important part of the

proof of the Noether theorem is that the quantum

function satisfies the Euler-Lagrange equations

of the Lagrangian density.

Evidently, the validity of a given physical theory

is based on the goodness of its predictions

of relevant experimental results. The bottom

line of measuring an experimental effect is the

transition of a measuring device from an initial

state at an initial time to a different state at a

later time. An interaction term of the Lagrangian

density connects a given quantum particle to

external fields which eventually affect the state

of a measuring device. Hence, the Lagrangian

density of a given quantum particle should have

an interaction term.

The above-mentioned issues are used as the

basis for the discussion that is presented in this

work.

The electroweak theory is the Standard Model

sector that describes electromagnetic and weak

processes. This is an example of a QFT

theory of several quantum particles (see [4],

chapter 21.3). The factor (1 ± γ5) is an

important quantity of the electroweak theory,

and it agrees with a massless neutrino. The

literature substantiates the relation between a

massless neutrino and the electroweak theory.

Indeed, the factor (1 ± γ5) is associated with ”a

neutrino which travels exactly with the velocity

of light” [5]. A review article restates the neutrino

masslessness attribute of the electroweak theory:

”Two-component left-handed massless neutrino

fields play crucial role in the determination of the

charged current structure of the Standard Model”

(see the Abstract of [6]). Similarly, a textbook

says: ”Neutrino masses are exactly zero in the

Standard Model” (see [7], p. 533).

It turns out that experimental progress

has provided results that disagree with

a massless neutrino. Indeed, it is now

recognized that ”neutrinos can no longer

be considered as massless particles in the

Standard Model, representing perhaps the first

significant alteration to the theory” (see [8]).

This experimental evidence proves that the

electroweak theory has been based on an

erroneous assumption concerning the neutrino

mass. This is not a trivial issue. Thus, Wigner

has analyzed the irreducible representations

of the inhomogeneous Lorentz group (see

[1, 9, 10, 11]). An important result of his work

states that a massive quantum particle has a

well-defined mass and spin. Massless particles

belong to a different category. Instead of spin,

they have helicity and they travel at the speed of

light in every Lorentz frame.

The experimentally confirmed neutrino mass

indicates that the structure of the electroweak

theory is likely to have intrinsic problems.

Evidently, a theoretical analysis of a physical

topic is always welcome, because it aims to shed

a new light on the relevant theory. The main

objective of this work is to carry out an analysis

of weak interaction theories.

This work uses units where Planck’s constant

and the speed of light are ~ = c = 1. Greek

indices run from 0 to 3. Most formulas take
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the standard form of a relativistic covariant

expression. The metric is diagonal and its entries

are (1,-1,-1,-1). The second section shows how

the Dirac γ matrices affect the form of a Lorentz

transformation of terms of a Dirac Lagrangian

density, and that of the corresponding terms

of the Hamiltonian density. The third section

contains a further analysis of this issue. The

fourth section shows new inconsistencies in the

electroweak theory. The last section contains

conclusions of this work.

2 CONSEQUENCES OF

LORENTZ TRANSFORMA-

TION OF DIRAC γ MATRICES

It is explained in the first section why the

variational principle requires that the Lagrangian

density of a given quantum particle should have

an interaction term that is a Lorentz scalar. In

the case of a Dirac particle, this Lorentz scalar

takes the form of the scalar product of Dirac γ
matrices with an external field. For example,

the electromagnetic interaction of an electron is

described by the Dirac Lagrangian density

LD = ψ̄[γµ(i∂µ)−m]ψ − eψ̄γµAµψ (1)

where m, e are the electron’s mass and charge,

respectively, and Aµ = (V,AAA) are the

components of the electromagnetic 4-potential

(see [3], p. 84; [12], p. 78). The last term

of (1) represents interaction, and it contains the

scalar product of γµ with the external 4-potential.

Furthermore, the product of the Dirac functions

I = ψ̄ψ (2)

is a Lorentz scalar (see [12], p. 43; [13], p. 26).

Therefore, an interaction term that is enclosed

within the functions ψ̄ ψ should also be a Lorentz

scalar.

Products of the Dirac γ matrices can be

organized in five sets, where each set comprises

γs that undergo the same Lorentz transformation.

These sets are:

1 scalar

γµ
vector

σµν
tensor

γµγ5
pseudo-vector

γ5
pseudo-scalar, (3)

where σµν
≡ i(γµγν

− γνγµ)/2 and

γ5
≡ iγ0γ1γ2γ3 (see [12], p. 50; [13], p. 26).

The idea that a term that is based on the tensor

σµν of (3) can be applied to the electron’s

electromagnetic interaction was examined a long

time ago (see [1], pp. 14, 517, 520; [14], p. 223).

The corresponding interaction, which is called

the Pauli term, takes the form

L
′ = dψ̄σµνF

µνψ, (4)

where Fµν is the electromagnetic field tensor,

and the coefficient d has the dimension of length.

The interaction (4) alters the Dirac expression for

the electron’s dipole moment (see [1], p. 14; [14],

p. 223). However, the ordinary Dirac Lagrangian

density (1), which contains no term like (4), yields

a very good prediction for the electron’s magnetic

dipole moment. Hence, the Pauli term (4) has

been abandoned as a term that pertains to the

electron’s electromagnetic interaction.

As a matter of fact, it is argued that ”the term

(4) is consistent with all accepted invariance

principles, including Lorentz invariance and

gauge invariance, and so there is no reason why

such a term should not be included in the field

equations” (see [1], p. 14). Therefore, one may

wonder why Nature has not applied the Pauli term

(4).

It is proved here how the distinction between the

form of the Dirac Lagrangian density and the

corresponding Hamiltonian density illuminates

the merits of the Pauli term (4). An application

of the following transformation to the Dirac

Lagrangian density (1) yields the required

expression for the Dirac Hamiltonian density

H =
∂L

∂ψ̇
ψ̇ − L, (5)

where the upper dot denotes a time derivative

(see [3], p. 55; [12], p. 16). This

expression proves that if the (relativistic form of

the) interaction term is derivative-free then the

interaction term of the Hamiltonian is the same

as that of the Lagrangian, but with an opposite

sign.

A general law says that the Hamiltonian is a

function of coordinates and their generalized

3
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momenta. An expression for the generalized

momentum which is conjugate to the coordinate

ψ of the Dirac Lagrangian density is obtained

from this expression (see [3], p. 55; [12], p. 52)

πD =
∂L

∂ψ̇
= iψ̄γ0 = iψ†. (6)

The form of the Dirac generalized momentum (6)

points out the different structures of the Dirac

Lagrangian density and that of its Hamiltonian

density. The Dirac Lagrangian density (1) is

written in terms of ψ̄, whereas the corresponding

Hamiltonian density is written in terms of ψ†,

where ψ̄ ≡ ψ†γ0. Evidently, the additional γ0

is the 0-component of the 4-vector γµ. Hence,

a transition to the Hamiltonian density entails

a modification of the relativistic form of terms

of the Dirac Lagrangian density. In particular,

interaction terms take a different form. For

example, in the case of the electromagnetic

interaction, one has the Dirac Hamiltonian

density

HD = ψ†[−iααα · ∇∇∇+ βm− eααα ·AAA+ eV ]ψ. (7)

Here ααα, β denote the four Dirac matrices, ψ†ψ
is the Dirac density, and the terms inside the

square brackets are the Dirac Hamiltonian (see

[13], p. 48). The interaction terms of the

Lagrangian density (1) do not take the same

form as those of the Hamiltonian density (7).

For example, the scalar component V ≡ A0 of

the electromagnetic 4-vector of the Lagrangian

density (1) is multiplied by the Dirac γ0 matrix,

whereas no Dirac matrix multiplies the term eV
of the Hamiltonian (7).

The corresponding changes of the Pauli tensor

interaction (4) are more dramatic. Thus, the

substitution of ψ̄ ≡ ψ†γ0 transforms (4), and the

interaction term of the Hamiltonian density is

Hint = −dψ†γ0σµνF
µνψ

= −2dψ†(iγiE
i
− γ5γiB

i)ψ,
(8)

where Ei, Bi are components of the external

field tensor (see [15]). Here one obtains two

terms. One term contains the spatial components

γi of the γµ 4-vector, and the second term

contains the corresponding components of a

pseudo-vector.

The Pauli term has recently been rediscovered,

and it is shown that it describes weak

interactions, where parity violation is proved (see

[15, 16, 17]). Obviously, the electromagnetic field

tensor Fµν of (4) is replaced by an analogous

tensor of weak interactions fields which is

denoted by F
µν . This is a Maxwellian-like fields’

tensor that is associated with an external weak

dipole. Here the transition from the Lagrangian

density to the Hamiltonian density adds a γ0

factor, and (4) splits into a sum of a vector and

an axial vector. The Pauli term (4) shows the

flexibility of the first-order Dirac theory, where

the dimensionless σµν 4-tensor of (3) enables

to write down a consistent expression for an

interaction with a second rank antisymmetric

tensor that takes the form of Fµν . Like the

electromagnetic interaction term of (1), also the

Pauli term is free of derivatives of the Dirac

functions.

The dependence of the weak field Fµν of (8)

on an external weak dipole means that (8) is

a dipole-dipole interaction. The dimension of

the weak interaction Fermi constant G is [L2]
(see [18], p. 212). This property agrees with

the dipole-dipole interaction of the Pauli term

(4), where the coefficient d has the dimension

of length. This dimensional agreement and the

universality of the Fermi constant G (see [19],

p. 256) is another experimental support for

the dipole-dipole weak interactions theory (see

[15, 16, 17]).

Remark: The dipole-dipole weak interactions

theory is based on a consistent Lagrangian

density. It explains the important parity

nonconservation attribute of weak interactions.

However, this is not the final word because

details like flavor nonconservation processes,

generation-dependent effects, and the CKM

matrix require further elaboration.

3 DISCUSSION

The previous section emphasizes the effect of the

additional γ0 on the form of the interaction term

of a Dirac Hamiltonian HD. This is an important

issue because the time-evolution of a Dirac

particle is determined by the Dirac Hamiltonian

i
dψ

dt
= HDψ (9)
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(see [1], p. 8). It is mentioned in the first section

of this work that the transition of a measuring

device from an initial state at an initial time to

a different state at a later time establishes a

physical effect. This time-dependence means

that the Dirac Hamiltonian is required for

this purpose. In particular, in the case of

weak interactions, one should not examine the

tensorial form of the Pauli term (4) of a Dirac

Lagrangian density, but the corresponding vector

and pseudo-vector terms (8), which belong

to a Dirac Hamiltonian. It turns out that the

Hamiltonian’s interaction (8) shows a unique

success because it proves the V −A property

of weak interactions (see e.g. [18], pp. 217-

220). Here V denotes a vector interaction and A
denotes an axial vector interaction.

Authors of mainstream literature have overlooked

the effect of the γ0 matrix on the different forms

of the interaction term of a Dirac Lagrangian

density and the corresponding term of a Dirac

Hamiltonian density. This is the primary reason

for the rejection of the Pauli term (4) (namely,

the tensor interaction σµν ) as a candidate for

a description of weak interactions of a Dirac

Lagrangian density (see e.g. [18], pp. 217-220;

[20]).

The discussion of the previous section explains

why the relativistic covariance form of a Dirac

Lagrangian density differs from that of a Dirac

Hamiltonian density. This result is derived from

the Hamiltonian’s dependence on the generalized

momentum (6). It is proved below that this is a

more general property. Thus, the Lagrangian

density is a Lorentz scalar. On the other

hand, the Hamiltonian is an energy operator,

and energy is the 0-component of the energy-

momentum 4-vector (E,ppp). Furthermore, density

is the 0-component of the 4-current (ρ, jjj) (see

[21] pp. 73-78). Hence, the Hamiltonian density

is the 00-component of a second rank tensor,

called the energy-momentum tensor.

The standard construction of the energy-

momentum tensor sheds light on how in different

circumstances, one and the same term does not

undergo the same covariant transformations. Let

L be a Lagrangian density which is a Lorentz

scalar. The standard expression of its energy

momentum tensor is:

Tµν =
∂L

∂ψ,ν

gµαψ,α − gµνL (10)

(see [12], p. 310; [21], p. 83). The tensor (10)

satisfies energy-momentum conservation

Tµν
,ν = 0. (11)

The last term of (10) shows how every Lorentz

scalar term of a Lagrangian density L appears

as a (positive or negative) diagonal entry of

the second rank energy-momentum tensor

(10). This argument proves that all terms of a

Lagrangian density and corresponding terms of

a Hamiltonian density have different relativistic

properties.

It is explained above how the entire electroweak

theory has been based on an erroneous concept,

which identifies relativistic properties of terms of

a Lagrangian density with relativistic properties

of corresponding terms of its Hamiltonian density

(see e.g. [18], pp. 217-220; [20]). The required

coherence of the mathematical structure of a

physical theory is the basis for the expectation

that the erroneous basis of the electroweak

theory is likely to yield other specific errors. This

approach is true. Thus, the second section of

[15] discusses several uncorrectable electroweak

errors. The following list describes briefly these

errors.

Er.1 The (1 ± γ5) electroweak factor is

inconsistent with a massive neutrino.

Er.2 The previous error means that the

electroweak theory cannot explain the V-A

attribute of weak interactions.

Er.3 The electroweak theory regards the W±

bosons as elementary charged particles. Even

though the electroweak theory is about 50 years

old, it still has no consistent expression for the

W± electromagnetic interaction.

Er.4 Contradictions arise from the lack of a

coherent expression for the electroweak Z boson

density.

It turns out that this list does not exhaust the

erroneous elements of the electroweak theory.

Several other issues are mentioned in the next

section.
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4 FURTHER INCONSISTEN-

CIES OF THE ELECTRO-

WEAK THEORY

The crucial role of the Lagrangian density in

the structure of QFT is pointed out in the first

section of this work. In particular, solutions of

the Euler-Lagrange equations of this Lagrangian

density describe the physical properties of a

given quantum system.

The Dirac equation of spin-1/2 particles abides

by this requirement, and textbooks present this

equation together with some of its solutions

(see e.g. [13], pp. 2-13, 28-60). By contrast,

electroweak textbooks refrain from showing

the partial differential equations of the W±, Z
particles of this theory. A fortiori, no specific

solution of these equations is shown and

discussed.

One explanation for this shortcoming is probably

the fact that the full Lagrangian density of these

particles is terribly complicated, and the form of

their Euler-Lagrangian equations should be even

worse. For example, an expansion of the full

Lagrangian density of the electroweak bosons

(see [22], p. 518), yields dozens of terms. This

is just a part of the electroweak Lagrangian

density because one should also examine the

electroweak fermionic fields whose interaction

with the electroweak bosons contains the (1±γ5)
factor. Obviously, the number of terms of the

respective Euler-Lagrangian equations is even

larger. By contrast, the Lagrangian density of

electromagnetic interactions together with the

dipole-dipole weak interaction theory of [15]

comprises four terms – the three terms of the

Dirac electromagnetic Lagrangian density (1) and

the tensor interaction term (4). Hence, even

if one ignores the above mentioned inherent

electroweak contradictions, the Occam razor

principle [23], which favors the relative simplicity

of theories, provides another support for the weak

interaction theory of [15].

The factor (1 ± γ5) is a crucial element of the

electroweak theory (see e.g. [4], pp. 305-313).

Let us use the γ matrix notation of [13], p. 17.

The matrix (1±γ5) is a special case of the matrix

(1 ± λγ5), where λ > 0 is a real number. The

explicit form of an application of this matrix to

the spinor of a motionless spin-up Dirac

particle is:









1 0 ±λ 0
0 1 0 ±λ
±λ 0 1 0
0 ±λ 0 1

















1
0
0
0









=









1
0
±λ
0









.

(12)

The result of (12) is unacceptable. Indeed, if

λ > 1 then the result is a negative energy spinor;

if λ = 1 then it describes a particle that moves

at the speed of light; if λ < 1 then it describes

a Dirac particle that moves parallel to the z-axis

(see [13], p. 30). The latter case violates energy

conservation. Therefore, a factor of the form

(1± λγ5) is unacceptable for a massive spinor.

The electroweak theory aims to combine

electromagnetic and weak interactions. Let

us examine the relative strength of these

interactions. The electromagnetic electron-

electron cross section decreases rapidly with

energy (see [18], p. 193). On the other hand,

a neutrino participates only in weak interaction,

and its cross section increases with energy (see

[24], p. 3). Hence, one should not ignore weak

interactions in cases of high enough energy. The

data of the decay of the W±, Z bosons and of

the top quark support this conclusion (see [25]).

Thus, the decay channels of these particles

contain many products having a new flavor. It

means that these channels are a weak interaction

process. The width of these particles is about 2

GeV. This width indicates that weak interactions

are stronger than strong interactions in the

energy region which is greater than 80 GeV. It is

explained above that the relative strength of weak

interactions is an important effect that cannot be

ignored at high enough energy. This issue is used

below in an examination of an elastic electron-

electron collision (see Fig. 1). Two incoming

electrons collide elastically at point O, exchange

momentum and depart from each other. The

arrows denote the direction of the motion of the

incoming and the outgoing electrons. This is

certainly a process that should be described by

electromagnetic and weak interaction theories.

The process of Fig. 1. comprises electrons and

is free of neutrinos. An electron is a well-known

massive Dirac particle, and it is shown above

that errors emerge from an application of

6
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Fig. 1. Two electrons collide elastically at point O (see text)

the factor (1± γ5) to a massive Dirac particle.

This factor is an inherent element of the

electroweak theory. For this reason, the

electroweak theory cannot properly describe

an electron-electron scattering process.

The experiment of Fig. 1 proves that the

electroweak neutrino mass problem is just

a rediscovery of the inherent contradiction

associated with the (1 ± γ5) factor. Indeed, the

same problem holds for an electron, which is a

well-known massive Dirac particle.

5 CONCLUSIONS

This work compares relativistic properties of the

Lagrangian density of a spin-1/2 Dirac particle

with those of its Hamiltonian density. It proves

that these theoretical concepts have different

relativistic attributes, and that important physical

consequences are derived from this distinction.

The main results are

1. The Lagrangian density is a Lorentz

scalar, whereas the Hamiltonian density is

a 00-component of a second rank energy-

momentum tensor.

2. This distinction is consistent with the fact

that the Lagrangian density is written in

terms of ψ̄. By contrast, the Hamiltonian

density is written in terms of ψ†, where

ψ̄ == ψ†γ0. The additional γ0 factor

is the 0-component of the 4-vector γµ,

and it means that terms of a Lagrangian

density and corresponding terms of the

associated Hamiltonian density undergo a

different Lorentz transformation.

3. The foregoing outcome entails that a

tensor interaction term of a Lagrangian

density (called a Pauli term) yields a

Hamiltonian density that comprises two

terms – a vector and an axial vector. This

result explains the V-A attribute of weak

interactions.

4. An overlook of the meaning of items 1-

3 is the reason for the formulation of the

electroweak theory.

5. The erroneous basis of the electroweak

theory is the origin of several specific

errors of this theory. Here are several

examples:

A. Electroweak textbooks do not show

fundamental quantum requirements.

Thus, the Dirac equation of motion of a

spin-1/2 particle is shown in every relevant

textbook. By contrast, the electroweak

theory is about 50 years old, but textbooks

still do not explicitly display the quantum

equations of motion of its particles.

7
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B. The electroweak theory claims that the

W± are electrically charged elementary

particles, but these particles still have

no expression for the electromagnetic

interaction that is consistent with

Maxwellian electrodynamics.

C. The factor (1 ± γ5) is a vital element

of the electroweak theory. It is now

recognized that this factor is inconsistent

with a massive neutrino. The paper proves

that this factor is also inconsistent with the

electron.
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