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Relativistic quantum mechanics of a finite one-dimensional continuum is studied in the 
framework of Dirac's generalized Hamiltonian dynamics. It is shown that the wave equation 
and subsidiary conditions found by Virasoro in the dual resonance model are equivalent to 
relativistic quantum mechanics in our system. Interaction with external fields is also studied 
briefly. 

§ I. Introduction 

After the dual resonance model was formulated in terms of infinitely many 
oscillators by Nambu, Veneziano and Fubini,l) it has been frequently suggested 

that the underlying string model of hadrons furnishes the multiparticle dual am,. 
plitudes.2

) One of the most crucial problems in the dual resonance model, however, 
is the existence of ghosts which are unphysical states having negative norms or 

space-like momenta. For eliminating ghosts, Fubini and Veneziano have found 
a Ward-like identity which has been generalized by Virasoro.3

) However, the 
Ward-like identity in their form is abstract and its relation to the so-called string 
model of hadrons is obscure. On the other hand, Takabayasi has proposed new 
relativistic quantum mechanical equations of one-dimensional string whic};l are 
defined at each material point on the string.4

) Following Takabayasi's, formalism, 
subsidiary conditions proposed by Virasoro are contained in his new quantum 
mechanical equations. It is, however, not· clear whether his new formulation is 
equivalent to ordinary quantum mechanics or not. Recently, Hara5

) has pointed 
out that Virasoro's condition is derived from the invariance under a general co­
ordinate transformation of the Lagrange coordinates whi.ch specify each material 
point on the string. He has also shown that Virasoro's algebra is derived from 
the algebra of the general coordinates transformation. 

In this note, we would like to show that relativistic quantum mechanics of 
a one-dimensional object with uniform mass density is equivalent to the so-called 
"string" model of hadrons with Virasoro's subsidiary conditions. Our argument 
is as follows: Starting from a Lagrangian which is invariant under a general 
coordinate transformation of the Lagrange parameters and local time transforma-
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tions, we put the Lagrangian formalism into the canonical formalism. Since the 
Lagrangian possesses the above mentioned invariance, we should make use of the 
homogeneous canonical formalism extensively developed by Dirac.6

) In this way, 
we can obtain two "weak" equations which are replaced by constraints on physical 
states in quantized theory. These constraints satisfy a closed algebra which is 
equivalent to the algebra given by Virasoro and Takabayasi. It is also obvious 
that these are generators of general coordinate transformations of the Lagrange 
parameter and the local time variation because constraints are de:dved from in­
variance of the Lagrangian under these transformations. In § 2, a canonical for­
malism of our dynamical system is developed. In § 3, it is sh~wn that Virasoro's 
condition is equivalent to the subsidiary conditions derived in § 2. Interacting cases 
are briefly discussed in § 4 and § 5 is devoted to giving additional comments. 

§ 2. Canonical formalism 

Let us consider a finite one-dimensional continuous medium. Relativistic mo­
tion of this medium is represented by a two dimensional world sheet in four-

t 

~--------------------X 
Fig. 1. 

dimensional Minkowski space (as shown in Fig. 
1). The positional coordinates x"' on the world 
sheet are given in terms of two invariant para­
meters r and rJ : 

(2·1) 

Hereafter, we call these parameters Lagrange 
coordinates (or L-coordinates in short). The 
four-velocity v"' of a point designated by x"' (r, rJ) 

on the world sheet can be defined by 

where 

1 ox"' v"'=----
.J Yoo or ' 

Yoo= ox"' OXp >O. 
or or 

(2·2) 

(2· 3) 

Condition (2 · 3) means that r plays a role of ·a parameter describing time 
development of the system. Infinitesimal separation dx"' between a point (rJ, r) 
and a point (rJ + drJ, r + dr) on the world sheet is 

(2·4) 

If we choose dr so that the separation dx"' is orthogonal to v"' and denote it as 
dJ_x"', dJ_x"' is written as follows: 
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where 

T. Gota 

= (ax" _Yot ax" )d<J, 
a<J Uoo ar 

Uot = ax" ax,. . 
ar f)(J 

(2·5) 

(2·6) 

Therefore, infinitesimal invariant length dl at a point P(r, <5) on the world sheet 

can be defined as follows: 

where 

and 

dl= J -d.Lx"dl.xP 

= jY~1-UooUud<J = j- det g d<J , 
. Uoo Uoo 

OX~' axP 
Yn=----

a<J a<J 

det g= IYoo Uot 1. 
Uot Uu 

The proper time of a point P ( (J, r) is written by 

ds = VUoodr. 

(2·7) 

(2·8) 

(2·9) 

(2·10) 

Now, let us suppose that the mass density of our one-dimensional continuum 

is uniform and denoted by "o· Then, the kinetic energy (including rest mass) of 

this system is simply given as follows: 

T= rll"odl= SO"! d<J"oj-detg. 
Jo O"o Uoo 

(2·11) 

If there is no internal force such as an elastic force, the action integral becomes 

L = S S dsdl"o = S S drd<J"0V- det g . (2 ·12)*),7) 

It should be noticed that Eq. (2 ·12) is invariant under the general L-coordinate 

transformations 

*> The same Lagrangian and the algebra (3 ·10) are also found by Nambu7> from a different 

point of view. After the completion of this work, Prof. J. Iizuka pointed out Nambu's work. He 

thanks Prof. J. Iizuka for his kind communication. 
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r~r' = r' (r, 6'). (2·13) 

In order to obtain the canonical formalism, we must define canonical momenta 
pp, (6') corresponding to positional coordinates xp, (0") in the medium. Pp, (6') is 
defined in the following way: 

oL JC [ ox# ox# J 
pp, (0") = o (ox# /or) = J- ~et g - Uufir + Uo1'7f6 ' (2·14) 

where 

L= fdO"JCoV-detg= sdO"Lo. 

Multiplying (2 ·14) by oxp, joO", we can easily see that the following equation 
holds: 

T(O") =P OX# = 0. 
p, 86' 

From (2 ·14) and (2 ·15), we obtain the equation 

ox# 1 oxP-pp,---JCov -detg=pp,---Lo=O. or ar 

(2·15) 

(2·16) 

This shows that Hamiltonian is weakly zero. From (2 ·14), (2 ·15) and (2 ·16), 
it is not difficult to find the following relation: 

(2·17) 

Since Eqs. (2 ·15) and (2 ·17) are weak relations among canonical variables, they 
are interpreted as constraints on physical states in quantum theory. Consistency 
between these weak relations is easily examined by calculating Poisson brackets 
(or commutators in the quantized theory) of H(O") and T(O"'). In fact, the fol­
lowing commutation relations are obtained: 

[T(O"), T(O"')J =2io'(O"-O"')T(O") +io(O"-O"')aT, (2·18b) 
aO" 

[T (0"), H (O"')] = 2io' (0"- O"') H(6') + io (6'- O"') aH , (2 ·18c) 
a6' 

where o' ( 6- 6') = 8o ( 6- 6') /86 and T ( 6) is symmetrized as T (0") = t (p,. ·ax# 
/a6 +ax# /86 · p,.). From commutation relations (2 ·18), it can be seen that T(6)'s 
and H(O")'s form a closed algebra. 

Following Dirac's generalized canonical formalism, Hamiltonian ${ is given 
as follows: 
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(2·19) 

where Ao and A1 are arbitrary functions of 6. Hamilton's equations are, now, 

easily derived as follows : 

~x" = ~ [JJC, x" (6) ]*) 
vr z 

ax" 
= A.oP" + A.r-ao:- , 

On the other hand, Euler's equation from Lagrangian (2 ·12) is 

a [ "o ( ax" ax")] - ar . .J- det g - Uu--ar + Uol~ = 0 ' 

a [ " ( ax" ax")] - a6 .J -~etg -Uoo~+Uolar =0. 

If we put 

1 "oUn 
Ao .J -detg ' 

A.1 "oUo1 or A.1=Uo1, --
.J -det g Ao Uu 

(2 · 20a) 

(2. 20b) 

(2·21) 

(2·22) 

we can show by employing (2 ·14) that Euler's equation is equivalent to Hamilton's 

equation (2 · 20). It should also be mentioned that, since i\.0 and A.1 are arbitrary 

functions, Hamiltonian (2 ·19) can be interpreted as generators of general L­

coordinate transformations, and constraints (2 ·15) and (2 ·17) show that physical 

states are invariant under the transformation. Therefore, the situation is quite 

analogous to the case of quantum electrodynamics where the Lorentz condition 

means that the generators of gauge transformation are zero on physical states. 

§ 3. Virasoro's subsidiary conditions for dual resonance model 

Since our mechanical continuum is finite, we can choose the range of 6 so 

as to be [0, n] without loss of generality. Now, let us suppose that x" (6) can 

be expanded by Fourier cosine series, that is, 

*> lji[A, B] should be understood as Poisson brackets in classical theory. 
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where 

and 

j 2 co 

x" (0") = - L: ~/cos rO", 
7! r=O 

j 2 co r 
p" (0") = _ L: n" cos rO" , 

7! r=O 

[ r e: s] _ ·g ~rs 7!p, ''i"v - -l p,vU 

(Yoo= -Yu= -g22= -Yaa=1) 

(3·1) 

(3·2) 

As is well known, we can introduc,e oscillator variables (C /, C /.) by making 
use of (7!/, ~/) as follows: 

C/= .,/
2 
[r~/ +in/], 

C rt = _l_ [ · e: r _ · r] " J2 l'i"" l7!p, ' 
(3·3) 

1 . 
Co= -Cot= -7! o= _z_p 

" " -.12 " .v--:;r ", 

where P"= r;dO"p"(O") and is interpreted as the total four-momentum of our system. 
Commutation relations of C and C+ are 

[c r c st] = -r~rsg p, , v U p,v 

and, therefore, the usual oscillator variables (a/, a/t) are given by 

r 1 C r 
a" = v'r " ' r>1, 

(3·4) 

(3·5) 

Throughout this section, we choose a suitable unit such that /Co= 1. (See (3 · 8) .) 
Instead of considering H(O") and T(O"), it is sufficient to study their Fourier 

coefficients defined as follows : 

(3 · 6a) 

(3. 6b) 

It is more convenient to consider the following quantities: 

(3·7a) 
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00 

uo=Ho=p2_ ~ C/tCr·"'-(J)o' 
r=l 

where (}) 0 1s a constant. The explicit form of un is as follows: 

n-1 

un= -i-/2P"'Cn·"'+ ~ C/tCn+r·"'-i ~ C/Cn-r,"', 
r=l r=l 

and the commutation relations of these quantities are 

[Un, un'] = (n-n') un+n', 

[Un, Un't] = (n+n') un-n', n-n'>O 

= (n + n') Un'-nt, n- n' <O. 

(n>1) 

(3. 7b) 

(3·8) 

(3·9) 

(3 ·lOa) 

(3 ·lOb) 

Equations (3 · 8), (3 · 9) and (3 ·10) are equivalent to those obtained by Vir as oro 

and Takabayasi. Constraints (2 ·15) and (2 ·17) are now replaced by the fol-

lowing: 

n>l -' 

n>l. 

(3 ·11) 

(3 ·12a) 

(3 ·12b) 

Equation (3 ·11) is interpreted as a master equation describing the motions of 

our system and Eqs. (3 ·12) are constraints on physical states. It is worthy to 

notice that we do not use an indefinite metric in the preceeding discussions and 

we understand the zeroth component a0r of a/ as a creation operator and con­

sequently a/t as a destruction operator. If, however, we use an indefinite metric 

formalism in analogy with quantum electrodynamics, a/ and a/t are the creation 

and destruction operators, respectively. Moreover, it may be sufficient to keep 

(3 ·12a) as constraints, because the expectation values of subsidiary conditions 

are required to hold, I.e., 

(3 ·13) 

Therefore, the indefinite metric formalism of our quantum mechanical system 1s 
equivalent to the dual resonance model with Virasoro's condition or Takabayasi's 

proposal of a new relativistic wave equation. It is also expected in analogy with 

quantum electrodynamics that the indefinite metric formalism is equivalent to the 

formalism without use of an indefinite metric. 

§ 4. Interaction with external field 

Now, let us consider briefly the following interacting case. The interaction 
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Lagrangian density ~C is given, for example, as follows: 

(for the case of external scalar field) 

ox"' L1v=g¢p.-o(6). or 
(for the case of external vector field) 

( 4 ·1a) 

(4·1b) 

Here, we assume that the interactions with external fields occur at the end point 
of our rod. It is also possible to assume the charge (i.e., the coupling constant) 
is distributed uniformly over the rod. In this case, the interaction Lagrangian 
density becomes 

L2 = g¢ (x (6)) J- det g. ( 4 ·1c) 

(for the case of external scalar field) 

In the case of ( 4 ·1a), weak equations corresponding to (2 ·15) and (2 ·17) are 
obtained as follows: 

PP.P"' + /CoY11 = - 2JCo9¢ (x (6)) o (6) + [g¢ (x (6)) 0 (6) ]\ (4 · 2a) 

ox"' ----
p"'-= -g¢(x(6))o(6}Vl+gn, 

06 

where we required J- det g IYoo = 1 at the end point (6 = 0). Therefore, if we 
disregard the last term of ( 4 · 2a) and expansion (3 · 1) of Fourier cosine series 
is still valid, our result is equivalent to that obtained by Virasoro and Takabayasi. 
However, it is doubtful whether expansion (3 ·1) remains valid and the invariance 
of the L-coordinate transformation requires the second order term in Eq. ( 4 · 2a). 
Unfortunately, this characteristic second order term is very pathological because 
of presence of the factor [o (6) ]2

• The condition [ J- det g 1 g00]0"=0 = 1 is necessary 
to obtain such a simple result as ( 4 · 2). 

In the case of (4 ·1b), the situation is similar to the above. Corresponding 
to ( 4 · 2a) and ( 4 · 2b) , one obtains the following: 

P2 + /Co29n = -!CoY [p"'¢"' + ¢P.pfl'] 0 (6) 

+ 92¢"'¢"' [o (6) J\ 

p ox"' =g¢ fJx"' o(6). 
"' fJ6 "' 86 

(4· 3a) 

(4·3b) 

In this case, it is not necessary to require such a condition as ( J- det g 1 g00)0"=0 = 1. 
However, there appears again a pathological term [o (6) ] 2

• 

In the case of (4 ·1c), there is no mathematical trouble. In fact, weak equa-
tions are now given as follows: 
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1568 T. Goto 

PPP" + /Co2gn = - [2teog¢ (x) + g 2¢2 (x)] g11 , 

p ox# =0. 
# 00 

(4 ·4a) 

(4·4b) 

Unfortunately, in this case one cannot obtain such a complete s-t symmetric scat­
tering amplitude as that given by Veneziano. The problems in the interacting 
case discussed above remain to be investigated further. 

§ 5. Discussion 

Usually, such a model as discussed in this paper Is called an elastic string 
model. However, as shown in § 2, there is only one parameter /Co which is natu­
rally interpreted as a mass density and we have no parameter which characterizes 
elastic property of the medium. Although Euler's Equation (2 · 21) governs mo­
tions of our system, it is not very easy to solve it in general. In the static case 
(i.e., all the time derivatives vanish), we can choose r so that Eq. (2 · 21) becomes 

_E_ [ 1 ax J = 0 c5 1) 
ao J ca x ;a(Jy ao ' · 

where ox# /or= (1, 000) and ox# jorJ = (0, ox/orJ). Equation (5 ·1) shows that 
in the static case our system is a straight line. Therefore, it may be more 
suitable to call it a linear rod than an elastic string. 

Formulation developed in this paper is also applicable formally to the case 
of three-dimensionally extended object. Let us take, for example, the following 
Lagrangian : 

(5·2) 

where 

- ox# OXp 
g a(:J- a~a f)~/3 • (a, {3=0, 1, 2, 3) 

Then, we obtain the following constraints corresponding to (2 ·15) and (2 ·17), 

ox# 
p# a~a =0' a= 1, 2, 3, (5· 3a) 

PPPP +/Co2 det rJ = 0, (5. 3b) 

where 

gn g12 Y1s 

det r! = g12 g22 g2a (5 · 3c) 

Y1s Y2a gsa 

Though Hamiltonian dynamics can be obtained m this way, it Is not easy to 
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handle Eq. (5·3b) because of (det g) which is not bilinear in x". Situation is 
similar even in the case of two-dimensional sheet. Therefore, a one-dimensional 
rod is a particular example which one can treat rather easily. 

The author wishes to thank Professor 0. Hara for his kind and suggestive 
discussions and encouragement. He is also indebted to Dr. S. Ishida and Dr. 
J. Otokozawa for their critical comments. 
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