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Abstract We study solutions for the Klein–Gordon equa-
tion with vector and scalar potentials of the Coulomb types
under the influence of noninertial effects in the cosmic string
spacetime. We also investigate a quantum particle described
by the Klein–Gordon oscillator in the background space-
time generated by a cosmic string. An important result
obtained is that the noninertial effects restrict the phys-
ical region of the spacetime where the particle can be
placed. In addition, we show that these potentials can form
bound states for the Klein–Gordon equation in this kind of
background.

1 Introduction

Quantum field theory (QFT) in curved spacetime can be con-
sidered as a first approximation to quantum gravity. More-
over, to make a consistent quantum field theory in a grav-
itational background, it is necessary to analyze the single
particle states, in this way, efforts have been made in order
to find an adequate formulation of the relativistic equation of
motion for particles in a curved spacetime. In recent years,
there has been a significant increase of interest in the study of
gravitational effects on quantum mechanical systems (single
particle states) [1–14]. In this context it has been shown that
the energy spectrum associated with one-electron atoms in an
arbitrary curved spacetime is different from the one obtained
in the usual flat Minkowski spacetime [4]. The energy lev-
els are shifted by the gravitational field and the effects of
the curvature appear as perturbations in the relativistic fine
structure. In addition, the physics of a neutrino in a curved
metric is considered in [14] by Wheeler and Brill, who pre-
sented a detailed analysis of the interaction of neutrinos and
gravitational fields.

Cosmic strings are another kind of system that may be
investigated with this purpose. They are very interesting sys-
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tems, which are supposed to be formed during a symmetry
breaking phase transition in the early universe [15–21] and
may be considered as topological defects in the spacetime
structure predicted by a large class of theories. These struc-
tures are candidates for the generation of observable astro-
physical phenomena such as high energy cosmic rays, gamma
ray burst and gravitational waves [22]. The recent discovery
of gravitational waves by the LIGO collaboration [23] sug-
gests that a promising way to detect the cosmic strings is to
search for the gravitational-wave radiation they would pro-
duce.

A key feature is that the spacetime around them is locally
flat, but this is not a global propriety. The presence of such
kind of topological defects can also influence the behavior of
particles of a quantum system, for example, in [9] the Dirac
equation has been solved in the presence of a Coulomb and
a scalar potentials in the cosmic string spacetime and it was
shown that its presence destroys the degeneracy of all the
energy levels. In a recent work [24], solutions of the Klein–
Gordon equation in Gödel-type spaces with an embedded
cosmic string are considered, and it was shown that the pres-
ence of cosmic strings in the spacetime breaks the degeneracy
of energy levels in Som–Raychaudhuri, spherical and hyper-
bolic G ödel spaces. In [25], the effects of magnetic fields in
the metric have been considered. A relativistic wave equa-
tion for spin 1/2 particles in the Melvin spacetime, a space-
time where the metric is determined by a magnetic field, has
been obtained and the effects of very intense magnetic fields
in the energy levels, as intense as the ones expected to be
produced in ultra-relativistic heavy-ion collisions, has been
investigated.

Noninertial effects on physical systems are another kind
of aspect that have been studied in much work in the liter-
ature [26–34]. A special case of a noninertial system is the
rotating frame of reference. In [35,36], a rotating frame in
the Minkowski spacetime, is investigate. Notably, in those
papers it was shown that the geometry of the spacetime can
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play the role of a hard-wall potential. Another example of a
noninertial system is the Mashhoon effect, that is, the cou-
pling of the spin of the particles with the angular velocity of
the rotating frames and it arises from the influence of these
noninertial frames when interference effects are considered
[37].

In this contribution, we will study scalar bosons in a cos-
mic string spacetime by considering the Klein–Gordon equa-
tion with a vector potential v(r) = κ/r and a scalar potential
s (r) = η/r , where r is the radial coordinate with η and κ

constants. Afterwards, we will examine a similar problem,
the Klein–Gordon oscillator inside a cosmic string spacetime.
Moreover, a rotating frame in the conical spacetime will be
considered in both cases, and we will show that noninertial
effects restrict the physical region of the spacetime where the
particle can be placed, and furthermore the energy levels are
shifted by the noninertial effects on the particle. This inter-
esting feature is an indicator of a nontrivial phenomenon: the
coupling between the angular quantum number and the angu-
lar velocity of the rotating frame. Afterwards, we will show
that these potentials can form bound states for the Klein–
Gordon equation in this spacetime. This paper is part of a
study in which we systematically explore the properties of
quantum systems inside spaces with different kinds of struc-
tures [25,38].

The paper is organized as follows: In Sect. 2, we will
describe the cosmic string spacetime and the transforma-
tion from spacetime coordinates to rotating coordinates. In
Sect. 3, the Klein–Gordon equation with vector and scalar
potentials of the Coulomb types in the cosmic string space-
time will be determined and in Sect. 4 the Klein–Gordon
oscillator will be solved. Finally, Sect. 5 presents our con-
clusions. In this work, we use natural units where c = G =
h̄ = 1.

2 The cosmic string and the noninertial reference frame

In this section we will describe the relationship between the
metric of a cosmic string and the effects of the rotation of
a reference frame. The cosmic string spacetime is a solu-
tion of Einstein’s field equations and it describes a spacetime
determined by an infinitely long straight string. The string
spacetime is assumed to be static and cylindrically symmet-
ric, and then the distance element representing this system
can be written in the form [2,19]

ds2 = − dt ′2 + dr ′2 + α2r ′2dφ′2 + dz′2, (1)

where α = 1− 4Gμ and μ is the mass density of the string. In
this spacetime, the coordinate range is represented in the fol-
lowing way: the azimuthal angle range is φ′ ∈ [0, 2π) while
r ′ and z′ are r ′ ∈ [0,∞) and z′ ∈ (−∞,∞), respectively.
The parameter α is related to the curvature of spacetime. It

may assume values in which α ≤ 1 or α > 1, and in this
case, it corresponds to a cosmic string spacetime with neg-
ative curvature. In this work, we are interested in studying
the case 0 < α < 1. The transformation of the metric (1)
for a rotating reference frame may be made by considering a
coordinate transformation [39,40]

t ′ = t, r ′ = r, φ′ = φ + ωt, z′ = z, (2)

where ω is angular velocity of the rotating frame, which we
assume to be positive. Inserting this transformation into Eq.
(1) we obtain the line element

ds2 = −
(

1 − α2r2ω2
)

dt2 + 2α2r2ωdtdφ

+ dr2 + α2r2dφ2 + dz2, (3)

which may be associated with the covariant metric tensor

gμη =

⎛

⎜

⎜

⎝

−
(

1 − α2r2ω2
)

0 0 α2r2ω

0 1 0 0
0 0 1 0
α2r2ω 0 0 α2r2

⎞

⎟

⎟

⎠

. (4)

We can see that gμη is a non-diagonal metric tensor where
the effects of the topology and the rotation of the reference
frame are taken into account. An interesting feature of Eq.
(3) is the condition

0 < r < 1/αω. (5)

That condition is related to the fact that for r > 1/αω the
velocity of the particle is greater than the velocity of the
light, for this reason, it is convenient to restrict r to the range
(0,1/αω ). In this way, the wave function of the particle must
vanish at r = 1/αω and consequently this system presents
two different classes of solutions that depend on the value
of the product αω. The first case is obtained by adopting the
limit αω ≪ 1 (1/αω → ∞), which provides an analytical
solution to the Klein–Gordon equation and as a second case,
an arbitrary relation αω can be considered.

3 Klein–Gordon equation with vector and scalar

potentials of the Coulomb types in the cosmic string

spacetime

The Dirac equation is a wave equation that represents very
well spin-1/2 particles in Minkowski spacetime. The spin-0
particles are represented by the usual Klein–Gordon equa-
tion which can be generalized to the curved spacetime case.
In order to determine the generalization of the wave equa-
tion one may replace the ordinary derivatives by covariant
derivative [38] in the Klein–Gordon equation in Minkowski
spacetime, the result is
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−
1

√
−g

Dμ

(

gμν√−gDνψ
)

+ m2ψ = 0, (6)

that is, the Klein–Gordon equation in a curved spacetime
[41], where m is the particle mass, Dμ = ∂μ − ieAμ, and e

is the electric charge. A scalar potential V (r) may be taken
into account by making a modification on the mass term:
m → m + V (r). Substituting this mass term into (6) we
obtain the following differential equation:

−
1

√
−g

Dμ

(

gμν√−gDνψ
)

+ (m + V )2 ψ = 0. (7)

This differential equation takes into account a scalar potential
V and a potential vector Aμ [42,43]. In the following, we
will obtain two classes of solutions of Eq. (7). First, we will
consider the slow rotation regime, and then we consider an
arbitrary relation αω in the spacetime.

By considering the line element (3) and the potential vec-
tor A0, we obtain the following differential equation:

[

−
(

∂

∂t
− ieA0

)2

+
1

r

(

∂

∂r

)

r

(

∂

∂r

)

+
∂2

∂z2
+

(

1 − α2r2ω2

α2r2

)

∂2

∂φ2

+ 2ω

(

∂

∂φ

) (

∂

∂t
+ ieA0

)

− (m + V )2

]

ψ = 0, (8)

that is, the Klein–Gordon equation in the cosmic string space-
time. One can see that Eq. (8) is independent of t , z and φ,
so it is reasonable to write the solution as

ψ (t, r, z, φ) = e−iεt eilφei pz z R (r) , (9)

where l = 0,± 1,± 2,± 3, . . ., and ε can be interpreted as
the energy of the particle, pz is the momentum. Substituting
(9) into Eq. (8), and by considering A0 = κ/r, we obtain the
radial differential equation

[

d2

dr2
+

1

r

d

dr
+

e2κ2 − l2/α2

r2
− (m + V )2

2εeκ + 2ωeκl

r
+ (ε + ωl)2 − p2

z

]

R (r) = 0, (10)

where the parameter α represents the deficit angle of the
spacetime and α = 1 corresponds to the Minkowski space-
time. In this paper, we are interested in studying the case
α < 1.

In this stage, we consider a scalar potential of the type
V (r) = η/r , where η is a constant; thus, substituting this
potential into Eq. (10), we obtain the following expression:

[

d2

dr2
+

1

r

d

dr
−

β2

r2
−

2γ

r
− δ2

]

R (r) = 0, (11)

where

δ2 = m2 + p2
z − (ε + ωl)2 , β =

√

l2/α2 + η2 − e2κ2,

γ = −εeκ − ωeκl + mη. (12)

We assume the relation e2κ2 < η2 so that β is a real num-
ber. Now, we will consider the transformation of the radial
coordinate

ρ = 2δr, (13)

and as a result Eq. (11) will take the form
[

d2

dρ2
+

1

ρ

dR

dρ
−

β2

ρ2
−

γ

δρ
−

1

4

]

R (ρ) = 0. (14)

Normalizable eigenfunctions may be obtained if we propose
the solution

R (ρ) = ρβe− ρ
2 F (ρ) , (15)

then substituting R(ρ) (15) into Eq. (14), we obtain the differ-
ential equation that can be associated with the radial equation

ρ
d2 F

dρ2
+ (2β + 1 − ρ)

dF

dρ
+

(

−β −
γ

δ
−

1

2

)

F = 0.

(16)

This is the confluent hypergeometric equation, which is a sec-
ond order linear homogeneous differential equation where
two independent solutions can be obtained. The solution of
Eq. (16), regular at ρ = 0, is given by the confluent hyper-
geometric function, which is denoted by

F (ρ) = 1 F1

(

β +
γ

δ
+

1

2
, 2β + 1; ρ

)

. (17)

If we consider the limit αω ≪ 1, that is, the slow rotation
regime, the boundary condition implies that the solution

1 F1

(

β +
γ

δ
+

1

2
, 2β + 1;

2δ

αω
→ ∞

)

(18)

must be finite as ρ0 = 1/αω → ∞. So, due to the asymptotic
behavior of the hypergeometric function, it is necessary that
the 1 F1 function be a polynomial function of degree N and
the parameter β + γ

δ
+ 1

2 should be a negative integer. These
conditions imply that

β +
γ

δ
+

1

2
= −N , N = 0, 1, 2, . . . , (19)

and combining this equation and Eq. (12) we finally obtain
the energy spectrum,

ε =
eκmη

ζ + e2κ2

±

√

√

√

√ζ

[(

p2
z + m2

) (

ζ + e2κ2
)

− m2η2
]

(

ζ + e2κ2
)2

− ω |l| , (20)

where ζ =
(

N + 1
2 +

√

l2/α2 + η2 − e2κ2
)2

.
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Fig. 1 The plots of the radial coordinate R as the function of the vari-
able ρ displayed for three different values of N with the parameters
α = 0.9, ω = 0.6, η = 1 and l = 1

Fig. 2 The plots of |ψ |2 as a function of the variable ρ displayed for
three different values of N with the parameters α = 0.9, ω = 0.6, η = 1
and l = 1

Observing Eq. (20), we can see that the energy spectrum
depends on α, the deficit angle of the conical spacetime. The
first and second terms are associated to the Coulomb-like
potentials embedded in a cosmic string background and the
third term is associated to the noninertial effect of rotating
frames; it is a term due to Page-Werner et al. [44–47]. For
l = 0 or ω = 0 the discrete set of energies are symmetrical
about ε = 0; in this way, the presence of noninertial effects of
rotating frames in spacetime breaks the symmetry of energy
levels about ε = 0 because ε+, in general, is greater than ε−.

From Eq. ( 20), it is possible to see that the energy depends
on the constant α, thus the presence of the topological defect,
modifies the energy of the particle.

Figures 1 and 2 show that the radial solution R (ρ)

decreases with the coordinate ρ and becomes negligible far
away from the cosmic string as ρ → ∞. For clarity, the plots
of the energy spectrum ε as a function of the variables N and
l are shown in Figs. 3 and 4.

In the next section we will discuss an arbitrary relation
ωα for the Klein–Gordon oscillator where the shape of the
potential is adequate for this purpose.

Fig. 3 The plots of particle energy spectrum ε as the function of vari-
ables N and l

Fig. 4 The plots of negative energy spectrum ε as a function of vari-
ables N and l

4 Klein–Gordon oscillator in the cosmic string

spacetime

Another system of interest that may be considered is the
Klein–Gordon oscillator [48] in the background of the cos-
mic string spacetime. In recent years, several studies have
addressed the Klein–Gordon oscillator in quantum systems
[49–57]. It has a formulation similar to the vector potential
in the previous section, so to study its solutions we will use
the following change in momentum operator:

pμ →
(

pμ + im�Xμ

)

, (21)

where m is the particle mass at rest, � is the frequency of
the oscillator and Xμ = (0, r, 0, 0), with r being the distance
from the particle to the string. In this way, the Klein–Gordon
equation becomes

[

−
1

√
−g

(

∂μ + m�Xμ

)

gμν√−g (∂ν − m�Xν) + (m + V )2
]

ψ = 0.

(22)

Taking V = 0 in the above equation and by considering the
line element (3), we obtain the following equation:
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[

−
∂2

∂t2
+

1

r

(

∂

∂r
+ m�

)

r

(

∂

∂r
− m�

)

+
∂2

∂z2

+
(

1 − α2r2ω2

α2r2

)

∂2

∂φ2
+ 2ω

∂2

∂t∂φ
− m2

]

ψ = 0 . (23)

Similar to the case of the Coulomb potential in the previ-
ous section, Eq. (23) is independent of t , z and φ, so it is
appropriate to choose the ansatz

ψ (t, r, z, φ) = e−iεt eilφei pz z R′ (r) , (24)

with l = 0,± 1,± 2,± 3, and ε being the energy of the
particle. Substituting (24) into Eq. (23), we obtain the radial
differential equation

[

+
1

r

(

∂

∂r
+ m�

)

r

(

∂

∂r
− m�

)

+

−
l2

α2r2
+ (ε + ωl)2 − p2

z − m2
]

R′ (r) = 0 (25)

At this stage, we can consider the substitution R′ (r) =
R (r) /

√
r in Eq. (25) the result is

[

d2

dr2
− m2�2r2 −

(

l2/α2 − 1/4
)

r2
+ K 2

]

R (r) = 0,

(26)

with K =
√

(ε + ωl)2 − p2
z − m2 − 2m�. This is the radial

equation that describes the Klein–Gordon oscillator in the
spacetime of a cosmic string. In order to obtain the solution
to the above differential equation it is necessary to analyze
its asymptotic behavior for r → 0 and r → r0 where r0 ≡
1/ωα. In this way, a regular solution at the origin is obtained
if the solution of Eq. (26) has the form

R (r) = r

∣

∣

∣

l
α

∣

∣

∣
+ 1

2 e−m�r2/2 F (r) . (27)

Substituting the above expression in Eq. (26) and by intro-
ducing the new variable ρ = m�r2, we can rewrite the radial
Eq. (26) in the form

ρ
d2 F (ρ)

dρ2
+

(
∣

∣

∣

∣

l

α

∣

∣

∣

∣

+ 1 − ρ

)

dF (ρ)

dρ

−
(

l

2α
+

1

2
−

K 2

4m�

)

F (ρ) = 0. (28)

The solution of Eq. (28) is given by the confluent hypergeo-
metric function, which is denoted by

F (ρ) =1 F1 (A, B; ρ) , (29)

where the parameters A, B and ρ are given by

A =
1

2

∣

∣

∣

∣

l

α

∣

∣

∣

∣

+
1

2
−

K 2

4m�
, (30)

B =
∣

∣

∣

∣

l

α

∣

∣

∣

∣

+ 1, (31)

ρ = m�r2. (32)

4.1 Limit αω ≪ 1 (1/αω → ∞)

Following the discussions of Sect. 3, we proceed now to
finding the eigenfunction for this problem.

Considering again the limit αω ≪ 1, we have a change
in the boundary condition on the radial coordinate, i.e.,
when αω ≪ 1 the radial coordinate tends to infinity at
r = 1/ωα. Consequently the hypergeometric function must
be a polynomial function of degree N , and the parameter

A = 1
2

∣

∣

l
α

∣

∣ + 1
2 − K 2

4m�
must be a negative integer. This con-

dition implies that

1

2

∣

∣

∣

∣

l

α

∣

∣

∣

∣

+
1

2
−

K 2

4m�
= −N , (33)

and by the use of the definition of

K =
√

(ε + ωl)2 − p2
z − m2 − 2m�, (34)

we finally obtain the set of energies

ε = ±

√

2m�

(

2n′ +
∣

∣

∣

∣

l

α

∣

∣

∣

∣

)

+ m2 + p2
z − ω |l| ,

n′ ≡ N + 1 = 1, 2, 3, . . . . (35)

We can see that the energy spectrum associated with the
Klein–Gordon oscillator in the conical spacetime depends
on α, that is, the deficit angle of the conical spacetime. It
increases the energy of the system if α < 1. It is easy to see
that for l = 0 or ω = 0 the energy is symmetrical about ε =
0. In this way, the rotating frame breaks the symmetry of the
energy about ε = 0. The first term in Eq. (35) is associated to
the Klein–Gordon oscillator embedded in a conical space and
the second one is associated with the noninertial effect, which
in turn is a coupling between the angular quantum number
and the angular velocity of the rotating frame. As may be
seen in Fig. 5, the radial eigenfunction becomes negligible
far away from the string as ρ → ∞. Figure 6 presents |ψ |2
as a function of the variable ρ for three different values of
n′. The energy spectrum as a function of the variables n′ and
l are shown in the plots of Figs. 7 and 8. We note that the
result obtained in Eq. (35) is similar to the one reported in [2]
for scalar bosons described by the Duffin–Kemmer–Petiau
(DKP) formalism.
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Fig. 5 The plots of radial coordinate R as the function of variable r

displayed for three different n′ with the parameters α = 0.9, ω = 0.6,
� = 0.1, m = 1 and l = 1

Fig. 6 The plots of |ψ |2 as functions of the variable ρ displayed for
three different values of n′ with the parameters α = 0.9, ω = 0.6,
� = 0.1, m = 1 and l = 1

Fig. 7 The plots the of particle energy spectrum ε as function of the
variables n′ and l

4.2 Arbitrary ωα

Now let us study an arbitrary relation between the parameters
α and ω. In this case we discuss the behavior of the Klein–
Gordon oscillator without assuming the limit αω ≪ 1. The
physical condition implies that the wave function vanishes at
r0 = 1/αω, i.e.,

Fig. 8 The plots of the negative energy spectrum ε as a function of the
variables n′ and l

1 F1

(

A, B; ρ0 = m�r2
0

)

= 0. (36)

If one assumes that m� ≪ 1, the parameter A of the
hypergeometric function can be considered large and the
parameters B and r0 remain fixed. Thus, we can use these
results to expand the hypergeometric function in the form
[58,59]

1 F1(A, B; ρ0) ≈
Ŵ(B)
√

π
e

ρ0

2
(

Bρ0

2
− Aρ0

)

1 − B

2

× cos

(

√

2Bρ0 − 4Aρ0 −
Bπ

2
+

π

4

)

;

(37)

here Ŵ(B) is the gamma function. By considering the condi-
tion (36) and Eq. (37), we finally obtain the set of energies
for an arbitrary relation between the parameters α and ω,

ε ≈

√

p2
z + m2 + 2m� +

1

r2
0

(

lπ

2α
+

3π

4
+ nπ

)2

− ωl

(38)

where n = 0, 1, 2, . . . is the radial quantum number of solu-
tion. Then Eq. (38) corresponds to the set of energies for
an arbitrary relation between α and ω where the noninertial
effects play o hole of an hard-wall confining potential [59].
The first term of Eq. (38) is associated to the Klein–Gordon
oscillator embedded in a cosmic string background and the
second term is associated to the noninertial effect of rotating
frames, which in turn is a Sagnac-type effect.

5 Conclusions

In this work, we have determined the Klein–Gordon equa-
tion in the presence of a vector and a scalar potential and
examined the Klein–Gordon wave equation in the presence
of a Klein–Gordon oscillator in a cosmic string spacetime.
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Despite the complexity of the studied systems, we obtained
compact expressions for the energy spectrum and for the par-
ticles wave functions. It has been shown that the potentials
studied allow the formation of bound states and the energy
spectrum associated with the Klein–Gordon equation in a
cosmic string space depends on the deficit angle α. This fact
shows that the topological defect modifies the energy of phys-
ical systems.

An important result that we have shown is that the noniner-
tial effect restricts the region of the spacetime where the par-
ticle can be observed and beyond that, it shifts the energy lev-
els. This feature reveals the existence of a coupling between
the angular quantum number and the angular velocity of the
rotating frame.

We have shown that the Klein–Gordon equation presents
two different classes of solutions that depend on the value of
the α and ω. In the first case the limit αω ≪ 1 is assumed,
that is, the slow rotation regime, and as a second case, an
arbitrary relation for αω is considered. For both classes of
solutions, we have found the energy spectrum and the eigen-
functions and we have shown that the discrete set of energies
in general is composed of two contributions. The first term
is associated to the external potential embedded in a cosmic
string background and the second one is associated to nonin-
ertial effects. With these results it is possible to have an idea
as regards the general aspects of the quantum dynamics of
scalar bosons inside a cosmic string background.

Therefore, in this paper, we have shown some results for
quantum systems where general relativistic effects are taken
into account, which in addition with the previous results
[25,38] present many interesting effects. This is a funda-
mental subject in physics, and the connections between these
theories are not well understood.
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