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Abstract

Radiatively driven transfer flow perpendicular to a luminous disk is examined in the relativistic regime of (v/c)2,
while taking into account the gravity of the central object. The flow is assumed to be vertical, and the gas pressure
as well as the magnetic field are ignored. Using a velocity-dependent variable Eddington factor, we can solve the
rigorous equations of the relativistic radiative flow accelerated up to relativistic speeds. For sufficiently luminous
cases, the flow resembles the case without gravity. For less-luminous or small initial radius cases, however, the flow
velocity decreases due to gravity. Application to a supercritical accretion disk with mass loss is briefly discussed.
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1. Introduction

Mass outflow from a luminous disk is a clue to the forma-
tion mechanism of astrophysical jets and winds in the active
objects. In particular, in a supercritical accretion disk, the disk
local luminosity exceeds the Eddington one, and mass loss
from a disk surface driven by radiation pressure would take
place (see Kato et al. 1998 for a review of accretion disks).

So far, radiatively driven outflows from a luminous disk have
been extensively studied by many researchers (Bisnovatyi-
Kogan, Blinnikov 1977; Katz 1980; Icke 1980; Melia, Königl
1989; Misra, Melia 1993; Tajima, Fukue 1996, 1998; Watarai,
Fukue 1999; Hirai, Fukue 2001; Fukue et al. 2001; Orihara,
Fukue 2003), and by numerical simulations (Eggum et al.
1985, 1988; Okuda 2002; Ohsuga et al. 2005; Ohsuga 2006).
In almost all of these studies, however, the luminous disk was
treated as an external radiation source, and radiation transfer in
the flow was not solved.

Radiation transfer in the disk, on the other hand, was inves-
tigated in relation to the structure of a static disk atmosphere
and the spectral energy distribution from the disk surface (e.g.,
Meyer, Meyer-Hofmeister 1982; Cannizzo, Wheeler 1984;
Shaviv, Wehrse 1986; Adam et al. 1988; Hubeny 1990; Ross
et al. 1992; Artemova et al. 1996; Hubeny, Hubeny 1997, 1998;
Hubeny et al. 2000, 2001; Davis et al. 2005; Hui et al. 2005).
In these studies, however, the vertical movement and the mass
loss were not considered.

Recently, mass outflow as well as radiation transfer has
been examined for the first time in the subrelativistic (Fukue
2005a, 2006a) and fully relativistic cases (Fukue 2005b).
In the latter case, it is pointed out some singular behavior
inherent in relativistic radiative flow (e.g., Turolla, Nobili
1988; Turolla et al. 1995; Dullemond 1999). When the gaseous
flow is radiatively accelerated up to the relativistic regime,
the velocity gradient becomes very large in the direction of
the flow. As a result, the radiative diffusion may become
anisotropic in the comoving frame of the gas. Hence, in a flow
that is accelerated from subrelativistic to relativistic regimes,
the Eddington factor should be different from 1/3, even in the

optically thick diffusion limit.
In order to avoid the singular behavior of such a relativistic

regime, for a plane-parallel case, Fukue (2006b) proposed
a velocity-dependent Eddington factor, which depends on the
flow velocity v,

f (β) =
1 + 2β

3
, (1)

where β = v/c. In Fukue (2006b) this form (1) was adopted
as the simplest one among various forms, which satisfy
several necessary conditions to avoid a singularity. Physically
speaking, this form (1) can be interpreted as follows. In
the high-velocity regime, where the radiative diffusion may
become anisotropic in a comoving frame, the ‘apparent’ optical
depth, τ , would be on the order of

1 + τ =
1
β

. (2)

That is, as the flow is accelerated and approaches the speed of
light, the optical depth becomes zero (outward peaking). In this
case, form (1) can be read as

f (τ ) =
3 + τ

3 + 3τ
, (3)

which recovers a similar form of a usual variable Eddington
factor (see, e.g., Tamazawa et al. 1975). Hence, the appli-
cability and accuracy of form (1) from a low-speed regime
to a high-speed one would be similar to those of a variable
Eddington factor from an optically thick regime to an optically
thin one.

Similarly, for a spherically symmetric case, Akizuki and
Fukue (2006) proposed a variable Eddington factor, that
depends on the flow velocity, β, as well as the optical depth, τ :

f (τ,β) =
γ (1 + β) + τ

γ (1 + β) + 3τ
, (4)

where γ (= 1/
√

1−β2 ) is the Lorentz factor.
In Fukue (2006b), the plane-parallel case was examined as

an example, although the gravity of the central object was
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ignored for simplicity. In this paper, we thus consider the
radiatively driven vertical outflow—moving photosphere—in a
luminous flat disk within the framework of radiation transfer
in the relativistic regime using f (β), while taking into account
the gravity of the central object, although the gas pressure is
ignored.

In the next section we describe the basic equations in the
vertical direction. In section 3 we show our numerical exami-
nation of the radiative flow. In section 4 we briefly apply the
present model to the case of a supercritical accretion disk. The
final section is devoted to concluding remarks.

2. Basic Equations and Boundary Conditions

Let us suppose a luminous flat disk, inside of which gravi-
tational or nuclear energy is released via viscous heating or
other processes. The radiation energy is transported in the
vertical direction, and the disk gas, itself, also moves in the
vertical direction due to the action of radiation pressure. For
simplicity, in the present paper, the radiation field is considered
to be sufficiently intense that the gas pressure can be ignored:
tenuous cold normal plasmas in the super-Eddington disk, cold
pair plasmas in the sub-Eddington disk, or dusty plasmas in
the sub-Eddington disk. As for the order of the flow velocity v,
we consider the fully relativistic regime, where the terms are
retained up to the second order of (v/c).

2.1. Basic Equations

Under these assumptions, the radiation hydrodynamic
equations for steady vertical (z) flows without rotation are
described as follows (Kato et al. 1998; Fukue 2006b).

The continuity equation is

ρcu = J (= const.), (5)

where ρ is the proper gas density, u the vertical four velocity,
J the mass-loss rate per unit area, and c the speed of light.
The four-velocity u is related to the proper three-velocity v

by u = γ v/c, where γ is the Lorentz factor, γ =
√

1 + u2 =
1/

√
1− (v/c)2.

The equation of motion is

c2u
du

dz
= − GMz

(R − rg)2R

+
κabs + κsca

c

[
Fγ (1 + 2u2)− (cE + cP )γ 2u

]
, (6)

where M is the mass of the central object, R =
√

r2 + z2,
r being the radius, rg (= 2GM/c2) is the Schwarzschild radius,
κabs and κsca are the absorption and scattering opacities (gray),
defined in the comoving frame, E the radiation energy density,
F the radiative flux, and P the radiation pressure observed
in the inertial frame. The first term in the square brackets
on the right-hand side of equation (6) means the radiatively
driven force, which is modified to the order of u2, whereas the
second term is the radiation drag force, which is also modified,
but roughly proportional to the velocity. As for the gravity,
we adopt the pseudo-Newtonian potential (Paczyński, Wiita
1980).

When the gas pressure is ignored, the advection terms of the

energy equation are dropped (cf. Kato et al. 1998), and heating
is balanced with the radiative terms,

0 = q + − ρ
(
j − κabscEγ 2 − κabscPu2 + 2κabsFγu

)
, (7)

where q + is the internal heating and j is the emissivity defined
in the comoving frame. In this equation (7), the third and fourth
terms on the right-hand side appear in the relativistic regime.

For radiation fields, the zeroth-moment equation becomes

dF

dz
= ργ

[
j − κabscE + κsca(cE + cP )u2

+κabsFu/γ − κscaF (1 + v2/c2)γ u
]
. (8)

The first-moment equation is

dP

dz
=

ργ

c

[
u

γ
j − κabsF + κabscP

u

γ

− κscaF (1 + 2u2) + κsca(cE + cP )γ u

]
. (9)

In order to close moment equations for radiation fields, we
need some closure relation. Instead of the usual Eddington
approximation, we here adopt a velocity-dependent variable
Eddington factor, f (β),

P0 = f (β)E0, (10)

in the comoving frame, where P0 and E0 are the quantities
in the comoving frame. If we adopt this form (10) as the
closure relation in the comoving frame, the transformed closure
relation in the inertial frame is

cP (1 + u2 − f u2) = cE (f γ 2 − u2) + 2Fγu (1− f ), (11)

or equivalently,

cP (1− fβ2) = cE (f −β2) + 2Fβ (1− f ). (12)

As a form of the function f (β) we adopt the simplest one,

f (β) =
1
3

+
2
3
β, (13)

for a plane-parallel geometry (Fukue 2006b; cf. Akizuki and
Fukue 2006 for a spherically symmetric geometry).

Eliminating j and E with the help of equations (7) and (11),
equations (6), (8), and (9) become

c2u
du

dz
= − c2rgz

2(R − rg)2R

+
κabs + κsca

c
γ

F (f γ 2 + u2)− cP (1 + f )γ u

f γ 2 − u2 , (14)

dF

dz
= q + γ

− ρ(κabs + κsca)u
F (f γ 2 + u2)− cP (1 + f )γ u

f γ 2 − u2 , (15)

dP

dz
= q + u

c

− ρ
κabs + κsca

c
γ

F (f γ 2 + u2)− cP (1 + f )γ u

f γ 2 − u2 . (16)
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Introducing the optical depth by

dτ = −(κabs + κsca)ρ dz, (17)

and using continuity equation (5), equations (14)–(17) are
rearranged as

c2J
du

dτ
=

c

κabs + κsca

c2 rg z
2(R − rg)2R

− γ
F (f γ 2 + u2)− cP (1 + f )γ u

f γ 2 − u2 , (18)

J
dz
dτ

= − cu

κabs + κsca
, (19)

dF

dτ
= − q +

(κabs + κsca)ρ

+ u
F (f γ 2 + u2)− cP (1 + f )γ u

f γ 2 − u2 , (20)

c
dP

dτ
= − q +

(κabs + κsca)ρ
J

c

+ γ
F (f γ 2 + u2)− cP (1 + f )γ u

f γ 2 − u2 . (21)

In this paper we assume that heating takes place deep inside
the disk at the midplane and in the atmosphere where q + = 0.
However, it is straightforward to consider more general cases,
where, e.g., the heating q + is proportional to the gas density, ρ

(cf. Fukue 2005a, b).
We solved equations (18)–(21) for appropriate boundary

conditions at the moving surface with a variable Eddington
factor (13).

2.2. Boundary Conditions

As already pointed out in Fukue (2005a), the usual boundary
conditions for the static atmosphere cannot be used for the
present radiative flow, which moves with a velocity on the order
of the speed of light.

When there is no motion in the gas (“static photosphere”),
the radiation field just above the surface under the plane-
parallel approximation is easily obtained. Namely, just
above the disk with surface intensity Is, the radiation energy
density, Es, the radiative flux, Fs, and the radiation pressure, Ps
are (2/c) πIs, πIs, and (2/3c) πIs, respectively, where the
subscript s denotes the values at the disk surface. However,
the radiation field just above the surface changes when the gas
itself does move upward (“moving photosphere”), since the
direction and intensity of radiation change due to relativistic
aberration and Doppler effect (cf. Kato et al. 1998; Fukue
2000).

Let us suppose a situation where a flat infinite photosphere
with surface intensity Is in the comoving frame is not static,
but moving upward at a speed vs (= cβs, and the corresponding
Lorentz factor is γs). Then, just above the surface, the radia-
tion energy density, Es, the radiative flux, Fs, and the radiation
pressure, Ps, measured in the inertial frame become, respec-
tively,

cEs = 2πIs
3γ 2

s + 3γs us + u2
s

3
, (22)

Fs = 2πIs
3γ 2

s + 8γs us + 3u2
s

6
, (23)

cPs = 2πIs
γ 2

s + 3γs us + 3u2
s

3
, (24)

where us (= γsvs/c) is the flow four velocity at the surface
(Fukue 2005a).

Thus, we impose the following boundary conditions: At
the flow base (deep “inside” the atmosphere) with an arbitrary
optical depth, τ0, the flow velocity u is zero, the radiative flux is
F0 (which is a measure of the strength of radiation field), and
the radiation pressure is P0 (which connects with the radia-
tion pressure gradient and relates to the internal structure),
where the subscript 0 denotes the values at the flow base. At
the flow top (“surface” of the atmosphere) where the optical
depth is zero, the radiation field should satisfy the values above
a moving photosphere given by equations (22)–(24): i.e.,

cPs

Fs
=

2 + 6βs + 6β2
s

3 + 8βs + 3β2
s
, (25)

where βs is a final speed at the disk surface.
Physically speaking, in the radiative flow starting from the

flow base with an arbitrary optical depth, τ0, for initial values
of F0 and P0 at the flow base, the final value of the flow
velocity, vs at the flow top can be obtained by solving basic
equations. Furthermore, the mass-loss rate J is determined as
an eigenvalue so as to satisfy the boundary condition (23) at
the flow top (cf. Fukue 2005a in the subrelativistic regime).

However, the permitted region for J is very tight, and it
is difficult to search the value of J . Hence, in this paper, as
a mathematically equivalent way, we fix the value of J , and
search for the value of P0 so as to satisfy the boundary condi-
tion (23).

3. Relativistic Radiative Flow under Gravity

In this section we show the relativistic radiative vertical
flow in the luminous disk under the influence of gravity of the
central object. In order to obtain the solution, as already stated,
we numerically solved equations (18)–(21), starting from τ =τ0
at z = 0 with appropriate initial conditions for v, F , and P ,
down to τ = 0 so as to satisfy the boundary conditions (25)
there. The parameters were the initial radius, r , on the disk,
the initial optical depth, τ0, which relates to the disk surface
density, the initial flux F0, which is the measure of the strength
of radiation field to gravity, and the initial radiation pressure
P0 at the disk base, which connects with the radiation pressure
gradient in the vertical direction and relates to the disk internal
structure. The mass-loss rate J was determined as an eigen-
value of the boundary condition at the flow top.

Several examples of numerical calculations are shown in
figures 1–3. The physical quantities were normalized in terms
of the speed of light, c, the Schwarzschild radius, rg, and the
Eddington luminosity, LE [= 4πcGM/(κabs + κsca)]. The units
of F , cP , and c2 J are LE/(4πr2

g ). It should be noted that
the solutions can be obtained for arbitrary optical depths, τ0,
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Fig. 1. Flow velocity v (thick solid curve), flow height z (chain-dotted
one), radiative flux F (dashed one), and radiation pressure P (dotted
one), as a function of the optical depth τ . The parameters are r = 3,
τ0 = 1, F0 = 1, and P0 = 1.23. The mass-loss rate is J = 1. The quantities
are normalized in units of c, rg, and LE/(4πr2

g ).

at the flow base (see Fukue 2006b, and section 4). We here
show, however, the cases of τ0 = 1, where the velocity change
is remarkable.

In figure 1 we show the flow velocity v (solid curve), the
flow height z (chain-dotted one), the radiative flux F (dashed
one), and the radiation pressure P (dotted one), as a function
of the optical depth τ for r = 3, τ0 = 1, F0 = 1, and P0 = 1.23
(i.e., J = 1).

As the optical depth decreases from the flow base at the
disk equator to the flow top at the disk surface, the radia-
tive flux slightly decreases while the flow velocity increases;
the radiative energy is converted to the flow bulk motion in
the vertical direction. As is usually known, in a static plane-
parallel atmosphere, under the radiative equilibrium with the
gray approximation, the vertical flux, F , is conserved without
any heating source. In the present relativistically moving
atmosphere, on the contrary, the radiative flux, F , decreases
via the Fu term, which acts to drive the gas toward the vertical
direction. In the case of figure 1, the initial flux (F0 = 1) is
nearly the local Eddington one, and therefore, the final flow
velocity is mildly relativistic due to the effect of gravity of
the central object. Other parameter dependences are shown in
figures 2 and 3.

In figure 2 the flow velocity v is shown for several parameter
set: The thick solid curve is for the typical case of r = 3, τ0 = 1,
F0 = 1, and P0 = 1.23 (i.e., J = 1). The solid curve is for the case
of r = 3, τ0 = 1, F0 = 10, and P0 = 10.6 (i.e., J = 1), while the
dashed one is for the case of r = 3, τ0 = 1, F0 = 1, and P0 = 1.041
(i.e., J = 0.005).

As is easily expected, the flow velocity remarkably increases

Fig. 2. Flow velocity v as a function of the optical depth τ . A thick
solid curve is for the typical case of r = 3, τ0 = 1, F0 = 1, and P0 = 1.23
(i.e., J = 1). The solid curve is for the case of r = 3, τ0 = 1, F0 = 10,
and P0 = 10.6 (i.e., J = 1), while the dashed one is for the case of r = 3,
τ0 = 1, F0 = 1, and P0 = 1.041 (i.e., J = 0.005). The quantities are
normalized in units of c, rg, and LE/(4πr2

g ).

when the initial flux, F0, is large (a solid curve). When
the initial flux is small, on the other hand, the flow velocity
becomes small.

Even for the same initial flux, when the mass-loss rate is
small, the flow velocity remarkably increases (a dashed curve).
This is because for a small mass-loss rate the density decreases,
and therefore the vertical height, z, becomes large, compared
with the case for a large mass-loss rate with the same optical
depth. As a result, the gas is accelerated along the long distance
to reach the highly relativistic regime.

In figure 3 the dependence on the initial radius r is shown:
r = 3 (a thick solid curve), r = 2 (a solid one), and r = 1.5
(a dashed one). Other parameters are τ0 = 1, F0 = 1, and P0 =
1.23 (i.e., J = 1).

For the same initial conditions, the flow velocity decreases
as the initial radius decreases. This is just the effect of gravity
of the central object. In the case of r = 1.5, the velocity is
slightly decelerated toward the surface due to gravity.

4. Relativistic Radiative Flow in the Critical Disk

In this section we apply the present model to the mass
outflow in the luminous supercritical accretion disks (cf. Fukue
2006a for a subrelativistic case).

When the mass-accretion rate, Ṁ , in the disk around
a central object of mass M highly exceeds the critical
rate, Ṁcrit, defined by Ṁcrit ≡ LE/c2, the disk is believed to
be in the supercritical regime, and the disk luminosity exceeds
the Eddington one. Such a supercritical accretion disk, a so-
called slim disk, has been extensively studied, both numerically
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Fig. 3. Flow velocity, v, as a function of the optical depth, τ , for
several initial radii r : r = 3 (a thick solid curve), r = 2 (a solid one), and
r = 1.5 (a dashed one). The other parameters are τ0 = 1, F0 = 1, and
P0 = 1.23 (i.e., J = 1). The quantities are normalized in units of c, rg,
and LE/(4πr2

g ).

and analytically (Abramowicz et al. 1988; Eggum et al. 1988;
Szuszkiewicz et al. 1996; Beloborodov 1998; Watarai, Fukue
1999; Watarai et al. 2000; Mineshige et al. 2000; Fukue 2000;
Kitabatake et al. 2002; Okuda 2002; Ohsuga et al. 2002, 2003,
2005; Watarai, Mineshige 2003; Fukue 2004; Ohsuga 2006). It
was found that the optically-thick supercritical disk is roughly
expressed by a self-similar model (e.g., Watarai, Fukue 1999;
Fukue 2000; Kitabatake et al. 2002; Fukue 2004). Except for
the case of Fukue (2004), however, many of these analytical
models did not consider the mass outflow from the disk surface.
Hence, in this paper we adopt a model developed by Fukue
(2004), as a background supercritical disk model.

In the critical accretion disk constructed by Fukue (2004),
the mass-accretion rate is assumed to be regulated just at the
critical rate with the help of wind mass-loss. Outside some
critical radius, the disk is in a radiation-pressure dominated
standard state, while inside the critical radius the disk is in
a critical state, where the excess mass is expelled by wind and
the accretion rate is kept to be just at the critical rate at any
radius. Here, the critical radius is derived as

rcr =
9
√

3σT

16πmp c
Ṁinput ∼ 1.95ṁrg, (26)

where Ṁinput is the accretion rate at the outer edge of the disk,
and ṁ = Ṁinput/Ṁcrit. Outside rcr, the accretion rate is constant,
while inside rcr the accretion rate would vary as

Ṁ(r) =
16πcmp

9
√

3σT
r = Ṁinput

r

rcr
. (27)

In such a critical accretion disk, the disk thickness, H , is
conical as

H

r
=
√

c3 =
1
4

ln
(

1 +
ṁ

20

)
, (28)

where c3 is some numerical coefficient determined by the
similar procedure in Narayan and Yi (1994) for optically-
thin advection-dominated disks. The second equality of this
relation comes from a numerical calculation (Watarai et al.
2000). Although the mass loss was not considered in Watarai
et al. (2000), we adopted this relation as some measure: when
the normalized accretion rate ṁ is 1000, the coefficient

√
c3

becomes 0.983.
Furthermore, in Fukue (2004), several alternatives are

discussed, and some of them gives the physical quantities of
the critical accretion disk with mass loss as

τ0 =
16
√

6
α

√
r

rg
, (29)

F0 =
12
√

6
α

√
c3

LE

4πr2

√
r

rg
, (30)

cP0 =
cGM

κ

√
c3τ0

1
r2 =

16
√

6cGM

ακ

√
c3

1
r2

√
r

rg
, (31)

where α is the viscous parameter.
In the present non-dimensional unit in terms of c, rg, and

the Eddington luminosity LE, these physical quantities are
expressed as

H =
√

c3 r, (32)

τ0 =
16
√

6
α

√
r, (33)

F0 =
12
√

6
α

√
c3

1
r3/2 , (34)

P0 =
16
√

6
α

√
c3

1
r3/2 , (35)

where the symbol “hat” (say, r̂) is dropped.
Using these relations, we can solve the basic equations, and

obtain numerical solutions at each radius r . The example in the
case of ṁ = 1000 and α = 1 is shown in figures 4 and 5.

In figure 4 we show the flow velocity v as a function of
optical depth, τ , for several values of r . The quantities are
normalized in units of c and rg. The parameters of the critical
disk are ṁ = 1000 and α = 1.

As can be seen in figure 4, the flow velocity, v, varies self-
similarly for different values of the radii. This may be reflected
the initial self-similar models. As a result, in each radius with
different optical depth, the flow final speed is almost the same.

In figure 5 we show several quantities for each radius r: The
disk height, H (dashed curve), and the optical depth, τ0 (chain-
dotted one), are from the critical accretion disk model, while
the height, zs, and velocity, vs (solid curves), at the flow top and
the mass-loss rate, J (dashed one), are the results of numerical
calculations. The quantities are normalized in units of c and rg.
The parameters of the critical disk is ṁ = 1000 and α = 1.

As can be seen in figure 5, the flow height, zs, is enormously
large. Hence, rigorously speaking, the present plane-parallel
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Fig. 4. Flow velocity, v, as a function of τ for several values of r . The
values of r are, from left to right, 3, 4, 5, 6, and 7. The quantities are
normalized in units of c and rg. The parameters of the critical disk is
ṁ = 1000 and α = 1.

approximation violates in this application of ṁ = 1000, and
two-dimensional numerical simulation should be needed in
such a case. However, we can see several insights from the
present case.

First, the final speed of the flow accelerated in the luminous
critical disk becomes sufficiently relativistic. In other words,
relativistic jets can form in such a luminous accretion disk. In
addition, this final speed does not depend on the initial radius
very much, perhaps due to the initial self-similarity. Second, on
the contrary to the final speed, the mass-loss rate per unit area
increases as the initial radius decreases; it is roughly approx-
imated by J ∼ 6/r . On the other hand, the model mass-loss
rate (Fukue 2004, 2006a) becomes J = 1/r , that is qualitatively
same, but quantitatively different from the present numerical
values. Hence, the mass loss from the critical disk may be
concentrated in the inner region, although the true mass-loss
rate cannot be determined at the present simple state. This
nature, however, is also convenient for centrally concentrated
jets.

5. Concluding Remarks

In this paper we have examined the relativistic radiative
transfer flow in a luminous disk in the relativistic regime
of (v/c)2, while taking account of the gravity of the central
object. In such a relativistic regime, we adopted the velocity-
dependent variable Eddington factor. The flow was assumed
to be vertical, and the gas pressure was ignored for simplicity.
The basic equations were numerically solved as a function of
the optical depth, τ , and the flow velocity, v, the height, z, the
radiative flux, F , and the radiation pressure, P , were obtained
for a given radius, r , the initial optical depth, τ0, and the initial
conditions at the flow base (disk “inside”), whereas the mass-
loss rate, J , was determined as an eigenvalue of the boundary
condition at the flow top (disk “surface”). For sufficiently

Fig. 5. Several quantities for each radius r : The disk height, H

(dashed curve), and the optical depth, τ , (chain-dotted one) are from
the critical model, while the height, zs, and velocity, vs (solid curves),
at the flow top and the mass-loss rate, J (dashed one), are the results
of the present numerical calculations. The quantities are normalized in
units of c and rg. The parameters of the critical disk is ṁ = 1000 and
α = 1.

luminous cases, the flow resembles the case without gravity.
For less-luminous cases, however, the flow velocity decreases.

Application to the critical accretion disk was also examined.
If the disk thickness becomes so large, the present plane-
parallel approximation violates and other treatment, such as
numerical simulations, should be needed.

The radiative flow investigated in the present paper must
be a quite fundamental problem for accretion-disk physics and
astrophysical jet formation, although there are many simplifi-
cations at the present stage. For example, we have ignored the
gas pressure. In general cases, where the gas pressure is consid-
ered, there usually appears sonic points, and the flow is accel-
erated from subsonic to supersonic. In this paper we consid-
ered a purely vertical flow, and the cross section of the flow is
constant. If the cross section of the flow increases along the
flow, the flow properties, such as the transonic nature, would
be influenced. Moreover, we did not consider the rotation of
the gas. In accretion disks around a black hole, the gas usually
rotates around the hole at relativistic speeds. In the vicinity
of the equator, the vertical flow approximation safely holds,
since the radial gravity is balanced with the centrifugal force.
When the flow is accelerated to be lifted up to a large height,
the streamline would be curved outward, since the centrifugal
force dominates. This would violate the vertical flow approxi-
mation.

There remain many problems to be solved.
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