
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

1-2011 

Relativistic Red-Black Trees Relativistic Red-Black Trees 

Philip William Howard 
Portland State University 

Jonathan Walpole 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Computer and Systems Architecture Commons, and the Databases and Information 

Systems Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Howard, Philip W., and Jonathan Walpole. Relativistic red-black trees. Technical Report 10-06, Portland 
State University, Computer Science Department, 2010. 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if 
we can make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/14
mailto:pdxscholar@pdx.edu


Relativistic Red-Black Trees

Philip W. Howard
Portland State University

pwh@cecs.pdx.edu

Jonathan Walpole
Portland State University

walpole@cs.pdx.edu

Abstract
Operating system performance and scalability on shared-
memory many-core systems depends critically on efficient
access to shared data structures. Scalability has proven dif-
ficult to achieve for many data structures. In this paper we
present a novel and highly scalable concurrent red-black
tree.

Red-black trees are widely used in operating systems,
but typically exhibit poor scalability. Our red-black tree has
linear read scalability, uncontended read performance that
is at least 25% faster than other known approaches, and
deterministic lookup times for a given tree size, making it
suitable for realtime applications.

Keywords synchronization, data structures, scalability, con-
current programming, red-black trees

1. Introduction
The advent of many-core hardware introduces the need
for highly scalable operating system designs. Many-core
hardware poses a special challenge for symmetric shared-
memory operating system architectures because it dramat-
ically increases the degree of concurrency and at the same
time decreases the locality of accesses to kernel data. The
conventional strategy of using mutual exclusion severely
limits scalability by serializing accesses to shared data and
requiring extensive inter-core communication.

Some researchers have chosen to address this chal-
lenge by throwing out symmetric shared-memory multi-
processor operating system architecture, focusing instead
on OS architectures that are non-symmetric in their use of
shared-memory p1855745, or forgo shared-memory alto-
gether [Baumann 2009]. Our research takes a different ap-
proach. We continue to assume a shared-memory operating
system architecture can scale [Boyd-Wickizer 2010] and

[Copyright notice will appear here once ’preprint’ option is removed.]

work toward this by weakening the ordering constraints that
normally govern concurrent accesses to shared data struc-
tures. In this paper we illustrate our approach by considering
a particular data structure, namely a red-black tree.

Red-black trees are used to store sorted 〈key,value〉 pairs,
and are widely used in operating systems. They are used
in the Linux kernel for I/O schedulers, the process sched-
uler, the ext3 file system, and in many other places [Land-
ley 2007]. Linux kernel primitives that manipulate red-black
trees do not have concurrency control embedded in them. In-
stead, higher level uses of the primitives must manage con-
currency. This is typically done through mutual exclusion
which does not scale [Piggin 2010].

Our approach is similar to RCU-based approaches that
have been applied to simpler Linux data structures such as
lists and hash tables [Triplett 2010]. We refer to these al-
gorithms as “relativistic” because they weaken the ordering
requirements on concurrent reads and updates such that each
reader observes the data structure in its own temporal frame
of reference. Our research is attempting to generalize the
concept of relativistic programming. While this goal has yet
to be reached, the development of a relativistic data struc-
ture as complex as a red-black tree represents a significant
milestone.

Our relativistic red-black tree has the following perfor-
mance and scalability properties:

1. Linear scalability of read accesses even in the presence
of concurrent updates. This property has been tested out
to 64 hardware threads.

2. Updaters can proceed concurrently with any number of
readers, but not other updaters.

3. Safe, fast, wait-free read access in the presence of up-
dates.

By fast we mean performance approaches that of un-
synchronized access1. Our read access achieves 93% of the
throughput of unsynchronized read access over a wide range
of tree sizes and thread counts. Our implementation is also
25% faster than the best lock based implentation for an un-

1 Unsynchronized access is safe for single threaded or read-only implemen-
tations, but not for multi-threaded implementations that include updates.

1 2010/12/8



contended read. As contention increases, the advantage of
our implementation grows significantly.

By wait-free we mean that the read path does not use
locks, does not block, and never needs to wait for another
thread (neither a reader nor an updater). Furthermore, the
read path does not require any atomic instructions and on
x86 does not require memory barriers.

The rest of this paper is outlined as follows: Section 2
gives an overview of red-black trees, the operations they sup-
port, and the mechanisms that are used to preserve the bal-
anced nature of red-black trees. This section also discusses
the state of the art for parallelizing red-black trees. Section 3
discusses the ordering constraints that are, and are not, pre-
served by relativistic programming. This section also pro-
vides a justification for why these weakened ordering con-
straints are appropriate for concurrent red-black trees. Sec-
tion 4 presents our implementation for a relativistic red-
black tree. Section 5 shows the performance of our imple-
mentation compared with red-black trees implemented us-
ing other synchronization mechanisms. Section 6 discusses
some of the issues and trade-offs involved in performing
complete tree traversals (as opposed to single look-ups). Fi-
nally, Section 7 presents concluding remarks.

2. Red-Black Trees
Since red-black trees are well known and well documented
[Guibas 1978, Plauger 1999, Schneier 1992], we do not give
a complete explanation of them. Rather, we give a brief
overview to facilitate a discussion of our relativistic imple-
mentation. In particular, we discuss the individual steps that
make up red-black tree algorithms without discussing the
glue that combines these steps. This is because the glue is
not impacted by the relativistic implementation.

Red-black trees are partially balanced, sorted, binary
trees. The trees store 〈key,value〉 pairs. They support the
following operations:

insert(key, value) inserts a new 〈key,value〉 pair into the
tree.

lookup(key) returns the value associated with a key.

delete(key) removes a 〈key,value〉 pair from the tree.

first()/last() returns the first (lowest keyed) / last (highest
keyed) value in the tree.

next()/prev() returns the next/previous value in key-sorted
order from the tree.

Red-black trees are sorted by preserving the following
properties:

1. All nodes on the left branch of a subtree have a key≤ the
key of the root of the subtree.

2. All nodes on the right branch of a subtree have a key >
the key of the root of the subtree.

The tree is balanced by assigning a color to each node
(red or black) and preserving the following properties:

1. Both children of a red node are black.

2. The black depth of every leaf is the same. The black depth
is the number of black nodes encountered on the path
from the root to the leaf.

These invariants are sufficient to guarantee O(log(N))
lookups because the longest possible path (alternating black
and red nodes) is at most twice the shortest possible path
(all black nodes). The operations required to rebalance a tree
following an insert or delete are limited to the path from the
inserted/deleted node back to the root. The rebalancing is,
worst case, O(log(N)) meaning that inserts and deletes can
also be done in O(log(N)).

We will use the following definitions in the explanation
of the tree operations:

internal node A node with two non-empty children.

leaf A node with at least one empty child.

Observe that if next() is called on any internal node, the
result is always a leaf. This is true because next() is the left-
most node of the right subtree.

The following steps are used to implement red-black
trees:

Insertion New nodes are always inserted at the bottom of
the tree. This is possible because if prev(new-node) is an
internal node, then from the observation above, the new
node must be a leaf. If prev(new-node) is a leaf, the new
node will be a child of that node on an empty branch. The
insert may leave the tree unbalanced. If so, restructures or
recolors (see below) are required to restore the balance
properties of the tree.

Delete Nodes are always deleted from the bottom of the tree
(possibly following a swap—see below). The delete may
leave the tree unbalanced. If so, restructures or recolors
(see below) are required to restore the balance properties
of the tree.

Swap If an interior node needs to be deleted, it is first
swapped with next(deleted-node) prior to removal. This
makes the node to be deleted a leaf.

Restructures Restructure operations, sometimes called a
rotations, are used to rebalance the tree. Restructures
always involve three adjacent nodes: child, parent, and
grandparent. See Figure 1 for an illustration of the two
types of restructure operations.

Recolor Nodes get recolored as part of the rebalancing pro-
cess. Recoloring doesn’t involve changing the structure
of the tree, only the colors applied to particular nodes.

2 2010/12/8



A

1 2

3

B

C

4

A

1 2 3

B

4

C

C

B

A

1

2 3

4

C

B

2 3 4

A

1

Diag Restructure

Zig Restructure

Figure 1. Restructure operations used to rebalance a red-
black tree. There are left and right versions of these, but they
are symmetric so only the left version is shown here.

2.1 Concurrent red-black trees
In thinking about concurrent red-black trees, it is useful to
make a distinction between events and operations. In our
terminology, operations are composed of events. Events are
steps in an operation which have a visible effect. Events can
be thought of as instantaneous. Since operations are typically
composed of multiple events, they have a duration.

We will use the following definitions to describe concur-
rent implementations:

Sn the Start of operation n.

Fn the Finish of operation n.

En the Effect of operation n. For example, if operation n is
an insert, the effect of that operation is that the tree has a
new node.

a ⇒ b defines a happens-before relation such that a happens
before b.

If either of the following two relations holds, operations a
and b are said to be concurrent:

Sa ⇒ Sb ⇒ Fa

Sb ⇒ Sa ⇒ Fb

Graphically, this means that the time-lines of the two oper-
ations overlap. There is no implied happens-before relation
between the effects of two concurrent operations. The effects
of the two operations could occur in any order.

Implementations of objects that allow updates to happen
concurrently with reads, require additional properties so that

every intermediate representation of the data structure can be
mapped to a value of the abstract object [Herlihy 1990]. For
a sorted tree, the following properties must be maintained:

1. Lookups will always find a node that exists in the tree.

2. Traversals will always return nodes in the correct order
without skipping any nodes that exist in the tree.

Because reads have a duration, and because updates can
proceed concurrent with reads, it’s possible that the tree will
change during a read. As a result, we need to be specific in
what we mean by “nodes that exist in the tree”. In particular,
it means the following: if operation r is a read looking for
node N (or a complete traversal of the tree), operation i is
the insert of node N , and operation d is the delete of node
N , then

1. If Fi ⇒ Sr and Fr ⇒ Sd then N exists in the tree and
must be observed by r in the correct traversal order.

2. If Fr ⇒ Bi or if Fd ⇒ Sr then N does not exist in the
tree and must not be observed by r.

3. if i is concurrent with r then N may or may not be
observed by r depending on whether the relative view
of r is Ei ⇒ Er or Er ⇒ Ei.

4. if d is concurrent with r then N may or may not be
observed by r depending on whether the relative view
of r is Er ⇒ Ed or Ed ⇒ Er.

Another way to state these properties is as follows: Prop-
erties one and two state that any update that strictly precedes
a read must be observable by the read, and any update that
strictly follows a read must not be observable by the read.
Properties three and four state that any update that is con-
current with the read may or may not be observable by the
read.

2.2 The State of the Art
The most common way to synchronize access to a red-black
tree is through locking. Unfortunately, this approach doesn’t
scale because accesses are serialized. Since accesses can
be easily divided into reads (lookups) and writes (inserts,
deletes), a reader-writer lock can be used which allows read
parallelism. This approach scales for some number of read
threads, but eventually the contention for the lock dominates
and the approach no longer scales (see the performance data
in Section 5.1 for evidence of this).

Fine grained locking of red-black trees is problematic.
Since updates may affect all the nodes from where the update
occurred back to the root, the simplest approach of acquiring
a write lock on all nodes that might change degrades to
coarse grain locking—all updaters must acquire a write lock
on the root. If one attempts to only acquire write locks on the
nodes that will actually be changed, it is difficult to avoid
deadlock. If the locks are acquired from the bottom up, a
reader progressing down the tree, but above the updater, may

3 2010/12/8



acquire a lock that prevents the write from completing. If
the locks are acquired from the top down, another updater
may change the structure of the tree between the time the
initial change was made (e.g. an insert) and the time when
the necessary locks are acquired to perform a restructure.

Transactional Memory approaches provide a more au-
tomatic approach to disjoint concurrency. However, as the
changes required to rebalance a tree progress up the tree,
more and more concurrent read transactions would get in-
validated. We haven’t done any investigation to determine
what percentage of concurrent transactions might get inval-
idated, so we can not predict the performance impact of the
invalidations.

Bronson [2010] developed a concurrent AVL tree2. Their
approach allows readers to proceed without locks, but the
readers have to check each step of the way to see if the
tree has changed or is in the process of changing. If so,
the reader has to wait and retry. Since readers don’t acquire
locks, this simplifies the fine grained locking of the writers.
Their approach is quite complicated and this degrades read
performance as more code must execute at each node of
the tree. Their approach allows concurrent updates and their
performance data show good scalability. We are working to
port their implementation from Java to C to perform a fair
side-by-side comparison, but we have not yet completed this
work. Work done to date indicates that our read approach is
much faster.

A number of researchers have attempted to decouple
rebalancing from insert and delete [Guibas 1978, Hanke
1998]. This allows updates to proceed more quickly because
individual inserts and deletes don’t have to rebalance the
tree. The rebalancing work can potentially be done in paral-
lel and some redundant work can be skipped. None of this
improves read access time, and readers and writers still need
some synchronization between them.

3. Relativistic Programming
The name for relativistic programming is borrowed from
Einstein’s theory of relativity in which each observer is al-
lowed to have their own frame of reference. In relativis-
tic programming, each reader is allowed to have their own
frame of reference with respect to the order of updates.

Relativistic programming is characterized by the follow-
ing two properties:

1. Writes can occur concurrently with reads.

2. Writes are not totally ordered with respect to reads.

Consider the time-line in figure 2. If operations A and B
are writes and operation C is a read, then C can observe the
writes in either order. In particular, since A is concurrent
with C, both EA ⇒ EC and EC ⇒ EA are equally
valid. The same is true of B and C. Combining all three

2 AVL trees are similar to red-black trees, but they have a different balance
property.

operations, the ordering EB ⇒ EC ⇒ EA is valid even
though this violates the happens-before relation between the
non-concurrent A and B.

A B

C

Figure 2. Operation C can see operations A and B in any
order.

It is important to note that the order mentioned above rep-
resents the reference frame of a particular reader. There is
no “global observer” which determines the “correct” order.
Each reader has their own relative view of concurrent oper-
ations which may differ from the view of other concurrent
readers.

3.1 Is this OK?
While it might be disconcerting to have writes appear to
happen in different orders, there are two conditions which, if
met, make this acceptable. The conditions are as follows:

1. The underlying data structure does not have an inherent
time order

2. The updates are independent or commutative

Last In First Out Stacks and First In First Out Queues have
an inherent time order (thus the First and Last in their
names). As a result, these data structures are not good fits
for relativistic implementations3. However many other data
structures (lists, dictionaries, trees, etc.) have no such inher-
ent time order and thus allow a relativistic implementation.

To illustrate what is meant by independent or commutable
updates, consider a phone company that uses a tree to main-
tain phone book information. If two customers call the phone
company to change their service, the two calls can be han-
dled in either order. Neither call affects the other so they are
independent. They are also commutable because the results
are the same regardless of the order. Any query that saw nei-
ther, either, or both updates is equally valid. Even printing a
phone book that included neither, either, or both updates is
equally valid. If either of these customers called to complain
about their inclusion or omission from the phone book, the
phone company could legitimately reply that the book was
printed either just before or just after their information was
entered into the system.

3.2 Memory Management
Relativistic programming requires a mechanism to reclaim
memory that has been freed by one thread while still in
use by another. Freed memory comes from two sources:
nodes that are removed from the tree and the “old” copy of

3 Some researchers have proposed weak ordering for LIFO’s and FIFO’s.
This would yield a Later In Earlier Out or Earlier In Earlier Out structure
that would be suitable for relativistic techniques.

4 2010/12/8



nodes that were updated using copy-on-update semantics. In
either case, it is possible that a concurrent reader may have
a reference to the node that needs to be reclaimed.

In order for the reclamation to be safe, reclamation must
be delayed long enough to ensure that no readers have a ref-
erence to the memory. To facilitate this, readers are required
to bound all operations with begin and end primitives. Read-
ers aren’t allowed to hold references to the data outside these
read sections. While outside a read section, a reader is con-
sidered quiescent (not actively reading). If all readers have
been in a quiescent state following the deletion of the last
global reference to a node, no reader can hold a reference to
the node so the node’s memory can be safely reclaimed. Any
period of time in which all readers have been in a quiescent
state is called a grace period [McKenney 2004].

3.3 Relativistic Programming Primitives
This section describes the primitives that are used by rela-
tivistic programs. The description here focuses on the pur-
pose and use of the primitives. There are a variety of imple-
mentations readily available which are described elsewhere
[Desnoyers 2009, McKenney 2003].

3.3.1 write-lock, write-unlock
These primitives provide mutual exclusion between writers.
The use of these primitives does not impact readers—readers
proceed oblivious to the presence of a writer. Note that
strictly speaking, write-lock and write-unlock are not rela-
tivistic programming primitives. Mutual exclusion between
writers is not required by relativistic programming, but all
known implementations use mutual exclusion between writ-
ers.

3.3.2 rp-start-read, rp-end-read
These primitives bound the code where a reader holds refer-
ences to the data structure. They allow a writer to know when
it’s safe to reclaim the memory for a no longer used node.
Most relativistic programming implementations have non-
blocking, wait-free, low-latency, constant-time implementa-
tions of these primitives so their use has minimum impact on
read performance.

3.3.3 rp-wait-gp
This primitive waits for a grace period. A grace period has
expired when all current read-sections have terminated. It is
not necessary for all threads to be outside their read-sections
at the same time. It is only necessary for any thread inside a
read-section at the beginning of rp-wait-gp to exit that read-
section. Once a thread exits a read-section, it can begin a
new one without interfering with rp-wait-gp. Stated more
formally,
∀ readers r and any rp-wait-gp w if Sr ⇒ Sw then

Fr ⇒ Fw

3.3.4 rp-free
This primitive is called by writers to schedule the future
reclamation of memory. This allows decoupling the freeing
of memory from reclaiming that memory. Updaters do not
have to block until a grace period has expired, they can
schedule the memory for reclamation in the future and then
continue. rp-free guarantees that a grace period will expire
before the memory is reclaimed.

3.3.5 rp-release
This primitive is used by writers when they want to make
a node visible to readers. It includes whatever barriers are
required to ensure that the updates to the node are visible
before the node itself can be reached.

3.3.6 rp-consume
This primitive is used to dereference the pointer to nodes. It
includes whatever barriers are required to enforce dependent
read consistency. On most architectures, rp-consume need
only read the pointer; no barriers are required.

4. A Relativistic Red-Black Tree Algorithm
Many concurrent methodologies produce very complicated
code because both readers and updaters have to check at
each step to see if anything has changed. With relativistic
techniques, developing a reader is almost as easy as devel-
oping a non-concurrent reader. The only restrictions placed
on readers are that they use rp-consume when dereferenc-
ing pointers and that they not hold any references to the data
structure outside read-sections bounded by the rp-start-read
and rp-end-read primitives.

In order for readers to be able to proceed without having
to check the consistency of the data, the updaters need to
keep the data in an always-consistent state. This requires
three things: that rp-release be used when updating pointers,
that rp-free be used when freeing no-longer-used memory,
and that care be taken in the order that updates are made. The
final requirement, ordering, takes two forms. In the first case,
the updater must not allow a reader to see partial changes to a
node. Updaters use copy-on-update to make all the changes
to a a private copy of the node, then atomically switch the
new node with the old one using rp-release. In the second
case, when the structure of the tree is changed, care must be
taken to ensure that readers don’t get lost. To illustrate this,
consider the zig restructure depicted in Figure 1. If a reader
is at node A looking for node B at the time the restructure
happens, the reader will never find B. This is because after
the restructure, B is above A instead of below it.

The remainder of this section explains how we imple-
mented updaters with these principles. Our implementation
imposes a single restriction on the trees: we do not allow
duplicate keys in the tree. This is a restriction that is im-
posed on many non-relativistic implementations as well, so
we don’t find it overly restrictive.

5 2010/12/8



We make the following observations about readers per-
forming a lookup (for traversals, see Section 6):

1. Readers ignore the color of nodes.

2. Readers don’t access the parent pointers in nodes.

3. Temporarily having the same item in the tree multiple
times won’t affect lookups. A positive result will return
the first copy encountered. A negative result (item not
in tree) will return “not found” even if other keys are
duplicated in the tree.

The implications of these observations are that updaters can
change the color and parent pointers without affecting read-
ers; updaters can also temporarily allow duplicates provided
both duplicates are in valid sort order locations. Given the
above observations, the following can be said about the steps
in an update:

Insertion New nodes are always inserted at the bottom of
the tree. No nodes are moved or freed. A concurrent
reader will either see the new node or not depending
on whether rp-release ⇒ rp-consume. But concurrent
readers will never see an inconsistent state.

Delete Nodes are only deleted from the bottom of the tree.
Similar to insert, a concurrent reader will either see the
deleted node or not depending on the order of operations,
but a reader will never see an inconsistent state. The
memory for the deleted node must not be reclaimed while
concurrent readers have a reference to it. Using the rp-
free primitive will ensure that the proper delay occurs
before the memory is reclaimed.

Swap Since a concurrent reader searching for the swapped
node might be at a point in the tree between the swapped
node’s new and old positions, special handling is required
to ensure that such a reader sees the swapped node (see
section 4.1). This is because the swapped node exists in
the tree and therefore it must be observable in correct
traversal order.

Restructures Much like swap, restructures involve moving
nodes. This requires special handling to keep the tree in
an always-consistent state (see section 4.2).

Recolor Since readers ignore the color of nodes, recoloring
does not affect the read consistency of the tree.

The two operations that require special handling in a rela-
tivistic implementation are Swap and Restructure. These are
described in greater detail below.

4.1 Swap algorithms
Section 4.1.1 discusses the general swap algorithm. Sec-
tion 4.1.2 discusses an optimized special case swap.

4.1.1 General Swap
Consider the delete of node B shown in Figure 3. Since B
is an internal node, B will be swapped with C (= next(B))

prior to deletion. There is a special case where the swap
node happens to be the right child of B. This is dealt with in
Section 4.1.2

E

F

C

B

NULL D

A

Figure 3. Tree before deletion of node B

Rather than performing separate swap and delete steps,
the two are combined as a single step as shown in listing 1.
A new node C ′ is created. C ′ has the same color as B and
the same children as B, but the key and data values of C.

1 C = next(B.right);

C_prime = C.copy();

C_prime.color = B.color;

5
C_prime.left = B.left;

B.left.parent = C_prime;

C_prime.right = B.right;

10 B.right.parent = C_prime;

C_prime.parent = B.parent;

F = B.parent;

15 if (F.left == B)

rp-release(

F.left, C_prime);

else

rp-release(

20 F.right, C_prime);

rp-free(B);

rp-wait-gp();

25
E = C.parent;

rp-release(

E.left, C.right);

E.parent = C.parent;

30
rp-free(C);

Listing 1. Code for swap

6 2010/12/8



The new node C ′ is linked into the tree in place of B. At
this point, the value C is in the tree twice: once at C and
once at C ′. Any readers looking for C can be divided into
two groups: those above C ′ will find the value at C ′, those
at or below B will find the value at C. In either case, the
correct value will be found. However, if the old node C is
removed, any readers looking for the value C that were at
or below B would miss the value. To avoid this problem,
the updater waits for a grace period before removing C from
the tree. This ensures that any readers at or below B will
complete their read prior to C being removed. The resulting
tree is show in figure 4.

E

F

C

B

NULL D

A

C’

Figure 4. Tree after deletion of node B. The gray nodes are
scheduled for reclamation.

This algorithm differs from a non-RP algorithm in the
following ways:

1. A copy of node C is placed in B’s position rather than
node C itself.

2. rp-release is used to make pointer assignments to guar-
antee that changes to a node are visible before the node
itself is reachable.

3. rp-free is used to release memory to ensure that no read-
ers have references to the memory when it is released.

4. A grace period is included so that no readers will miss
seeing node C.

4.1.2 Special case: swap node is child of B
In the tree shown in figure 5, C is next(B). It also happens
to be the right child of B. This represents a special case and
no new nodes need to be created. The changes are made as
shown in listing 2. C takes the color of B. The left child of B
becomes the left child of C. The node A now appears in the
tree twice (once below B and once below C), but no loops
are created. Any reader encountering the tree in this state
will find A regardless of where they were in their traversal
when then changes were made.

B is removed from the tree by linking C into the tree in
it’s place. B is then freed asynchronously by calling rp-free.
The tree is now as shown in figure 6.

This algorithm differs from a non-RP algorithm only in
the use of rp-release to make pointer assignments, and rp-
free to release memory.

E

C

B

NULL D

A

Figure 5. Tree before deletion of node B.

1 C = next(B.right);

C.color = B.color;

C.left = B.left;

5 B.left.parent = C;

E = B.parent;

if (E.left == B)

rp-release(E.left, C);

10 else

rp-release(E.right, C);

rp-free(B);

Listing 2. Code for special case Swap

E

C

B

D

A

Figure 6. Tree after deletion of node B. The gray node is
scheduled for reclamation.

4.2 Restructure
There are two cases for restructures depending on whether
the three nodes involved form a diagonal or a “zig”. Each of
these can be further classified depending on whether it is left
or right, but the left and right cases are symmetric, so only
the left case will be described here.

4.2.1 Diag Left
Figure 7 shows a subtree with three nodes labeled A, B, C
which need to be rotated so that B is the root of the subtree.
The changes are made as shown in listing 3

C ′ is a copy of node C. The right child of B becomes
the left child of C ′. C ′ is then linked into the tree as the

7 2010/12/8



A

1 2

3

B

C

4

D

Figure 7. Diagonal arrangement of nodes before restruc-
ture.

right child of B. At this point, the value C is in the tree
twice. This is similar to swap in Section 4.1.1. However, in
this case, the copy is placed lower in the tree rather than
higher in the tree. As a result, the original node C can be
removed without waiting for a grace period. This is because
any readers between C and C ′ will still see C ′ even after
C is removed from the tree. The resulting tree is shown in
figure 8.

1 C_prime = C.copy();

C_prime.left = B.right;

B.right.parent = C_prime;

5 rp_release(

B.right, C_prime);

C_prime.parent = B;

D = C.parent;

10
if (D.left == C)

rp_release(D.left, B);

else

rp_release(D.right, B);

15
B.parent = D;

rp-free(C);

Listing 3. Code for diag left restructure

This algorithm differs from a non-RP algorithm as fol-
lows: a copy of a node was made rather than changing a node
in place, and RP primitives were used for pointer assignment
and memory reclaimation.

4.2.2 Zig Left
Figure 9 shows a subtree with three nodes labeled A, B, C
which need to be rotated so that B is the root of the subtree
(this is known as a double rotation [Guibas 1978]). There
are two ways to accomplish this: either a copy of B can be

A

1 2 3

B

C

4

C’

D

Figure 8. Diagonal arrangement of nodes after restructure.
Gray node is scheduled for reclamation.

placed above A and C, or copies of A and C can be placed
below B. Since the first method involves moving the copy up
in the tree, it requires a grace period. In our implementation,
freed nodes are cached so creating copies is fairly fast. Even
though the second method requires two copies, performance
data showed that the second method is faster, so that method
is described here (see listing 4).

C

B

A

1

2 3

4

D

Figure 9. Zig arrangement of nodes before restructure.

A′ is a copy of A. The left child of B becomes the right
child of A′. A′ is linked into the tree as B’s left child. At
this point, the value A appears in the tree twice. Since the
new copy is placed below the original, there is no need for a
grace period before removing the original from the tree.

C ′ is a copy of C. The right child of B becomes the left
child of C ′. C ′ is linked into the tree as B’s right child. The
original nodes A and C are removed from the tree by making
B a child of D.

This algorithm differs from a non-RP algorithm as fol-
lows: copies of a nodes were made rather than changing
nodes in place, and RP primitives were used for pointer as-
signment and memory reclamation.

5. Performance
Performance data was collected using the following syn-
chronization techniques:

8 2010/12/8



1 A_prime = A.copy();

A_prime.right = B.left;

B.left.parent = A_prime;

5 rp_release(

B.left, A_prime);

A_prime.parent = B;

C_prime = C.copy();

10 C_prime.left = B.right;

B.right.parent = C_prime;

rp_release(

B.right, C_prime);

15 C_prime.parent = B;

D = C.parent;

if (D.left == C)

rp_release(D.left, B);

20 else

rp_release(D.right, B);

rp-free(A);

rp-free(C);

Listing 4. Code for zig left restructure

C’

C

B

A

2 3 4

D

A’

1

Figure 10. Zig arrangement of nodes after restructure. Gray
nodes are scheduled for reclamation.

nolock No synchronization was used. This is not a valid
implementation, but it was tested as a theoretical upper
bound (highest performance, but not a data safe imple-
mentation) to compare the other algorithms against.

lock A pthread mutex was used and shared between readers
and writers. As a result, there was no parallelism while
accessing the tree.

rwlr A reader/writer lock that favors readers. The imple-
mentation was derived from Mellor-Crummey and Scott
[Mellor-Crummey 1991].

rwlw A reader/writer lock that favors writers. The imple-
mentation was derived from Mellor-Crummey and Scott
[Mellor-Crummey 1991].

rp This is the relativistic implementation described in this
paper.

Note: all the algorithms except rp used a “standard” red-
black tree implementation that did not perform copy-on-
update.

The test created a tree and preloaded it to a given size
with a random set of values. Threads were created to perform
operations on the tree (lookups, inserts, and deletes). The
threads were allowed to run for a fixed period of time and
the total number of operations performed was reported.

Threads were of two types: readers and updaters. Readers
performed lookups for values in the tree. Updaters removed
a value from the tree and then inserted a different value.
By pairing deletes and inserts, the size of the tree remained
fixed.

Tests were performed on trees of size 64 and 64K nodes.
The graphs for both sizes were very similar, so only the
graphs for trees of size 64K are presented here. Comments
indicate where there were differences in the size 64 graphs.

Tests were run where all the threads were readers and
where there was one updater and multiple readers. Since all
the synchronization algorithms only allow a single updater
at a time, no data was collected with updaters contending
with other updaters.

Performance data was collected on a Sun UltraSPARC T2
running SunOS 5.10. The UltraSPARC T2 has eight cores
each supporting eight hardware threads for a total of 64
hardware threads. Performance data was also collected on
a four quad-core Intel Xeon machine (total of 16 hardware
threads). The machine was running Linux 2.6.28. The re-
sults for both the Sun and Intel processors were very similar.
As a result, the performance data for the Xeon processor is
not presented in this paper, but is available at http://rp.
avscorp.com/rbTreePerformanceSupplementalData.
pdf.

5.1 Read Performance
Figure 11 shows the read performance of the red-black tree.
The performance of rwlw and lock were strictly worse than
rwlr, so they were left off the figure for clarity. The reads

9 2010/12/8



here are individual lookups, not complete traversals. For
complete traversals, see section 6.3. The following observa-
tions can be made from the figure:

1. rp read performance scales linearly to at least 64 threads.

2. rp read performance approaches unsynchronized perfor-
mance. rp values were approximately 93% of the nolock
values.

When we plotted read performance with and without a
concurrent updater, the two lines were indistinguishable. The
average difference in read performance with and without
a concurrent updater was less than 1%. This shows that a
concurrent updater does not impact read performance.

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

M
il

li
o

n
s

Threads

L
o

o
k

u
p

s/
se

c

nolock

rp

rwlr

Figure 11. Read performance of 64K node red-black trees
using a variety of synchronization techniques.

5.2 Update Performance
Figure 12 shows update performance. The X axis shows the
total number of threads. The first thread was an updater,
the remainder of the threads were readers. The uncontended
update performance is indicated by the left most data point
on each line. The remainder of the data points show the
contended update performance with a varying number of
readers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 8 16 24 32 40 48 56 64

M
il

li
o

n
s

ThreadsU
p

d
at

es
/s

ec

nolock
rp
rwlw
lock
rwlr

Figure 12. Update performance of 64K node red-black trees
with a single updater and multiple readers.

Of all the synchronization methods, rp had the worst
uncontended update performance. rp performance was 93%
of rwlw performance (the best of the other valid methods).
With even a single concurrent reader, rp update performance
is better than any of the other synchronization methods (with
the exception of nolock which leads to data corruption). As
the number of concurrent readers increases, the advantage
of rp is more pronounced. With a smaller tree, it takes more
concurrent readers to give a clear advantage to rp. With a
tree size of 64 nodes, rp had better write-side performance if
there were 6 or more concurrent readers.

6. Traversals
The performance data presented in Section 5 was for readers
performing lookups. Another read access pattern is a traver-
sal where all the nodes in the tree are accessed in order.
There are a number of traversal algorithms available. Some
make use of a stack to keep track of what branches still need
to be visited. Others make use of parent pointers in each node
and whether the just-visited node is the left or right child of
the parent. For each of these algorithms, the particular shape
of the tree is important. A concurrent update may restructure
the tree such that the path represented by the stack no longer
exists. Alternately, a node that was below a given node may
be restructured above it causing it to be either visited twice
or skipped in the traversal. These re-orderings present chal-
lenges to a relativistic implementation of a tree because they
have the potential to result in an invalid traversal.

Two approaches were taken to solve these problems. Both
approaches use two primitives: first() and next(). The primi-
tive first() returns the item in the tree that is first in the sort or-
der. The primitive next() is passed information about a node
in the tree and returns the node that follows the specified
node in sort order. The two approaches differ in their imple-
mentation of next().

6.1 The standard approach
The standard approach to a tree traversal is to treat the entire
traversal as a single operation. A lock is acquired at the be-
ginning of the traversal and held until the end of the traver-
sal. The lock prevents any updates from happening during
the period the lock is held. To allow this type of traversal
using the relativistic read and update algorithms described
earlier, the mutex used for the write lock is replaced with a
reader-writer lock. This yields three sets of critical section
bounding primitives:

1. read start/end bounds a relativistic read and allows rela-
tivistic updaters to proceed in parallel. These primitives
are used for lookups.

2. write lock/unlock bounds an update critical section. Rel-
ativistic readers are not inhibited by this lock.

3. rw lock/unlock bounds a traversal. Multiple rw locks can
be acquired at the same time. An rw lock excludes a write

10 2010/12/8



lock, and a write lock excludes an rw lock. An rw lock
does not inhibit relativistic readers (read start/end).

6.2 A relativistic approach
Consider the following observations about tree traversals
and the relativistic algorithms given in Section 4:

1. Traversals are O(N); Updates are O(log(N)) therefore
traversals are expected to take much longer than updates.

2. Some updates require a grace period to expire in the
middle of the update. If the grace period is O(N), this
will significantly delay updates.

3. The algorithms given in Section 4 assume that readers
don’t access the parent pointers so parent pointers should
not be used by relativistic traversals. It should be possible
to perform relativistic updates that keep the parent point-
ers always consistent, but this would likely require more
node copies, and may require additional grace periods in
the midst of an update.

Given the above considerations, a relativistic traversal
can be constructed using relativistic lookups. The next()
primitive is passed the key of the previous node and returns
the key and value of the node with the first key greater than
the previous key. This allows the same relativistic read and
update algorithms described in Section 4 to be used. The
consequences are that a traversal will take O(N log(N))
time, and the tree that is traversed may not represent any
state present in a globally ordered time. In particular, it’s
possible that a great number of updates occurred during the
time of the traversal. No guarantees can be made as to which
of these updates were seen and which weren’t. The only
guarantee is that next() will return the next node that was
in the tree during the relativistic snapshot of time in which
next() was called.

6.3 Traversal Performance
Figure 13 shows the read-side performance of the standard
approach. With the exception of lock, all synchronization
mechanisms scale linearly and have similar performance
(only rp and rwlw are shown in the figure for clarity). This
is because all the synchronization mechanisms except lock
allow read concurrency and because the time is dominated
by the traversal, not by the synchronization.

Figures 14 and 15 show write-side performance of the
standard approach. Like the performance data in Section 5,
there is a single updater and N − 1 readers. The write-
side performance falls off significantly in the presence of
readers, so figure 15 shows the same data, but leaves off
the uncontended update data points so the details of the
others can be seen. Figure 15 shows that the rp and rwlw
algorithms have very similar performance. This is because
the rwlw synchronization algorithm was used for the rw-lock
and write-lock primitives in the rp implementation.

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32 40 48 56 64

M
il

li
o

n
s

ThreadsT
ra

v
er

sa
ls

/s
ec

rp read

rwlw read

lock read

Figure 13. Read performance of standard traversal algo-
rithm. Note that the rp and rwlw lines are on top of each
other.

0

0.2

0.4

0.6

0.8

0 8 16 24 32 40 48 56 64
M

il
li

o
n
s

Threads

U
p
d
a
te

s/
se

c

rp write

rwlw write

rwlr write

lock write

Figure 14. Update performance of standard traversal algo-
rithm

Figure 16 shows the read-side performance of the rela-
tivistic approach. For sufficiently high thread counts, rp out-
performs the other synchronization methods. At lower thread
counts, rp is similar to the other approaches. Although rp
scales well, it does not scale linearly. We believe that this
is because, for traversals, readers wind up evicting parts of
their own L1 caches. This places additional bandwidth re-
quirements on the memory bus.

0

10

20

30

40

50

60

70

0 8 16 24 32 40 48 56 64

T
h

o
u

sa
n

d
s

ThreadsU
p

d
a
te

s/
se

c

rp write

rwlw write

rwlr write

lock write

Figure 15. Update performance of standard traversal algo-
rithm showing only contended updates

The update performance of the relativistic approach was
essentially the same as the update performance when the

11 2010/12/8



0

20

40

60

80

100

120

0 8 16 24 32 40 48 56 64

T
h

o
u

sa
n

d
s

ThreadsT
ra

v
e
rs

a
ls

/s
e
c

rp read

rwlw read

rwlr read

lock read

Figure 16. Read performance of RP traversals. Note that
rwlr and rwlw lines are on top of each other.

readers were doing lookups instead of traversals (see Fig-
ure 12). This is because the relativistic traversals were using
relativistic lookups to perform the traversal.

7. Conclusions
We have shown that relaxing the ordering constraints on
updates can allow for much more scalable concurrent data
structures. This was demonstrated by implementing a rela-
tivistic red-black tree. Our implementation has lookup per-
formance that rivals an implementation without any form of
synchronization. Further, our implementation scales linearly
out to at least 64 hardware threads.

We are continuing to investigate relativistic implementa-
tions of other data structures and use patterns. We hope to de-
rive a generalized method for developing relativistic imple-
mentations. We are also working to solve the multi-update
problem so that relativistic implementation can have con-
current updaters as well as concurrent readers with a single
updater.

References
[Baumann 2009] Andrew Baumann, Paul Barham, Pierre-Evariste

Dagand, Tim Harris, Rebecca Isaacs, Simon Peter, Timothy
Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The multi-
kernel: a new os architecture for scalable multicore systems. In
SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 29–44, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-752-3.

[Boyd-Wickizer 2010] Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. An analysis of linux scalability
to many cores. In 9th USENIX Symposium on Operating Sys-
tem Design and Implementation, pages 1–16, Vancouver, BC,
Canada, October 2010. USENIX.

[Bronson 2010] Nathan G. Bronson, Jared Casper, Hassan Chafi,
and Kunle Olukotun. A practical concurrent binary search tree.
In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming,
pages 257–268, New York, NY, USA, 2010. ACM. ISBN 978-
1-60558-877-3.

[Desnoyers 2009] Mathieu Desnoyers. Low-Impact Operating Sys-
tem Tracing. PhD thesis, École Polytechnique de Montréal, De-
cember 2009. [Online]. Available: http://www.lttng.org/
pub/thesis/desnoyers-dissertation-2009-12.pdf.

[Guibas 1978] Leo J. Guibas and Robert Sedgewick. A dichromatic
framework for balanced trees. In SFCS ’78: Proceedings of the
19th Annual Symposium on Foundations of Computer Science,
pages 8–21, Washington, DC, USA, 1978. IEEE Computer So-
ciety.

[Hanke 1998] Sabine Hanke. The performance of concurrent red-
black tree algorithms. Technical report, Albert-Ludwigs Univer-
sity at Freiburg, 1998.

[Herlihy 1990] Maurice P. Herlihy and Jeannette M. Wing. Lin-
earizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Language Systems, 12(3):463–
492, 1990. ISSN 0164-0925.

[Landley 2007] Rob Landley. Red-black trees (rbtree) in
linux. kernel.org documentation, January 2007. [Online].
Available: http://www.kernel.org/doc/Documentation/

rbtree.txt.

[McKenney 2003] Paul E. McKenney. Kernel korner: using RCU
in the Linux 2.5 kernel. Linux J., 2003(114):11, 2003. ISSN
1075-3583.

[McKenney 2004] Paul E. McKenney. Exploiting Deferred De-
struction: An Analysis of Read-Copy-Update Techniques in Op-
erating System Kernels. PhD thesis, OGI School of Science
and Engineering at Oregon Health and Sciences University,
2004. Available: http://www.rdrop.com/users/paulmck/
RCU/RCUdissertation.2004.07.14e1.pdf [Viewed Octo-
ber 15, 2004].

[Mellor-Crummey 1991] John M. Mellor-Crummey and Michael L.
Scott. Scalable reader-writer synchronization for shared-
memory multiprocessors. In PPOPP ’91: Proceedings of the
third ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 106–113, New York, NY, USA,
1991. ACM. ISBN 0-89791-390-6.

[Piggin 2010] Nick Piggin. The memory map semaphore (mmap-
sem). lwn.net, August 2010. [Online]. Available: http://lwn.
net/Articles/399148/.

[Plauger 1999] P. J. Plauger. A better red-black tree. C/C++
Users J., 17:10–19, July 1999. ISSN 1075-2838. URL http:

//portal.acm.org/citation.cfm?id=330304.330305.

[Schneier 1992] Bruce Schneier. Red-black trees. Dr. Dobb’s J.,
17(4):42–46, 1992. ISSN 1044-789X.

[Triplett 2010] Josh Triplett, Paul E. McKenney, and Jonathan
Walpole. Scalable concurrent hash tables via relativistic pro-
gramming. SIGOPS Oper. Syst. Rev., 44:102–109, August
2010. ISSN 0163-5980. URL http://doi.acm.org/10.

1145/1842733.1842750.

12 2010/12/8


	Relativistic Red-Black Trees
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1388787717.pdf.7q650

