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The notion of relativistic, or "particle" rotator, which is the system o± four "beingrossen" 

centered on a moving point in Minkowski space, has recently been introduced to describe 

kinematically the average motion of extended particles in space time. In this paper, we 

further study this system as such and show its similarity with the bilocal theory introduced by 

Yukawa. The special example of the hyper-spherical rotator is treated in detail by replacing 

the origin<,ll beingrossen variables with complex triad variables and relativistic Euler angles. 

Introduction 

By definition let us call relativistic or "particle" rotator the system kinema­

tically defined, 

a. by the coordinates XI" (-r) of its origin (x), and 

b. by the set of four orthogonal and unitary four vectors centered on (x), 

or, in other words, by a moving tetrad in Minkowski space.1l 

The corresponding set of parameters can be used to describe several types of 

physical problems which, very characteristically, cannot be described on the basis 

of the point particle model. "Ve shall mention only two. 

In a series of recent papers2) it has been shown that the hydrodynamical des­

cription of the spinor wave equations of quantum mechanics could not be carried 

out on the basis of point-like elements. Indeed, in order to describe the existence 

of an angular momenturn density in such waves one has to introduce, alongside 

the coordinates XI" (,) of the lines of flow and the invariant conserved density p 

supplementary "beingrossen" kinematical variables b / describing the local "spin". 

On the other hand, on the basis of a general model of extended particles pro­

posed by M¢ller3) and developed by two of us (D. B. and J. P. V.)4) one can 

show that the illDtion of average variables can be developed on the basis of the 

rotator kinematical variables. The motion of the origin of the tetrad just cor­

responds to the behaviour of a central geometrical point (the so-called "center of 

matter density") while the space and time like part of the tetrad's instantaneous 

*- Now at the Physics Institute, University of Nagoya. 
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Relativistic Rotators and Bilocal Theory 497 

rotation (/)"," describes the rotation and acceleration of matter in its neighbourhood. 

Furthermore, de Broglie and two of us (P. H. and J. P. V.) have proposed 

the idea that the time has come to substitute relativistic rotators for point particles 

as classical foundation of quantum mechanics. 

In the present paper, we shall make no specific physical assumption about the 

possible physical signification of the rotator variables and study directly relativistic 

rotators with the help of the usual Lagrangian and Hamiltonian method. 

In sectio]) 1 we shall discuss the behaviour of isolated rotators and show that 

the conservation equations resulting from general Lagrangian imply the existence 

of a second remarkable point center of a particular inertial frame, showing the 

similarity of our point of view with Yukawa's bilocal theory5) in Minkowski space. 

In section 2 we shall discuss a special type of Lagrangian and show in 

particular that this allows a simple classical interpretation of de Broglie's relation 

E=hJ.i. 

Finally, in section 3 we shall introduce relativistic Euler angles as internal 

variables and show that these new variables greatly simplify subsequent quantization 

of the theory. 

~ I 

According to our program let us first recall certain general results on the 

Lagrangian and Hamiltonian method. Let us make two basic assumptions: 

A. That our rotator can be described by: 

a) The coordinates X
F 

('r) of the origin of the tetrad, where T represents the 

proper time of the world line I followed by this point Ct:'). 

b) The components b/ of the four vectors constituting the tetrad. Let us 

adopt the usual symbolic conventions. The ii1dex f1. represents tensor components, 

varying from one to four (Latin indices representing space components vary only 

from one to three), and its repetition implies the usual summation. Since we 

calculate in Minkowski space all fourth components are purely imaginary for real 

vectors. In 17/ the index ~ (which also varies from one to four) is not a usual 

tensor component but rather differentiates the vectors themselves. We thus have 

three space-like vectors 17/ and one time-like vector which we write i17
F

1
• Their 

orthogonal and unitary character is represented by the relations: 

(Ia) 

From 17/'8 which are functions of the proper time 7" of their ongm, the m­

stantaneous rotational velocity of the tetrad is defined by the skew tensor: 

_1 tb' t 
(t) F" - () F V' 

As we have to assume l
) that ib/ points along the four velocity of the ongm 

such that 
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498 D. Bohnz, P. Hillion, T, Takabayasi and J. P. Viigier 

. ' b 4 
Xp=ZC p' (lb) 

we see that the acceleration of Xp and the instantaneous rotation of the tetrad in 

any rest frame 1: (satisfying the relations 17,;=b'i=O) are determined by the vectors: 

- 17 4 
Cifl-WPV v 

- ~ I 4_ i c: b' ~b ~I: 4 (Ofl-OJflVOV -----cflva(3 a (3 7v 
2 

where cpva (3 is the completely anti symmetrical Ricci-Levi-Civita tensor and the symbol 

A represents the derivative dA/ dT. 

B. The second assumption is that its laws of motion can be deduced from 

a variation principle with a scalar Lagrangian L (:r a , Xa , 17/, b/) where all variables 

depend on T only. This implies that the physical motion between two points 
('M'2 

1\111 and M2 will correspond to the minimum of the world-line integral \ LdT, 
. jMl 

that IS, 

M2 

o .\ L(xa, 
.. 

X a , (2) 

lIh 

for arbitrary variations ox,,,, (~b/ which vanish at Ml and 

Following Noether6) we then see that the corresponding Euler equations: 

d 
with G = oL_ d aL 

-- --G =0 
d-r /.1- fl a' {iT axp Xfl 

(3a) 

and 

d aL aL 

ciT ab ~ 017 ~ fl fl 

(3b) 

which determine the equations of motion, imply two conservation equations. Indeed 

(2) must remain unchanged under any variation resulting from OXfl'S and (~b/'s 

determined by an arbitrary infinitesimal Lorentz transform oCa(3= -oc(3a' For such 

a transformation we have 

(4) 

From the invariance of L with respect to this infinitesimal Lorentz transformation 

'Ne obtain the relation 

(5) 

where 

M = (17 t; aLI . a L) _ (I: ~~L +.9 L ) a(3 a . TXa 7(3. X(3 . 
ab(3t aX(3' aba

t aXa 

As is known7
) relations (3) and (5) represent the two essential relations of 

conservation of momentum and angular momentum of particles with extended 

structures. 
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Relativistic Rotators and Bilocal Theory 499 

Starting from A. and E., the next step is to pass to Hamiltonian formalism. 

If L depends in general on a certain set of kinematical variables q/ (where a 

denotes the usual components and ~ differentiates the variables) so that L=L(q}, 

qat;) we can introduce the set of canonical variables Ilat; by the relations 

JI} = oL/oq} 

and define a relativistic Hamil toni an If by the expression 

j 'I( If" ~ 1;) - If" t; • ~ L' ( ~ II'~) " a ,qa -, a qa - qa , a 

where we have expressed in L (qal;, qal;) qat in terms of flal:. 

motion can then be written in the well-known form: 

iIa~= -oFI/oq} and qa!; = oIl/oil}. 

H IS evidently a constant of the motion since 

. oII'!j ol-l 
H =-----, J f +---- q} = 0 

all} a oq} 

(6) 

The equations of 

(7) 

In view of (7). We shall see that I-I is just proportional to the rest mass term as 

In the point particle case. From relations (7) we deduce moreover that the proper 

time derivation of any function f along the world line followed by x/-' IS given by 

f=djjdr=[f, I-lJ (8) 

where [ J denotes the usual Poisson bracket with respect to the variables q/ and 

their canonical momenta. 

As an example, let us describe in this way the usual point particle. V\le write 

L=~ mx/-,x/-, and obtain inlmediately 

G =mi: 
/-' /-" 

lI= 1 G/-,Gf" 
2m 

The canonical equations become G =0 so that f' , 

The Hamiltonian formalism for the case where 

IS performed by the Ostrogradski's method. S
) Introducing the new variables 

oL 
n= 

f' ox 
f" 

and putting 

(9) 
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500 

and 

we get 

D. Bolun, P. I-lillion, 

Xp = dI-I/dGp, 

VI" = dI-I/dnl"' 

Taha17ayasi and J. P. Vigier 

= - dI-I/d.xp , 

= -dR/d'v 
. 1"' 

which determine the evolution of the canonically conjugated variables (.xl"' GI") and 

(v f'" nlJ· This form will be employed later. 

If we now depart from the point particle model and introduce new parameters 

such as bl"!; into the Lagrangian, we can show immediately that such a step implies 

to pass from local to bilocal theory. 

Indeed, let us call Tp the four vector defined by 

(10) 

vvhere -1'vf2 = IS evidently a constant of the motion, and we assume o. 
we introduce the world point y with coordinates defined 

(11) 

we can show that point (wbich corresponds in the extended droplet theory 

to so-called "center of gravity") moves, in the absence exterior forces, 

along a straight world line la with a four velocity UI"=~=Gp/ Iv1 where is the pre­

ceding constant of the motion. 

To show this, let us differentiate (11) with respect to T. get 

w here we have 

parallel to GI" 

(m/11,1)d,. 

x/") (
1 f) 
.1-6 

JJl =-.-= - G I" This proves that Y I" moves with a four velocity 

the relation between the proper time d,' of Ia and d, being 

Thus the introduction of new "line" variables alongside the coordinate .x/" 

determines a second point y I" moving in a straight line lo around which l spirals 

111 a more or complex way according to the exact form of L. IVIoreover, if 

\ve in trod uce an inertial frame f! (in w hi ch G,: = 0) we see tha t Tu. is purely 

space-like in that frame since I"/"GI"=--=O. , 

Both points are in a sense canonically associated, being connected with 

kinematical and Y I" with dynamical variables. \Ve notice immediately that our 

model is quite similar to Yukawa's classical model of bilocal theory5) and thus the 

introduction of new "line" variables 17/ (,) necess.arily implies a passage from 

" local" to" bilocal" theory. This is not very astonishing since Yukawa's model 

was precisely proposed as the simplest possible extension of the point particle idea. 

Our model, however, implies more degrees of freedom than the simple bilocal model. 

As was said before, the b/ variables associated with the relativistic rotator can be 
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Relativistic Rotators and Bilocal Theory 501 

understood as describing "internal" average motions of matter III the immediate 

neighbourhood of :r/-b in the case of extended relativistic particles. In this light· 

Yukawa's model appears as a very simplified schematization of extended particle 

models. 

On the other hand the new variables may be thought as a possible classical 

example of the "hidden" variables introduced a l'Tiori in the causal interpretation 

of quantum mechanics. Naturally, they are only "hidden" in the sense that we 

usually neglect them when we suppress particle extension in space tin1e, .reduce 

world tubes to world lines and leave aside internal motions (rotations, etc.) of 

matter around typical average points such as the center of matter density. 

~2 

\Ve shall now study as a typical example of the preceding formalism the re­

lativistic rotator described by the Lagrangian: 

(13) 

with r""-l, 2, 3 and 

vVe shall assume moreover that the four vectors xa and ba " are physically in­

itially well determined but that ba
l and ba

2 can be arbitrarily rotated around the 

hyperplane containing ba
3 and xa=icbal=va without changing the motion. ]'his 

corresponds, as we shall see, to gauge mvanance. 

In (13) the first term 

l ' -_ - 1 I 1 Zi I;! I; 
(/)a(3{/)a(3 = -0 /-b ) /-b 

4 4 
(14) 

( ~;. . ! ") :: -r '""'-1 2 3 1'1 
~a = lC)a , "','/ '" 

is a formal relativistic generalization of the rotation energy of the three··dimensional 

spherical rigid body, the term. 1+). playing the part of the non-relativistic moment 

of inertia. This results from the fact that the corresponding angular momentum 

tensor is 

M . 2JL . aLL I .,. 2JL I ,. 2JL - (T_L ') 
a(3=:X'a -.Xj3 --1)0:' --)(3 • - A I j( (/)a(3) 

2J~(3 a~a db; db; 
(15) 

if we take into account the relations 

This results immediately from the second term )/-bv(b,"rb/'-1/c2 ,x/-bxv-(J/-bJ in (13), 

with the symmetrical Lagrange multipliers )/-bv' The third term is also a Lagrange 

condition which means the constancy of (l)a(3 {/)a(3' 
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502 D. Bohrn, P. ~Iillion, T. T akabayasi and J. . Vigier 

We here note that our rotator is apparently similar to the one considered by 

Nakan09l
• However, our forth axis plays a distinguished role through the 

identification (lb), while Nakano does not make such identification because his 

beingrossen parameters are associated to an Euclidian space in contrast to our 

b / which defines an internal Lorentz space. On the other hand he imposes the 

dynamical subsidiary condition which is not assumed in our case, i. e., MrnG,,=O. 

This condition means that the point y coincides with x and thus the bilocal 

fea ture degenerates. 

Since (13) is symmetrical in the internal Lorentz space (i. e., for ~ = 1, 2, 3, 4) 

we shall call the present model "hyper-spherical" rotator, which is also a quite 

special example of possible relativistic rotators. 

Now the equations of motion result immediately by applying the formulas given 

in § VVe get with Tla=(JL/(Jxa 

and 

(16a) 

(16b) 

(16c) 

which constitute a simple generalization of VVeyssenhoff's usual relations. 7l 

To solve the equations of motion we first change variables and write: 

xa=£cba'='va. (17) 

This is legitimate SInce L does not depend directly on xC>' Starting then from 

(16c), we get 

(18) 

This is an important relation which shows that lvIa (3 M a (3 and mare simultaneous 

constants of the motion, since we shall show that A is a constant of the motion. 

To prove this we first note that if we insert the expression (15) into (18) we 

get 

so that the relation (18) IS written as 

(19) 

Next we apply the Hamiltonian formalism stated In the preceding section to the 

form (13) of the Lagrangian. 

We get 
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Relativistic Rotators and Bilocal Theory 503 

(20) 

so that 

and 

I-I= Cava +fla'" ba'" +naXa- L 

(21) 

As we know that 1-1 and (Oa(3 (l}a(3 are constants of the motion, the derivation 

of (21) yields that 

1 , 1 -5 V2. 
A(oa(3 (lJ a (3 = -- ".1'-

4 4 
(22) 

The relation (22) compared with (19) proves the fact we anticipated 1.=0. We 

thus conclude therefore that In and ivla (:Jl\ifa (3 are also constants of the motion. 

On the basis of this result,* the complete integration of the motion can be 

carried out explicitly as has been developed by Halbwachs.10
) Starting from the 

basic relations (16) and the constancy of tn and M a (3 ]l;ia(:J, he has obtained the 

following results: 

a. The" spin" SI-'=Mv,"x v is a constant of the motion (,gl-'=O) with a constant 

length, S: S2=S ') I-' A. I-' 

where 

b. The acceleration X,u has also a constant length and IS always parallel to 

r= 
I" 

l_ ........ Ml-'vG
v

• 

M 2 c2 

c. The" radius" T 1" has also a constant length (rl-' T1.=constant) and remains 

perpendicular in the frame II (for which Gi=O) to the spin. As a consequence, 

in that frame, the motion of XI" around Y fL reduces to a circular motion with con­

stant angular velocity g with 

* More general analysis of the motion (without necessarily requiring the constancy of Ma(32) 

was performed by one of the authors (T.T.). This reveals the relations between six conserved 

quantities of internal motion which are identified as the known intrinsic properties of elementary 

particles (to be published). 
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P. I-lillion, T. Talza17ayasi and Vigier 

This; as IV10)ller::) remarked, is just the classical analogue of Schrodinger's 

Zitterbcwegung. 

d. The rotation of the frame defined by 17/ is necessarily constant. This can 

be shovvn in the following way: we first notice that the quantities 

1 

2 

r h . ( . ,: n' J 1" r h . are constants OI t _e rnotlOn (I) = u) ann represent tne prOjectIOns OI t e 111stan-

taneous rotation velocity on the moving frame (b/~T). According to our preceding 

U spin" as projections on the axes of the moving tetrad constant com-

ponent~) and O. If it points initially along bfJ-3 (that is, if we start with 

=0), it vvill remain so and /;1"1 and b
l
"2 will rotate around bfJ-3 with a constant 

angular velocity (I)=bl"lb
l
/, so that bl/:::=(I)/JI"?' Naturally in that case bfJ-l and 2 are 

not physically determined smce we can always rotate them by a con­

stant angle around b
l
,:;, 

preceding motion can also understood as the classical analogue of 

Broglie's relation if we start with the initial relation, 

(23) 

this relation will be conserved by the motion so that if we suppose that I(O=3=n 

ini tially we get 

111 the rest frame. rrhe total motion then appears as a spiral motion of the ongm 

x combined with a space rotation of the tetrad on itself, a behaviour already stran­

gely similar to quantum theoretical motions. 

shall now introduce a new set of kinematical parameters: the relativistic 

Euler angles. This step is justified by the fact that it allows simple comparison 

with the non-relativistic theory of rotating spherical rigid bodies and also, as we 

shall see in a subsequent paper, facilitates the subsequent quantization of the 

theory. 

The introduction of the new variables rests on the remark that the 17} para­

meters denne only six independent quantities taking relations (1) into account. 

This m.eans that the orientation of the b/ frame with respect to any fixed la­

boratory frame (denned by the tetrad a/ also satisfying (1» is determined 

(except for an arbitrary constant rotation) by the six parametersll ) of the homo-

geneous Lorentz transformation which transforms into 

one knowsl~) these relativistic Euler angles determines the Lorentz trans­

formation from a/ to b} by the matrix relation: 
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Relat£'uistic Rotato rs and B£local Thea ry 505 

cos (SO '/2) sin (SO !/2) 0 0 

b 2 
f' 

---sin (SO /2) cos (SO:/2) 0 0 

o 0 cos (SO 1/2) sin ( SO c/2) 

o 0 -sin (~o'/2)cos (SO/2) 

cos (SO-/2) sin (SO-/2) 0 0 / cos «(}-i/2) 0 sin ((}+/2) 0 

x 
sin (SO-/2) cos (SO-/2) 0 0 0 cos (0 1/2) 0 -sin (t}:/2) 

o 0 cos (SO--/2) -- sin (SO--/2) 'sin (() '/2) 0 cos ({j 1/2) 0 

o 0 sin (SO-/2) cos (SO-/2) 0 sin ((}!/2) 0 cos (tV/2) 

cos ((}-/2) 0 --sin ((}--/2) 0 cos (Sfl '/2) sin (SV/2) 0 0 

X 
o cos (tJ--/2) 0 sin ((}-/2) • -sin (11'/2) cos (Sfl /2) 0 0 

sin (tJ-/2) 0 cos ((}-/2) 0 0 0 cos (S6 1)2) sin (</1 :/2) 

o sin ((r-/2) 0 cos ((}-/2) 0 0 --sin (Sbl/2)cos (s"!/2) 

cos (sb-/2) sin (Su-/2) 0 0 \ aI, 
f' 

x 
- sin (</;-/2) cos (S/;-/2) 0 0 af'2 

(24) 
0 0 cos (</1-/2) -sin (s"-/2) a:; 

f' 

0 0 sin (~b- /2) cos (</1-/2) a/ 

The complex angles (1/- == {O;, SO', Su-:} and (0-'- = {{}--, SO-, Sb-} correspond to the 

relativistic generalization of the three-dimensional Euler angles. T'hey are defined 

by the relations: 

(25) 

where the real quantities SOb d1, ~bI correspond to the usual space Euler angles, while 

<jJ2, O2, </12 represent hyperbolic angles (varying from - co to + LV) expressing pure 

Lorentz transforms. The two sets (f)+ and (1)--- are thus complex conjugates of each 

other. 

Before we express the Hamiltonian as a function of these new variables we 

shall briefly discuss their geometrical meaning. 

As already implied in the work of Einstein and Mayer/3
) we construct from b/ 

a set of complex self-dual anti symmetrical tensors: 

of which independent components are 

btb/. (26) 

Then it can be shown that each set of {B,,:':} and {Br-} behaves as a set of three 

com.plex vectors spanning a complex three-dimensional orthonormal frame of axes : 

(27) 

In exactly the same way one can construct from {If't; the corresponding quantities by 
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506 D. BoluJZ, P. J-lillion, T. Takabayasi and J. P. Vigier 

(26') 

with 

1 S±-
.L Ie - (27') 

Now, utilizing definition (26) one can demonstrate after a short calculation 

that 

I COSso± cos()± cos<j;± - sinSO± sin<j;±, COSso± cost}± sinSfJ± +sinSO± cOSSfJ,l:, - cosSO:l: sinO±\ 

= \ - sinSO" cosO± ~os¢± ~- cosSO± sin ¢,i, - sinSO± cosU±sin¢+ + COSSO+cos¢+, -- sinSO± sinO" I 
sIn():C cosJF sm():t smc0:C cos()± I 

j , 7 , 

X(A 3±) 
k • 

(28) 

This shows that defining four complex three-dimensional frames + with 

- with ,,/1 ~-, 15: with 13 ,and 13 - with B I;'-, we can pass from to Be and 

from A-to B - by two complex three-dimensional rotations defined by the complex 

Euler angles (/)+ and ,since relations (28) are idential (except for the complex 

character of all quantities) with the classical expression for real three-dimensional 

ordinary rotations (in terms of real Euler angles) in ordinary space. 

the set (or 131;'-, 1'-) are equivalent to b/ and a/ this rede-

monstrates in a very simple way the well-known isomorphism established by 

Einstein 14) and Cartan15
) between Lorentz transforms and three-dimensional complex 

rotation. These complex rotations can be represented in two complex conjugated 

three-dimensional spaces, E and E-. If we choose a/ and b/ as rest frames, we 

see that =a{, and B;;±=bt so that the complex rotations (0' and (0- can be 

understood as taking place in the three-dimensional ordinary space. 

If we now return to Minkowski space we must remember that any rotation 

(defined by a skew symmetrical tensor) takes place around a bivector which glides 

on itself under the corresponding matrix transformation. The meaning of relations 

(24) and (28) then becomes clear. Relations (24) define a set of six successive 

rotations around six bivectors in a certain determined order (right to left) which 

bring /fa into 2'0' Relation (28) defines the corresponding transformation which 

brings the system of bivectors A/;± on IH±. One notes also that any self-dual 

skew tensor of the (+) type (such as 7n 11"" + im I1"J is orthogonal to the (-) type 

(nl1""-inI1"J, so that we have identically (nll1"u +inll1"J (nl1"u -inl1"u) =0. 
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For more details on relativistic Euler angles the reader may consult specialized 

mathematical papers. J2
),16) 

Let us now return to the hyper-spherical rotator. Let us call T (kinematical 

energy) the first term in the Lagrangian (13). 

In order to prepare the transition to the use of relativistic Eule~ angles we 

can first express T as a function of B{='r:.. A rather long but simple calculation 

gIves 

1'= I c: c (B' 1'+B"+1;B+]')s++1:Y"-]Jl'-B')8-n S -) - 1 (E° "+B' 1'+-\-B· "-1;1'-) 
CijIcCU"" ,j Ie .)/ Jm,J.i )k 1 )11/, - k!c k ·J/c • 

2 v 2 

(29) 

,iVe see here appearing for the first time an essential property' of the hyper­

spherical rotator: its Hamiltonian can be split, into two complex conjugated parts 

the first depending on w -1-, the second on (0-. 

This is very natural if one remarks that the skew tensor can be split into a 

sum of two self-dual tensors of the types ( ) and (-). We have 

(30) 

so that 

(I) #" 0)#" = 
1 _,_ + + 1 _ __ 

(1)1-'" ' (1)#" - - ... -(1)#" (I)/-," = 
4 4 

(31) 

taking into account the self-dual character of wI;v and (/)!-;v. Relation (31) multi­

plied by 1/2 is equivalent to (29). 

Introducing the expreSSIOns 

we see that the hyper-spherical IIamiltonian can be written 111 the new form. 

(32) 

where 

That is exactli2
) the sum of two complex conjugated three-dimensional spherical 

rigid rotators (the proper time r playing the part of ordinary time). This sim­

plifies everything. 

The angular momenta associated to {/),}= are just 

(33) 

and correspond to the splitting of the angular momentum MrtF> into two self-dual 

parts: 
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1 
1Vla(3 = ClVlaG 

2 ' 

and we wrote the space components as 

1II1, .. t, 

while the space-time parts are just proportional to them (since 

so that we can write: 

1 
M a (3 -, (34) 

2 

(35) 

(36) 

The physical meanmg of expreSSIOns like Slc-t IS clear. These quantities re­

present the projections of the internal angular momentum on the fixed self.­

dual bivectors (or rather their space-like parts) out of which we have built the fixed 

frames f1- c- and For example, we have 

(37) 

and similar expressions for all such quantities. 

Our last step is to make a new change of variables and express the Lagrangian 

and Hamiltonian in terms of relativistic Euler angles. This, with the help of ex­

pressions (28), can be carried out exactly like in the three-dimensional case, so we 

shall just recall the results. 

first calculate the projections of the angulc~r velocities (with components 

(ol) on the axes of the moving frames B:' and 13 -. 

'liVe get (denoting by primed quantities such projections in to differen-

tiate them from unprimecl quantities which represent projections on the fixed frames 

A±) : 

=-sln SIn +cos (38) 

+cos 

and the Lagrangian becomes with the help of (38) 

L= (¢<2 ')i:: (6: cos ()+) 
~I I 

(39) 

where as we know i. and P:? are constants. 

This is exactly the sum L+ IJ- of the Lagrangians of two complex conjugate 

three-dimensional spherical rigid bodies. Naturally the Lagrange condition terms 

with the multipliers have disappeared since the orthogonality conditions are 

automatically satisfied by our six Euler angles. 
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\Ve can now calculate the canonical momenta associated with the new variables. 

Naturally, we could vary separately in the Lagrangian L+ (and in L-) CPh CP2, OJ, 

{}2, <PI, and <P2, (that is the real and imaginary part of (1)'- and (1)-), and consider 

L + as a function of these variables; the equations of motion being defined by: 

(J ~L+(CPl' ~2' 01, O2, <PI, <P2, CPl' CP2, {jl' O2, cA, ¢2)d7:=O (40) 

and the same varia60nal equation with L-. I-Towever, we know that one obtains 

exactly the same equations of motion if one considers L + as a function of (1)+ 

= (tF, cP+, <P '-) and L- as a function of (1)--= (()-, cP--, <P-) and vary these 

quantities independently. This can be shown directly. \Ve get for the correspond­

ing momenta : 

(jy<P± = aL± /acpcJ;: == c9 (¢± Sbl:: cos (}j) 

\ .. 
~ P'fr± = aL,i/aS~1: == c9 .(~u±: +- cp±: cosO±) 

ljYe±:=aL'"=jaO±= c9f)± 

(41) 

so that the Hamiltonian I-I = Pi qi - L becomes 

if we neglect constant terms. Namely, 

(43) 

or 

(44a) 

1 
(44b) 

OIie then checks immediately with the help of the usual Poisson brackets that 

[Ski, Si-]:=O, [S~+, S;-1=0. 

Comparing (44a) and (44b) , we obtain the connection between our angular 

momenta and the projections of the momentum 3;± in the form 
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( - ,)!± 
jJ'PcL-'- 3 

\ j - SY ,:-~. ± I ('II± ± /l ')00: - t.. 1 SIn SO T d2 COS SO 

P",J:= -Sr'± sin{j± cOSSO±+S2!± sin8± sinSO±+S3'± cos{j± 

so that the projections of the momentum on the frames B± and 

familiar form: 

on B±, and 

on A±. 

cos cpt 
+ jJCP±sin8±-

(45) 

take the 

(46) 

(47) 

]---1:- and I-I- are then evidently constants of the motion and we get, writing 

, the relations 

(48) 

which correspond to classical three-dimensional properties of the non-relativistic 

rotators. 

Concluding 

In conclusion we want to add a few remarks. 

First we note that if we want to connect such a rotator with real physical 

movements inside relativistic fluid masses, it must be understood that its behaviour 

constitutes only an average and very crude abstraction of real internal motions 

since we then necessarily neglect an infinite number of possible degrees of freedom. 

Secondly the introduction of this model as possible starting point for quantum 

theory (or elements of a new sub-quantum-mechanical level) raises many difficult 

but interesting problems. It is closely connected, for example, with very recent, 

researches and ideas in quantum field theories, such as indefinite metric and non­

linear waves, and we intend to discuss them in subsequent papers. Indeed, as three 

of us have shown (D. E., P. H. and J. P. V.), the quantization of the above 

rotator leads to the introduction of quantum numbers and energy levels which can 

be classified according to the well-known Nishijima-Gell-Mann scheme of elemen­

tary particles. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

3
/3

/4
9
6
/1

8
3
9
6
4
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Relativistic Rotators and Bifocal Theory 511 

Evidently the present model is a quite special one of relativistic rotators. One 

of us (T. T.) has classified possible relativistic rotators from wider point of view 

which makes the physical meanings of various quantities and conditions dearer. 

Indeed, we only need the three-dimensional symmetry in the internal Lorentz space 

(i.e., the rotator be spherical) so as to obtain the conserved iso-spin components, 

and it is then shown that only its third component remains conserved when 

electromagnetic interaction is introduced. General theory of such spherical rotators 

includes, as its special examples, various models: the hyper-spherical rotator 

treated in this paper, Matthison-Weyssenhoff's particle,7) Nakano's rigid body, Honl­

Papapetrou's particle, and others. These will also be given in separate papers. 

In conclusion we wish to thank Professors Louis de Broglie, Hideki Yukawa, S. 

Sakata and T. Nakano and also Dr. Halbwachs for many helpful suggestions 

and discussions. 

One of us O. P. V.) wishes in particular to thank Professor Yukawa for 

generous hospitality in Yukawa Hall which made this research possible. 
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