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Relativistic scalar fields are ubiquitous in modified theories of gravity. An important tool in under-

standing their on structure formation, especially in the context of N-body simulations, is the quasistatic

approximation in which the time evolution of perturbations in the scalar fields is discarded. We show that

this approximation must be used with some care by studying linearly perturbed scalar field cosmologies

and quantifying the errors that arise from taking the quasistatic limit. We focus on fðRÞ and chameleon

models and link the accuracy of the quasistatic approximation to the fast/slow-roll behavior of the

background and its proximity to ΛCDM. Investigating a large range of scales, from super- to subhorizon,

we find that slow-rolling (ΛCDM-like) backgrounds generically result in good quasistatic behavior, even

on (super-)horizon scales. We also discuss how the approximation might affect studying the nonlinear

growth of structure in numerical N-body simulations.
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I. INTRODUCTION

While relativistic scalar fields are hard-wired into our

current theories of the very early Universe, they are also at

the heart of our modern understanding of the evolution of

the Universe at late times [1]. They are often invoked as the

source of dark energy as well as being instrumental in

attempts at modifying general relativity [2]. As such, their

presence should be felt and have a significant impact on the

formation of structure.

The role that relativistic scalar fields play in linear

cosmological perturbations of homogeneous universes is

well developed and understood. From coherent perturba-

tions as one finds in a wide range of quintessence [3–5]

models to incoherent perturbations as emerge in axion and

axionlike theories [6–9], it is now possible to calculate

cosmological observables in the linear regime with almost

arbitrarily high precision. Furthermore, a range of phe-

nomenological approaches exist which can be applied to

understand the effects of the scalar field in different ways.

The same cannot be said on small scales where nonlinear

effects come into play. There, the method of choice is to use

N-body simulations to study how nonlinear evolution will

lead to the formation of galaxies, clusters and, more

generally, the cosmic web that is such a rich source of

dynamical information. N-body simulations are inherently

nonrelativistic—for they simulate a system which interacts

under Newtonian gravity—and as such should not, in

principle, capture the essential relativistic nature of the

scalar field. While there have been attempts at inserting

scalar fields into N-body simulations, in general they have

been at the expense of taking the equivalent Newtonian

limit of the scalar field equation of motion [10,11]. Broadly

speaking this means converting a dynamical, sourced,

Klein-Gordon equation into a Poisson-like equation: the

quasistatic approximation (we will explain this approxi-

mation more thoroughly later).

The usefulness of the quasistatic approximation and

consequently its widespread use (consider for example the

N-body codes [12–14]) stem from the fact that evaluating the

full unapproximated evolution equations in N-body simu-

lations is a taskwhich isoftencomputationallyexpensive.An

illustrative example are chameleon scenarios where evalu-

ating the full evolution equations quickly leads to computa-

tions requiring ∼Oð107Þ more time steps than their

quasistatic counterparts or more[10]. In fðRÞ models N-

body simulations implementing the quasistatic approxima-

tion have been carried out e.g. by [11,15–19]
1
, see especially

[11] for anumerical checkof thequasistatic approximation in

this context. For related chameleon models [21] also see

[22,23]. Nonlinear structure formation in braneworld-

inspired Dvali-Gabadadze-Porrati models [24] has been

probed by [15,16,25–29,], where [27] concludes that the

quasistatic approximation is a self-consistent approach on

subhorizon scales in this setup. Linear [30] and nonlinear

[31–33] structure formation for galileon models [34] have

also been probed. Interestingly there the quasistatic approxi-

mation may break down particularly in low density regimes.

In the linearized regime, however, it generically performs

well on subhorizon scales [30].

While the quasistatic approximation therefore appears to

do reasonably well in a number of model-specific contexts

and there are very good arguments for its general

*
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1
Interestingly the recent work of [20] outlines a different

simulation strategy not explicitly relying on quasistatic behavior
and which should be applicable to models with relativistic scalars
in the future.
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“reasonableness” in known observationally viable modified

gravity models [35], there are also known cases where it

explicitly breaks down even on subhorizon scales [36,37].

Note, however, that it is not quite clear whether any of those

known nonquasistatic scenarios have clear observational

signatures in allowed regions of parameter space
2
In this

context also especially note the work of [36], which links

the applicability of the quasistatic approximation on

subhorizon scales in fðRÞ models to the proximity of

the background evolution to ΛCDM
3
and also [39] who

also probe linear growth in fðRÞ theories in the quasistatic

approximation. The quasistatic approximation is also

extended to Jordan-Brans-Dicke theories in [40] and to

fðR; TÞ models in [41]
4
, where the inclusion of an fðTÞ

term causes scale-dependent behavior of the density oscil-

lations (in both the unapproximated equations and the

quasistatic limit), resulting in inaccurate quasistatic behav-

ior. In general, and particularly for nonlinear structure

formation, however, the de facto necessity of the approxi-

mation in numerical modeling makes it inherently difficult

to precisely determine its range of validity.

Our approach, in this paper, is to explore the validity of

the quasistatic approximation on both large and small

scales by using the apparatus of linear perturbation theory.

In order to do so, we perform a detailed comparison

between quasistatic and full, not approximated evolutions.

The models which we consider are representative fðRÞ and
chameleon models of modified gravity, which alternatively

may be interpreted as fðRÞ models without and with

screening. Doing so we aim to extend previous work by

analytically and quantitatively understanding on which

scales and subject to what conditions exactly the quasistatic

approximation is a valid approximation for both fðRÞ and
chameleon models. We explore and quantify these models

in enough detail that we can use our results as a guide on

how to tackle and better understand the evolution of

nonlinear perturbations in N-body simulations in the future.

In doing so we identify the regimes where the quasistatic

approximation can and cannot be trusted.

This paper is structured as follows. In Sec. II we lay out

the pared-down formalism of cosmological perturbations

which we will use throughout the paper and in Sec. III we

use it to understand the Newtonian limit, the quasistatic

approximation and the miracle of N-body simulations with

nonrelativistic matter, which does not extend to relativistic

scalar fields. In Sec. IV we then apply the quasistatic

approximation to fðRÞ models with an exponential poten-

tial and compare it to the full evolution of perturbations

without the quasistatic approximation. Providing explicit

examples, in Sec. V we map out the regime of validity of

the quasistatic approximation and how it relates to the

fast- and slow-rolling nature of the background scalar

degree of freedom as well as its proximity to ΛCDM-like

behavior. This analysis is extended to specific fðRÞ models

with screening, namely chameleons, in Sec. VI. Finally, in

Sec. VII we discuss our findings and conclude.

II. COSMOLOGICAL PERTURBATIONS

Throughout this paper we will use linear, cosmological

perturbation theory to gain insight into structure formation

in modified gravity. To do so, we need to perturb the metric

and the energy content of the Universe around a homo-

geneous and isotropic background. Depending on one’s

educational background (see [42] for a thorough discus-

sion), one tends to pick one of two gauges: synchronous or

conformal Newtonian. In the synchronous gauge one

chooses a foliation of space-time such that surfaces of

equal time correspond to those of equal density—

consequently the coordinates are those of a freely falling

observer—and the metric can be written

ds2 ¼ a2ðτÞ½−dτ2 þ ðγij þ hijÞdxidxj�;

where τ is conformal time, aðτÞ is the scale factor, γij is the
conformal 3-space metric of constant Gaussian curvature

and hij its perturbation (from the Fourier-space paramet-

rization of the scalar modes we have hij ¼ hδij=3þ ðhþ
6ηÞðk̂ik̂j − δij=3Þwhere k̂i is the unit vector in the direction
of the wave vector k?). Alternatively in the conformal

Newtonian gauge, the metric is diagonal such that

ds2 ¼ a2ðτÞ½−ð1þ 2ΨÞdτ2 þ ð1 − 2ΦÞγijdxidxj�

where Φ and Ψ map directly on to the Newtonian potential

field in the nonrelativistic limit. In this paper we will

primarily work with the synchronous gauge, although we

will resort to the conformal gauge to make a few key points.

The content of the Universe must also be suitably

perturbed so that key tensors retain a gauge-invariant

structure. For example, the stress energy of a perfect fluid

has for its ð0; μÞ components:

T0
0 ¼ −ρð1þ δÞ

ikjT0
j ¼ ðρþ PÞθ

where ρ and P are the background energy density and

pressure, δ and θ are the density contrast and the momen-

tum (the divergence of the 3-velocity perturbation) and we

have transformed to Fourier space assuming the convention

2
We thank Claudio Llinares and Alessandra Silvestri for

bringing this point to our attention.
3
More precisely, the condition is j∂RfðRÞj ≪ 1 at all times.

The present-day value of ∂RfðRÞ is abbreviated fR0. In particular
this means that large classes of observationally viable fðRÞ
theories, i.e. those falling within the constraint jfR0j ≤ 10−6

imposed by a combination of solar-system and galaxy-halo tests
[38], should satisfy a number of constraints [36,39] guaranteeing
good quasistatic behavior.

4
The scalars R and T are the Ricci scalar and the trace of the

stress-energy tensor, respectively

NOLLER, VON BRAUN-BATES, AND FERREIRA PHYSICAL REVIEW D 89, 023521 (2014)

023521-2



of [43]. While the structure of the perturbed energy

momentum tensor is identical in both gauges, the pertur-

bation variables δ and θ behave differently in both gauges.

So for example, in synchronous gauge, the evolution of δ

and θ for a pressure-less fluid is given by

δ
:

¼ −θ −
h
:

2

θ
:

¼ −Hθ

while in conformal Newtonian gauge we have

δ
:

¼ −θ − 3Φ
:

θ
:

¼ −Hθ þ k2Ψ;

where we have used the conformal Hubble factor, H ¼ a
:

a

and a
: ¼ da

dτ
.

To determine the perturbed metric (and close the system

of equations), one needs to consider the perturbed Einstein

field equations, δGα
β ¼ 8πGδTα

β where δGα
β and δGα

β

are the perturbed Einstein and energy-momentum tensor. In

the conformal Newtonian gauge, we can combine the (0, β)

components to construct the relativistic Newton-Poisson

equation:

−k2Φ ¼ 4πGa2
�

δT0
0 − 3

H

k2
ikiδT0

i

�

: (1)

In the synchronous gauge we have that the metric is found

by solving:

k2η −
1

2
Hh

:

¼ −4πGa2δT0
0

h
::

þ 2Hh
:

− 2k2η ¼ −8πGa2δTi
i:

Specializing to the case of a shear-free fluid, we have

δTi
j ¼ δPδij:

Finally, it makes sense to reduce the contents of the

Universe to a scalar field and dust, where the dust mimics

dark matter and the scalar field is the “modified gravity/

dark energy degree of freedom”
5
. We now consider the

evolution and effect of a scalar field, the archetypal

relativistic source in modern cosmology. We will consider

models with more complicated matter-scalar field cou-

plings later on, but for the moment it is instructive to focus

on a simple example of a quintessence-like model where

matter and the scalar are minimally coupled to gravity

without any direct coupling to one another [3]. Typically a

scalar field φ obeys a relativistic Klein-Gordon equation

∇μ∇μϕ ¼ −
dV

dϕ

The scalar field can be divided into homogeneous and

inhomogeneous components φ ¼ ϕþ χ which satisfy

ϕ
::

þ 2Hϕ
:

þ a2V 0 ¼ 0; (2)

where V 0 ¼ dV=dϕ and

χ
:: þ 2Hχ

: þ k2χ þ a2V 00ðϕÞχ ¼ S; (3)

where S ¼ − 1
2
ϕ
:

h
:

in the synchronous gauge and S ¼
4ϕ

:

Φ
:

−2a2V 0Φ in conformal Newtonian gauge. The per-

turbed stress energy components for a scalar field are now

δT0
0 ¼ −a−2ϕ

:

χ
:
−V 0ðϕÞχ;

ikiδT0
i ¼ a−2ϕ

:

k2χ;

δTi
i ¼ a−2ϕ

:

χ
:
−V 0ðϕÞχ:

We can combine these equations to obtain a coupled set of

2nd order ordinary differential equations in Fourier space:

δ
::

þHδ
:

−
3

2
H2

Ωmδ − 2ϕ
:

χ
: þa2V 0χ ¼ 0;

χ
:: þ 2Hχ

: þ k2χ þ a2m2
ϕχ − ϕ

:

δ
:

¼ 0; (4)

where m2
ϕ ¼ d2V=dϕ2. In what follows, we will make

use of these equations in exploring the evolution of

cosmological perturbations in the linear regime and also

reencounter them in the context of fðRÞ.

III. THE QUASISTATIC APPROXIMATION AND

RELATIVISTIC SCALAR FIELDS

In this section we discuss a few aspects of cosmological

perturbation theory and how we can use it as a guide to

understanding N-body simulations of structure formation

and the quasistatic approximation. Let us first focus on

Eq. (1) and consider the case of a generic, perfect fluid with

equation of state w≡ P=ρ. The Poisson equation in Fourier
space is now

−k2Φ ¼ 4πGa2ρδgi; (5)

where we have defined the gauge-invariant density contrast

δgi ≡ δþ 3ð1þ wÞH
k2

θ:

This is an interesting expression for a number of reasons.

For a start, it differs from the nonrelativistic Newtonian

5
Note that in effect this means we will be considering

accelerating models that start in a matter-dominated regime
and transition into one dominated by the scalar. We do not
include the effect of radiation throughout this paper.
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equation although in the limit where H=k→ 0, namely on

subhorizon scales, they agree. Hence, in the Newtonian

gauge, one expects relativistic corrections once one looks at

sufficiently large scales. But more relevant is the fact that

δgi is a gauge-invariant quantity and the relativistic Newton-

Poisson equation we present above is gauge invariant. The

standard gauge-invariant Newtonian potentials map (by

construction) directly on the conformal Newtonian poten-

tials and, if accordingly we calculate δ and θ in any gauge,

we can combine them to find δgi.

It turns out that this form of relativistic Newton-Poisson

equation is at the heart of why N-body simulations can

accurately calculate the evolution of the Universe from

superhorizon down to subhorizon scales, even though

they, in principle, use the nonrelativistic Newton-Poisson

equation [44]. To understand why this is so, let us briefly

sketch the algorithm for a N-body code. The idea is that one

follows the motion of a set of N-particles (labelled by

a ¼ 1; � � �N) with positions x?a. These particles obey the

nonrelativistic geodesic equation

d2x?a

dτ2
þH

dx?a

dτ
¼ −∇Φðx?aÞ;

whileΦ is calculated (using a variety of integral techniques)

from the nonrelativistic equation:

−k2Φ ¼ 4πGa2ρδ: (6)

Given that, naïvely, δgi ≠ δ, one would expect that this

equation is not applicable on scales of order the horizon or

greater. Yet, it turns out that the δ as calculated in N-body

simulations is in the frame of freely falling observers and

hence in the synchronous gauge. If we now take the

evolution equation for θ in that gauge, we see that it is

solved by θ ∝ a−1. Any initial perturbation in θ set up at

early times will have completely died away and cannot be

sourced at the linear level. This means that, in the

synchronous gauge, δgi ¼ δ. Given that Φ maps directly

onto the gauge-invariant Newtonian potential, for a pres-

sureless fluid, Eq. (6) is therefore applicable on all scales.

There are two major caveats in our explanation of why

conventional N-body algorithms are applicable on cosmo-

logical scales (see also [45] for the importance of getting

the initial value constraint correct). For a start, we have

used linear theory while the whole point of N-body

simulations is to understand nonlinear gravitational

collapse; yet we are trying to understand gravitational

collapse on the scale of the horizon and there we expect the

evolution of gravitational collapse to be accurately

described in the linear regime. But more importantly, we

have focused on the case of pressureless matter which fairly

represents the dark matter that one is simulating. If the fluid

is not pressureless and nonrelativistic, this argument breaks

down. The evolution equations for δ and θ for a shear-free

perfect fluid in synchronous gauge are now (cf. [46])

δ
:

¼ −ð1þ wÞ
�

θ þ h
:

2

�

− 3Hðc2s − wÞδ;

θ
:

¼ −Hð1 − 3wÞθ þ c2s

1þ w
k2δ;

while in the conformal Newtonian gauge they are

δ
:

¼ −ð1þ wÞðθ − Φ
:

Þ − 3Hðc2s − wÞδ;

θ
:

¼ −Hð1 − 3wÞθ þ c2s

1þ w
k2δ;

where c2s is the sound speed of the fluid. Note that the k2

term will play an important role if csk=H ≥ 1. Furthermore

if w ≥ 1=3, θ will not decay, at least at the linear level, and

may play a significant role in δgi. Hence, the nonrelativistic

Newton-Poisson equations should not be applied on the

scale of the horizon or greater.

A notable example is that of the relativistic scalar field

introduced in the previous section. The relativistic Newton-

Poisson equation is now

−k2Φ ¼ 4πGa2ρδgi þ 4πG½φ: χ: þV 0χ þ 3Hφ
:
χ�; (7)

where the last term is the relativistic correction. In fact, we

can see from Eqs. (2),(3) and (7) that this system is

fundamentally relativistic (quintessence-like models have

cs ¼ 1). It seems, therefore that to accurately simulate a

universe with the usual cosmological fluids and a relativ-

istic scalar field it is necessary to evolve the full relativistic

set of equations. This means that for an N-body simulation,

not only is it necessary to solve the Newton-Poisson

equation and the nonrelativistic geodesic equation but also

the second order evolution equations for ϕ and χ. This is

especially true if one wants to follow the evolution of

modes that start off outside the cosmological horizon.

There is a growing interest in simulating N-body systems

in the presence of relativistic scalar fields and, as discussed

in the introduction, the strategy in the overwhelming

majority of cases has been to use the quasistatic approxi-

mation (henceforth QSA) when evolving perturbations,

where one assumes that
6

j∇2Xj ≫ H2jXj and jX
:

j ≤ HjXj; (8)

where e.g., X ¼ χ; χ
:
; h; η;… in synchronous gauge. This

approximation should be valid on sufficiently small (i.e.,

sub-horizon) scales: indeed, it is remarkably efficient for

evolving cosmological systems without actually having to

follow the detailed evolution of the scalar field. It is the

purpose of this paper to explore how accurate this approxi-

mation actually is for a range of models which include a

relativistic scalar field. Let us briefly summarise what

6
Our notation follows that of [47] here.
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exactly the QSA entails. In essence it contains two separate

assumptions as discussed e.g., in [35]:

(a) The relative suppression of time derivatives of

metric/field perturbations compared with their

spatial derivatives.

jX
:

j ≤ HjXj (9)

Here we will solely be concerned with testing the

validity of the quasistatic approximation as applied to

scalar field fluctuations, so X ¼ χ; χ
:
. In principle

scalar field (as well as matter and metric) perturba-

tions can follow an evolution with non-negligible

time-derivatives, e.g., by displaying highly oscilla-

tory behaviour. However, typically these are heavily

constrained. For example, in the case of fðRÞ gravity
↔ chameleon models it has been argued that the

relative suppression of such derivatives, effectively a

slow-roll condition for ϕ
:

, is required by solar system

constraints (in order to have a successful screening of

fifth forces) [21,38,48]. One should keep in mind,

however, that this is a model-dependent statement -

see e.g., [37] for a symmetron model with collapsing

domain walls; a feature absent if a ‘static’ simulation

is employed.

(b) A sub-horizon approximation k2 ≫ H2 or, when

written in the same formalism as above

j∇2Xj ≫ H2jXj; (10)

where as above we will be concerned with the case

when X ¼ χ; χ
:
. This assumption is typically required,

since ignoring time-derivatives amounts to neglecting

any slow-varying changes to χ as well, which is only

justified on sub-horizon scales, where χ has decayed

away sufficiently, so that its evolution is no longer

important.
7
Also note that, in ΛCDM-like models, the

evolution time scale for perturbations is set by the

Hubble rate and consequently assumption (b) there

entails (a).

Having characterised the quasistatic approximation and

how it is used in N-body simulations, we now proceed to

explore a few representative models. In doing so, we

identify the key qualitative features which make the

quasistatic approximation a useful and and accurate tool.

IV. FðRÞ GRAVITY

In this section and the next we will compare the exact

evolution of linearised perturbations in different types of

fðRÞ models with its quasistatic and hence approximate

counterpart. The aim is to assess in what regimes the

quasistatic approximation is a well-behaved approximation

and in particular whether its naive range of validity (good

on subhorizon scales, bad on superhorizon scales) can be

extended.

An fðRÞ theory can be defined in the Jordan frame via

the action

SJ ¼
1

2

Z

d4x
ffiffiffiffiffiffi

−g
p ½Rþ fðRÞ� þ

Z

d4x
ffiffiffiffiffiffi

−g
p

Lm½Φi; gμν�;

(11)

where we have chosen units such that 8πG ¼ 1, the

function fðRÞ is a general function of the Ricci scalar,

R, and Φi denotes all matter fields. Via a series of field

redefinitions and a conformal transformation [49–52] we

can turn the Jordan frame action into an equivalent Einstein

frame one

SE ¼ 1

2

Z

d4x
ffiffiffiffiffiffi

−~g
p

~R

þ
Z

d4x
ffiffiffiffiffiffi

−~g
p

�

−
1

2
~gμν ~∇μϕ

~∇νϕ − VðϕÞ
�

þ Smatter½Φi; e
−βϕ ~gμν�; (12)

where a tilde denotes Einstein frame quantities and we have

performed a conformal transformation

~gμν ¼ e2ωgμν; (13)

requiring

e−2ωð1þ fRÞ ¼ 1; (14)

ϕ≡
2ω

β
; (15)

where f ¼ fðRÞ and a subscript R denotes differentiation

w.r.t. R. For fðRÞ theories we have β ¼
ffiffiffiffiffiffiffiffi

2=3
p

. The fact

that we have this conformal transformation is the essential

ingredient behind the mapping between fðRÞ and chame-

leon-screened theories [21]- we will return to this point in

Sec. VI. Finally the potential VðϕÞ is determined entirely

by the original Jordan frame action and is given by

VðϕÞ ¼ 1

2

RfR − f

ð1þ fRÞ2
: (16)

At this point one may wonder whether any particular

fiducial form suggests itself for the potential. For an arbitrary

polynomial of positive powers of R in four dimensions of

the form
P

k
n¼1 anR

n, such a potential will asymptotically

approach an exponential potential as ϕ → ∞. This is the

fiducial potential chosen by [3,52] and will be the potential

we work with throughout most of this paper too. However,

7
The oscillatory features visible on (sub)horizon scales in the

contour plots 2 and 6 are a result of the intermediate phase where
χ is displaying an oscillatory decay, but is still relevant. As a
result these features vanish as xQS becomes large, i.e. as the field
χ decays away.
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one may wonder what the relevant potential looks like for

other motivated potentials of interest, e.g. the Hu and

Sawicki model [38], where we have

fðRÞ ¼ R −m2
c1ð R

m2Þn
1þ c2ð R

m2Þn
; (17)

where c1; c2; n are arbitrary constants. We will return to the

Hu and Sawicki model in the context of the chameleon

Sec. VI, where we will also find that an exponential potential

qualitatively is a good proxy for this model in several regions

of parameter space. But for the time being we will continue

to work in as much generality as possible without specifying

a concrete potential.

The evolution of the background in an fðRÞ model is

governed by [52]

~H
2 ¼ 1

3

�

ϕ
:
2

2
þ ~a2VðϕÞ þ ~a2 ~ρm

�

ϕ
::

þ 2 ~Hϕ
:

þ ~a2Vϕ ¼ 1

2
β ~a2 ~ρm

~ρm ≡
~ρ�0m
~a3

exp

�

−
βϕ

2

�

: (18)

In synchronous gauge the perturbation equations are

given by
8

~δ

::

þ ~H ~δ

:

−
3

2
~H
2 ~Ωm

�

~δ −
βχ

2

�

− 2ϕ
:

χ
: þ ~a2Vϕχ ¼ 0; (19)

χ
:: þ 2 ~H χ

: þk2χ þ ~a2V;ϕϕ χ − ϕ
:
~δ

:

−
3β

2
~H
2 ~Ωm

�

~δ −
1

2
βχ

�

¼ 0. (20)

In the quasistatic approximation, the second perturbation

equation can be used to solve for χ, so that we now

solve

~δ

::

þ ~H ~δ

:

−
3

2
~H
2 ~Ωm

�

~δ −
βχ

2

�

− 2ϕ
:

χ
: þ ~a2Vϕχ ¼ 0;

k2χ þ ~a2V;ϕϕ χ − ϕ
:
~δ

:

−
3β

2
~H
2 ~Ωm

�

~δ −
1

2
βχ

�

¼ 0. (21)

Application of the QSA eliminates χ
:
, χ
::
in Eq. (20), but not

χ
:
in Eq. (19), where there is no k2χ term relative to which χ

:

is suppressed. Note that, in the evolution equation for χ,

several terms survive the QSA. We have both a mass term

as well as extra contributions dependent on ϕ
:

and δ.

In assessing the accuracy of the QSA in fðRÞ models we

will find it useful to compare them with analogous

quintessence-like solutions, i.e. models with no nonmini-

mal coupling to matter as present in the case of fðRÞ. This
corresponds to setting β ¼ 0 in the action (12).

Consequently, the background evolution equations now are

~H
2 ¼ 1

3

�

ϕ
:
2

2
þ ~a2VðϕÞ þ ~a2 ~ρm

�

ϕ
::

þ 2 ~Hϕ
:

þ ~a2Vϕ ¼ 0

~ρm ≡
~ρ�0m
~a3

; (22)

whereas perturbations are governed by

~δ

::

þ ~H ~δ

:

−
3

2
~H
2 ~Ωm

~δ − 2ϕ
:

χ
: þ ~a2Vϕχ ¼ 0; (23)

χ
:: þ 2 ~H χ

: þk2χ þ ~a2V;ϕϕ χ − ϕ
:
~δ

:

¼ 0; (24)

and the quasistatic approximation reduces this to

~δ

::

þ ~H ~δ

:

−
3

2
~H
2 ~Ωm

~δ − 2ϕ
:

χ
: þ ~a2Vϕχ ¼ 0;

k2χ þ ~a2V;ϕϕ χ − ϕ
:
~δ

:

¼ 0. (25)

Note how, by taking the limit β → 0, Eqs. (23) and (24)

have exactly reproduced the evolution equations for the

simple quintessence-like model in Eq. (4).

V. THE FAST AND SLOW ROLL REGIME OF FðRÞ
It should already be obvious that there are some

fundamental differences at the perturbative level between

a quintessence-like model (henceforth Quint.) and an fðRÞ
model as described in the previous section. To understand

this difference, in particular in the context of the QSA,

consider the solutions to the quasistatic evolution equations:

χ
Quint
QSA ¼ ϕ

:

δ
:

k2 þ a2V ;ϕϕ

;

χ
fðRÞ
QSA ¼ ϕ

:

δ
:

þ 3
2
βH2

Ωmδ

k2 þ a2V ;ϕϕ þ 3
4
β2H2

Ωm

: (26)

Our primary interest is the evolution of δ and errors

introduced into this evolution by the QSA. These errors

come from the fact that, in the QSA, we simplify the χ

evolution equation and hence obtain an inaccurate solution

for χ (26)
9
. This propagates to the evolution equation for δ

via its direct dependence on χ as well as a dependence on χ
:

8
The careful reader will have observed that there are two sign

differences between Eq. (20) and the analogous equation pre-
sented in [52]—the version here corrects these typos.

9
This inaccuracy mainly appears on (super)horizon scales. On

subhorizon scales the QSA does well by design (at least for the
examples considered throughout this paper—for counterexam-
ples see [36,37]) and the corresponding χ solution is a faithful
one.
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via the ϕ
:

χ
:
term. How much of this error propagates

determines how well the QSA does. However, already at

this point it becomes clear that the slow- or fast-roll

properties of the background (the size of ϕ
:

) will be

important for error propagation in the QSA. It will prove

useful to consider two concrete fðRÞ examples. We

emphasize that we treat these examples as toy models in

order to understand both qualitatively and quantitatively

why and when the QSA does well—for the time being, we

will therefore not be concerned with tuning all of the model

parameters to match observational constraints, but focus on

generic features of such models. We will comment on the

observational viability of these toy models in Sec. VI. For

both example cases we will, as discussed in the previous

section and following [3,52], pick an exponential potential

of the form V ∼ expð−jλjϕÞ, choosing λ ¼ 1.5 so that we

obtain a nonscaling, accelerating background solution in

which the scalar field dominates at late times. The differ-

ence between the two cases will solely consist of the initial

conditions imposed on the scalar field, leading to different

background evolutions.

We will parametrize the onset of the QSA by two

variables. First, xQS ¼ kτQS, labeling the “time” when the

QSA is switched on. If xQS > 1 we are in the subhorizon

regime, whereas xQS<1 indicates the superhorizon regime

where we would naïvely expect the QSA to fail. Second, we

keep track of the value of Ωϕ at the corresponding time τQS.

We expect this to be relevant, because the less dominant

the scalar field is at a given matching time xQS, the better the
QSA ought to do. This is because inaccuracies in the

evolution of χ introduced by the QSA should be less

consequential for the evolution of δ in this case, since the

effect of the scalar field on universal evolution is smaller

when Ωϕ is small. Even though the QSA is only designed to

hold for subhorizon times xQS ≫ 1, it may therefore still be

possible that it faithfully reproduces the full evolution on

larger scales. In general, however, we expect the following

broad features: for large Ωϕ and small xQS we should

generate large errors, whereas for small Ωϕ and large xQS
the QSA should be an excellent approximation.

A few further remarks are in order before proceeding

with the QSA analysis for our fðRÞ scenarios. For the fðRÞ
case we can define the effective potential

Veff;ϕ ¼ V ;ϕ −
1

2
β ~ρm (27)

in terms of which we can also look at the effective equation

of state for the scalar degree of freedom

weff ¼
1=2ϕ

:
2
− Veff

1=2ϕ
:
2 þ Veff

: (28)

A slow-rolling model with ϕ2 ≪ Veff therefore automati-

cally means the scalar field mimics a ΛCDM evolution with

w ∼ −1 very well. Fast-rolling solutions will tend to take

the background away from ΛCDM-like behavior. We may

now recall that [36] found ΛCDM-like background behav-

ior to coincide with good quasistatic behavior in fðRÞ
models on subhorizon scales. We are now in a position to

better understand and quantify why this is the case and also

to understand how/whether this statement can be extended

to superhorizon scales at all.

The coefficients of χ and χ
:
in Eq. (21), that determine

how much of the QSA error is propagated to the δ equation,

respectively, are

Cχ ¼
3β

4
~H
2 ~Ωm þ ~a2V ;ϕ; (29)

Cχ
: ¼ −2ϕ

:

: (30)

The second coefficient is clearly suppressed in the ΛCDM-

like slow-roll case when ϕ
:

≪ 1. The first coefficient can be

reexpressed as

Cχ ¼
3β

4
~H
2 ~Ωm þ ~a2V ;ϕ ¼ β

4
~a2 ~ρm þ ~a2V ;ϕ: (31)

It is less obvious how this coefficient will be related to

fast- and slow-roll behavior, so we will investigate this in

more detail below.

Above we have already specified that we will use a

fiducial potential V ∼ expð−jλjϕÞ as studied by [3,52].

From our expression for the effective potential Eq. (27) we

can see that this always has a negative gradient and

consequently is a runaway effective potential without a

minimum. In the next section we will discuss what happens

when the effective potential displays a minimum (the

chameleon case). But for now it suffices to notice that

with a choice of potential V ∼ exp ð−jλjϕÞ, both V and the

β-dependent contribution to the effective potential display

runaway behavior in the same direction

Veff;ϕ ¼ −jλjV −
β

2
~ρm: (32)

As a direct consequence the fðRÞðβ ¼
ffiffiffiffiffiffiffiffi

2=3
p

Þ case will

have a steeper potential than the corresponding (β ¼ 0)

quintessence model. This makes slow-roll solutions harder

to come by in this particular fðRÞ model.

A. A. Fast roll

First we consider an evolution where ϕ
:

swiftly becomes

nonnegligible, i.e. the field is rolling quickly
10
.

10
The initial conditions chosen are: ϕi ¼ 5, ϕi ¼ 0, ai ¼ 1,

λ ¼ 1.5, τi ¼ 10−3 and ~ρ�0m ≃ 10 for fðRÞ while ρi ¼ ~ρ�0m e−β=2χi

for Quint., so that Ωϕ;i is identical for the fðRÞ and quintessence
models. The initial conditions result in a very small (∼10−4)
initial Ωϕ.
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The evolution of Ωϕ is shown in the left graph of Fig. 1.

We compare it to a corresponding non-scaling (Quint)

quintessence model (i.e., same potential with β ¼ 0), where

the initial condition ϕi has been chosen so thatΩϕðτinitialÞ is
identical for both cases. The QSA contour plot for this case

is shown in the left graph of Fig. 2. We plot the relative

error δQS=δfull − 1 to show how well the QSA does in

comparison with the full linearized solution. We cut off the

evolution and evaluate errors when Ωϕ ¼ 0.7, i.e. our

model resembles the state of the Universe today
11
. As

explained above we plot the final relative error in the

parameter space specified by xQS ¼ kτQS, the “time” when

the QSA was switched on, and the value of Ωϕ at τQS.

A notable feature of Fig. 2 is that the error eventually

decreases for large values ofΩϕ. Note that this is an artefact

of cutting off the evolution of the error as soon as an

Ωϕ; final ¼ 0.7 is reached. Consequently, if the quasistatic

approximation is only switched on at a time when, say,

Ωϕ ¼ 0.5, then even though the QSAwill get the evolution

of δ very wrong for superhorizon scales, there is just not

very much time left until Ωϕ; final ¼ 0.7 is reached, so there

is very little time for the error to grow. If a different cutoff at

an asymptotic value of Ωϕ; final → 1 was chosen, and we

proceeded to make the analogous contour plot, the error

would no longer eventually decreases for large values of

Ωϕ. Also note that, since Ωϕ is still evolving significantly

towards its asymptoteΩϕ → 1when the snapshot that leads

to Fig. 2 is taken (i.e. when Ωϕ ¼ 0.7), this means the error

can also still be evolving. This is demonstrated by compar-

ing Figs. 1, 3 and 4. The overall error levels plotted in Fig. 2

can therefore continue to grow if a larger Ωϕ; final is chosen.

The behavior of the quasistatic approximation for the

fast-roll case matches our naïve hypothesis. On subhorizon

scales it performs well irrespective of the initial conditions

or the model considered, whereas on superhorizon scales

the fðRÞ model does significantly worse than its Quint.

counterpart. To see why, we recall that errors in the QSA for

δ stem from propagating an incorrect solution for χ. So we

need to investigate how this error propagates to the

evolution equation for δ—in other words, check the

coefficients of both χ as well as χ
:
in the δ evolution

equation. These are purely background quantities. They are

shown in the two left graphs of Fig. 3 and one can

immediately read off the reason why the Quint. model

performs significantly better in the QSA than the corre-

sponding fðRÞ setup. We can see that the dependence on

both χ and χ
:
is highly suppressed at early times (i.e. when

relevant modes can still be on superhorizon scales) in the

Quint. model, explaining why the error in those quantities

does not propagate very much at all to the evolution of δ on

those scales. The coefficients plotted in the left graphs of

Fig. 3 only become relevant for Quint. at late times, when

modes of interest are on subhorizon scales and where the

associated χ is very well described by its QSA solution.

Note that Ωϕ also starts evolving later in the Quint. case

(as shown in the left graph of Fig. 1), since ϕ
:

≪ 1 for

longer here.

For the fðRÞ case, on the other hand, we can discern two
effects. First, the new β-dependent terms in the evolution

equations result in a significant χ-dependence at early

times, when ρm is still relevant. Second, ϕ
:

(the coefficient

of χ
:
) now also evolves at early times, creating yet another

source for the propagation of errors in χ on superhorizon

scales for modes of interest.

The left-hand graphs in Fig. 4 finally confirm the

intuition gained from the previous plots in this section.

Here we zoom in on a particular case, setting k ¼ 1,

xQS ¼ 0.5. This corresponds to a single pixel in the left

graph in Fig. 2, namely the pixel at xQS ¼ 0.5 and

ΩϕðτQSÞ ∼ 0.016 at the very bottom of the graph: i.e. this

0.1 10 1000

0.001

0.005

0.010

0.050

0.100

0.500

1.000

_ for f R and Quint.

f R

Quint

0.1 10 1000

1.00

0.50

0.30

0.70

_ for f R and Quint.

f R

Quint

FIG. 1 (color online). The two different background evolutions in terms of Ωϕ considered in this section. Left: Fast-roll fðRÞ and
corresponding Quint. evolutions starting with an initial Ωϕ;i ∼ 10−4 that quickly starts evolving in the fðRÞ case. Right: Slow-roll fðRÞ
and corresponding Quint. evolutions starting with an initial Ωϕ;i ∼ 0.21 that initially stays frozen in and only later starts evolving.

fðRÞ and Quint. evolutions are nearly indistinguishable in this case. Note that the vertical dashed lines indicate when Ωϕ ¼ 0.7 in the

fðRÞ model considered and that the y-axis has a different range in the two plots.

11
In an explicit N-body context one may want to refine this to

only extend to the time where a given scale of interest starts to
display nonlinear behavior.
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is a point for which the QSA does fairly well. We find that

the relative error for the fast-rolling fðRÞ setup here is

approximately an order of magnitude larger than that for the

corresponding Quint. model. Finally it may be worth

stressing that, while in the fast-roll case the QSA performs

badly on scales close to or above the horizon scale, it still

performs well on subhorizon scales as witnessed by Fig. 2,

despite having a background evolution that does not closely

resemble ΛCDM (cf. Fig. 1).

B. B. Slow roll

Let us now consider a setup with a long initial slow-

rolling phase for ϕ, i.e. ϕ
:

≪ 1
12
. The evolution ofΩϕ in this

case is shown in the right graph of Fig. 1 and we can

immediately spot that the Quint. and fðRÞ cases behave

almost identically. The QSA contour plot for this case is

shown in the right graph of Fig. 2 and indeed the plot

mostly agrees with the corresponding (large Ωϕ) section of

the fast-roll contour plot. However, there is a crucial

difference: In the contour plot we show the performance

of modes where the QSA is switched on at rescaled time

xQS and the background quantityΩϕ is at a given value. But

from Fig. 1 we know that, due to the initial slow-rolling

phase, many modes cross the horizon when Ωϕ is still near

its initial value. What at first sight might appear to be a

numerical artefact in the right graph of Fig. 2—the fact that

there is a very thin strip directly on top of the x-axis

(corresponding to the lowest and initial value of Ωϕ which

happens to be ∼0.21 here and which, during the initial

phase of the evolution, remains frozen-in as shown in

Fig. 1) and that the QSA does in fact do very well even for

modes crossing the horizon during this initial phase—is a

direct consequence of the slow-rolling behavior of the

solution.

This may appear counterintuitive, since a largeΩϕ means

the scalar field is relevant to the cosmic evolution and

should hence affect δ. By introducing errors into the

evolution of χ via the QSA, these should then map onto

significant errors for δ. However, we have already seen

above that it is in fact other background properties—such

as the slow- or fast-rolling nature of ϕ
:

—that control how

much the QSA errors in χ are propagated to the evolution

of δ. To make this clear let us once again zoom in

on a particular case, setting k ¼ 1 and xQS ¼ 0.1.

FIG. 2 (color online). Here we show the relative error δQS=δfull − 1 resulting from the QSA in fðRÞ for an accelerating, nonscaling

regime (λ ¼ 1.5 for this plot). The x-axis denotes the value of xQS ¼ kτQS, where τQS is the time when the quasistatic approximation is

switched on. The y-axis denotes the value of ΩϕðτQSÞ. The evolution is stopped and errors are computed once we reach ΩϕðfinalÞ ¼ 0.7.

Note that the maximum value of the relative error increases with ΩϕðfinalÞ, i.e. had we chosen ΩϕðfinalÞ > 0.7 the errors shown would

increase. Contours denote 5%, 10% and 50% errors from right to left and the black region corresponds to> 100% error. Left: A fast-roll

fðRÞ scenario, where the initial value of Ωϕ is small and the field quickly starts evolving. Right: A slow-roll fðRÞ setup with a large

initial Ωϕ, where the field remains frozen-in (“slow-rolling”) for a significant amount of time, cf. Fig. 1. The oscillatory features mildly

visible on (sub)horizon scales are a consequence of the oscillating behavior of χ on those scales, cf. Fig. 4.

12
The initial conditions chosen this time are: ϕi ¼ 5, ϕ

:

i ¼ 0,
ai ¼ 1, λ ¼ 1.5, τi ¼ 10−3 and ~ρ�0m ≃ 0.016 for fðRÞ while ρi ¼
~ρ�0m e−β=2χi for Quint., so that Ωϕ;i is identical for the fðRÞ and
Quint. models. These initial conditions enforce a relatively large
(∼0.2) initialΩφ which remains frozen in for a significant amount
of time. For contour plots 2 we again evolve forwards until
Ωϕ ¼ 0.7.
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This corresponds to a single pixel in the right graph in

Fig. 2, this time the pixel at xQS ¼ 0.1 andΩϕ ¼ 0.21 in the

thin bright (i.e. low error) strip directly at the bottom of

the graph; a point for which the QSA does very well as

depicted in Fig. 4.

As before, we now need to check whether the error

introduced into χ is enhanced or suppressed by the back-

ground coefficients in the δ evolution equation. These are

shown in the right-hand graphs in Fig. 3. Comparing with

the corresponding Quint. graphs we see that the back-

ground behavior enforces small coefficients Cχ and Cχ
: ,

suppressing the dependence on χ of the evolution equation

for δ at early times both for the fðRÞ and Quint. cases this

time. For the modes of interest (subhorizon today) the

relevant coefficients only become large after horizon cross-

ing when the exact and QSA solutions for χ match very

well. This is a consequence of the initial slow-rolling phase.

The conclusion one draws here is that, once the evolution

equations for the perturbations are known, we can under-

stand how well the QSA performs on superhorizon scales in

terms of background quantities. In the particular case

considered here, even though we started with a large Ωϕ,

this remained frozen in initially so that ϕ
:

remained small and

the dependence on χ is also suppressed. The right-hand

graphs in Fig. 4 summarize these results, showing that the

relative errors for both the fðRÞ and Quint. setups considered
in this section are very small (on the sub 0.1% level).

The key result of this section is that the impact of the QSA

can depend crucially on how the evolution equation for the

scalar field couples back into that of the density perturbation.

Small errors in the QSA for χ can be greatly amplified if the

background scalar field evolves substantially. Small values

of Ωϕ (indicating that the field ϕ only negligibly contributes

to the energy density of the Universe at the relevant time)

may not be enough to prevent the propagation of large errors.

In some sense, this is not surprising—it is the nonstatic

nature of the background which is pushing the QSA outside

its range of validity. And, if the QSA is to be applied in any

specific fðRÞ theory, it is clearly essential to check whether

the evolution of the scalar field is such that the approxima-

tion is good enough.

VI. THE CHAMELEON MECHANISM IN FðRÞ
It is well known [21,53] that a subset of fðRÞ models

give rise to the so-called chameleon effect, where the

nonminimal coupling to matter in the Einstein frame results

in an effective potential for ϕ with a minimum, and
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FIG. 3 (color online). Plots showing the evolution of the coefficients of χ [Eq. (29)] and χ
:
[Eq. (30)] for fðRÞ and Quint. in the QSA

evolution equations as discussed in Sec. IV. Fast-roll cases are shown on the left, slow-roll on the right. Note that in the fast-roll case both

coefficients are very small at early times when modes of interest are on (super)horizon scales for Quint., while this is not the case for

fðRÞ. In the slow-roll case coefficients are small for both fðRÞ and Quint. leading to a suppression of the QSA error propagation. Once

again the vertical dashed lines indicate when Ωϕ ¼ 0.7 in the fðRÞ models considered and hence the point at which errors are evaluated

in the contour graphs 2.
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consequently an effective mass. In chameleon models this

is used to screen away any fifth force from φ in dense

regions, allowing them to evade tight fifth force constraints

on solar system scales [21]. Such a screening mechanism is

therefore an essential ingredient to construct an observa-

tionally viable fðRÞ model. Screening is an intrinsically

nonlinear effect and our linearized analysis is consequently

not sensitive to it by default. However, the analysis is

sensitive to the form of the potential via the associated mass

term
13
, so it is worth considering how this impacts our

analysis and whether there are any interesting conse-

quences for the QSA.

The fðRÞ model considered in the previous section does

not display chameleonic behavior. This is straightforward

to understand from the background evolution equation.

Recall this is

ϕ
::

þ 2 ~Hϕ
:

þ ~a2Vϕ ¼ 1

2
β ~a2 ~ρm (33)

for the background scalarφ. Nowwe canwrite this in terms of

an effective potential for φ (absorbing the factor ~a2 this time)

Veff;ϕ ¼ ~a2Vϕ −
1

2
β ~a2 ~ρm: (34)

However, for the runaway potentialV ∼ e−jλjϕ both contribu-
tions to Veff;φ are negative, so no minimum exists. Yet, for a

chameleonlike model, we require that Veff has a minimum.

Under what conditions does the fðRÞ potential fulfill the
requirements for chameleon behavior? Adapting the results

of [53] to the conventions used throughout this paper, we

find that the relevant conditions are
14
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FIG. 4. Plots showing the relative error in δ (i.e. δQS=δful1 − 1) again for fðRÞ (top) and for Quint. (bottom). The fast-rolling case is

shown on the left, while the slow-roll case is shown on the right. Note that we have chosen units such that k ¼ 1 here, so that τ ¼ 1

corresponds to horizon crossing and these plots essentially correspond to zooming in on a particular pixel in Fig. 2: xQS ¼ 0.5 and

ΩϕðτQSÞ ∼ 0.016 for the fast-roll case and xQS ¼ 0.1 andΩϕðτQSÞ ∼ 0.21 for the slow-roll case. The oscillatory features clearly visible in

the slow-roll case are a direct consequence of χ displaying decaying oscillatory behavior on subhorizon scales, which are not present in

the quasistatic solutions.

13
After all, the background field evolution and especially φ

:
are

highly sensitive to the form of the potential.

14
This may come as a surprise, given the result of [53] who

quote the condition: Vϕ<0Vϕϕ > 0Vϕϕϕ<0 as required for fðRÞ
models with chameleon screening. This difference is due to two
differing conventions used in the literature when mapping a given
fðRÞ model into its scalar-tensor form. We discuss these con-
ventions in the Appendix and describe the field redefinition that
maps between them. Also note that we need Vφ > 0, since for a
minimum we require Veff;ϕ ¼ 0, but the contribution from the
nonminimal coupling to matter to Veff;ϕ is negative.
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Vϕ > 0 Vϕϕ > 0 Vϕϕϕ > 0. (35)

We can check that this is indeed the case. First, consider a

new fiducial chameleon potential V ¼ expðjλjϕÞ trivially

satisfying the chameleon conditions above. From Eq. (33)

this can clearly generate an extremum for the effective

potential now. The derivatives of the potential in our

convention are now given by

V ¼ RfR − f

2ðfR þ 1Þ2 ; (36)

Vϕ ¼ β
Rþ 2f − RfR

2ð1þ fRÞ2
; (37)

Vϕϕ ¼ β2

2

�

1

fRR
þ RðfR − 3Þ − 4f

ð1þ fRÞ2
�

; (38)

Vϕϕϕ ¼ −β3
fRRRðfR þ 1Þ3 þ 3ðfR þ 1Þ2f2RR

2ð1þ fRÞ2f3RR

− β3
RðfR − 7Þ − 8f

2ð1þ fRÞ2
: (39)

In order for the effective potential Veff to have a minimum

in the Jordan frame, the condition

Rþ 2f − RfR > 0 (40)

needs to be satisfied [38,52]. Comparing with our expres-

sion for the derivatives of the potential, this shows that

Vφ > 0 as expected. As a further check we can cross check

against a model that is known to have consistent chameleon

screening, the Hu and Sawicki model [38]. Fig. 7 demon-

strates that regions of parameter space satisfy the necessary

constraints for different choices of parameters in this

model. As a corollary we see that the fiducial exponential

potential we have chosen here qualitatively is a good proxy

for Hu and Sawicki potentials in regions of parameter space

that display chameleon screening.

Equipped with the above insights about the nature of

the potential, we choose a fiducial chameleon potential

V ¼ ejλjϕ. The evolution equations for the background,

perturbations and perturbations in the QSA laid out in the

previous section are still valid. We now contrast two cases. In

the first case, we initially place the field at the minimum (this

is case 1 shown in the left graph of Fig. 5); in this situation

we expect the QSA to do very well and indeed it does as

shown in the left graph of Fig. 6. This is because, as we saw

in the previous section, errors generated by the QSA are

propagated via their dependence on φ
:
andH2

Ωm. If the field

is slow-rolling any dependence on χ is highly suppressed;

indeed, starting at the minimum should keep φ frozen at the

minimum. Having said that, since the effective potential will

evolve due to the redshifting of matter density, the field will

in fact slowly roll tracking the effective minimum, so a small

error should still remain. This effect is shown in the right

graph in Fig. 5, while the middle graph in the same figure

shows the corresponding situation in the Quint. setup which

lacks any contribution to the effective potential that depends

on the cosmological matter density (again we match initial

conditions so that the Quint. and chameleon cases start off

with the same Ωφ as discussed in the previous section).

The initial condition for starting out at the minimum of

the potential is

Veff;ϕ ¼
ffiffiffiffiffiffiffiffi

1=6
p

~ρm − λV0e
λϕ ¼ 0. (41)

Denoting the initial value of the scalar field by φi, in terms

of an initial condition for the matter energy density ~ρm this

means we require

~ρm; initial ¼
ffiffiffi

6
p

λeλϕi : (42)

FIG. 5 (color online). Here we show the effective chameleon potential and its evolution. Labels 1 and 2 denote the two initial

conditions case 1 and case 2 for the field φ considered in the main text (these correspond to slow- and fast-rolling background evolutions

in the chameleon case). Left: The effective chameleon potential Veff showing the contributions from the original potential VðφÞ (dashed)
and from the nonminimal coupling to matter (dotted). Center: The corresponding quintessence potential, which only possesses the

contribution from VðφÞ (dashed) since matter is coupled minimally to gravity. Note that initial condition 2 no longer gives rise to a fast-

rolling solution here. Right: Plot showing how the initial minimum of the effective chameleon potential (labeled by 1) changes due to the

redshifting of the matter-dependent contribution (dotted), resulting in a new minimum 10.
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This means that the initial energy density Ωφ, which we

may write as

Ωϕ ¼ 1

1þ ρm
ρϕ

; (43)

is fixed once we require the field to start at its minimum and

specify λ.

To understand this better let us once again effectively

zoom in on a single pixel in the contour plot, setting k¼ 100,

xQS ¼ 0.1 and ΩφðτQSÞ ∼ 0.22. Also setting λ ¼ 1.5 as for

the contour plots we obtain the evolution shown in Fig. 8.
15

One sees that the background field φ is indeed very slowly

rolling.We compare this with a quintessence-likemodel that

FIG. 6 (color online). Contour plots plotting the relative error δQS=δfull − 1 showing how well the chameleon does in the QSA for the

fast-roll initial condition (case 2) away from the minimum on the left and the slow-roll initial condition (case 1) at the minimum of the

effective potential on the right (cf. Fig. 5). Note how the slow-rolling nature of the field enforced by case 1 results in a much improved

performance of the QSA. Axes are labeled and chosen as in Fig. 2 and error contours are 5%, 10%, 50%, 80%, 100% and 1%, 2%, 3%,

5% from right to left in the fast- and slow-roll cases, respectively. The oscillatory features that are visible on (sub)horizon scales are a

consequence of the oscillating behavior of χ on those scales, cf. Fig. 4.
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V
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FIG. 7 (color online). The Hu and Sawicki potential [Eq. (17)] for m ¼ c1 ¼ c2 ¼ 1. Left: We plot fðRÞ − R vs. R, showing how this

model interpolates between different fðRÞ for large and small curvatures. Right: The resulting VðφÞ. Note how the potential for n ¼ 1

satisfies Vϕ, Vϕϕ, Vϕϕϕ > 0 for all R (and hence always acts as a chameleon), whereas n ¼ 4 only satisfies this for large φ ∼ 0.8 (which

corresponds to large curvature R here), so chameleonlike behavior is restricted to the high curvature regime in the second case.

15
Again we emphasize that the parameters (λ, φi, etc.) chosen

for our examples are intended to give rise to toy models providing
an understanding of the QSA. An in-detail comparison with
observational constraints on the parameter space of such models
is beyond the scope of this paper.
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starts out with the same Ωφ. The reason the nonchameleon

quintessence-like model also does relatively well, is that the

minimum of the effective potential lies in

a region where the curvature of the original φ potential is

very small (cf. the middle graph in Fig. 5). Hence the field is

slow-rolling in the quintessence case too, only doing mildly

worse in the long run than the chameleonic fðRÞ setup.
In the second case we start away from the minimum.

This is labeled as case 2 for both the fðRÞ/chameleon and

quintessence cases in Fig. 5. The QSA error introduced

now is shown in the left graph in Fig. 6 and we see that the

QSA does significantly worse than in the first case, where

the field started at the minimum of the effective potential.

Zooming in on a pixel with k ¼ 100, xQS ¼ 0.1 and

ΩφðτQSÞ ∼ 0.0014, we obtain the evolution shown in

Fig. 9. As expected the quintessence-like model is hardly

affected by the change from case 1 to case 2. In fact it does

slightly better than before since we have effectively moved
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FIG. 8 (color online). The slow-rolling chameleon (case 1): Initial conditions place the field at the minimum in the effective potential

Veff , resulting in a slow-rolling field and small QSA errors. The quintessence-like case also performs well due to the very flat VðφÞ. The
dashed horizontal line denotes the time when Ωφ ¼ 0.7 and the relative error is evaluated in our contour plots. Top row: We show the

evolution ofΩφ for a chameleon fðRÞ and Quint. model starting with identicalΩφ on the left. Note these evolutions are almost identical.

On the right we show the evolution of δQS=δfull − 1 in units where k ¼ 100 and choosing xQS ¼ 0.1 and ΩφðτQSÞ ∼ 0.22 (cf. Fig. 6.

Horizon crossing therefore takes place at τ ¼ 0.01. Middle row: The evolution of δ in the fðRÞ chameleon case on the left and the Quint.

case on the right, showing full and quasistatic solutions, which agree very well in the slow-roll case shown here. Bottom row: Evolution

of coefficients for χ
:
(left) and χ (right) in (21)—note that chameleon fðRÞ and Quint solution closely follow each other here in

comparison to the analogous plots in Fig. 9 (up to ∼50% vs. > 1000% difference).
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into the flat, tail end of the original potential for φ.

However, the ρm-dependent term in the effective potential

for the chameleon case means the field there is rolling down

a very steep slope and hence the QSA error is strongly

propagated to the δ evolution equation, resulting in a very

bad fit for the QSA (Fig. 6).

While the two cases considered above are extremely

useful in understanding what controls the accuracy of

0.01000.00500.0020 0.00300.0015 0.0070
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FIG. 9 (color online). The fast-rolling chameleon case (case 2): Initial conditions place the field away from the minimum in the fðRÞ
model, resulting in a fast-rolling field and large QSA errors, markedly different from case 1 shown in Fig. 8. The corresponding

quintessence-like performance is hardly changed in comparison with case 1 as expected. The dashed horizontal line denotes the time

when Ωφ ¼ 0.7 and the relative error is evaluated in our contour plots. Top row: We show the evolution ofΩφ for a chameleon fðRÞ and
Quint. model starting with identicalΩφ on the left. Note these evolutions are visibly different now. On the right we show the evolution of

δQS=δfull − 1 in units where k ¼ 100 and choosing xQS ¼ 0.1 andΩφðτQSÞ ∼ 0.0014 (cf. Fig. 6. Horizon crossing therefore takes place at

τ ¼ 0.01. Middle row: The evolution of δ in the fðRÞ chameleon case on the left and the Quint. case on the right, showing full and

quasistatic solutions—the QSA fails rather catastrophically in the fðRÞ chameleon here, while the Quint. QSA solution faithfully tracks

the full solution. Again this is in stark contrast to the slow-roll case considered before and is a result of fact that in the fast-roll case there

is no suppression of the propagation of large quasistatic errors for χ to the evolution of ~delta on superhorizon scales. Bottom row:

Evolution of coefficients for χ
:
(left) and χ (right) in (21)—note that chameleon fðRÞ and Quint. solution are very different now, with the

fðRÞ chameleon displaying much larger coefficients. This explains why the QSA error in evaluating χ is much more strongly propagated

into the evolution equation for δ, resulting in the bad QSA fit shown in the middle row. Contrast this with the case shown in

Fig. 8.
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theQSA and in particular in stressing the importance of the

fast/slow-rolling nature of the background, at this point it is

important that an initial condition very close to or identical

to case 1 is the observationally motivated case. First note

that Big Bang Nucleosynthesis (BBN) constraints require

the field to have settled into its minimum by the time BBN

starts [54]. Cosmic Microwave Background (CMB) con-

straintscanalsobeusedtoplaceboundson thevariationofφ

since recombination, giving [55]

�

�

�

�

exp

�

βΔϕ

MPl

�

− 1

�

�

�

�

<0.05: (44)

This ensures that viable chameleon models do well in the

QSA in the linearized regime, since as we have seen, the

approximationworks well if we start close to theminimum

of the effective potential (which results in a maximally

slow-rolling evolution). This serves as somewhat of an a

posteriori justification for the use of the QSA in chameleon

models—and we should stress: even on superhorizon

scales. Note that this is directly related to the shape of

the chameleon potential. Since the field is slow-rolling

alongwith the effectiveminimum, QSA errors are strongly

suppressed. Of course the effective minimum also gener-

ates an effective screening mass for φ. Nevertheless we

should keep in mind that, while the screening properties of

chameleon theories are intrinsically nonlinear effects, the

fact that the QSA does well here solely relies on the

slow-rolling nature of the background. One should

therefore not convolute explanations for the efficiency of

screening and the accuracy of the QSA in this case.

VII. DISCUSSION

What have we learned from our analysis of the QSA in

linearized fðRÞ, chameleon and, en passant, in quintessence

models?Thekeyinsightof thispaper is that theperformanceof

theperturbativeQSAonagivenscale inallof thesemodelscan

beunderstoodin termsofbackgroundvariables.Thisallowsus

to straightforwardly quantify howwell a given model does in

theQSA and to assesswhether this approximation can also be

used in super-horizon regimes. In particular the slow- or fast-

rolling nature of the background field plays a crucial role in

propagating potential quasistatic errors into structure forma-

tion, i.e. ~δ. Slow-rolling solutions lead to quasistatic solutions

which perform well even outside their naïve regimes of

validity, i.e. also on superhorizon scales.

Slow-rolling solutions also correspond to ΛCDM-like

background evolutions, which [36] found to be linked to

good quasistatic evolution on subhorizon scales. Phrasing

this in terms of slow- and fast-rolling solutions and

investigating the evolution equations (19),(20), and (21)

has allowed us to gain a semianalytical understanding of

why this is the case. We have extended the argument to

(super)horizon scales, where slow-rolling solutions are still

accurate within ∼5% for the chameleon case considered in

Sec. VI. We have also found that on subhorizon scales the

QSA performs well as expected, with<1% level errors in ~δ.

This can even be the case when the field is fast-rolling and

the background evolution is consequently distinct from

ΛCDM, as the fast-roll examples in Secs. IVand VI show
16
.

Note that we expect the exact error levels to be sensitive to

the precise nature of the potential, so it will be an

interesting task for the future to combine the findings of

this paper with an exhaustive survey of observationally

viable chameleon and fðRÞ models.

Viable fðRÞ and chameleon models satisfy two con-

ditions. First, they come equipped with a screening

mechanism that avoids clashes with tight fifth force

constraints. This screening mechanism relies on an effec-

tive potential with a minimum. Second, BBN and CMB

constraints require the field to be very close to this

minimum by the time of BBN/recombination and to have

the field subsequently slow-rolling together with the

evolving minimum (we recall that the minimum evolves

due to the redshifting matter density). Here we have shown

that the resulting slow-roll condition on the evolution of the

background field is precisely what is required for the QSA

to perform well even on (super)horizon scales. It therefore

appears that the QSA is well suited to analyze structure

formation in such modified gravity models for a range of

scales—an encouraging conclusion indeed. This is in

agreement with (and an extension of) the conclusions of

[36,39], who discuss sub- and near-horizon scales, and the

analysis presented here sheds some light on why the QSA

performs so well in these cases.

However, note that a question of precision remains. QSA

errors introduced into the evolution of δ can still reach ∼5%

on superhorizon scales, even in the best cases considered in

this paper, so that the use of the QSA limits the maximal

precision that can be reached in any such analysis of

structure formation. Such an error is still too large if one

targets 1% accuracy for the power spectrum of δ in future

experiments.
17

If higher accuracies are desired a more

accurate prescription than one employing the QSA will

likely be necessary. Also adding a short fast-rolling phase

before BBN or maximizing the distance the field could

have traveled in accordance with constraints would prob-

ably worsen the obtained accuracy. This is of crucial

importance in the context of N-body simulations, in

16
Note that we do not expect this to remain true in general, for

example in cases where there are still rapid oscillations of scalar
field perturbations deep into the subhorizon regime. An explicit
example is provided by the R0.63 case discussed in [36], where the
QSA fails on subhorizon scales too. We thank Antonio Maroto
for pointing this out to us.

17
Also note that intrinsic N-body simulation systematics, e.g.

due to the discretization of evolution equations, will introduce
further errors. It will be an interesting task for the future to
establish precisely at what level these errors contribute. We thank
Baojiu Li for raising this point.
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particular when the QSA is used to set up initial conditions

in the linear regime on (super) horizon scales, which is

precisely the regime we have probed here.

Much remains to be done. Probing Vainshtein screening

in the same quantitative fashion and exploring whether

there are viable dark energy models that are not well

described by the QSA (along the lines of [35,37]) are tasks

left for future work. For Vainshtein-screened models it

could be very interesting to extend the work of [30–33],

exploring the accuracy of the QSA for such models. The

fact that the background evolution can be very distinct from

ΛCDM in such models might suggest that the QSA will

generically perform rather poorly on superhorizon scales

there. However, a detailed analysis may uncover interesting

exceptions. Finally the analysis in this paper has focused on

the linear regime relevant to the way initial conditions are

set up in N-body simulations and to (super)horizon scales.

An explicit and detailed fully nonlinear analysis of the QSA

on subhorizon scales should also result in a better under-

standing of the applicability of the approximation.
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APPENDIX: COMPARING CONVENTIONS

FOR FðRÞ
Let us briefly review the mapping between fðRÞ theories

and chameleons, pointing out some important subtleties

between different, typically-used conventions. In order to

do so we establish a dictionary between the convention

(largely) used in the literature for structure formation in

fðRÞ models (e.g. [38,52]) and that used in chameleon

phenomenology and screening effects (e.g. [39]). The

former convention we label I and the latter II: this paper

uses convention I. In order to avoid confusion when

comparing with other literature, we here explicitly spell

out these conventions and the mapping between them.

Convention I: As we saw at the start of this section, the

fðRÞ action can be written (in the Jordan frame) as

SJ ¼
1

2

Z

d4x
ffiffiffiffiffiffi

−g
p ½Rþ fðRÞ� þ

Z

d4x
ffiffiffiffiffiffi

−g
p

Lm½Φi; gμν�;

(A1)

which is then mapped into the equivalent Einstein frame

scalar-tensor theory

SE ¼ 1

2

Z

d4x
ffiffiffiffiffiffi

−~g
p

~R

þ
Z

d4x
ffiffiffiffiffiffi

−~g
p

�

−
1

2
~gμν ~∇μϕ

~∇νϕ − VðϕÞ
�

þ Smatte1½Φi; e
−βϕ ~gμν� (A2)

where we have employed a conformal transformation

~gμν ¼ eβϕgμν; (A3)

and defined the field φ via

1þ fR ¼ e2ϕβ: (A4)

β in this convention is
ffiffiffiffiffiffiffiffi

2=3
p

. The potential VðφÞ is

determined by

VðϕÞ ¼ 1

2

RfR − f

ð1þ fRÞ2
: (A5)

Convention II: The action we start with now is

SJ ¼
1

2

Z

d4x
ffiffiffiffiffiffi

−g
p ½fðRÞ� þ

Z

d4x
ffiffiffiffiffiffi

−g
p

Lm½Φi; gμν�;

(A6)

i.e. fðRÞðIIÞ ¼ Rþ fðRÞðIÞ where the Roman index denotes

the convention. The metric ~gμν and the field φ are now

defined via

f
ðIIÞ
R ¼ e−2β̂φ; (A7)

~gμν ¼ e−2β̂φgμν ¼ f
ðIIÞ
R gμν: (A8)

β̂ in this convention is
ffiffiffiffiffiffiffiffi

1=6
p

. Finally the potential VðφÞ in
the second convention is

VðϕÞðIIÞ ¼ 1

2

Rf
ðIIÞ
R − fðIIÞ

ðfðIIÞR Þ2
: (A9)

The mapping: It is now clear that the difference between

the two conventions boils down to a a field redefinition of

φ, namely

ϕðIÞ↔ − ϕðIIÞ: (A10)

This means care has to be taken when considering which

potentials have the correct properties to give rise to an

effective chameleon.
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