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Abstract In this article, we propose a quaternionic version
of the Dirac equation in the presence of scalar and vector
potentials. It has been shown that in complex limit of such an
equation, the complex version of this equation can be cov-
ered. After setting a quaternionic form for the Dirac delta
potential, scattering due to the considered interaction has
been studied. Wave functions and discontinuity conditions
of the problem considered have been derived in detail. Using
the continuity equation, we have found a constraint implying
the conservation law of the probability current.

1 Introduction

The mathematical structure of quantum mechanics, one of
the fundamental pillars of modern physics of the description
of new aspects of nature, consists of Hilbert spaces defined
over the field of complex numbers. Physicists have witnessed
that the underlying foundations of the theory are enormously
successful in describing different quantal phenomena [1–6].
For the first time quantum theory was extended to include
the field of quaternions by Hamilton [7,8].

Mathematically the quaternions can be expressed by
extending complex numbers in the following form:

Q = q1 + iq2 + jq3 + kq4, (1.1)

where i, j and k are imaginary units and ql , l = 1, 2, 3, 4 are
real. The imaginary units are interrelated by

i j = − j i = k, jk = −k j = i, ki = −ik = j, (1.2)

which signals the non-commutative character of the field of
quaternions with respect to the multiplication.
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Quaternions have a representation similar to complex
numbers as follows:

Q = Qa + j Qb,

Qa = q1 + iq2,

Qb = q3 − iq4,

(1.3)

and the conjugation of quaternion is defined as

Q̄ = q1 − iq2 − jq3 − kq4. (1.4)

Having appropriate mathematical tools using quaternions
[9,10], a lot of efforts have been made to reconstruct quan-
tum mechanics in terms of quaternion functions during the
past few decades such as those by Kaneno [11], Finkelstein
and Jauch [12,13], Emch[14], Horwitz and Biedenharn [15],
De Leo [16–20], to name a few; maybe the best-known per-
son in this research field is Adler [21–26]. In recent times,
scattering for non-relativistic and spinless quantum particles
has been studied in [27–29] in the presence of a quaternionic
Dirac delta potential in the direction proposed by De Leo
[20]. Motivated by the above progress, in this article, we want
to investigate the relativistic scattering of fermions in the
presence of scalar and vector potentials. In order to do this,
we investigate the quaternionic version of the Dirac equation
in Sect. 2. In Sect. 3 we introduce the scattering potential
and present related calculations. We derive the reflection and
transmission coefficients to establish the conservation of the
current probability in Sect. 4, and finally in Sect. 5 we present
the conclusion of our work.

2 Quaternionic version of the Dirac equation

According to the rules of quaternionic quantum mechan-
ics we should write the Dirac equation in terms of an anti-
hermitian operator; this version of the Dirac equation [20] in
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the presence of a quaternionic vector and scalar potential can
be written as

∂�(r, t)
∂t

= − [α.∇ + β (i(m + Sa(r))

+ j Sb(r)) + iVa(r) + jVb(r)] �(r, t), (2.1)

where we have used h̄ = c = 1 and supposed that
Sa(r), Va(r) are real functions and Sb(r), Vb(r) are com-
plex functions in Eq. (2.1). Let us test Eq. (2.1) carefully.
In the complex limit this equation must recover the famous
Dirac equation. In order to check this important point, we set
Sb(r), Vb(r) → 0. By using this condition, Eq. (2.1) turns
into

i
∂�(r, t)

∂t
= [α.P + β (m + Sa(r)) + Va(r)] �(r, t).

(2.2)

Equation (2.2) is the complex version of the Dirac equation
[30,31]. In Eqs. (2.1) and (2.2) α and β are defined by the
Pauli and unity matrices as follows:

α =
(
0 σ

σ 0

)

β =
(
1 0
0 −1

)
. (2.3)

Setting the wave function �(r, t) = �(r)e−i Et , we get to
the eigenvalue form of Eq. (2.1):

�(r)i E = [α.∇ + β (i(m + Sa(r)) + j Sb(r)) + iVa(r)

+ jVb(r)] �(r). (2.4)

�(r) is a spinor with two components, up and down, that we
denote �+(r) and �−(r), respectively. By some calculation
and setting i Sa(r)+ j Sb(r) = iVa(r)+ jVb(r), we can find
a connection between these two components:

�+(x)i E = σx
d�−(x)

dx
+ (im + 2(i Sa(x) + j Sb(x))) �+(x), (2.5)

�−(x)i E = σx
d�+(x)

dx
− im�−(x), (2.6)

where the interaction direction has been considered in the
x-direction. The quaternionic wave function components are
in the form of �±(x) = φ±

a (x) + jφ±
b (x) where φ±

a (x) and
φ±

b (x) are the complex functions. Considering such a form
of the wave function components in Eq. (2.6) yields

φ−
a (x) = σx

i(E + m)

dφ+
a (x)

dx
, (2.7)

φ−
b (x) = σx

i(E − m)

dφ+
b (x)

dx
. (2.8)

Substitution of Eqs. (2.7) and (2.8) into Eq. (2.5) provides a
system of coupled differential equations,

d2φ+
a (x)

dx2 +
(
p2 − 2(E + m)Sa(x)

)
φ+

a (x)

− 2i(E + m)S∗
b (x)φ+

b (x) = 0, (2.9)

d2φ+
b (x)

dx2 +
(
−p2 − 2(E − m)Sa(x)

)
φ+

b (x)

+ 2i(E − m)Sb(x)φ
+
a (x) = 0, (2.10)

where p2 = E2 −m2 and ∗ means the complex conjugation.
Now, we are in a position to investigate scattering states due
to the quaternionic Dirac delta potential.

3 Investigation of quaternionic Dirac delta scattering

The interaction which we want to study consists of a Dirac
delta function with a quaternion coefficient

Sa(x) + j Sb(x) = (Va + j iVb)δ(x), (3.1)

where Va and Vb are real constants. Inserting Eq. (3.1) into
Eqs. (2.9) and (2.10) and taking an integral in the neighbor-
hood of x = 0 result in the discontinuity condition of the
wave function components,

dφ+
a

dx

∣∣∣∣
x=0+

− dφ+
a

dx

∣∣∣∣
x=0−

= 2(E + m)(Vaφ
+
a (0) + Vbφ

+
b (0)), (3.2)

dφ+
b

dx

∣∣∣∣∣
x=0+

− dφ+
b

dx

∣∣∣∣∣
x=0−

= 2(E − m)(Vaφ
+
a (0) + Vbφ

+
b (0)). (3.3)

We would like to assume that the particles are coming from
region I (x < 0). After experiencing the scattering potential
at the origin, some of them will be reflected into region I and
the others will be transmitted into region II (x > 0). For the
free particles we have

φ+
a (x) = c1e

ipx + c2e
−i px , (3.4)

φ+
b (x) = c3e

px + c4e
−px , (3.5)

where the coefficients are complex constants in general.
Therefore, according to our assumption as regards the parti-
cles, the physical wave functions can be written as

φ+
I (x) = eipx + re−i px + jepx , (3.6)

φ+
II (x) = teipx + j t̃e−px , (3.7)
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in which the coefficients will be determined using continuity
and discontinuity conditions of the wave functions at x = 0.

Continuity of the wave functions necessitates

1 + r = t, (3.8)

r̃ = t̃ . (3.9)

Using discontinuity of derivatives of the wave functions
results in

i p(t − 1 + r) = 2(E + m)(Vat + Vb t̃), (3.10)

−p(t̃ + r̃) = 2(E − m)(Vat + Vb t̃). (3.11)

The coefficients can be derived by solving the system of
equations (3.8), (3.9), (3.10) and (3.11). After solving the
system of equations we have

r = − i(m + E)Va

i(m + E)Va + (E − m)Vb + p
, (3.12)

t = (E − m)Vb + p

i(m + E)Va + (E − m)Vb + p
, (3.13)

r̃ = t̃ = − (E − m)Va

i(m + E)Va + (E − m)Vb + p
. (3.14)

In the next section, the conservation law of probability will
be studied.

4 Reflection and transmission coefficients

In quaternionic quantum mechanics, similar to the complex
version, we have the continuity equation

∂ρ

∂t
+ ∇.J = 0, (4.1)

where

ρ = �̄�, (4.2)

J = �†α�. (4.3)

To check the conservation law of probability we need to cal-
culate the currents of each of the regions. To derive the cur-
rents of each region, we need the spinor form of the wave
function of each region. This form of the wave functions can
be obtained using Eqs. (2.7) and (2.8):

�I (x) =
(

eipx + re−i px + j r̃epx

σx p
(
eipx−re−i px

E+m + j r̃epx
i(E−m)

)
)

, (4.4)
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Fig. 1 Treatments of the reflection and transmission coefficients in
terms of energy. For this plot we have set m = 1, Va = Vb = 0.5 and
the energy ∈ [1, 4]

�II(x) =
(

teipx + j t̃e−px

σx p
(

teipx
E+m − j t̃e−px

i(E−m)

)
)

. (4.5)

It is straightforward to prove that by using the definition Jx =
�†αx�, we derive the constraint

|r |2 + |t |2 = 1. (4.6)

Details of the derivation of Eq. (4.6) are presented in the
appendix. We plotted treatments of the reflection and trans-
mission coefficients in Fig. 1, consideringm = 1, Va = Vb =
0.5.

Furthermore, in Figs. 2 and 3, different numerical values
for elements of the considered potential have been assumed
and effects of these elements on reflection

(|r |2), transmis-
sion

(|t |2) coefficients have been plotted.
As can be understood from Figs. 2 and 3, the effects of Va

on the reflection and transmission coefficients are stronger
than Vb.

5 Conclusion

In this article the quaternionic form of the Dirac equation
was studied. Because of the non-commutative nature of the
quaternions, the derivation of the wave function in the for-
malism considered is different from the usual one. In this
study a quaternionic Dirac delta potential was considered.
We have shown how such a potential provided a discon-
tinuity condition for the derivative of the wave functions.
Using boundary conditions, we were able to find explicit
form of reflection and transmission coefficients. The con-
servation law of probability was checked. The correctness
of the results was checked and proved as we expected from
ordinary quantum mechanics. Furthermore, in some plots,
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Fig. 2 Effects of different values of Va on the coefficients. The constants in this figure are m = 1 and Vb = 0.5
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Fig. 3 Effects of different values of Vb on the coefficients. The constants in this figure are m = 1 and Va = 0.5

the effects of the elements of the quaternionic Dirac delta
potential on the reflection and transmission coefficients were
depicted.
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Appendix

In this section details of the derivation of Eq. (4.6) are men-
tioned. In order to be brief in the calculations, we will indicate
them in a compact form.

At the first step, we are going to derive the current of
probability of region I . Using the definition of the probability
current we have

JI =�†αx�,

=
(
e−i px + r∗eipx − epx r̃∗ j,

× σx p

(
e−i px − r∗eipx

E + m
+ r̃∗epx

i(E − m)
j

))(
0 σx
σx 0

)

×
(

eipx + re−i px + j r̃epx

σx p
(
eipx−re−i px

E+m + j r̃epx
i(E−m)

)
)

. (6.1)

It should be noted that the spinor of a wave function is a
quaternion and since the coefficients are complex constants,
their order and j , the imaginary unit, is important. Hence in
the daggered form of the spinor we are faced with a reversed
order in Eq. (6.1). Proceeding in the matrix multiplication
form we have

JI =

⎛
⎜⎜⎜⎝

A1︷ ︸︸ ︷
e−i px + r∗eipx

A2︷ ︸︸ ︷
−epx r̃∗ j,

× σx p

⎛
⎜⎜⎜⎝
e−i px − r∗eipx

E + m︸ ︷︷ ︸
A3

+ r̃∗epx

i(E − m)
j

︸ ︷︷ ︸
A4

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p

⎛
⎜⎜⎜⎝

B1︷ ︸︸ ︷
eipx − re−i px

E + m
+

B2︷ ︸︸ ︷
j

r̃epx

i(E − m)

⎞
⎟⎟⎟⎠

σx

⎛
⎜⎝eipx + re−i px︸ ︷︷ ︸

B3

+ j r̃epx︸ ︷︷ ︸
B4

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.2)
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JI =A1B1 + A1B2 + A2B1 + A2B2 + A3B3

+ A3B4 + A4B3 + A4B4. (6.3)

To avoid complicity of the multiplication of Eq. (6.2), we
have

A1B1 = p

E + m

(
1 − re−2i px + r∗e2i px − |r |2

)
, (6.4a)

A1B2 = j
p

i(E − m)

(
r̃ e px(1+i) + rr̃epx(1−i)

)
, (6.4b)

A2B1 = j
p

(E + m)

(
−r̃ e px(1+i) + rr̃epx(1−i)

)
, (6.4c)

A2B2 = p

i(E − m)

(
|r̃ |2e2px

)
, (6.4d)

A3B3 = p

E + m

(
1 + re−2i px − r∗e2i px − |r |2

)
, (6.4e)

A3B4 = j
p

(E + m)

(
r̃ e px(1+i) − rr̃epx(1−i)

)
, (6.4f)

A4B3 = − j
p

i(E − m)

(
r̃ e px(1+i) + rr̃epx(1−i)

)
, (6.4g)

A4B4 = − p

i(E − m)

(
|r̃ |2e2px

)
. (6.4h)

With the help of Eqs. (6.3)–(6.4h), we can find the probability
current of the region I:

JI = 2p

E + m
(1 − |r |2). (6.5)

In the same manner, we can find the probability current of
region II:

JII = 2p

E + m
|t |2. (6.6)

Since there is no sink or source for the particles, we have

JI = JII ⇒ |r |2 + |t |2 = 1. (6.7)
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