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Relativistic Spin-One Boson Plasma 
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(Received January 30, 1992) 

We derive the polarization tensor for a system of charged spin-one bosons and antibosons in the 
case of no external magnetic field. This requires a thorough exposition of relativistic spin-one 
quantum mechanics, and thus we initially focus upon the Sakata-Taketani equation and its free-field 
solutions. We employ these results to evaluate the matrix elements required for the calculation of 
the polarization tensor, which itself is derived via the self-consistent random-phase approximation 
(RP A) method. It is from this tensor that we obtain the longitudinal and transverse dielectric 
response functions for this plasma. We evaluate these response functions at zero temperature, and 
exhibit the characteristic modes of oscillation. Finally, we discuss possible generalizations of this 
work, in particular to a finite-temperature plasma, and to one with an external magnetic field. 

§ 1. Introduction 

1 

In this paper, we present a study of the relativistic spin-one particle-antiparticle 

plasma, in the presence of no external magnetic field. The course of the investigation 

begins with a review of single particle theories of spin-one (vector) bosons, which we 

present in § 2 of this work. In § 3 of the paper, we present a detailed treatment of the 

six-component formalism for spin-one bosons, first developed by Sakata and 

Taketani/) which we then employ in our linear response theory calculations for the 

plasma. To our knowledge, this particular formalism is under-represented in the 

literature pertinent to spin-one bosons, and hence our exposition is an attempt to 

clarify its general features, and underscore its particular utility in work of the nature 

we have undertaken. 

The latter part of the paper (§§ 4 and 5) contains the linear response calculations 

proper. We set about deriving the polarization four-tensor, employing a method first· 

proposed by Harris,z) this being the self-consistent random-phase approximation 

(RPA) method. We then obtain the characteristic modes of oscillation of the plasma. 

At present, we concern ourselves solely with the plasma properties of the polari

zation tensor, leaving a complete study of the vacuum modes of oscillation and their 

renormalization to a later paper, in which we also propose to introduce the presence 

of an external magnetic field. Employing our plane-wave solutions of the Sakata

Taketani equation for the case of no external fields, we proceed to calculate the 

longitudinal and transverse dielectric response functions, which are obtained via the 

employment of the relationship between the covariant polarization four-tensor and 

the dielectric three-tensor. In the case of the longitudinal response function, we 

present the formal result which is valid for all temperatures, and we then evaluate the 

longitudinal and transverse response functions at zero temperature, from which we 

obtain the modes of oscillation. 

Our work follows on from that of Kowalenko, Frankel and Hines (KFH),3) who 

studied the spin-zero pair plasma by employing a self-consistent field method to find 
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2 .]. Daicic and N. E. Frankel 

the longitudinal modes of oscillation of this plasma at zero temperature, and with no 

fields present. Witte, Kowalenko and Hines (WKH)4) extended this work. to the 

presence of strong magnetic fields, and also to finding the full polarization tensor by 

generalizing the RP A technique of Harris2) for the study of non·relativistic quantum 

mechanical plasmas to that of relativistic pairs. Indeed, our paper may be viewed as 

the generaliz~tion of some of the work of KFH and WKH to the spin-one case. The 

only previous authors, to our knowledge, who study the relativistic spin-one pair 

plasma are Williams and Melrose.5
) These authors employ a method of ensemble

averaged propagators in their work, and find that the longitudinal modes of oscilla· 

tion of the spin· one plasma at zero temperature are precisely those of the spin-zero 

plasma found by KFH3) and WKH,4) but that the transverse modes differ to that found 

by WKH. Indeed, they find that three branches are present, as opposed to the single 

transverse mode WKH find for the relativistic pair spin-zero plasma. As we shall 

show in § 5 of this paper, whilst the longitudinal modes of the spin-zero and spin·one 

boson plasma are identical at zero temperature, there is only one transverse mode of 

oscillation, which differs markedly from the zero-temperature transverse mode of the 

spin-zero plasma. This is a new result which disagrees with the only comparable 

calculation, in Ref. 5), which we discuss at length in this section. 

It is to be noted that the system which we study is a homogeneous, isotropic, 

infinite, three-dimensional plasma, and consists of particles of zero anomalous mag· 

netic and electric moment. This would correspond to a plasma of p. or (V-bosons, for 

instance. However, W·bosons have an anomalous magnetic moment, and would also 

require the inclusion of weak-force couplings, and hence our treatment is not appro· 

priate for a W·boson plasma for these reasons.32) 

The motivation for the study is to further add to the considerable collection of the 

linear response theory work in general, and to that of relativistic pair plasmas in 

particular. We also wish to compare our results to those obtained by previous 

authors5
) employing techniques manifestly different to our own, but which should 

contain the same physics. Furthermore, we envision the possible manifestation of a 

relativistic spin-one pair plasma in the early universe, and hence the work may have 

astrophysical and cosmological applications. In closing the Introduction, we note the 

corresponding behaviour of the relativistic electron plasma, studied by Tsytovich, 

Jancovici, Kalman, Cover and Bakshi, ourselves and others is reviewed in depth in 

Refs. 3) and 4), along with its astrophysical significance. 

§ 2'. Relativistic field theories for spin-one particles 

A. Requirements of the RPA method 

A familiar and commonly employed relativistic field theory is that of Dirac for 

particles of spin one· half; a formalism which is noted for its elegance and ease of 

manipulation. Indeed, KFH,3) who present a treatment of the electron-positron 

plasma as well as the spin-zero pair plasma, employ the second quantized Dirac 

theory in their work, as was done before them by Delsante and Franke16
) in their study 

of the relativistic electron plasma. However, there is a dearth of complete and 

:. 
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Relativistic Spin-One Boson Plasma 3 

self-consistent formalisms for particles of other than spin-one-half. Whilst the 

Klein-Gordon equation is appropriate for the description of spin-zero bosons, one must 

move to a two component wave function formalism (where the two degrees of' 

freedom are those of charge), such as that proposed by Feshbach and Villars,7) to find 

a theory which allows comparable ease of manipulation in the RP A treatment for 

plasma linear response theory. Both KFH3
) and WKH4

) employ this formalism in 

their spin-zero work. ' 

The common features of both the Dirac theory and the, Feshbach-Villars formal

ism which facilitate the use of the RP A method are those which we seek in an 

analogous spin-one theory. First, we require an explicit form for the Hamiltonian, 

which we employ to calculate the equations of motion cif various bilinear products of 

creation and annihilation operators which will arise. (We work in the Heisenberg 

picture). Second, there must be a consistent and straightforward coupling of the 

matter fields to, electromagnetic fields. Although we have no external fields, first 

order perturbative fields are present, arising from interactions within the plasma 

itself. Furthermore, we must have a second quantized four-current from which to 

extract the polarization tensor, and once this is done we require a sensible way to 

calculate the matrix elements which will constitute it. In the RP A treatment, this 

requires the free particle plane-wave solutions to be found. As we shall'discuss, the 

Sakata-Taketani formalism admirably fulfills these requirements. First, however, 

we undertake a thorough review of spin-one formalisms, for the sake of comparison, 

and in order to demonstrate the development of the essential features of the Sakata

Taketani formalism. 

B. Description of spin-one field theories 

The work of Proca8
) was first to establish a consistent theory of spin-one parti

cles. The field components ¢v(})=O, ···,3) satisfy individually the covariant Klein

Gordon equation: 

'(2-1) 

where m is the particle mass. 

The components ¢v are constrained by the Lorentz condition: 

(2-2) 

The Lagrangian density of the system is the Proca Lagrangian density: 

(2-3) 

from which the field theories to be discussed evolve. 

This treatment leads to a formalism which is similar to the standard theory for 

the photon field, which is the massless spin-one particle. The terminology used is 

that of the photon field, with the matter fields decomposed into longitudinal and 

transverse polarizations. It is the field theory most prevalent in the quantum field 

theory texts (see, for example, Ref. 9)), and has also been employed in studies of the 

anomalous magnetic moment of the spin-one particle. This has been done by Lee and 
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4 ]. Daicic and N. E. Frankel 

Yang,lO) Tzou,ll) Corben and Schwinger/2
) Kyriakopoulous/3) Velo andZwangzinger/4

) 

and Aronson.15) 

For our purposes, however, this formalisIIf is of limited value. The four-current 

and free particle solutions are readily obtainable, but difficulties arise in the calcula

tion of the interaction Hamiltonian, and the calculation of matrix elements-similar 

to the reasons for which Klein-Gordon theory is less suited to the RP A method for 

spin-zero plasmas than the two component Feshbach-Villars theory. 

Another, but related, approach is the generalization of the Dirac theory of 

electrons to particles of higher spin, leading to a variety of multicomponent wave 

function theories. Typical of these are the sixteen-component single-rank spinor 

theories, as described by Corson.16) 

For example, the first rank spinor theory would involve wave functions which 

obey a Dirac-type equation: 

(2-4) 

where /3" and J1 are respectively the appropriate generalizations of the y" and mI 

matrices iii. Dirac spin-one-half theory. 

The main disadvantage of such a theory is that the single rank spinors are the 

subject of constraining equations, similar to th.ose in Proca theory, and would thus 

contain dynamically redundant components, introducing difficulties of both a con

ceptual and calculational nature. Also proposed is a second-rank spinor theory, such 

as that by Belinfante l7
) and Tsai (etal.).18) However, it is by no means obvious how 

one should proceed in the determination of an explicit Hamiltonian with field cou

plings, nor in the calculation of the free-particle solution of the wave equation. 

Foldy20) is able to overcome the problems of constraining equations and dynami

cally redundant components in the wave function by employing the Foldy

Wouthuysen transformation upon the Proca wave functions satisfying Eq. (2 -I). The 

wave equation which he develops is in the canonical Foldy-Wouthuysen diagonalized 

form: 

. ox _ (.)"C' 

zTt-jJ£'X, 

where in the spin-one case 

/3 = (I(3
0
x3) 0) 

0- I(3x3) , 

and 'E is the energy eigenvalue. 

(2-5) 

(2-6) 

Good (et al.)21)-23) pursue this avenue further, deriving explicit forms for the single 

particle Hamiltonian. The main disadvantage of this particular formalism is that 

complicated transformations are induced upon the wave function and the four-current, 

rendering the calculation of the polarization tensor, and the subsequent evaluation of 

the matrix elements, extremely tedious. 

An attempt is made by Tsai (et aI.)18) to reconcile the vector (Proca), multi-spinor 

and Foldy six-component theories, and in particular a detailed investigation of the 
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Relativistic Spin-One Boson Plasma 5 

energy eigenvalues of each is given, with certain discrepancies found. This work is 

later continued by Vijayalakshmi, Seetharaman and Mathews,24l who use the Foldy 

formalism to study the anomalous magnetic moment of the spin-one particle. 

For a propagator approach to spin-one theory, the paper by Weinberg19l is of 

great value. Aside from giving a general algebraic overview of any-spin relativistic 

field theories, Weinberg also presents the Feynman rules for particles of any spin. 

The massive spin-one boson propagator is the Proca propagator, and is that employed 

by Williams and Melrosesl in their ensemble averaged propagator approach to the 

spin-one pair plasma. 

Ultimately, the formalism we choose to employ is that developed by Sakata and 

Taketani/l and reviewed at length by Heitler.25l The formalism encompasses within 

it descriptions of both spin-one and spin-zero particles. Indeed, the spin becomes a 

parameter which is simply setto zero when one wishes to study scalar bosons, whence 

it becomes precisely the two-column formalism of Feshbach and Villars.7l 

Heitler25l gives a clear description of the procedure for the derivation of the full 

six-component theory for spin-one particles, and we give here a brief account of this, 

as it is instructional in reconciling the formalism we employ with the more familiar 

Proca formalism for spin-one particles. 

The field equations for Proca theory are: 

(2·7) 

and 

(2·8) 

The Duffin-Kemmer equation (Kemmer26l and Duffin27l) 

[3Ppprp=imrp , (2·9) 

is obtained from (2·7) and (2·8) via the assignments 

(2·10) 

which thus constitute the ten-component wave function rp. 
The matrices [3p, which are 10 x 10 matrices, obey the algebra of the Duffin

Kemmer ring: 

(2·11) 

As Heitler25l demonstrates, the Duffin-Kemmer equation (2·9) has the dynamically 

redundant field quantities Xik and rpo. Motivated by the need to eliminate these, 

Sakata and TaketanPl proceed- to reduce the Duffin-Kemmer formalism to a six

component formalism, which we shall employ in our work. The details of the 

manipulation of the Duffin-Kemmer ring which are required to achieve this (which, in 

Heitler's exposition, he credits to Schrodinger) are intricate and lengthy, and will not 
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6 ]. Daicic and N. E. Frankel 

be discussed here. The six-component formalism itself, however, will be clearly 

described in the ensuing section, and developed to some extent beyond the level given 

by Heitler. Of value in this work is a paper by Weaver28) on spin-one matrix algebra. 

Specifically, we second quantize the theory, and find the free-particle solutions 

explicitly. 

§ 3. Six-component theory for spin-one particles 

A. Basic definitions 

The six-component Sakata-Taketani wave function for spin-one particles 

satisfies the familiar wave equation: 

j(7Jf=E7Jf , (3·1) 

where j( is the Hamiltonian for a particle interacting with electromagnetic fields: 

j( =e(l)+ P3mc2+ po(_1_1T:2_~ (6· B))- ip2-.l (6 .1T:)2 
2m 2mc m' 

where 

A and (l) are the vector and scalar potentials respectively, 

1T: = P - (e/c)A is the canonical momentum, 

and B is the magnetic field strength. 

(3·2) 

The matrices Pi ate 2x2 Pauli (super)matrices. We choose the following 

representation: 

Pl=(~ ~), . (0 
ZP2= -I ~) , 

e P~= 0 ~I)' J=(~ ~) , (3·3) 

where I is the 3 x 3 unit matrix, and where we also define for convenience po = P3 + iP2. 

The matrix operators (Ji are the spin-one angular momentum matrices. It is to 

be noted that these matrices are closely related to the matrices /3f!. appearing in the 

Duffin-Kemmer equation (2·9). Indeed, one may define 10 x 10 spin matrices (Ji, wher~ 

(3·4) 

and in the process of the reduction of the ten-component formalism to the six

component form, these (J'-matrices reduce directly to the familiar 3 x 3 spin-one 

angular momentum matrices. 

In our work, we employ the representation: 

(Jx= ~ 1 0 1 , (Jy= ~ 1 0 
(

0 1 0) (0 -1 

,,2 0 1 0 ,,2 0 1 
(3·5) 

The group properties for these operators are well known, and are most easily 
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Relativistic Spin-One Boson Plasma 7 

derived from Eq. (3'4) and the properties of the Duffin-Kemmer ring (2'11). They are 

(3·6) 

the latter being the standard commutation relation for angular momentum matriCes. 

The Hamiltonian (3·2) has several features whiCh solicit comment. First, at an 

initial glance, it appears to be extraordinarily similar to familiar forms for non

relativistic Hamiltonians. However, we stress that it is .covariant and relativistic. 

Of interest also is the explicit coupling of the spin to the magnetic field in the next to 

last term of the Hamiltonian. The final term in the Hamiltonian, -ip2(1/m)(a'-rr:)2 

indiCates a coupling of the spin to the momentum, and is a gyroscopic term expected 

of particles of finite spin. Finally, by putting a == 0 in the Hamiltonian, one 

recovers the Hamiltonian given by Feshbach and Villars7
) for spin-zero particles: 

fir flo 2 1 2 
en (spin zero) = ew + P3mc + Po 2m -rr: (3'7) 

with the added condition, naturally, that all 6 x 6 matriCes reduce to 2 x 2 forms. 

Whilst the Sakata-Taketani formalism explicitly involves six-component wave 

functions, they may be treated as two component forms, each component itself having 

three components. The approach is thus much like Dirac theory, and we may write 

for the wave functions lji": 

lji"=(~:) . (3'8) 

B. Free-particle solutions 

The relationship between (/h and rf2 for the free particle case is given by Heitler,25) 

and is 

(3'9) 

where 

and E takes a + or - as a symbol, and the value + 1 or -1 in expressions for positive 

energy solutions (bosons) and negative energy solutions (antibosons). 

The plane-wave solutions to the wave equation are, in the Heisenberg piCture: 

lji""(p, s)=rp"(p, s)e(i/h)"p.r, (3·10) 

and all that is now required is an appropriate normalization of these wave functions 

to obtain the free-field solutions. As both Heitler25) and Feshbach and Villars7
) point 

out, the only· sensible way to normalize the wave functions is to charge. This is to 

overcome the problem found in the interpretation of the possibility of a negative 

current density, for it may be now considered as a charge (rather than probability) 
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8 J Daicic and N. E. Frankel 

current. Thus, in a manner proposed by ReitIer, and Feshbach and Villars, we 

normalize the positive and negative energy solutions of the wave equation to positive 

and negative charge, respectively. 

First, the expectation value of an operator () is given by 

(3·11) 

where 1Jf* is the complex conjugate transpose of 1Jf. This follows from the general 

definition of a matrix element: 

(3·12) 

Thus, the normalization is 

(3·13) 

leading to a solution of the wave equation: 

. ( (eE(p)+mc
2
)xs ) 

7Tr€(p ) 1 2()2 2 2 2 (iltz)€p"r 
'I:' ,s 2(E(p)mc2V)112 p.(J c -p c e , 

" (eE(p)+mc2) Xs 

(3·14) 

where V is the volume of the system. 

The three-columns Xs, s being the spin projection quantum number, become in the 

representation of the 6 matrices given by (3·5): 

(3·15) 

In" this aspect, the similarity to Dirac theory is evident. For example, spin ladder 

operators may be defined as follows: 

so that 

6-Xs=XS-l, s:::::::O. (3·16) 

Parameterizing our wave functions with momentum and spin projection quantum 

numbers, and with the sign of the energy eigenvalue (e), we have 

(3 ·17) 

from which we obtain the completeness relation: 

L: eic, p, s><e, p, sl=1 . 
'C,p,S • " 

(3·18) 
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Relativistic Spin-One Boson Plasma 9 

C. Charge and current densities 

The single particle charge and current densities are given by Heitler,25) and we 

display them below. 

The charge density is 

p= elJf* p3 lJf , 

and the current density j is given by 

-lJf* P3(iP2){ 0"[ (p- e1 ). 0" ] + [(p- e1 ). 0" 10"} lJf 

+ilJf*[(P- e1 )xO" JlJf 

(3·19) 

(3·20) 

plus tpe same terms with p acting to the left upon lJf* instead of lJf, and i replaced by 

- i in the last term. 

It is to be noted that these are derived by Heitler25) (following a procedure for a 

general operator) via the reduction of the corresponding Duffin-Kemmer four-current 

(3·21) 

to the appropriate six-component equivalents shown above. 

D. Second quantization 

We employ the canonical technique to obtain the second quantized fields, and, as 

a check, calculate the normal ordered free particle Hamiltonian operator. We expect 

the standard diagonal form. 

The second quantized spin-one field is 

(3'22) 

The operators bp,s(t) and dp,s(t) are, respectively, the destruction operators for a 

particle and antip~rticle state. They obey the standard commutation relations for 

boson operators: 

[bp,s, bZ,s]=l and [dp,s, dJ,s] =1 (3·23) 

with all others vanishing. 

The second quantization for the free-field Hamiltonian 

!J( 2 + p2 . 1 ( )2 O=P3mc Po-
2
--ZP2- O".p , 
m m 

(3·24) 

is done via the canonical procedure: 

Ho= jd3rW t P3!J(OW. (3·25) 

The normal ordered free-field Hamiltonian operator becomes, after some calculation: 
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10 J Daicic and N E. Frankel 

(3'26) 

which is the standard diagonal form. 

As we work with an unrenormalized vacuum, we note here that we will not use 

normal order operators in our response theory calculation. 

E. Traces of products of spin matrices 

Given the fact that the free-field solutions (3·l4) bear a resemblance to Dirac 

equation free· field solutions, it is no surprise that the response theory calculation 

requires the calculation of traces of products of spin matrices, in analogy to Dirac 

theory requiring traces of products of Dirac r matrices. We list here, for later 

reference, the results for the products of spin· one matrices. 

First, inspection of (3·6ii) immediately implies 

Tr(6i)=0. (3·27) 

Furthermore, inspection of the 6 matrices (3'5) allows the evaluation of the trace of 

a bilinear product 

(3·28) 

We then employ the group properties (3'6i) and (3'6ii) to develop a recursion relation 

fot the traces of higher order. 

Consider 

(3'29) 

Employing (3'6ii) on the last two matrices 6 n-16n, (3'29) becomes 

~ Tr{ (616z'" 6n-z6n-16n) + (616z'" 6n-36n-z6n6 n-l) + icn-l,n,Q( 616z'" 6 n-36n-z6q)} . 

(3'30) 

This step is repeated until (3·6ii) can be employed on the last three 6 matrices 

appearing in the first two terms of (3·30) to reduce them to the sum of two single 6 

matrices. Thus (3'30) becomes 

+ icn-z,n,i( 616z'" 6 n-36t6n-l) + icn-z,n-l,r(616z'" 6 n-36n6r)} . (3'31) 

We give the first few explicitly: 

Tr(6i6j6k)=icijk, (3·32) 

Tr(6i6 j6k61) = 8ij8kl+ 8il8jk , (3'33) 

. . 
Tr(6i6j6k616m)=f {cijk81m + Cijm81k+ ckli8jm + ckmj8il+ clmk8ij+ clmi8jk}. (3'34) 
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Relativistic Spin-One Boson Plasma 11 

§ 4_ Linear response theory 

A. Basic definitions 

Before we begin our response theory calculation, it is important to set out the 

basic definitions and conventions employed in our work. First, we work in the metric 

with signature ( +, -, -, -), which was used by WKH4
) in their work. However, in 

contrast to those authors, who employ S. I. units, we choose to work in Gaussian 

(c. g. s.) units. 

The polarization tensor is defined via the relationship between the Fourier 

transformed four-current density and the four-potential. 

where k is the wave number four-vector 

(We note here that m=a/ for a stationary plasma.) 

The current density four-vector is 

J=(cp,j) , 

and the p'otential four-vector is given by 

A=( (/J, A) . 

(4-1) 

(4-2) 

(4-3) 

(4-4) 

We note that Eq. (4 -I) is a linear response theory relationship, and the AU are thus 

the electromagnetic potentials inducing the perturbations within the plasma. 

The three-current density j is related to the perturbing electric field E via 

j(k, m)="2,'6(k, k', m)-E(k, m), (4-5) 
k' 

where '6 is the conductivity three-tensor. 

We shall derive the polarization tensor in a gauge invariant way. However, to 

find the modes of oscillation, we shall employ the Coulomb gauge 

17 -A=O (4-6) 

as this gauge is useful in separating the longitudinal and transverse parts of the 

polarization tensor. 

The components of the polarization tensor are related to the conductivity tensor 

in the following way: 

(4-7) 

In turn, the conductivity three-tensor is related to the dielectric tensor thus: 
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<---> <--->[ + 47ri <---> 
€ = --6 ({) , 

J. Daicic and N. E. Frankel 

(4 ·8) 

from which we obtain the longitudinal and transverse dielectric response functions of 

the plasma. These are given by 

(4·9) 

and 

(4·10) 

respectively. The longitudinal and transverse modes of oscillation are found by the 

. folldwing equations: 

(4'11) 

and 

(4'12) 

respectively. 

B. Interaction Hamiltonian and current 

Our next task is to linearize and second quantize the interaction Hamiltonian and 

four-current. The linearization is achieved by expanding the four-potential in the 

following manner: 

(4'13) 

Above, Aol' is the four-potential due to external fields, and in our present work is set 

to zero. The first order perturbative potential, arising from interactions within the 

plasma, is All'. This linearization yields the single-particle interaction Hamiltonian: 

+ ip2~ {(6' A l )(6' p)+(6' p)(6' A l )} . me 
(4·14) 

We decompose the perturbative potential into its Fourier components, recalling 

that Eq. (4·1) for the tensor is in Fourier space, 

(4'15) 

Substituting (4 ·15) into _ (4 ·14), and then second quantizing the interaction 

Hamiltonian leads to its operator form: 
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Relativistic Spin-One Boson Plasma 

+dp',s,bp,s/3(-, +)+dp',s,d},s/3(-, -)}, 

where /3(E', E) is defined as 

/3(E', E)=/3(E', E, p', p, s', s, k') 

< ' "I ik'.r( + 1 +ok')1 p > e A - E, P ,s poe P Tn E" S • me I 

-<E', p', s'lpoeik"r(O' x lik')IE, p, s>'-2
ze 

Al 
me 

13 

(4'16) 

The charge density (3'19) is also second quantized and Fourier-transformed to 

obtain the charge density operator: 

and similarly the three-current operator: 

j(k, t)= 2 e
V 
~ ~{bZ"s,bp,s,( +, +)+ b;',s,dJ.s'( +, -) 

m P,P' 8,8' 

+dp',s,bp,s,( -, + )+dp',s,d},s,( -, -)} 

with the definitions 

and 

[;(E', E)= [;(E', E, p', p, s', s, k)-==-<E', p', s'le-ik'rlc, p, s> 

,(E', E)=,(E', E, p', p, s', s) 

-==-<E', p', s'lpoe-ik'r(2p-lik)IE, p, s> 

+<E', p', s'lip2e-ik-r[ 0'(0" (2p-lik»+(O" (2p-lik»O']1c, p, s> 

- i<E', p', S'lp3e- ik'r(O' x lik)1c, p, s> 

+ 2
e
e ~{<E', p', s'lip2ei(k'-k)'r( O'o-i + o-iO')IE,p, s>A/ 

k' 

C. Equations of motion 

(4'18) 

(4·19) 

(4·20) 

(4'21) 

Upon inspection of the operator forms for the charge (4'18) and current (4'19) 

densities, we see that the following bilinear products of particle operators appear: 
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14 J Daicic and N. E. Frankel 

(4·22) 

The equations of motion for these operator products are now found, and then 

ensemble averaged to find the equations of motion for the particle and antiparticle 

distribution functions. 

In our linearized regime, the equation of motion for an operator 6 is 

(4·23) 

Taking an ensemble average over all possible states of the system implies a concomi

tant quantum mechanical average, by virtue of working in the operator Fock space. 

For this purpose, we make the following definitions: 

F(a', a, t)=I:Pa<albJ,(t)ba(t)la> , 
a 

H(a', a, t)=I:Pa<albJ,(t)dJ(t)la> , 
a 

K(a', a, t)=I:Pa<alda,(t)ba(t)la> , 
a 

G(a', a, t)=I:Pa<alda,(t)dJ(t)la> , (4·24) 
a 

where we have labelled momentum and spin projection as a single quantum number, 

and where Pa is the probability that the system is in the state la>. 
We obtain, thus, the equations of motion for the ensemble averages F, H, Kand 

G. For example, the equation of motion for F(a', a, t) is 

In :r F(a', a, t)=(E(a)- E(a'»F(a', a, t) 

+ I: I:{F(a', g, t)/3( +, +, a, g, k') 
r g . 

+ H(a', g, t)/3( +, -, a, g, k') 

- F(g, a, t)/3( -, +, g, a', k') 

- K(g, a, t)/3( -, -, g, a', k')} . 

We now linearize the four ensemble averages F, G, Hand K: 

F(a', a, t)=F(a)oa,a'+ FI(a', a, t) , 

G(a', a, t)= G(a)Oa,a'+ GI(a', a, t) , 

H(a', a, t)=HI(a', a, t) , 

K(a', a, t)=KI(a', a, t), 

(4·25) 

(4·26) 

The first two operator averages are now seen to be closely related to the distribu

tion functions for bosons and antibosons, respectively. Indeed: 
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Relativistic Spin-One Boson Plasma 15 

and G(a)=1 + N-(a), (4'27) 

where N+(a) and N-(a) are, respectively, the zeroth order distribution functions for 

bosons and antibosons, and are given by 

and (4·28) 

where jL is the chemical potential, K is Boltzmann's constant, and the factor of 1/3 

arises from the three spin projections. 

We note that the ensemble averages Hand K have no zeroth order term, as they 

represent the mixing of boson and antiboson states, and arise as a result of pair 

production processes. 

The first order perturbations in the distribution functions, and the four-potential, 

are taken to have the following time-dependent behaviour: 

(4·29) 

consistent with the perturbative nature of the interactions in the linear regime. The 

positive infinitesimal 7J is introduced so that the perturbations vani.sh at t=-oo, 

which is equivalent to the Landau prescription for the avoidance of singularities in the 

sums and integrals which will arise. This gives the same result as performing a 

Laplace (rather than a Fourier) transform in the time co-ordinate, as the t=-oo 

boundary condition is included, and the perturbations are resultantly causal. 

. The linearized distribution functions (4·26) are introduced into the distribution 

function equations of motion to obtain expressions for the first order distribution 

functions in terms of the first order potentials. 

F ( , )- ~{ F(a')- F(a) } Q(+ + ' k') 
la,a,w-'it nw-(E(a)-E(a'))+i7j fJ , ,a,a, , 

H( ' )- ~{. F(a')+G(a) }Q( + ' k') 
1 a,a,w --'it nw+(E(a')+E(a))+i7j fJ -, ,a,a, , 

K ( I )- ~{ F(a)+ G(a') } f)(+ ' k') 
1 a,a,w -'it nw-(E(a)+E(a'))+i7j fJ ,-,a,a, , 

G( , )-~{ G(a)-G(a') }Q( , k~) 
. ,I a,a,w -'it nw-(E(a')-E(a))+i7j fJ -, -,a,a, . (4·30) 

The final step before the extraction of the polarization tensor is to ensemble 

average the current and charge densities. This is particularly straightforward-all 

of the creation and destruction operator products of (4· 22) appear in (4 ·18) and (4 '19). 

Thus, they become the appropriate distribution functions upon ensemble averaging. 

The current and charge densities are then linearized, and we consider only the first 

order perturbative terms, as the polarization tensor relates perturbations in the 

four-current to those in the four-potential. 
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16 J Daicic and N. E. Frankel 

The ensemble-averaged and linearized charge density is 

<J10(k, (0» 

= eVe ~{FI(a', a, (0)<+, a'!e- ik'r!+, a>+H1(a', a, (0)<+, a'!e- ik'r!_, a> 
a,a' 

+K1(a', a, (0)<-, a'!e- ik'r!+, a>+GI(a', a, (0)<-, a'!e- ik'r!_, a>}, (4-31) 

and the current density becomes 

<il(k, (0» 

= 2 e
V 

~{FI(a', a, (0),,( +, +, a', a, k)+ H1(a', a, (0),,( +, -, a', a, k) 
m a,a' . 

+K1(a', a, (0)"(-, +, a', a, k)+GI(a', a, (0),,(-, -, a', a, k)} 

2 

+~V ~ ~{Fo(a)';:( +, a, k, k')+ Go(a)';:( -, a, k, k')} , 
me a k' 

(4-32) 

where 

.. (E', E, a', a, k) 

=<E' a'!poe- ik'r(2p-nk)k, a>-<E', a'!P3e- ik'r(aXnk)!E, a> 

-<E', a'!ip2e-ik-r[a(a-(2p-nk»+(a-(2p-nk»a]k, a> (4-33) 

and 

';:(E, a, k, k') 

=<E, a!iP2ei(k'-k)'r(aO"+O"a)lc, a>A/+<E, a!poei(k'-k)-r!E, a>A1. (4-34) 

D. Polarization tensor 

The components of the polarization tensor are readily obtained by writing the 

current and charge densities in terms of the vector and scalar potentials. 

With the definitions 

(4-35) 

we find that the components of the polarization tensor are 

ITO(k k' )_e2e~ ~{ EFE,(a')-E'Fc(a) 
° , ,(0 -VE,ea,a' n(O-(EE(a)-E'E(a'»+i7j 

x <E', a'!e-ik'rk, a><€, a!eik"rk', a'>} , (4-36) 

ITo (k k' )_ e
2 
~ ~{ EFe(a')-E'FE(a) 

J , ,(0 - - m V E,E' a,a' nm-(EE(a)- E' E(a'»+ i7j 

x <E', a'!e-ik'rk, a>[ <E, a!eik'.r(PJ+ ~ nkj)k', a'> 
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Relativistic Spin-One Boson Plasma 17 

+ z < 1 ik"r -Ink I' ') 2 €, a poe eUVj6urt v € , a 

-<€, alip2eik"r[6iO"· p)+(O". (p+ nk))6JI€', a')]} , (4·37) 

IPo(k, k', w)= ~~ ti, bl,{ nW-(~E~~?=:::(~~?)+i7J 

x [<€', a'ipoe-ik,r(pi - ~nk)€, a) 

z <' 'I -ik'r i -Ink 1 ) -2 €, a pge emn 6mrt n €, a 

x <€, aleik'.rl€', a')} , (4·38) 

-e2 L! L!{ €F€'(a')-€'FE(a) 
m2c V E,E' a,a' nw-(€E(a)- €' E(a'))+ i7J 

X [ < €', a'i POC-
ik' r( pi - ~ nki)k, a> 

z <' 'I -ik' r i -Ink 1 > -2 €, a pge emn 6mrt n €, a 

+ z < 1 ik"r -Ink I' ') 2 €, a poe eUVj6urt v € , a 

(4·39) 

We note that the polarization tensor has been derived in a manifestly gauge 

invariant way, whereas WKH4
) require some manipulations in the Coulomb gauge to 

render their polarization tensor for the spin-zero pair plasma gauge invariant. 

Indeed, a cursory application of the technique suggested in Ref. 4), § 3D shows, as 

required, that the polarization tensor above is gauge invariant, and current conserv-

ing. That is, . 

rrf.!.uk'U=O (4·40) 
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18 J Daicic and N. E. Frankel 

and (4 ·41) 

§ 5. Evaluation of the polarization tensor 

Having obtained a formal result for the zero-field polarization tensor, we now 

proceed to evaluate it at zero temperature. 

A . Matrix elements and sjJin sums 

The procedure for the calculation of the matrix elements in (4·36)~(4·39) is' 

conceptually· straightforward, and very similar to analogous calculations in Dirac 

spin-one-half physics. In the zero field case, the distribution functions appearing in 

the polarization tensor depend upon the momenta p and P', but not upon the spin 

projections sand s'. Thus, we may sum the matrix element products appearing 

under the sums in the polarization tensor over the spin projections sand s' directly. 

Also, the evaluation of the spatial integrals in the matrix element products produces 

the Kronecker delta product: 

which implies k=k', as we expect for a homogeneous plasma. 

Consider, as an example, the following spin sum: 

ti,<E', a'ipoe-ik.r(p- ~tik )IE, a><E, alpoeik.r(p+ ~ tik )Ie', a'> 

16mc2E~p)E(P') O€P'€'P'+hk( EP- ~ tik)( E'p'+ ~tik) 

The first step is to calculate the sum on s: 

( 

(EE(p) + mc
2
)xs )( 2( )2 2 2 2) 

~ 2(p. a l c2 - p2 c2 xl (EE(p) + mc
2
) xl (~~(P) ~ ~~2) 

(EE(p) + mc2) XS 

=( (EE(P) + mc
2
)2 2(p· a)2c

2
- p2c2) . 

2(p· a)2c2- p2C2 (EE(p)- mc2)2 . 

(5·1) 

(5·2) 

(5·3) 
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Relativistic Spin-One Boson Plasma 19 

The remaining matrices are multiplied through, and we are finally left with the 

sum on s': 

(w X) (X8') . ~(X8,tO) Y Z 0 =Tr(W) , (5·4) 

where W, X, Y and Z are 3 x 3 matrices. We then employ the traces of § 3E to 

evaluate these s' sums. 

The matrix element products for llio and llij are calculated for a zero tempera

ture plasma. It can be seen from (4·9) and (4·10) that lliO will determine the longitu

dinal component of the conductivity tensor, and llij the transverse component. 

Evaluation at zero temperature facilitates the task of calculation markedly, as in this 

case all of the bosons occupy the ground state, so that 

(5·5) 

Furthermore, no antibosons exist in equilibrium with the condensed bosons. That is 

(5·6) 

We will also comment upon the general features of the longitudinal response 

functiori at finite temperature. 

B. Longitudinal response function 

The matrix elements for lliO (4·38) are calculated generally for all temperatures, 

and are given below: 

(5·7) 

(5·8) 

(5·9) 

This yields for the longitudinal response function (4·9) at all temperatures: 
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20 J Daicic and N. E. Frankel 

=1- 47re
2 L:L:{ €FE,(p')-€'Fkp) 

€L com V P,P'E,E' ftco-(€E(p)-€'E(p'))+i7J 

X 2mc2Etp)E(P') ([( ~m2c4+(€p-€'p,)c2)€'E(P') 

+ ~ (2E2(p') + m2 c4) €E(p) ] €~~ k 

+ [( ~ m2c4+(€p_ €'p')c2 )€' E(p') 

+ ~(2E2(p)+m2c4)€'E(P')] €'~2-k )OEP'E'P'+lIk}. (S-10) 

At zero temperature, we employ the distribution functions (S~S) and (S-6) to 

obtain for the longitudinal response function: 

where 

_( 41(Ne2 )1/2 
COp- mV 

is the plasma frequency. 

This is precisely the longitudinal response function found by KFH3
) and WKH4

) 

for the spin·zero pair plasma at zero temperature. We note that, at zero temperature, 

the coupling of the spin-one boson momentum to the intrinsic spin vanishes, as all of 

the .bosons are in the ground state. Thus, the only true distinction between spin-one 

and spin-zero bosons is that the former couple to the perturbing magnetic field via 

their intrinsic spin. The result (S -11) indicates clearly that, at zero temperature, this 

coupling does not manifest itself in the longitudinal response of the system. The 

result is not surprising, as in the longitudinal case we are investigating the perturba

tions due to the first order scalar potential (/)1. When all of the bosons are in the 

ground state, this must correspond purely to an electric field perturbation, and hence 

no effect due to the spin-magnetic field coupling of spin-one bosons manifests itself in 

this case. 

Whilst we do not propose to explicitly evaluate the dielectric function for a finite 

temperature plasma, it is possible to make at least some qualitative remarks regard

ing the general expression for the dielectric function (S -10). FIrst, it differs markedly 

from the result of KFH3
} and WFH4

) for the spin-zero plasma, which is 

_ _ 41(e2 ...., { €FE,(p') - €' FE(p) 
CL(SPin zero) -1 com V f;t, tJ, ftco - (€E(p) - €' E(p'») + i7J 

x 4E(i>~(P') (€' E(P') + €E(p))(€p+ €'p')- ; OEP'E'P'+lIk} . (S-12) 

We note, referring to the matrix elements (S·7)~(S·9), that the difference arises from 
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Relativistic Spin-One Boson Plasma 21 

the coupling of spin to momentum in the spin-one case. It is by no means clear that 

(5·10) reduces to (5·12) upon direct evaluation, and one concludes, a priori, that the 

longitudinal response of the spin-one pair plasma at finite temperature differs from 

that of the spin-zero pair plasma, the two agreeing only. at zero temperature. 

C. Transverse resPonse function 

For the transverse response function given by (4·10), we calculate the spin sums 

on the matrix elements for IIi) (4·39) at zero temperature, and find that only five of 
<--> 

these are non-zero upon contraction with the tensor I -(1/k
2
)kk. These are 

~ 1 <' '\ -ik·r· *-k \ >< \ ik·r *-k \' '> tt,T €, a pge emni6mn n €, a €, a poe euv)6un v € , a 

8E(tik)E(0) (€E(tik) + €' E(0))2(ti
2
k

2
oij-tikitikJ , 

~ { z <' ,\ -ik·r *-k \ > tt, 2 €, a pge emni6mn n €, a 

x <€, a\iP2eik .r[6io-· p) +(0- . (p+tik))6j]\€', a'>} 

8E(tik)E(0) (€E(tik)-€'E(0))2(ti2k
2
oij-tikitikj) , 

~<€, a\po\€, a>=3 . 
s 

(5·13) 

(5·14) 

(5·15) 

(5·16) 

These combine to form IIij at zero temperature, and hence via (4·10) the zero 

temperature transverse dielectric response function: 

This expression may be simplified to 

(5·18) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

8
/1

/1
/1

8
9
8
3
6
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



22 J Daicic and N. E. Frankel 

where we have put n=c=1. 

In (5 ·18), we have a new result which is of great interest. First, it must be noted 

that whilst the longitudinal response function (5 ·11) which we obtain agrees with that 

of Williams and Melrose [Ref. 5), Eq. (41)], the transverse response function (5·18) 

differs from the corresponding expression in their paper [Ref. 5), Eq. (42)], by a factor 

of - 2k2 / (k2 - ai) in the final term. It is difficult to establish whether the cause for the 

discrepancy arises from the manipulation of the formalism employed by Williams and 

Melrose, or in their explicit evaluation of the response function at zero temperature. 

Certainly, it must be stated that the two results should agree, and that in the RP A 

equations of motion technique which we have employed in this paper, the origin of 

each matrix element product appearing in the polarization tensor IS clear. 

In the case of the transverse response function, the matrix elements appearing at 

zero temperature (5 ·13) to (5 ·16) are those which arise due to the coupling of the 

particle spin to the perturbing electromagnetic field. These form the final term in 

(5·18): 

2 (()/ k2((()2_ k2) 
3 (iT ((()2 - k2)2 - 4 m2 (()2 • 

(5·19) 

The factor of 2/3 in this term strongly suggests, that if we consider the transverse 

modes of oscillation as the response of the plasma to electromagnetic waves imping

ing upon an ensemble of spin states, then only two-thirds of these (s=l and s= -1) 

will couple to the (perturbative) magnetic field component of the wave. Now, (5·19) 

takes into account pair creation caused by the collective transverse plasma oscilla

tions. One may postulate that the correlation between the pair-creation particles' 

charge and spin projection, and the coupling of the latter to the perturbative magnetic 

field and the former to the perturbative electric field (which induces the conventional 

transverse collective mode of oscillation) indicates that we have a phenomenon in the 

spin-one pair plasma that did not exist in the spin-zero case-the influence of single 

particle effects, via a magnetic field coupling, upon the transverse collective mode of 

oscillation. Indeed, for the spin-zero plasma, which is only distinguishable from the 

spin-one plasma at zero temperature by the lack of spin-field coupling, WKH4
) find the 

standard cold plasma result for the transverse response function: 

(5·20) 

N ate that for k 2 =0 (that is, infinite wavelength electromagnetic radiation), (()2= k
2 

(the vacuum dispersion relation, equivalent to the plasma not existing at all), or 

(()/=O (also equivalent to the "removal" of the plasma by setting ~=O or N/V=n 

=0), (5 ·19) vanishes. Furthermore, if our interpretation of (5 ·18) is correct, then we 

expect the pair-creation effects to vanish in a non-relativistic limit, whence (()p2~1, k2 

~1 and m2~ 1. A cursory inspection of (5 ·18) shows this to be so, and we obtain for 

eT, in this limit, (5· 20), the cold plasma result. 

D. Mode analysis 

Both KFH3
) and WKH 4

) discuss in detail the longitudinal modes bf oscillation for 
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Relativistic Spin-One Boson Plasma 23 

the spin-zero pair plasma, which we have shown to be those of the spin-one pair 

plasma as welL However, as we shall see from our discussion of the transverse 

modes, this analysis requires some revision following the manifestation of some 

subtleties which have been previously neglected. 

The transverse response function (5 ·18) yields the transverse modes of oscillation 

via (4·12): 

k2 _ (j)/ ( 2 k2((j)2 - k2) ) 
7-1----;;)2 1+3 ((j)2_k2)2-4m2(j)2 . (5·21) 

It would be tempting to multiply both sides of (5·21) by (j)2(((j)2_k2)2_4m2(j)2) to 

obtain a cubic in (j)2, and then solve for the functional dependence of (j)2 upon k2. This 

indeed is the method pursued by Williams and Melrose, and they obtain three modes 

of oscillation for the plasma [Ref. 5), Eq. (45) to (47)]. Two of these are clearly 

spurious, as they do not yield the vacuum dispersion relation for electromagnetic 

waves when (j)p is set to zero. Apart from the fact that their transverse response 

function is in disagreement with our own, Williams and Melrose have incorrectly 

analysed the mode equation. This is compounded by the fact that they label one of 

their modes "roton-like". To give such an interpretation to a transverse mode of 

oscillation of a plasma is fallacious. They have also done this for the transverse 

modes of oscillation of the spin-zero pair plasma in the same paper [Ref. 5); Eq. (32)]. 

Whilst in this case they recover the correct transverse response function at zero 

temperature, which yields the cold plasma modes of oscillation ((j)2=(j)p2+k2), they 

invent a limiting procedure where they find the "dispersion relation where complete 

degeneracy is approached", and find two modes of oscillation (the "pair branch" and 

"roton-like" modes [Ref. 5), Eqs. (31) and (32)] which are clearly spurious, as again 

they do not yield the vacuum dispersion relation for electromagnetic radiation when 

(j)p is set to zero. Their employment of integrals over momentum states at zero 

temperature, the boson ground state distribution function as a Dirac delta function, 

and this questionable limiting procedure, yield these spurious transverse modes for 

both the spin-zero and spin-one pair plasma. The correct manner for dealing with 

the boson ground" state is to leave the momentum sum's as they appear, and employ for 

the distribution functions Kronecker delta functions on the ground state, as we have 

done (5·5). In the light of this, no "limit to complete degeneracy" is evident. Thus, 

no "pair branch" or "roton-like" modes appear. 

Referring to the mode equation (5·21), one sees that by multiplying both sides by 

(((j)2-k2)2-4m2(j)2) would, in the limit that (j)p-->O, predict three modes of oscillation 

for electromagnetic radiation in a vacuum, these .. being 

(j)2=k2 

and 

(5·22) 

(5·23) 

The two modes (5·23) indicate that we have introduced a situation where pair 

creation no longer occurs solely through the collective mode of oscillation of the 

plasma, and indeed persists when the plasma is removed. The dispersion relations 
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24 J Daicic and N. E. Frankel 

(5·23) can in no way represent electromagnetic radiation in vacuo, and hence are 

clearly spurious. Physically, the final term of (5·19) should influence a collective 

mode, not establish itself as a mode of oscillation of the plasma. Again, these 

spurious modes are introduced through careless algebraic manipulation of the mode 

equation. 

Thus, the correct procedure for finding the modes of oscillation is to leave (5·21) 

in its present form, and to iterate for small values of k2~1, in order to find small order 

expansions for the single collective mode, for various values of the scaling variables 

Wp and m. Following this procedure, we obtain for the transverse mode of oscilla· 

tion: 

W 2 
W2=Wp2+ ~ k2+O(k4)+ ... , (5·24) --p----> 00' 

4m2 . 

2 
w

2
= Wp2+ [1 + ~ ( w/~~m2 ) ]k

2
+ O(k

4
) + ... , 1< :~2 <00: (5·25) 

2 1 

:~2 =1: W2=W/+( ~? wplkl+ ~ k
2
+ O(lkI

3
)+ ... , (5·26) 

3 w 2 
5< 4~2 <1: w2=W/+[1- ~ (4m~~2w/ )]k

2
+O(k

4
)+ ... , (5·27) 

w 2 3 4k4 
(5·28) --p-=_. w2=w/+ Wp2 + O(k6)+ ... , 

4m2 5' 

w 2 3 
w2=w 2+[1-1..( w/ )]k2+O(k4)+ ... (5·29) 0< 4~2 <5: p 3 4m2- Wp2 , 

W 2 
w2=w/+k2. -p---->O· 

4m2 . 

a=1 

a=100 

1.02 

0.98 

0.96 

0.025 0.05 0.075 0.1 0.125 0.15 

1£ 
Wp 

Fig. 1. The transverse mode of oscillation, given 

by Eqs. (5·24) to (5·30), is shown above with 

w/wp as a function of k/wp, for different values 

of the scale parameter a=w//4m2
• The 

curves are plotted for k/wp<{l, as the validity 

of Eqs. (5'24) to (5·30) is limited to this 

asymptotic region. Note in particular the 

near linear behaviour for a=l, and the nega· 

tive dispersion region demonstrated by the 

curve for a=0.8. 

(5·30) 

We have in Eqs. (5·24) to (5·30) a 

rich harvest of results for the various 

regions delineated by the value of Wp 

relative to m. We note that for all of 

these regions, the cutoff frequency for 

the modes of oscillation is the plasma 

frequency, as one would expect in the 

case of zero field and zero temperature. 

The dispersion relation (5·24) is that of 

the ultra· relativistic spin-one pair plas

ma, and we see that in this limit, the 

pair creation term (5·19) is contributing 

fully (to order k 2
) to the collective behav

iour of the system. In the region of 

(5·25), the pair particle contribution to 

the k 2 term in the dispersion relation is 

weighted by the relative magnitude of 
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Relativistic Spin-One Boson Plasma 25 

the particle mass to the plasma frequency. The dispersion relation when m//4m2=1 

(5'26) is most interesting. First, it is here that the dispersion relation changes order, 

from being one where m2
r:x k 2 to leading order, to one where the leading term in the 

expansion is of order Ikl. This must be essentially a resonance effect, as now the 

collective oscillation of the plasma is precisely tuned to the creation of pairs, altering 

quite dramatically the dispersion relation. Again, in the region of (5·27), the disper

sion relation returns to being of order k2
• This region is also of great interest, as the 

group velocity of the electromagnetic wave now points in the opposite direction to the 

wave vector, as the coefficient of k 2 is always negative. Such a phenomenon is also 

apparent in the longitudinal modes of oscillation, as discussed by KFH3
) and WKH,4) 

and they refer to this phenomenon as "negative dispersion". In the transverse case, 

this would correspond to the impinging electromagnetic wave being reflected by the 

plasma, a fascinating result. Equation (5'28) indicates that again, at mp2/4m2=(3/5), 

the dispersion relation changes order, with k4 now becoming the leading term in the 

expansion. It appears, at least to order k2
, that the pair creation effects are 

countervailing the collective behaviour of the system. In the region of (5·29), the 

dispersionrelation returns to that of (5·25). Finally, (5·30) is the exact expression in 

the non-relativistic limit, and here we obtain the standard cold plasma dispersion 

relation, as expected. 

We re-iterate that the results of (5'24) to (5'30) differ significantly from the cold 

plasma result obtained by WKH4) for the spin-zero pair plasma, which in that case 

applies from the non-relativistic through to the ultra-relativistic limits, and it is only 

in the non-relativistic limit that a spin-one and spin-zero boson plasma have the same 

transverse mode of oscillation. 

This now leads to a re-examination of the longitudinal modes of oscillation, . 

obtained from the substitution of (5'11) into (4'12). These modes were first analysed 

by KFH3
) and again by WKH4) in their respective studies of the spin-zero pair plasma. 

The mode equation is 

m/(m2- k2-4m2) 
(m2- k2)2-4m2m2 1. (5'31) 

One sees immediately that multiplying up by the pair denominator will introduce 

similar spurious modes into the dispersion relation as would occur if the transverse 

mode equation were manipulated into a cubic. However, as KFH3
) show, the quartic 

obtairied in the longitudinal case factors into two quadratics in m. However, this 

procedure is only valid if one recognizes the spurious mode (the "pair branch", as it 

is labelled in Refs. 3)~5)), in the various regions of solution delineated by the value 

of the parameter m/ /4m2
, and rejects it. Thus, there is only one longitudinal mode 

of oscillation at zero temperature, for the spin-zero and spin-one pair plasma. This 

is 

(5·32) 
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26 J Daicic and N. E. Frankel 

0.8 ~0"""""--;:':0.2::-----;:':0.''''--0::';.6'''--0;:';:.8'''---!-----:,~.2 

Fig. 2. The longitudinal mode of oscillation, de

scribed by Eqs. (5'32) to (5'35), is plotted 

above. The full form for the dispersion rela

tion, valid for all k, has been used. Again, the 

curve for a=l is near-linear, and the longitudi

nal negative dispersion region is shown by the 

curves for a=O.9 and a=O.l. 

W 2 

4~2 =1: w
2
=4m

2
+2mlkl+k

2 

=wp2+wplkl+k2, (5'33) 

(5'34) 

W 2 k4 
--P---70' /.,2_/., 2+ __ 
4m2 . <.U -<.Up 4m2 .. (5'35) 

Again, the pair creation resonance 

effect is apparent at w/=4m2 (5'33), 

altering the leading order of the disper

sion relation from k
2 to I hi. The relation (5' 34) is the "negative dispersion" mode 

discussed by KFH3
) and WKH.4) Equation (5·35) is the exact result for th~ longitudi

nal modes of a non-relativistic spin-zero or spin-one boson plasma at zero tempera

ture. Finally, we note that Kowalenko and Frankel29
) are preparing a similar exami

nation of the modes of oscillation of a spin-zero pair plasma with an external 

magnetic field present. 

§ 6. Conclusion 

In this paper, we have given a comprehensive treatment of the linear response 

theory of the spin-one pair plasma, evaluating a general expression for the polariza

tion tensor in the case of no external fields, and explicitly calculating the longitudinal 

and transverse modes of oscillation at zero temperature. All of this work required a 

thorough and detailed study of the Sakata-Taketani equation for relativistic spin-one 

particles, which We have presented in § 3 of this paper. 

The zero temperature results for the modes of oscillation were seen to be, in the 

longitudinal case, precisely those of the spin-zero pair plasma, which was studied by 

KFH3
) and WKH.4) However, we found it necessary to alter the analysis of the 

modes by these authors, since there exist spurious modes of oscillation which should 

be discarded, leaving a single longitudinal mode of oscillation. We found, similarly, 

that there is only one transverse mode of oscillation, which disagrees with the result 

of Williams and Melrose5
) who find three modes, two of which do not exhibit the 

appropriate behaviour in the limit of Wp--70. This disagreement also extended to 

their formal result for the transverse response function itself. Furthermore, it was 

seen that pair creation effects, via the coupling of spin to the perturbative magnetic 

field, caused the transverse mode of oscillation to differ from the cold plasma result 

obtained by WKH4) in their spin-zero plasma work. 

The most obvious extension of this work is to a spin-one pair plasma with an 
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Relativistic Spin-One Boson Plasma 27 

external magnetic field present. In this case, we expect that the spin-one plasma 

results will differ markedly from the corresponding spin-zero results investigated by 

KFH3
) and WKH,4) due to the coupling of the particle spin to the external field, as well 

as to the perturbative magnetic field. This study will require a detailed treatment of 

the solutions of the Sakata-Taketani equation in the presence of external potentials, 

followed by the evaluation of the matrix elements comprising the polarization tensor 

for this magnetized plasma. We look to present this in a future paper. 

Furthermore, a thorough renormalization program for the polarization tensor of 

the vacuum for both the free-field and magnetized case is required, and will also be 

discussed in a future paper. Another important extension of the work, to which we 

have alluded in § 5 of this paper, is to a finite temperature plasma. The statistical 

mechanics of a relativistic (pair) boson system has been given by Habe~ and 

Weldon. 30) It would be a most engaging study to incorporate this work into the study 

of a spin-one plasma, to yield the temperature dependent response functions and 

concomitant modes of oscillation, particularly about the appropriate Bose-Einstein 

condensation temperature. This would represent the relativistic generalization of 

the work of Hore and FrankePl) for the non-relativistic spin-zero boson plasma. 

This, at present, is our most optimistic goal. 
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