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1 IntroGuction 

-4 manifestly covariant form of relativistic statistical mechanics has more general structure 

than the standard forms of relativistic statistical mechanics, but reduces to those theories 

in a certain limit. to be described precisely belo:.- These theories. which are characterized 

classically by mass-shell constraints, and the uc in quantum field Lleory, of fields which 

are constructed on the basis c c  I rnass-shell free fields, are associated with the statistical 

treatment of world lznes an( <;ice, considerable coherence (in terms of the macroscopic 

structure of whole world lines as the elementary objects of the theory) is implied. In 

nonrelativistic statistical mechanics, the elementary objects of the theory are points. The 

relativistic analog of this essentially structureless foundation for a statistical theory is the 

set of points in spacetime, i.e., the so-called events, not the world lines (Currie, Jordan 

and Sudarshan [ 11 have discussed the difficulty of constructing a relativistic mechanics on 

the basis of world lines). 

The mass of particles in a mechanical theory of events is necessarily a dynamical 

variable, since the classical phase space of th . relativistic set of events consists of the 

spacetime and energy-momentum coordinates iy2, t,; pz, Ez} ,  with no a priori constraint 

on the relation between the pz and the E,, and hence such theories are “off-shell”. It is well 

known from the work of Newton and FVigner [a] that on-shell relativistic quantum theories 

such as those governed by Klein-Gordon or Dirac type equations do not provide local 

descriptions (the wave functions corresponding to localized particles are spread out); for 

such theories the notion of ensembles over local initial conditions is difficult to formulate. 

The off-shell theory that we shall use here is, however, prf iely local in both its first and 

second quantized forms [3. 41. 

We finally remark that the standard formulations of quantum relativistic statistical 

mechanics, and quantum field theory at finite temperature, lack manifest covar;ance on 

a fundamental level. As for nonrelativistic statistical mechanics, the partition function is 

described by the Hamiltonian, which is not an invariant object, and hence thermodynamic 

mean values do not have tensor properties. [One ould consider the invariant p p n p  in place 

of the Hamiltonian [5], where n p  is a unit four-vector; this construction (supplemented 

by a spacelike vector othogonal to n”) implies an induced representation for spacetime. 

e quantity that takes the place of the parameter t is then x,np; in the corresponding 

quantum mechanics, the space parts of (induced form of) the momentum do not com- 

mute with this time variable. Some of the problems associated with this construction 

are closely related to those pointed out by Currie, Jordan and Sudarshan [l], for which 

different world lines are predicted dynamically by the change in the form of the effective 

Hamiltonian in different frames.] Since the form of such theory is not constrained by 

covariance requirements, its dynamical structure and predictions may be different than 

for a theory which satisifies these requirements. For example, the canonical distribution 

of Pauli [6] for the free Boltzmann gas has a high temperature limit in which the energy 

is given by 3 k ~ T ,  which does not correspond to any known equipartition rule, but for 

the corresponding distribution for the manifestly covariant theory, the limit is 2 k ~ T .  in 

agreement with iksT for each of the four relativistic degrees of freedom [7, 81. For the 

quantum field theories a t  finite temperature, the path insegral formulation 191 replaces the 



Hamiltonian in the canonical exponent by the Lagrangian due to the infinite product of 

factors (01:) (transition matrix element of the canonical field and its conjugate required 

to give a 1Vw-l ordered Hamiltonian its numerical value). However, it is the t x-ariable 

which is analvtically continued to construct the f;T!ite temperature canonical ensemble. 

completely removing the covariance of the theore .;a1 framework. One may argue that 

some frame has to be chosen for the statistical theory to be developed, and perhaps even 

for temperature to have a meaning, but as we have remarked above. the requirement of 

relativistic cowri e has dynamical consequences (note that the model Lagrangians used 

in the non-co iaALt formulations are established with the criterion of relativistic covari- 

ance in mind), and we argue that the choice of a frame, if necessary for some physical 

reason, such as the definition and measurement of temperature. should be made in the 

framework of a manifestly covariant structure. 

The standard formulation of a finite-temperature field theory is also known to es- 

perience difficulties of a different kind: Consider the breaking of Lorentz invariance in 

matter or temperature states [lo]. It leads to the Xarnhofer-Thirring theorem stating the 

impossibility of a perturbation theory with quasiparticles at  finite temperature [ll]. In 

other words. the entities to be used for a perturbative description in statistical systems 

must have a continuous mass spectrum - they cannot be quasiparticles. The formula- 

tion of a finite-temperature perturbation theory for quantum fields with continuous mass 

spectrum has been developed in [12], and generalized to time-dependent [13, 141, as well 

as spacially inhomogeneous [ 151 nonequilibrium situations. Transport equations for quan- 

tum fields with continuous mass spectrum have been derived in [16]. The framework of 
a manifestly covariant relativistic statistical mechanics, to be discussed in what follows. 

eliminates two fundamental drawbacks of the standard formulation discussed above: It 

has a manifestly covariant structure, and operates quasiparticles. 

In the framework of a manifestly covariant relativistic statistical mechanics, the dy- 

namical evolution of a system of N particles, for the classical case, is governed by equations 

of motion that are of the form of Hamilton equations for the motion of N events which 

generate the space-time trajectories (particle world lines) as functions of a continuous 

Poincare-invariant parameter T [17, 181, usually referred to as a "proper time". These 

events are characterized by their positions qfi = ( t ,  q) and energy-momenta p p  = ( E .  p) in 

an 8LV-dimensional phase-space. For the quantum case, the system is characterized by the 

(qL = 4:: i = 1 ,2 , .  . . , N ) ,  describing the distribution of events, which 

evolves with a generalized Schrodinger equation [18]. The collection of events (called 

"concatenation" [19]) along each world line corresponds to a particle, and hence, the evo- 

lution of the state of the N-event system describes, a posteriori, the history in space and 

time of an .V-particle system. 

wave function vT(qI1 q 2 , .  . . , q N )  E L 2 ( R 4 N ) ,  with the measure d4qld4q2.. - d  4 q,$r G d4-"q. 

p = 0,1 ,2 ,3 ;  

For a system of !V interacting events (and hence, particles) one takes [18] 

where &\I is a given fixed parameter (an intrinsic property of the particles), with the 

lirnension of mass, taken to be the same for all the particles of the system. The Hamilton 



equations are 

(1.2) 

In the quantum theory, the generalized Schrodinger equation 
~ 

describes the evolution of the :V-body wave function vT(ql, q 2 , .  . . , qn;) .  To illustrate the 

meaning of this wave function, consider the case of a single free event. In this case (1.3) 

has the formal solution 

$T ( 4 )  = ( e - z K o T ~ o )  ( 4 )  (1.4 

for the evolution of thT, free wave packet. Let us represent GT(q) by its Fourier transform, 

in energy-momentum space: 

(1.5) 

where p 2  = pppp .  p + q G p p q p ,  and $o(p)  corresponds to the initial state. Applying the 

Ehrenfest arguri. ;its of stationary phase to obtain the principal contribution to wWT(q) for 

a wave packet a t  p f ,  one finds (pf is the peak value in the distribution ~ o ( p ) )  

consistent with the classical equations (1.2). Therefore, the central peak of the wave 

packet moves along the classical trajectory of an event, i.e., the classical world line. 

It is clear from the form of (1.3) that one can construct relativistic transport theory in 

a form analogous to that of the nonrelativistic theory; a relativistic Boltzmann equation 

and its consequences, for example, was studied in ref. [20]. 

2 Ideal relativistic gas of events 

To describe an ideal gas of events in the grand canonical ensemble, we use the expression 

for the number of events given in 171 (in the following we shall use the system of units in 

which c = Icg = 1. unless otherwise specified), 

(2.1) 

where E = p o ,  m2 = -p2 = -pppP,  and the sign in the denominator of (2.1) is determined 

by the event statistics in the usual way; ,uK is an additional mass potential [7], which 

arises in the grand canonical ensemble as the derivative of the free energy with respect 



to the value of the dynamical evolution function K .  interpreted as the invariant mass 

of the system. In the kinetic theory 171. p~ enters as a Lagrange multiplier for the 

equilibrium distribution for K ,  as 1-1. is for -V and 1/T for E .  In order to simplify subsequent 

considerations. n-e shall take it to be a fixed parameter. 

Since the rien- mass potential is atypical of the standard formulation of statistical 

mechanics. in cintrast to p. we shall dwell upon the question of the additive properties of 

P K  (and 1 4  

2.1 

To clarify the additive properties of the both potentials. consider a model two-phase sys- 

tem. -4ccording to the Gibbs criteria, the equilibrium conditions for two phases consisting 

of ' mtical particles are the equalities of temperature, chemical potential and pressure in 

bolli phases [ Z l ] .  For, e.g., a system the baryon content of which is partly in quarks ar ' 

partly in nucleons, the conservation of the total baryon number yields 

Additiveness of ,u and 1 / p ~  

?iq 
- + Nlv = const, and hence diVq = -3d,V.v, 
3 

(2 .5,  

if there are :Vq quarks more than antiquarks, and iVlv nucleons more than antinucleons. 

since there are three quarks in a baryon. In or4er to establish a relation between the 

chemical potentials of quarks and nucleons a t  phase equilibrium, we consider the Gibbs 

free energy 

The use of the second law of thermodynamics in the generalized form [7] 

G(T,  P, N )  = E - T S  +PI'. (2.3) 

in the differential of (2.3) leads to 

from which [7] 

(2.4) 

(2.5) 

(2.6) 

By minimizing the Gibbs free energy at fixed temperature, pressure and total mass squared 

( I C )  and using (2.2),(2.6), we obtain 

and therefore 

Similarly. 



Since the analog of (2.2) for the conservation of the total mass squared ( K )  reads. obvi- 

('2.10) 

the minimization of the Gibbs free energy at fixed temperature. pressure and total particle 

number yields 

ously, 

K.v + 3Kq = const. and hence dKpi = -3dK9. 

and therefore 

(2.11) 

(2.12) 

Following the same logics, one can easily show that,  for a general type of many-species 

equilibrium , 
-41 + A2 + . . . + A x  t-) B1 + B2 + . . . + Bhr, (2.13) 

the chemical and mass potentials satisfy the following types of additivity: 

(2.15) 

3 Linear mass spectrum 

In the following, we restrict ourselves to the case of the events obeying Bose-Einstein 

statistics and use, therefore, the relation (2.1) with the minus sign in the denominator. 

Similar analysis can be easily made in the case of the Fermi-Dirac events, which we skip 

here for brevity. 

To ensure a positive-definite value for npp, the number density of bosons with four- 

momentum p", we require that 

The discriminant for the 1.h.s. of the inequality must be nonnegative, i.e., 

For such p. (3.1) has the solution 

(3.1) 



i 

For small jLph /-\I. the region (3.3) may be approximated by 

2.11 
p < m < - .  (3 .4 )  

One sees that ,uK plays a fundamental role in determining an upper bniind of the mas> 

spectrum, in addition to the usual lower bound m 2 p.  In fact. small , admits a very 

large range of off-shell mass. and hence can be associated with the presence of strong 

interactions [22]. For our present purposes it will be sufficient to assume that the mass 

distribution has a finite range ml 5 m 5 m2 around the on-shell value m, = All/puci 

corresponding to the limiting value for which the inequality (3.2) becomes an equality. 

In order to show that our results hold independent of the dimensionality of spacetime. 

we shall consider our ensemble in one temporal and D spatial dimensions, D 2 1. 

Replacing the sum over p” (2.1) by an integral, 

where V(l+D) is the system’s (1 + D)-volume, and using the relation (p” = ( P O .  p ) )  

one obtains for the density of events per unit (1 + D)-volume, n 3 :\;/T.,’(l+D): 

( 3 . 5 )  

with f ( p )  z npV, as given in Eq. (2.1). Typical average values are given by the relations 

(3 .6)  

(3 .7)  

To find the expressions for the pressure and energy density in our ensemble. we study 

the particle energy-momentum tensor defined by the relation1 [20] 

Tp(ly(q) = 1 d r a 6 1 ’ D ( q  - q i ( ~ ) ) ,  
a mC 

in which mC is the value around which the mass of the events making up the ensemble is 

distributed. Upon integrating over a small (1 + D)-volume AV and taking the ensemble 

average, (3.8) reduces to [20] 
TA V 

(T”””) = -n(p”p”). 
mC 

(3.9) 

‘The ccrresponding relation of ref. [ZO] is given in four-dimensional spacetime. 



In this forniuia. n = -\-/Ir, anti - i t r  is the average passage interval in 7 for the events 

which pass through AIr, which we discussed above. The formula (3.9) reduces, through 

Eq. ( 3 . 7 ) ,  to 

Using the standard expression 

where p and p are the particle pressure and energy density, respectively, w e  obtain 

and therefore, through (3.10), 

.(3.10) 

Til\- 

(3.11) 

(3.12) 

(3.13) 

Fire now calculate the particle number density per unit D-volume. The particle (1 + D)-  
current is given by the formula [20] 

(3.14) 

which upon integrating over a small (1 + D)-volume and taking the average reduces to 

TAV 
(P) = -n(p”); 

m, 

then the particle number density [ 5 ,  231 is 

(3.15) 

so that. with the help of (3.6), 

Since 

(3.16) 

(3.17) 

(3.18) 

(3.19) 



and 

i 

are the standard expressions for the pressure. energy density and particle number density 

in 1 + D dimensions, respectively [24, 25 .  261. we have the following relations: 

(3.21) 

(3.22) 

(3.23) 

It is seen in these relations that the manifestly covariant framework provides a linear 

muss spec trum,  independent  of the  d imens ional i ty  of spacet ime.  In order to obtain the 

expressions for the basic thermodynamic quantities, one has to integrate the standard 

(on-shell) results over this spectrum within the range of the mass distribution. 

On the other hand, Eqs. (3.21)-(3.23) imply that the statistical ensemble provides a 

linear distribution. If we assume that the number of degrees of freedom is conserved in 

what might be considered as a sequence of nucleation to quasi-discrete levels, it follows 

that the degeneracy should be spread linearly on the interval ml 5 m 5 m2. with the 

linear mass spectrum 

.(m) = Cm, (3.24) 

which leads to the formula 

(3.25) 

and analogous relations for p and N o  (similar to the treatment of a strongly interactinr 

system by means of a particle resonance spectrum [28]). In fact, the linear mass spectru1: 

finds its confirmation in the experimental hadronic resonance spectrum. If one calculate- 

for example, the pressure in the hadronic resonance gas by summing up the individua 

contributions of hadronic species within a given multiplet, e.g., the vector meson none 

(~(7’70) .  u(783),  K*(892), 4(1020)), baryon J = 1/2 octet (iV(939), 1\(1115). X ( l  190). 

E(1320)). or baryon J = 3/2 decuplet (A(1232). C*(1385), f 1330), fl(1672)). I-, .I the 

corresponding degeneracies, 

(3.26) 

and by using the formula (3.25), in which ml and m2 are the masses of the ligh .t and 

the heaviest species, respectively, the results coincide. The details of this analysis, as 

well as conclusions concerning the overall mass spectrum in the ensemble composed by 

the different hadronic multiplets, and the thermodynamics of this ensemble, are discussed 

elsewhere [29. 30, 311). Here, for brevity, we only show that the linear mass spectrum 

leads the Gell-IIann-Okubo mass formula for a meson octet [32]. 



c 

Let us place 8 isospin degrees of freedom of a meson octet (3  of an isovector. 4 of an 

isodoublet and 1 of an isoscalar; e.g., 3 pI 4 IC" and 1 L L . ' ~ )  in the mass interval ( r n ~ = ~ .  r r ~ ~ = ~ )  

in such a n-a? that ensures the equality of the average mass squared as calculated either 

with the help of the linear mass spectrum or directly by definition, 

(3 .27)  

which corresponds to f!!e conservation of the total mass squared ( K )  in n-hat might be 

considered as a sequeilce of nucleation to the quasi-discrete mass levels nzr,l, ml=1/2. 

ml,o. It ther; , O ~ ~ O W S  from (3.27) that 

(3.28) 

which is the standard Gell-Mann-Okubo mass formula for a meson octet [32]. 

In general, the normalization constant C of (3.24) is determined by the condition 

where v is the number of states in the mass interval (ml, m2); therefore 

2v 

m; - mf' 
C =  

It then follows that  

(3.29) 

(3.30) 

(3.31) 

i.e., ~ ( m )  represents the density of states per unit mass interval, which is linear in mass 

in the case of an individual hadronic multiplet [29, 30, 311. 

4 Cubic mass spectrum 

-4s discussed in a previous Section, the manifestly covariant framework provides a good 

model for the nucleation of individual hadronic multiplets, in terms of the linear mass 

spectrum. It is interesting to  ask whether this framework can be suitable for the descrip- 

tion of hadronic resonance gas which is known to be composed of different multiplets which 

populate linear rising Regge trajectories. As is clear from what follows, the description of 

hadronic resonance gas in the manifestly covariant framework necessitates the introduc- 

tion of antz-events, i.e., the events moving in the opposite direction of a proper time. They 

were first discussed in [33]. It turns out that the account for the anti-events results in the 

opposite signs of both pK in the expression for the anti-event distribution function and 

the density of anti-events per unit (1 + D)-volume, as compared to  those for the events. 

(The situation is similar to the account for antiparticles in the standard framework which 



results in the opposite signs of the antiparticle chemical potential and the 

number densit? per unit space volume, as comparted to those for particles.) 
antiparticle 

The use of 

for small 

sDectrum: 

!??I. in the expressions of Section 3. will result in the new, 

To see how this cubic mass spectrum complies with t,he actual mass spectrii 

which populate linear trajectories, we dwell upon the latter. 

4.1 Mass spectrum of linear Regge trajectories 

cubic. mass 

(4.1) 

(4.2) 

(4.3) 

J f  hadrons 

It is very easy to show that the mass spectrum of an individual Regge trajectory is cubic. 

Indeed, consider, e.g., a model linear trajectory with negative intercept: 

a( t )  = a’t - 1. (4.4) 

The integer values of a( t )  correspond to the 2tes with integer spin, J = a ( t J ) ,  the 

masses squared of which are m2(J)  = t ~ .  Since a spin-J state has multiplicity 2J  + 1, the 

number of states with spin 0 5 J 5 J’ is 

J=O 

(4.5) 

in view of (4.4)) and therefore the density of states per unit mass interval (the iiiass 

spectrum) is 

dN(m) ’ 2  3 7(m) = ~ - -4a m .  
dm 

(4.6) 

It is also clear that  for a finite number of collinear trajectories, the resulting mass spectrum 

is 

(4.7) ’ 2  3 .(m) = m a  m , 

where S is the number of trajectories, and does not depend on the numerical values of 

trajectory intercepts. as far as its asymptotic form m + cc is concerned. 



4.2 Mass spectrum of an ind vidua hadronic multiplet 

It then follows that the form (4.7) of the cubic spectrum of the family of collinear Regge 

trajectories allo~vs one to establish the normalization constant of the linear spectrum of' 

an individual hadronic multiplet. 

Consider the family of hadronic multiplets with spin O , l ,  ..., which populate collinear 

,ijectories. Then the total number of states can be obtained in two ways: summing up 

individual trajectories for every fixed value of isospin. or summing up individual multiplets 

for every fixed value of spin. Either way should lead to the cubic spectrum, as discussed 

above. In the case of meson multiplets (similar analysis may be done in the case of 

baryon multiplets, of course), in Eq. (3.26) gz = ( 2 J ,  + 1)(21z + l)', where J,  and I ,  are 

the values of individual spin and isospin, respectively (""' means that for I ,  = 1/2. the 

above expression for gz should be multiplied by 2) .  Then, in view of (3.26), (4.4), 

Since also J ,  2: cu'm;, it follows from the above expression that2 

(4.8) 

Le., one sees that the mass spectrum of an individual meson multiplet is indeed linear. 

and its normalization constant is C = 2Na'. 

Thus, the manifestly covariant framework can be a good model for the nucleation c J L  

hadronic resonance gas composed of different multiplets which populate collinear Regge 

trajectories, since. as we have seen above, it does provide the cubic spectrum in its event- 

anti-event version. Now it becomes of special interest to ask if this cubic spectrum of the 

family of multiplets, or the linear spectrum of an individual multiplet, can predict the 

masses of the states. 

5 Particle spectroscopy 

Let us start with meson spectroscopy. To establish the masses of the states in the model 

of collinear Regge trajectories discussed above, one has to know the intramultiplet mass 

and the mass of the lowest-lying isovector, ml=l. The former can be 

easily found with the help of (4.9), for 9 isospin degrees of freedom of a meson nonet placed 

in the mass interval3 (ml=l, ml,o), with mf=, - m:=, = 4/3 (m~,,,2 - m;=,) 3 4/3 A : 

splitting m,,,,, 2 -m;=, 

mr=o I 1 4  

mr=1 2 3  
9 = 2Na 'J  dm m = 21~a ---A; (3.1) 

'This results may be rigorously proven by the use of, e.g., the Euler-Maclaurin summation formula 

3We assume that the remaining ninth isoscalar belongs to this interval; As established in [29], for 

which coincides with the center of mass 

which relates a sum to an integral. 

idealized meson nonets. its mass is equal to  (27n;=1,2 + 
squared of a Qeson octet, in view of (3.27),(3.28). 

b . 



therefore 

(5.2) 

To determine the number of collinear trajectories, WP note that there are four differ- 

ent meson multiplets for every partial wave; except r S-wave. which in the standard 

spectroscopic notation are4 

(note that two missing S-wave nonets can be replaced by the radial excitations of 'So 
and 3S1), each of which contains 9 isospin states: therefore, the total number of different 

collinear meson trajectories is 

N = 4 x 9 = 36. 

Hence, as follows from (5.2), 
3 

A=- 
16a' ' 

(5.3) 

It is well known that two isoscalar states of an idealized bare meson nonet mix with each 

other to form the p' --sical states the masses of which are [29] 

Therefore, one has 

and also 

A A 

2 3 rn2 - m 2 3  + -) etc., 
m'y. = m; + 16cu" 

@ -  8a 

3 
m2,=m2,+- 

16a'. 

(5.4) 

(5.5) 

(3.6) 

It is widely believed that pseudoscalar mesons are the Goldstone bosons of broken 

SG(3)  x SU(3) chiral symmetry of QCD, and that they should be massless in the chirally- 

symmetric phase. Therefore, it is not clear how well would the framework that we discuss 

here be suitable for the description of the pseudoscalar nonet. Indeed, as we have tested 

in [34]. this nonet is not described by the linear spectrum. Moreover, pseudoscalar mesons 

are extrimely narrow (zero width) states to fit into a resonance description. Probably. the 

manifestly covariant framework cannot predict the mass of the pion, although the formula 

(5.6) is consistent with data, as we shall see below. 

Thus, the resonanc. description should start with vector mesons, and the cubic spec- 

trum of a linear traje: uljry enables one to determine the mass of the p meson, as follows: 

41n a constituent quark model, these multiplets correspond to spin-singlet and spin-triplet states of a 

bound system of two quarks. 



Since the p rneson has the lowest mass which the resonance description starts with. 

to one state in the characteristic let us locate this state by 

mass interval ( L / n ~ i  - cubic spectrum (4.6) of a linear 

trajectory. one has" 

1 = 4a m3 dm = 2cu'rnz; 

therefore 

and, through ( 5 . 5 ) ,  
1 1  7 

I 

etc. 2 11 
md = - 

16a' ' 8a' ' 
2 

r n K *  = - 

(5.7) 

(5.8) 

(3.9) 

Similar analysis can be easily done for baryons. Here, for brevity, we skip this analysis 

and only refer to [30] where preliminary discussion on the baryon spectroscopy can be 

found. Let us just write down the final expressions: 

2 3  

4a' ' 8a' ' 2a 
m, = -: 

2 9  m,, = - 
3 mk = - 

etc. 
2 19 

mi = 8a" 2 13 2 m,. = - m,s. = - 
8a' ' a' ' 

5 
= 4a" 

(5.10) 

(5.11) 

In (5.10), mi,  
It is seen in (5.10),(5.11) that the mass squared splitting within ,711 individual baryon 

multiplet is twice as large as that  for an individual meson multiplet; e.g., m& - m i  = 

3/(8a'). as compared to (5.5),(5.6). The mass squared splitting between multiplets which 

differ by one unit of spin remains, however, the same: since m, << mp, it ftdlows from 

3/2 mg. as follows from (5.5),(5.10), is definitely related to the valence quark structure 

interpretation of the two states. 

( m i  + m2,)/2 [30]. 

(5.8),(5.10),(5.11) that  m; - m: M m; = 1/(2a') = ma 2 - m&. Also, the rf Ltion vi;. = 

5.1 Comparison with data 

Xow we wish to compare the formulas (5.5),(5.6),(5.10).(5.11) with available experimental 

data on the particle masses [35]. 

It is seen that the particle masses are solely determined by the value of a'. Although 

this parameter is known to coincide for both light mesons and baryons, it is also known 

to have a weak flavor dependence for light mesons [36]: ab e 0.88 GeV-2, a;- Y 0.85 

r 0.81 GeV-2. Since here we are not concerned with accuracies of better than 

1% (i.e.? on the level of electromagnetic corrections), it would be enough to neglect -he 

flavor dependence of a' and take 

Q 

a' = 0.85 GeV-2, (5.12) 

jSince the p trajectory starts with a spin-1 isospin-1 state ( p ) ,  it corresponds to the spectrum rfm) = 

9 x 4cr''m3. There is therefore no difference in normalizing this trajectory to 9 states, or (4.6) to one 

state, in the vicinity of the p mass. - 



which is the average of the  above three values. 

formula leads. via (5.121, to 

Let us start with (5.6). The use of m7; = (m: + n $ ) / 2  = 137.3 lle17 [33] 

1721; = 489.3 XeV. v- I Z K  = 495.7 5 2.0 \IeL- 1341. 

Similar comparison of the hadron masses predicted by (5.5),(3.11).(5.12) IV: .I 

presented in Table I. 

State 1 l lass from (5.3).(5.10),(5.11,. LIeV Mass from ref. [34]. 1 1 ~ 1 ~  

- P  767.0 7685 f 0.6 

K* 899.3 893.9 k 2.3 

0 1014.6 1019.4 

E‘ 1150.5 11.55 k 2 
L Y  939.3 I 938.9 

I 

in  this 

(5.13) 

data is 

1328.4 1318 f. 3 

1 1212.7 1232 f 2 

- - I 
I 

r* 1382.7 1385 2 2 

u ‘2* 1533.9 l533..’, k 1.3 

n 1671.6 1672.4 

Table I. Comparison of the particle m 

with experimental data from ref. [35]. 

-9s predicted by the formulas (5.5),(5.1O)>(S.l1) 

One sees excellent agreement with experiment for all states, except for 1. We however 

note that  this state has largest width among the ground state baryons (- 120 Me\-: for 

comparison, the C* has largest width of N 9.5 MeV among the remaining ground state 

baryons), and therefore its mass is poorly known. Indeed, the pole position of 1, as 

indicated in [35 ] .  is 1210 k 1 MeV, and hence the prediction of Eq. (5.10) for the A mass 

is in excellent agreement with the pole position of A, 

tiplets, assuming that they populate liniar trajectories; e.g.,6 mi2 = rni+l/cr’ = 3/ (2a’ )  = 

1328.4 >lev.  vs. 1318 i 1 MeV [35 ] .  

One can easily obtain expressions similar to (5.5),(5.10),(5.11) for o t i m  har‘ronic rnL 

6 Int ramultiplet mass relations 

By comparing the mass spectra provided by the manifestly covariant framework and 

hadron phenomenology, Eqs. (3.21)-(3.23) and (4.9), and (4.1)-(4.3) and (4.7), respec- 

tively. one can establish the following relations (we recover rn, = .%l/pK in Eqs. (3.21)- 

(3.23) and (4.1)-(4.3)): 

61t is interesting to  note that, although the numerical values of mz2 = rn; = 3 / (2a ‘ ) ,  as calculated 

from our formulas, do not coincide with data for CY’ = 0.85 GeV-29 they do coincide with each other: 

maz = m: = 1318 MeV. 



(6.2) 

Eq. (6.1) establishes a relation of a‘ to the thermodynamic parameters of the off-shell 

system. It follows from (6.1),(6.2) that 

This relation is in agreement with naive expecations, since Tnlr is related to the (average) 

extent of the ensemble along the time axis. The low-temperature limit. T --+ 0. of the 

theory we are discussing here is known to coincide in form with the Galilean limit c -+ x 
[37], in which the theory passes over to a nonrelativistic statistical mechanics of on-shell 

particles. Also, the limit N + cx) means that more and more events become nucleated 

to on-shell particles. Each of these two limits is associated with T ~ v  + 00, according to 

(6.3). This means that the ensemble fills a longer tube in phase space, and its displacement 

with T is not as important. It is in this limit alone that a direct comparison with the 

usual on-shell relativistic ensemble can be made, since in this case the system possesses a 

stationarity in spacetime but not a non-trivial evolution in T [7, 371. 

6.1 

Since is the same for different species (which only r4‘Ter by the values of P K .  or, 

equivalently, by the on-shell mass values m, = M / ~ K ) ,  and TAV is a characteristic time 

scale for the particles to remain very close to its mass shell (in the interpretation of a 

strongly interacting system as a distribution of free particles which temporarily go off- 

shell while undergoing an interaction [38]),  which is common to  every species, Eq. (6.1) 

really implies that  particle trajectory slope is proportional to p ~ .  This in turn implies 

additivity of inverse slopes, in view of additivity of ~ K ) S  (see Section 2). 

Additiveness of inverse Regge slopes 

,4 typical example of such inverse slope additivity is “flavor equilibration”, 

A A +  BB AB + BA, 

described by 

(6.4) 

in view of (2.15), which may be rewritten in terms of inverse Regge slopes, as follows 

(with = ski), 
2 - 1 1 -+--- I .  

aAA &BB aAB 

(6.5) 

Eq. (6.5) represents a crucial difference between the manifestly covariant framework which 

leads to (6.5) and the standard framework which operates zero width resonances, in terms 

of Veneziano amplitudes [39] (which contain linear trajectories). and leads to fuctorization 

of slopes, 

a;’.j * a ; B  = (&J2 7 (6.6) 



which follows froni the factorization of residues of the t-channel poles [-HI]. 

bers (i.e., which form a common multiplet), one will obtain for the states with spin J 
If one assumes linear Regge trajectories for h' m s  with identical J p c  quantum nunl- 

Further, the following relation among the intercepts exists: 

a.&i(O) + Q B B ( 0 )  = 2 a A B ( O ) .  (6.7) 

This relation was first derived for u(d)- and s-quarks in the dual-resonance model [ A l l .  

It is satisfied in two-dimensional QCD [42]. the dual-analytic model [43], and the quark 

bremsstrahlung model [44]. Also, it saturates inequalities for Regge trajectories [As] which 

follow from the s-channel unitarity condition. Hence, it may be considered as firmly 

established and may transcend specific models. 

Then, with (6.7), one obtains from the above three relations, the quadratic intramul- 

tiplet mass formula 

(6.8) 
' 2  ' 2  

cxAArnAA + a,BrnBB = 2nkBrn2,B.  

In the light hadron sector, where all slopes almost coincide and there is no difference 

between (6.5) and (6.6). the above formula reduces to known relations ot the type rn; + 
rn: = 2m$, which describe ideally mixed meson nonets. 

However, in the heavy, or heavy-light, sector, (6.5) and (6.6) will have different impli- 

cations for hadron spectroscopy. 

In a series of publications [36, 46, 47, 481 we chose Eq. (6.5), since it is much more 

consistent with (6.8) than is Eq. (6.6), when tested by using measured qiiarkonia masses 

in Eq. (6.8). By eliminatir,g the values of the Regge slopes from Eqs. j.5),(6.8), we 

derived new (higher power) mass relations which hold with high accuracy for all well 

established meson multiplets, and may be reduced to quadratic formulas by fitting the 

values of the slopes [36, 47, 481, and new quadratic baryon mass relations [GI. 

Here, for brevity, we only compare predictions of (6.5) and (6.6) for the inclusiw 

production of heavy flavors. vC7e choose the D meson production, according to the reaction 

T + N -+ D + X, 

and the .I, baryon production, according to the reaction 

IT + N --+ A, + X, (6.10) 

fur both of which experimental data exist: [49, 50, 51, 521 and [53] ,  respectively. We note 

that no experimental data yet exist for, e.g., the B meson production. 

The following parametrization of the differential production cross section, in terms of 

the Fepman-x  (ZF) and transverse momentum ( p r )  variables is commonly used: 

(6.11) 



c 
r )  

where b is constant. and n = 1-2a(0), where a(0) is the value of intercept of the trajectory 

exchanged in the production reaction. 

In both the reactions (6.9) and (6.10), the D* meson trajectory is exchanged. There- 

fore, for these reactions, Eq. (6.11) contains n = 1 - 2 a ~ - ( 0 ) .  Since the value of the 

D* trajectory intercept implies the corresponding value of n which may be directly corn- 

pared with available experimental data, one can choose between Eqs. (6.5),(6.6) by their 

predictions for a p  (0). 

Consider Eqs. (6.5),(6.6) with A = n(= u .d ) ,  B = c. Introducing x = aCE/anfi. we 

can rewrite Eq. (6.8) as 

I ,  

2 2 42 2 
mcri 7 

mnfi + xmcE = - 
1 i - X  

2 2 2  2 mnA + x mcE = 2xm,,,, 

(6.12) 

(6.13 

respectively, using (6.5) or (6.6). The use of the measured vector and tensor meson masses 

in (6.12),(6.13) allows one to extract the following values of x in both cases: 

x = 0 .50f0 .01  for Eq. (6.5), 

x = 0.77&0.01 for Eq. (6.6). 

Further calculation of the value of intercept of the D* trajectory, with the formula 

where ab, is determined from (6.5),(6.12) or (6.6),(6.13) 

respectively, 

-1.365 z t  0.035 for Eq 

-1.73 & 0.04 for Eq 
aD* (0) = 

(6.14) 

(6.15) 

and CY; = 0.88 GeV-2, gives, 

(6.51, 
(6.6). 

Therefore. 

3.73 i 0.07 for Eq. (6.5), 

4.46 Ilt 0.08 for Eq. (6.6). 
n =  [ 

(6.16) 

(6.17) 

Since the above values of n differ by N 20%, it becomes crucial to compare both of them 

with experiment. Available experimental data are presented in Table 11. 

Reference 1491 [501 [511 [521 ~ 3 1  
Value of n 3.80 f 0.63 3.74 f 0.23 3.9 k 0.3 3.5 f. 0.5 3.52 f 0.5 

Table I. Comparison of the values of n given in (6.17) for both Eqs. (6.5) and (6.6) with 

available experimental data on the D meson and 12, baryon production. 

One sees that the value of n given by (6.5) is supported by existing experimental data, 

while that  given by (6.6) is in apparent disagreement with these data. This confirms 

the conclusion drawn before on the basis of particle spectroscopy [36, 46, 47, 481 that it 

is additivity of inverse Regge slopes, Eq. (6.5), which is realized in the real world, not f 



factorization of slopes. Eq. (6.6). Since additivity of inverse slopes follows clearly from 

additivity of inverse mass potentials in the manifestly covariant framework, experimental 

confirmation of additivity of inverse slopes gives extra credibility, in addition to apparent 

success of the linear and cubic spectra. as discussed in Sections 3-5, to manifestly covariant 

relativistic statistical mechanics as a framework for the description of realistic strongly 

interacting physical systems. 

7 Concluding remarks 

lye have discussed manifestly covariant relativistic statistical mechanics as the description 

of an ensemble of events in spacetime parametrized by an invariant proper time T .  \Ve 

have shown that the lin i and cubic mass spectra result from this formulation (the latter 

with the inclusion of anti-events). We have presented evidence that these spectra are the 

actua: qpectra of an individual hadronic multiplet and hot hadronic matter, respectively. 

These spectra allow one to predict the masses of particles nucleated to quasi-levels in 

such an ensemL-le. As an example, we have calculated the masses of the ground state 

mesons and baryons, in excellent agreement with the measured hadron masses. We have 

established additivity of inverse Regge slopes, through additivity of the mass potentials. 

and shown that  this additivity is consistent with available experimental data  on the D* 
meson and A, baryon production, while factorization of slopes, as given in the standard 

framework, is in apparent disagreement with data. A11 this supports manifestly covariant 

relativistic statistical mechanics as a framework for the description of realistic strongly 

interacting physical systems. 
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