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RELATIVISTIC THEORY OF SUPERPOTENTIALS
FOR A
NONHOMOGENEOUS, SPATIALLY ISOTROPIC MEDIUM

T. R. HOFFEND JR.* AND R. K. KAUL{

Introduction. In optics and electrodynamics, situations involving materials with
nonhomogeneous electromagnetic material properties often arise. In those situations where
relativistic effects arc negligible, problem solutions are generally obtained via a theoretical
framework that disregards the fact that the structure and properties of the electromag-
netic field, constitutive laws, and field equations must be invariant with respect to the
choice of coordinates in space-time. In this work, we initiate the idea that new insight can
be gained through the development of a covariant theory of electromagnetic wave prop-
agation in a nonhomogeneous medium. It is our hope that utilization of the power of
relativistic continuum theories of materials will bring greater understanding of the optics
of nonhomogeneous media.

In this paper, we establish the existence of a new superpotential for the electromagnetic
field and derive the governing field equation for the superpotential in covariant form.
Several significant results are found along the path towards this goal, some of which are
simply alternate but heretofore unstated ways of understanding the relativistic theory, and
some of which are brand new.

We adopt the axiomatic approach of postulating the general covariant formulation of
the Maxwell equations with the appropriate and tensorially consistent constitutive laws
for linear media. Natural decomposition of these constitutive laws and the field tensors
with respect to the Fermi frames immediately leads to the standard constitutive relations
for the proper fields, including the optical rotation tensor. The notion that existence and
consistence of the optical rotation tensor is a direct result of natural decomposition of the
correct constitutive laws for the field tensors appears to be new.

For a spatially isotropic medium (with repect to the genalized 4-velocity), the consti-
tutive laws can be written in terms of three scalars, the spatial projector, the generalized
4-velocity, and one of the spatial Levi-Civita tensor A-densities (see §1). For optically
inactive materials, one of the scalars can be dropped. This results in a simple relation,
adopted sequentially from §2.

The theory is then developed in terms of the electromagnetic potential and a new
gauge condition which is a generalization of the Lorentz gauge condition commonly used
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in relativistic electrodynamics in vacuum. In the limiting case of vacuum, the new gauge
condition takes the exact form of the classical Lorentz condition. We put the governing
field equation for the electromagnetic potential in a form that reveals the nature and
contributional origins of the various terms. If, for example, we consider some, any, or all
of the specific cases that the motion of the material is rigid, rotation-free, or acceleration-
free, that the medium is completely isotropic, or that the medium is homogeneous, certain
terms in the special form of the governing field equation are readily seen to vanish.

The governing field equation for the electromagnetic potential forms a consistent set
of coupled partial differential equations whose solutions exist only if the new gauge con-
dition is satisfied simultaneously. To alleviate the problem of admissiblity, we introduce
superpotentials which satisfy the new gauge condition identically. With the help of two
new tensor identities involving the curvature tensor, we derive the governing field equation
for the superpotential in covariant form. The nature of this (hyperbolic) system of partial
differential equations is then seen to be quite simple and beautiful.

§1. Preliminaries. We carry out our analysis within the framework of the (general)
relativistic Eulerian theory of continuous media. In that respect we adhere primarily to the
work of Synge [1] and Bressan [2] while for geometric principles, language, and notation we
follow the work of Schouten [3] and Flanders [4]. We begin by recalling several definitions,
conventions, and formulae important to the ensuing development.

After Schouten [3], a V,, is defined to be an n-dimensional geometric manifold endowed
with a symmetric linear connection I}, = 2! F(’; g and a symmetric covariant constant?
real fundamental tensor ¢g,3. An R, is a V,, in which the curvature tensor vanishes. We
consider space-time to be a V4 with an indefinite fundamental tensor, and the associated
fundamental quadratic form, or space-time metric

(1.1) ds* = —gapdz®dz®

has signature —2. The space-time Vj is therefore not ordinary.

Henceforth we follow the standard convention that Greek indices run from 1 to 4 and

Latin indices run from 1 to 3. We remark that this convention does not apply to fixed
labels on indices.

After Synge (1] and Bressan [2], we consider a smoothly moving 3-dimensional contin-
uous body 2 and exclude the possibility of irregular motions such as sliding, fracture, or
collision with another body. In that case we can think of  as a set of material points
) = Up+ and the union Wo = UW,. of the world lines W,,. of the material points is called
the world tube occupied by Q. W represents a (4-dimensional) domain in the space-time

Va.

LA tensor is a covariant constant if its covariant derivative is equal to zero.
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The generalized 4-velocity u® at the event z° is defined to be the tangent to the world
line W, parameterized by the arc-length s defined by (1.1). In that case

(1.2) u® = —.
The absolute derivative of a differentiable tensor T;:(Z’; is given by?

6 Tal...ap . 7v Tal...ap

(1.3) Sel BBy T Y VAt sig,

where the symbol V., denotes the covariant derivative. The intrinsic acceleration a® is

defined as

ef OU
(1.4) qodef ot
és

The following trivial formulae arise in the analysis

(1.5) uu, = —1,
(1.6) u*Vguq = 0,
(1.7) u%a, = 0.

We introduce the usual spatial projector

L def
(1.8) Jap = ap + Uuatis,
and write3
(1 ga) Tf)ang...ap - lal T'YCY?“-QP
. brop =9I
aq...o0 L. ay...o
(1.9b) , TJ_l o= g517T7ll32--~§q’
B,82...84
—LQ*[...CYP é’l-né'p
(1.9¢) Ty g =T
B,..8,

The index o of the tensor T;?_T_'[;qa” 1s called spatial if

(1.10) UQTZ?..I..;;:F =0,

2Synge [1].
. . . 1 .
3We remark that both the metric tensor gap and the spatial projector g, are symmetric tensors and
.. . T . . L 1
the use of dots when raising or lowing indices is therefore optional. For example g,? = g[?a and one can

.4 . . . .
write gg without causing any confusion. We further note that gg = 65, where 65 is the Kronecker delta.

3



and any geometric quantity is called spatial whenever all of its indices are spatial. Note

aqy...ap

that é‘aﬂ is a spatial tensor and relation (1.10) is equivalent to the statement T'5" "5 ™* =

ER
ar1az...0p

ﬂl ﬂq
The natural decomposition of a tensor T Z” with respect to the indez «; is defined

by

L
(1.11) Toi s =To g7 —uu Ty " 5"

A similar procedure can be applied to repeatedly decompose the tensors on the right hand
side of (1.11) until all indices of T t ﬂ” are exhausted. The representation of T . ;” as

the sum of the 2p+q individual terms thus obtained comprises the natural decomposztzon
of the tensor Tﬁ ﬂq

Finally, two important geometric quantities, the spatial alternating tensor A-densities
or spatial Levi-Civita tensor A-densities? of weight +1 and —1, respectively, are defined

by

1
(1.12a) ghy dﬁfu & PP
(1.12b) s E b g,

where the Levi-Civita tensor A-densities £*P7* and Eapyu are alternating tensor A-
densities of weight +1 and —1, respectively, with €'23% = 1 = ¢;934. We adopt the

convention that a tilde (~) directly over a kernel denotes A-density of weight +1 and a
tilde directly under a kernel denotes A-density of weight —1.> The following important
properties® arise in the ensuing analysis

L

(1.13) EWIM =0, Tapy =0,
(1.14a) Fany %m =4,°9,° - 9.°3,°,
(1.14b) B %aﬂ,, — 277,

(1.14¢) o Capy =3

4Bressan calls these quantities the spatial Ricci tensor A-densities. We refrain from this appelation in

. . . . . L def
order to avoid confusion with the standard nomonclature designating the Ricci tensor as Ry, = Rbiéﬁ,
where Ra{”

SUnder a coordinate transformation 2% = 2’ (2"}, a A-density of weight w transforms with a weight

is the curvature tensor of the Vj.

. . lef . . . . .
factor A=% where A is the Jacobian, A = det [83:“//83;"] , and the sign of the determinant is retained.

For example ¢@'#'v'#' = A=1Z72B74 See Schouten [3], p. 12.
6Bressan [2], p. 51.



§2. Maxwell Field Equations and Polarization Tensors. In terms of the elec-
tromagnetic field bivectors Fag and G4 and the generalized current A-density j*, the
Maxwell equations in the space-time Vj take the form’

(2.1) OlaFpy =0,
(2.2) 85GP = j°,

where the process of alternation over the indices is indicated by a pair of square brackets
and where G*# denotes the dual representation of G p in terms of a contravariant bivector
A-density of weight +1. The tensorial homeomorphism between the two sets of quantities
Gop and G*# is given by?®

(2.3) GoP = —gobng

(2.4) xGog &' — —
where g denotes the determinant of the metric tensor g,4 and is a scalar A-density, and
can thus be written

1 ~

(2.5) *Goag = — gay 95, G .
B \/‘a v 9By

Consider the natural decomposition of the field tensor Fopg

L

(2.6) Fog = Faﬂ+2!u[a£r;ﬂ]a
where
1
(2.7a) Fap=3.795"Fop,
1.
(2.7b) (Z:—;g = g5 Fyut.
Similarly
*
(28) Gaﬂ = Gaﬂ + 2! u[a(cl;)ﬂ]a

"Barut [5], p. 93 ff.
8Schouten [3], p. 26.
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and

(2.9) 7* =
L L o . T :

Clearly F,p and G4 are spatial bivectors, (F;g and (G)g are spatial vectors, 7 is a spatial

1 1

vector A-density of weight +1 and u.,;" is a scalar A-density of weight +1. We associate
with these the geometric quantities

L
def def
¢Bag' = Fap, Eg= s,
1
def = def ,
(2.10) CDaﬁ é GC\'ﬂ? Hﬂ é _— (Cl:r)ﬂ,
Ta d fJ: def ~
JG :e .,]'CY’ 6/3: -u7j7,

where c is the speed of light in vacuum. The kernels B, E, D, H,J and p denote in MKS
units the proper (i.e. measured with respect to an observer moving with the material point
P) magnetic induction, electric field, electric displacement, magnetic field, true electric
current, and true electric charge, respectively.

We remark that there exists a tensorial homeomorphism between spatially dual sets of
spatial quantities, given by

E, %%aﬁvéﬁ‘yv FoB — ?aﬁvE%
Bag = %amg”» B = %?“ﬂ73ﬂva
(2.11) Dup = £upy D7, D" = SED,,
H, %%w«,Hﬂv, HoB — Fzobrg :
Tag = Fapy 7, Jo = Lzasyy

We may further note that integrability of the Maxwell equations requires the condition
(2.12) daj® =0,

which in terms of the proper true current and charge densities comprises a statement of
the punctual law of conservation of electric charge.

We introduce the polarization tensor P,g via the relation
(2'13) ZOGoﬂ = *(Faﬂ + Paﬂ)’

6



where zg is the intrinsic impedance of the vacuwm. In the absence of matter it follows that

11 .
(2.14) 20Gap = *Fap = 7= Gay 98u € """ Fo.

2 /g

Taking the natural decompositions of £ 7**? and Fx, and using (2.10) and (2.11) we find

1. KO [ J*:l.]mr [nJ:'a]y,u. 1
;)—'-87‘ Foo=— w7 —ul®e (cB,w + 2.u[,€EU])
(2.15) 2!

= (Ew —‘2!cu[7§”1) .
Substituting this in (2.14) and using (2.8) and (2.9), we obtain the free-space relations

(2.16) z9cDop = Eap,
(2.17) 20H 4 = cB,.

We define the permittivity ¢ and permeability pg of the vacuum by

def 1 def Z
(2.18) 0= —, ==

3
ZgC

and thus obtain the familiar relations

1 Ho
2.19 S
( ) Moo 2 0 o

In the presence of (polarizable) matter, we take the natural decomposition of the
polarization bivector P,g (compare with 2.6, 2.7a,b)

L
(2-20) Pa‘g = Paﬂ + 2!u[a£ﬂ] .

L
The tensor P, is a spatial bivector and Pg is a spatial vector, and we associate these
(1)
with the geometric quantities

e 1
(2.21a) Mg . Zpaa,

(2.21b) PsEeoPy.
(e) (1)

The kernel M denotes the proper magnetic polarization, or magnetization and the kernel
P denotes the proper electric polarization.

(e)



§3. Constitutive Relations for a Linear, Memoryless Material. Even with the
generalized velocity u® prescribed, eqns. (2.1), (2.2) and (2.13) for the field and polariza-
tion tensors remain underdetermined. We thus consider the simplest practical example
and complete the system of equations with the following linear constitutive relation for a
memoryless material with no permanent polarization

(3.1) Pag = Xap™ Fyp-

Equation (2.13) then takes the form

(3.2) ZOGaB = % [Qo'(bwlF‘w] )
where
(3.3) Qap™" = 920" 5 + x5 gl

Using (2.4) and the fact that *x Thp = —Tsp in a Vy, eqn. (3.2) can be written as

(3.4) 200G = —QPIF,,,
where
(35) G = i Qi

Due to the antisymmetry property of the bivectors Gof and F,p it is obvious that the
tensor A-density Q#7* is antisymmetric with respect to the pairs of indices a8 and ypu.
Furthermore zOG"ﬂFag = —QP FyFap = QW“’ﬂFaﬁFw,, and upon factoring Fnpz we
find that (3.4) can be written in the form

2oGoP = —Qaﬂwa — Qwaﬂpw_

From these considerations it follows that the tensor A-density @"ﬂ‘”‘ must have the sym-
metry properties

(36) @“ﬁ"/l‘- — @Wlaﬁ — _@;L'yaﬂ.

These symmetry properties can also be derived from Green’s thermodynamic principle.

Taking the natural decomposition and using (3.6) the quantity @aﬂw can be expressed
in the form

L
(3.7) @aﬂw — @aﬂw + 9 <u[a(~2ﬁ]w + u[v@u]ﬂﬁ) + 4u[a@ﬂl [y,

(1) (1) (2)



where

~ def ~oi5t
(38) Qaﬂv :e - anaaﬂ‘y’

(1) -

~ ~ 1 L
(3.9) Qe E  ueu, QP

(2)

Using the decomposition (3.7) and the fact that

Leasug = (B 4 2culoGP),

~af
(3.10) G = 5]

(cf. 2.10) eqn. (3.4) can be written in terms of the proper fields as

(3.11a) 20 HY? = Q“ﬂW(cB )+ zluhgﬂlaﬂ(zluh@]),
(3.11b) czoD? = 2@ﬂ[7zt“](2!'lt[7E“]) + @ﬂw(cBw‘).

(2) (1)

A simple form of a complete and consistent relation can be obtained by dropping the

cross-coupling terms, i.e. by setting the optical rotation tensor A-density

(3.12) Q7 =0

In that case, using (2.18), the relations (3.11a,b) take the form

1
(3.13a) poHP = QoPp.
(3.13b) D? = ¢, (2Q"ME, .

(2)

We take the spatial dual of the relation (3.13a) and use (2.10) to get

11 =~ ~
(314) ,LLUHO, = .'7— Soﬂ Q B” = I/GNB“',
- (r)
where
1
(3.15) Vo déf = g Qﬂ7h05n0;4



The relation (3.13a) and its spatial dual (3.14) are required to be quasi-invertible in the

sense that there exists a symmetric, spatial tensor A-density i 8 of weight +1 such that
(r)

~ L.
(3.16) vas 177 =74
~ (7

A second symmetric, spatial tensor A-density of weight +1 is defined by

(3.17) gaf &ioges.
(r) (2)

Relations (3.13a,b) can then be written in the form

(3.18a) B® = [i®PuyHy,
)
(3.18b) D® = (;”)“Ba(,Eﬂ.

The quantity 727 is called the relative permeability tensor A-density and the quantity
()

£ is called the relative permittivity tensor A-density.
()

We remark that we could have postulated (3.18a,b) as the constitutive relations for
the proper fields at the outset and worked backwards to (3.1)—(3.4). However the relations
(3.1)—(3.4) better facilitate the succeeding analysis and they immediately reveal the pos-
sibility of materials exhibiting an optical rotation tensor® and the consistency of such a
model. In addition, macroscopic theories of more complicated effects and materials almost
always require general constitutive relations in terms of the polarization that cannot be
reduced to simple linear relations between the proper fields.!°

A medium characterized by the constitutive law (3.4) is called (electromagnetically)
spatially 1sotropic if Qvaﬂw remains invariant for spatial rotations relative to the generalized

4-velocity u®. In that case, by considering the natural decomposition (3.7), one can readily
show that

1
(3.19a) Qaﬂw — I(Jg-avjﬂu _ gauéﬁ‘y)
(0)

- 1
(3.19b) QP = ¢ §h,

(1) (1)
(3.19¢) Q%% = G3°,

(2) (2)

®Optical rotation tensors are discussed in Azzam and Bashara [6].

10Many examples occur in the theory of nonlinear optics and include second-harmonic generation,
parametric oscillation and frequency tuning, the electro-optic effect, and the Faraday and Kerr effects (see
for example Bloembergen [7], Yariv [8], and Toupin [9]).
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1
-
(3.20a) j= '3_‘Q.ﬂaﬂ»
(0) :
11
(3.20b) ¢ =3 €apr @77,
(1) - (1)
1 ~
(3.20¢) (=3 Q%a,
(2) (2)

and by convention (3.12) we take ¢ = 0. We remark that the factors of 3 rather than
(1)
L

factors of 4 arise in (3.20a,b,c) due the spatial nature of @“ﬂ‘““, @"ﬂ", and @“ﬁ. In
(0 (2)
addition § and § are required to be positive.
(0) (2)
We henceforth consider only spatially isotropic media. In that case @"57“ takes the

form
~ L L Loulga . L
(3.21) Qefrr = G @-owgﬂu —gengh ) — q4u[o‘gﬂ] vy #
(0) (2)

From (3.3) it follows that in vacuum

. . 1
(3.22) i=i=5/7
(0) (2) =

We have an additional relation between the proper current density and proper electric

field

(3.23) J =0 6°PEy,

(0) (r)

where the base conductivity ¢ and the relative conductivity tensor A-density &P are
(0) (r)
related to the electronic charge and to the density, effective mass, and mean free time

between collisions of the charge carriers. This linear relation, called Ohm’s Law, describes
the effect of drift of charge carriers under the proper electric field!! and is derived by con-
sidering the generalized Lorentz force on the charge carriers when they are slowly moving
and B,g = 0. More general relations arise through consideration of the contribution of the

magnetic induction and charge carrier velocity (not necessarily uo) to the Lorentz force.
For perfect dielectrics o = 0. In that case, using the fact that 7% is a contravariant
(0)
vector A-density of weight +1, substituting (3.23) in eqn. (2.12), and using (2.10) we get

(3.24) Valu®p) =0.

11 More appropriately, it describes the displacement of the Fermi sphere in momentum space. See Kittel
(10], p. 140f.

11



If the motion of matter is rigid,'? expansion of (3.24) and application of (1.6) and (1.3)
yields

(3.25) 22—y,

everywhere in Wq. Equation (3.15) is just a statement of the fact that the electric charge
remains constant along the world lines.

The Maxwell equations for a linear, memoryless, spatially isotropic medium thus take

the form
(3.26) a[aFﬂY] =0,
(3.27) Dp(Q*FP I F,) = —20],

where Q87" is given by (3.21) and (3.20 a,c).

§4. Electromagnetic Potentials. Equation (3.26) and the converse of Poincare’s
Lemma for a 2-form imply the existence of a C'! vector Ag such that

(4.1) Fop =210,45.
The vector Ag is not unique since F',g remains invariant under the gauge transformation
(4.2) Ag— Ag + 030,

where 6 is an arbitrary C* absolute scalar. The vector Ag is called the electromagnetic
potential associated with the electromagnetic field tensor F,g.

Substituting (4.1) in (3.27b) we arrive at the governing field equation for the electro-
magnetic potential

(4.3) 2005{QP 0,40} = —z07°.

To take advantage of the gauge freedom, we expand eqn. (4.3) and seek a coordinate
invariant condition that leaves the field equation in a tractable and enlightening form.

Using the facts that the bracketed expression in eqn. (4.3) represents a bivector A-
density of weight +1 and that the space-time manifold is a Vj, the equation can be written

(4.4) AV{QP MV Ay} = —20)°.

. . g . def .
12The motion of matter is called rigid if the strain rate tensor €ap =V Lu =0 everywhere in Wq.
(o B)
The process of symmelrization over the indices is indicated by a pair of parentheses. See Bressan [2], pp.

142 fF.
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The following definitions facilitate the analysis

~ def ., ,Lo~Ll dapd ~ L é
(4.5) ToB e G (g7t — gorgP )V, A,y = 2§ g VelAa,,
(€)] (0) (0)
(4.5b) Tob de 7'qu[° ﬂhu"v A,
(2) (2)
(4.5¢) TaBd g (ju[“éﬂhu“VHA.,.

(8) (2)

Equation (4.4) can evidently be written as

Z()‘:
4. V(TP + TP 4 Toby= 225
(4.6) ﬁ((l) +(2> +(s) )= ’2!]

We now examine each term in eqn. (4.6) separately.

The first term in eqn. (4.6) can be expanded as

L
(4.7) Vﬁ(j‘)aﬂ — 7|vﬂ{gu[ﬂval( GA,) — q[a(fl)m},
! (0) )
where
ae 1 -~
(4.8) ¢ Eveg,
(0) q (0}
(0)
and
(4.9) ABY G5By,

(0 (0)
For any covariant vector A-density V-, the identity

1. 1.1 ~
a4

(4.10) FPIVET. = Vel - 19 (ufu)

arises trivially from the definition of the spatial projector. Using this identity and definition
(4.9), eqn. (4.7) can be written as

KR
(4.11) vﬁTOﬁ = v,,{vuf’ vﬂ(iﬂ' —2(qA, VI (Bl + q["(A)ﬂ])}
(1) 1 () (0y

Upon adding and subtracting VoV 3472 (4.11) takes the form
(1)

VTP = {(v,,v ~VaVy), 4‘* + VoV, 4ﬂ ngﬂ A}
(1) (1)
(4.12)
—2'Vs{ ¢ A.,V["(uﬂllﬂ) + ¢ [0’.4ﬁ]}.

(0) (oy 1

13



Again using the definition of the spatial projector, we write

L. ~ -~
VaVOAP = V3V AP L Va(uuV, AP),
1) (1) (1)

and

L
vﬂvﬂ(f})a = vﬂvf’gx)“ + vﬂ(uf’uvv%“).

Substituting these in (4.12) we get

VT = R,® AP 1 VOVz AP — V,VP A
(4.13) B B + AES Y G
. N 4 1.
+2!Vg{u7u[“V7Aﬁ] — (]A.,V[a(umtﬂ) — q["Aﬂ]},
(1) (0) (0) (1)

where R, g def R}s57 is the Ricci tensor of the space-time Vj.

Expansion of the second term in (4.6) yields

=~ ~ o algy Ly
VT = Ve {qug?ru" — uPgoru)V, A,},
(2) (2)

+ s
(4.14) = V{§(uu"VFPA, —uPurvea,)},

(2)

L L. 1 . n
=V {VPA* — VAP L a1¢la 4P L org 4, VI (ufluky),
(2) (2) (2) (2 (2)

where
(4.15) Ao qututA,,
(2) (2)
and
def 1 .
(4.16) e —veg.

(2) q (2)
(2) \

Adding and subtracting V¥V, AP (4.14) takes the form
(2)

- " . L .
VT = —(VaV® —VeVg)AP 4 VgVP A — vov 4P
(2) (2) (2) (2)
(4.17) . N |
+2AVg{¢lv AP 4 (]A,,,V[a(uﬂ]u“)}.

(2 » (2)
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In a manner similar to that used in (4.12), eqn. (4.17) can be rewritten as

VT = —Ry* AP —v© ngf’ +VVP A
(2) (2) (2)

L
— AV {uuloV, AP — GA, V[ Aluv — ¢lo APy,
(2) (2) (2y (2

(4.18)

Finally, expanding the last term in eqn. (4.6) yields the result

_L
Vg(Ts) o8 — Vﬂ{((f)(u Tt —u gﬂ“’u“)V“Av}

(4.19) = Vp{ § (uug™" — uutg? ")V, AL},

(2)

= AV g{u ¢ yul® § AP —urulow_ (g 4°h).
@ @ 2

We define a new contravariant vector A-density of weight +1

(4.20) AP 48 48 = qAﬁ — Gufu A
(3) (1) (2) (0) (2)

Using this definition and (4.6), (4.13), (4.18) and (4.19), the field equation (4.6) can be
written

v Vﬁ(Aa)a R (é)ﬂ VGVﬁAﬂ'*')'Vﬂ{(q _ (1)4 V[ ( ﬂlln)}
o (2
(4.21) - 7'Vﬂ{u7u[ V., 4‘3] —wuley N _1ﬁ])}
(2)
_QEVﬂ{(l[ AP - Q[QAB]+u g "ul qAﬂ]} e '“,
(2) (™ ) M (2) ()

After some lengthy algebraic details and division by /g, eqn. (4.21) can be shown to have
the coordinate-invariant form

S 7T (R ACTLV O PR (P LVE)
(2) (0) 2y M

b s 20 .
+ 21V, {( q¢—q) <‘4vv[a(uﬂ]u7) _u[aé_Aﬁ]>} _ ?(!)] ,

(0) (2) S

(4.22)

where A% = ¢~V /2 A, AP = g71/2 AP etc.
(3) (3) (1) (1)

At first glance eqn. (4.22) appears involved, but further analysis reveals its simplicity.
In the case when QA7 is an isotropic tensor A-density of weight +1 rather than a spatially |
1sotropic tensor A-density of weight +1 we have

def

(4.23) g = q = q(z%),
©) (2
(4.24) ¢° = ¢" =,
(0) ()
(425) QNO’ﬂ“yll. _ \/‘(jq(ga‘ygﬁp _ Ja;lJﬂf)
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and

(4.26) AP =g (§P7 A, — uPuTA.) = g AP

Equation (4.22) therefore immediately reduces to

4.27 VaVPAY — Ry AP — VOV AP 421V, {gl* AP} = 29 5o
(4:27) A e s * 4t (3) J 217

This can be verified by substituting (4.25) in (4.4) to get (after dividing by \/g)

21V {qVleafly = -2 je,

or

(4.28) —21vg{ V(g4 — glegfly = %j".
Adding and subtracting VoV (¢A?) and using (4.26), (4.28) can be written as
Brgao  pragf oo B 4 o1 (o 4 8] :ﬁ-a
VgV7 A Rg%A \% Vg(fsl) +2!Vs{q (A; } AR

(3) (3)

which is in accord with eqn. (4.27). If the medium is homogeneous as well as isotropic, ¢
vanishes, g is a covariant constant, and eqn. (4.22) simplifies to

4.9 VaVAAY RO AP oy a8 = 20 e
( ) g (3) 8 (3) [3(3) A J

In vacuum, ¢ = 1/2 and thus eqn. (4.29) takes the familiar form
(4.30) VVPAY — RyoAPF — VOVg4° = 2450,

Note that in most normalized systems of units (not MKS) z4 = 1.

We remark that the analysis of this section is independent of any assumptions con-
cerning rigidity, angular velocity and/or intrinsic acceleration. Consider the sixth term on
the left hand side of eqn. (4.22)

1
4.31) 2'V{(q — ¢)A VI P} = V5{( ¢ — ¢)A, (v w®? = 2leeflT — atylowfm)),
g (0) (2) K . (0) (2) K

where w,g is the local angular velocity (or average rate of rotation),

(4.32) waﬂdéfv Lu
[ B8]
and eyg 1s the strain rate tensor
def
4, =V ,u .
(4.33) €ap (éuﬂ)

Thus if the motion of matter is both rigid (e43 = 0) and rotation free!® (w3 = 0), then
the term (4.31) in eqn. (4.22) vanishes.

13The physical interpretation of the statement wyg = 0 is that the motion of matter is such that in a
neighborhood of a world line of a material point the medium does not rotate with respect to an orthonormal
tetrad carried along the world line by Fermi-Walker transport. See Synge [1], p. 173.
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§5. Generalized Lorentz Gauge. Equation (4.22) can be simplified by fixing the
generalized Lorentz Gauge

(5.1) vﬁ(A)ﬂ =0.

This coordinate invariant condition immediately reduces to the classical Lorentz condition
in the case of isotropic homogeneous media. In terms of tensor A-densities, the generalized
Lorentz Gauge can be written

1 ~
*—aBAﬂ =0,

\/§ (8)

and therefore in terms of the dual representation

(5.2)

def ~
. Aogy = Cagyn A",
(5 3) (3)0% NOﬂwr(a)

1t has the alternate coordinate invariant form
(5.4) O[Q,Agw] = 0.

We remark that fixing the generalized Lorentz gauge does not uniquely specify the
vector Ag. In fact, form invariance of (5.1) requires that in the gauge transformation (4.2)
the additive scalar § may be any solution of the equation

(5.5) V(¢ VPE) - Vg <quﬂz—9) = 0.

(0) (2) S

By considering eqn. (5.5) in a locally natural and proper frame and using the fact that g

and ¢ are positive, one can easily see that the equation is hyperbolic. This means thgt)

the s(cjiution depends only on the initial conditions for 8, which are completely arbitrary.
Substituting (5.1) in eqn. (4.22), the governing field equation for the electromagnetic

potential takes the form

VaVPA® — Ry AF 421V, { gleAfl — ¢ [“Aﬂl}
(3) (3) 0y (M) 2y (2

(5.6) X - ]

+ 2!Vy {( qg—q) (AVV[“(umuV) - u[“;S—Am>} = s%j“,
S L.

(0) (2)

subject to the condition (5.1), and where we have used the fact that

(5.7) gleAfl 4 (glo = gy 4Pl = glo bl — glo g8l

(» & () (zy D oy (V) (2) ¥
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For rigid motion that is locally rotation-free, eqn. (5.6) simplifies to

§
5.8) VaVPAAY —RAP 121V 3 glo Al _ glo Bl _ (g — o ® 4h) '
( ) A (3) A (3) + {((g) (1) (2) (2) ((g) ((;I))u 48 2' ]

For homogeneous isotropic media, equation (5.1) immediately reduces to the classical
Lorentz gauge condition and equation (5.6) becomes

5. VyVAAY _ R4l = 20
(5-9) BV & B (s 20 7%
which in vacuum takes the standard form

(5.10) VsVPAY — Ry¥AP = zy5°.

§6. Superpotentials. The governing field equation (5.6) for the electromagnetic
potention A, represents a coupled system of partial differential equations which have to
be solved in conjunction with the generalized Lorentz condition (5.1). Equation (5.6) forms
a consistent set of partial differential equations and existence of a solution of this system
is guaranteed only if (5.1) holds simultaneously. Finding a solution is therefore difficult
because only those solutions of eqn. (5.6) which simultaneously satisfy condition (5.1) are
admissible. To alleviate this problem, we now introduce superpotentials which satisfy the
generalized Lorentz condition identically.

Equation (5.4) and the converse of Poincaré’s Lemma for a 3-form in V, imply that
locally there exists a C? covariant bivector II,4 such that

(6.1) Aapy = 30(aTlg.).

The bivector 144 is not unique since the representation (6.1) admits the gauge transfor-
mation

(6.2) Mag = Hap + 21010 Y g,

where 14 is an arbitrary C* covariant vector. In terms of the dual representations

(6.3) (.;i)“' = ;, EPM A,
(6.4) ffes _ ilgaﬂwnw,
eqn. (6.1) can be written as

(6.5) A% = 2IV,I15.

(3)
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The bivector 1,4 is called the (electromagnetic) superpotential associated with the electro-
magnetic potential A,.

For the sake of simplicity in deriving the governing field equation for the superpotential

I3, we assume that the motion of the material is locally rotation-free (wag = V ;u = 0)
84

[a 8

and that the medium is a perfect (spatially 1sotropic) dielectric, that is

(6.6) o =0, (q)" =0, ep=V = 0.
0

u
© @ 8)
In the event that wap # 0 and/or any part of (6.6) does not hold, derivation of the governing
field equation for I1,4 follows from our analysis in an obvious and straightforward manner.

Since wqap = 0, it follows that
(6.7) Ua V gly = Uauga, = 0,

and therefore due to the time-like nature of the world lines (meaning the true square
—u%uy > 0), the vector field u, is Va-forming;'* in other words, there exists a family
of V3’s to which the world lines are orthogonal. Thus the stream-lines form a normal
congruence.’® The family of V3’s represent cross-sections of the world tube Wq and can
be parameterized by s. We assume that there is a cross-section indicated by s = sg for
which g(2%(sg)) = 0. Then (6.6) and eqn. (3.25) imply that p = 0 everywhere in Wq, and
hence j® = 0 everywhere in Wy,.

Substituting the representation (6.5) in eqn. (5.6) and using the above simplifying
assumptions and identity (Al.1) from the Appendix we readily obtain

L

(6.8) g

-~ 5 -
vﬂ{v,vanaﬂ —2)(1 - h)u[aé—(ﬁvvam“)
S

—2lgq [auﬁluvvaﬁ"” — 3R§;[aﬁﬁ7]"} =0,
(2)

where

def
(6.9) K= q / q.
(2) (o)
Evidently, the quantity within the braces is a contravariant bivector A-density of weight
+1, and the covariant derivative can thus be replaced by a partial derivative. It immedi-
ately follows from the converse of Poincare’s Lemma for a 2-form in Vj that there exists a

C?' covariant vector ¢4 such that

V,VoIes 211 — h)u,["éi(é’?].,vaﬁw) —2lgq [C"umuﬁvaﬁm7
8 (2)

_ 3R"€&[0'I3ﬁ'€]0 — gaﬁ‘ruvah%t]_

(6.10)

Y4Schouten [3], p. 244 fI.
15Synge [1], p. 173.
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The dual representation of the gauge transformation (6.2) can be written as

(6.11) o8 s TIF  2oPrg o,y = T19P 4 219, 4B,
where
(6.12) z&"ﬂ"’ — gaﬁww,“.

Using this in (6.10) and applying identity (A1.6) from the Appendix we get

~ $ - -
V,Veiled — 211 - h)ulaé—(éﬁ’.,vanm — 9l gloyfly v, 17
s (2)
(6.13) — 3R, [ePTIMe = a1y {vav'mzaﬂv — 3R, lephle

_ 3R, leBjalne _ J)aﬂv} ’
where
(6.14) gl = gefirg,.

The freedom to choose ¥4 (or t[)“ﬂ 7} and any attached initial conditions then allows us to

suppress the unknown ¢z (or $°A7) from the preceding analysis simply by noting that a
solution of the equation

(615) Vavad}aﬂ‘y _ 3Rl~7[a1;,87]a _ 3Rha[0ﬂ¢’1]hd _ QEOﬁ'Y

exists. The ensuing field equation for the superpotential I1°8 thus takes the simple form

- 5 -
v, veIIes — 21 (1 — hyule = (58, v, 1177)
. Y

(6.16) bs " _ _
—2lyq [C’umu.,VUHW — 3R,;.c',[°ﬂH“]° =0.

(2)

In the case of homogeneous, isotropic media, eqn. (6.16) reduces to
(6.17) V,VoI°# — 3R, [*AIIxle = ¢

We remark that in classical, non-relativistic theory, the curvature tensor vanishes and
Vaug =0, and eqn. (6.17) thus takes the limiting form

(6.18) V,VIIY? = 0.
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By taking the natural decomposition of s

(6.19) s = (ﬁ)“" + 2! \/gu[a(n)ﬂl,
where
~ L L
(6.20a) (g)aﬂ deffjes = 7 QMEW’
e 1 o~
(6.20b) e = go,i1A 7,

(e) \/ﬁg

eqn. (6.18) yields one equation for the spatial covariant vector (H » and one for the spatial
m)

contravariant vector I17, namely
(e)

(6.21) V.V I, =0,

(m)
(6.22) V, VI = 0.
e)

Evidently, these two spatial vectors are related to the Hertz vectors of classical electrody-
namics!®, and the superpotential I1%8 is therefore of the Hertzian type. It is interesting
to note that natural decomposition of the gauge transformation (6.2) gives rise to a form
which is at variance with that of the standard gauge transformations for the classical Hertz
vectors.!” This strongly leads us to the conclusion that the standard gauge transforma-
tions used in classical electrodynamics are geometrically and relativistically inconsistent,

and will be the topic of a forthcoming paper.

Appendix 1. In this appendix, two tensor identities invoked in §6 are proved. Deriva-
tion of each identity is motivated by the desire to write a certain geometric quantity as the
divergence of another quantity that contains only the Laplace-Beltrami operator'® acting
on a contravariant p-vector A-density of weight +1 plus transvections of the curvature

tensor with the same p-vector A-density.
v

IDENTITY 1. Let I1*® be a contravariant bivector A-density of weight +1 in a V.
Then

(AL1) VeIV, - Ry, 0197 = vy { Vo VoIl - 3R, T ]
where R&b%“ is the curvature tensor of the V,, and Rb" is the Ricci tensor

(A1.2) Ry R ;7.

16Stratton [11], p. 28 ff.
17Born and Wolf-[12], p. 81.

18Note that the operator is actually of the D’Alembertian type due to the indefinite nature of the metric
tensor.
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Proof. Expanding the left-hand side of (A1.1) and using the fact that 1% is a con-
travariant bivector A-density of weight +1 in a V,,, we get

VsVPV,I%7 — ROV, I1P7 = V(VAV,II*7 — VOV, 11°7)
= Vg {(V”VU ~ V, VA —(VoV, — V, V)P
+v,vfier - v, veltfe}
(A1.3) = Vs {gﬂ" 2 V[, Vo II%7 — g7 20 V[,V I1°7
+V,v71i®f - v, (velifr 4+ véfive - voiite ],
= Vs {g‘” 21 V[, Vo 17 — *7 21 V[, V 41177

+vgv”ﬁaﬂ} — V4V, (VIeTI8),

Evidently, since VIoTI%] is a contravariant trivector A-density of weight +1, we have
(A1.4) VsV, (VeI = V40, (VTP = 940, (VIeTI#7]) = 0.
Also

gP1 2V, V117 — ¢°7 21V, V, 1157
= RY; ST 4 R 7TIen — Re PN — R oI
= (RP,® — R%, P + RS, (oTIos — R, L oTIPF,
— _R';(;c\',@ﬁxa + R};&aﬂﬁax _ R'-”-,aaﬁﬂﬁ’
— _R'-;&aﬂﬁria _ R';Uwcﬁﬁaa + R';C;QVKﬁ'HU,
= —3R; lPIIxl",

(AL5)

where we have used the symmetry properties of the curvature tensor!'® and relabelled
various dummy indices where required.

Substituting (A1.4) and (A1.5) in (Al.3), identity (A1l.1) results immediately. B

IDENTITY 2. Let ¥®P7 be a contravariant trivector A-density of weight +1 in a V.
Then
V(,V”V.ﬂ/;“m _ 3R"‘_['r[0'/3v7¢'<]07

Al.6 . . .
( ) =V, {\—/Jvad,aﬂv _ 3Rt-7[0f1/)ﬁ7]0' _ 3R’;&[aﬂ¢7]h‘0} )

19Schouten [3], pp. 144 fF.
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Proof. Expansion of the left-hand side of (A1.6) yields

VUV"VMQM _ 3R;{;[Gﬁvvd~,'€]t’7
= V. {V, V7§ P1} 4 V{21V, V 07}
(ALT) + 2197V, Vg Vo™ = BRI,
= V. {V, V%P7 4 g7 2 V|,V 97}
£ 27NV Vop®PT = BROOV ),

where a pair of bars around an index indicate that the index is to be excluded from the
process of alternation or symmetrization. For the sake of economy, in order to obviate
extensive algebra, we define

(A1.8) pob def 21 ¢4or V[,‘,V«,]Vw/;am _ 3R,;(;[QBV|7|7/;N]U7 .

Expanding (A1.8), we get

~

yaB — —R‘,’%;”VNJ’Q’G’Y + R‘,’.'I,L.GVUQZ"{IH + Rt.f%;ﬂvad}axv
+ R7 IV — RPN T = RNV 4 RSPV

Upon relabelling dummy indices and collecting terms, this becomes

\Ijaﬂ — R"yc;';av‘yd)nﬂa + Rl;f;/.?v‘ywaxa

(A1.9) - ©o o
— Ry PV — RNV PO RV a0,

Using the cyclic identity for the curvature tensor and the fact that ¥®#7 is a completely
antisymmetric quantity, we can write

R;.Lt-ﬂ-iuv‘r,([)/\ﬁa — (Rua,\“ 4+ R';&[I.U)VA’%Z’)\NU — (_R;.L(;';l/ + R';&uu)v_ﬂ/;/\no"
and therefore

~y 1 3
(A1.10) RSV = SRVt

Z

This can be used to rewrite (A1.9) as

~ 1 ~ 1 -~
af _ ~p- Yayy Ko - p- -'yﬁv aKo
(A1.11) V=5 e W 5 e VY

— R0V 7 — R MOV P77 4 R MV,
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Factoring out the covariant derivative in (A1.11) yields

~ 1 ~ . 1 ~ ke . YK cvKkalBo
ver = vv{sR;;V“w"ﬁ“ = SR = R T = RO

P

a3 1 .o ~yay kB0 1 .. Tako
(A1.12) +R,;;"f’¢"”} - {; (Vo Ry ™) ™07 + 5 (V4R 7) ¥

<

— (Vo R, OPYpTET — (V4R WP + (VVR,;;W)J)“”}

Application of the Bianchi identity and the complete antisymmetry of PP gives (after
relabelling dummy indices)

1 < yay T KBo - - Kkay, 7 Po
L (T2 RV BT = (VR ),

1 TaKo CK rao
(A1.13) 5 (VVR';&%@) ,¢,oh = _(V‘YRNU ﬁ)¢ 73
(VYR,;;,G'B)'&‘YNU = (V[.YR '

Ko

aBY1e = 0,
The second bracketed term in (A1.12) therefore vanishes and

~ 1 ~ 1 ~ ok .
\I]aﬂ — V7{5R . yawnﬁa o —R;\.(;‘Yﬁd)aha _ R'-“;aﬂw‘yna

Ko -‘)

Z Z

(Al.14)
—R,;[;NGQZ"BU‘Y + R,;.[;Nﬂlz’aav}.

Equation (A1.7) thus takes the form

VUVUV-Y'(LO'[’V . 3R‘;t;[aﬂv7d;n]0-y _ vv{vavad‘;&ﬂﬁ + R“Y(-ﬂ;a,(;riﬁa

1 .
T n- Y8 ok
QRK,U "’[)

<

U S
_ Ry R Ry e g R;;"%“‘”}.
Using (A1.10) this can be written as
VUVUV.,JJO‘[” _ 3R';[~’[0fﬂv71/;~]”“r — vv{vavad)aﬂ‘y + R’;(;VO'l/;feﬁa+
+ Ry PP = Ry I 4 Ry - RO R;;%“ﬂ”},
— V.,{VGV"U;"M + 3R'-H-7~[0'1/}ﬂ7]0 _ 3R;&[aﬂd}‘r]w}’
_ VA,{VUV%/S"“ _3R:lagile _ 3R&;[aﬁ¢71~a}’

which is the required result. H
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