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Abstract

We examine the behavior of the variable Eddington factor for a relativistically moving radiative flow in the
vertical direction. We adopt the “one-tau photo-oval” approximation in the comoving frame. Namely, the comoving
observer sees radiation coming from a closed surface where the optical depth measured from the observer is unity;
such a surface is called a one-tau photo-oval. In general, the radiative intensity emitted by the photo-oval is non-
uniform and anisotropic. Furthermore, the photo-oval surface has a relative velocity with respect to the comoving
observer, and therefore the observed intensity suffers from the Doppler effect and aberration. In addition, the back-
ground intensity usually depends on the optical depth. All of these introduce anisotropy to the radiation field
observed by the comoving observer. As a result, the relativistic Eddington factor, f , generally depends on the
optical depth � , the four velocity u, and the velocity gradient du=d� . In the case of a plane-parallel vertical flow,
we found that the relativistic variable Eddington factor, f , generally decreases as the velocity gradient increases,
but it increases as the velocity increases for some cases. When the comoving radiation field is uniform, it is well
approximated by 3f � 1=[ 1 + (16=15)(�du=�d�) + (�du=�d�)1:6�2]. When the radiation field in the inertial
frame is uniform, on the other hand, it is expressed as f = (1+3ˇ2)=(3+ˇ2). These relativistic variable Eddington
factors can be used in various relativistic radiatively-driven flows, such as black-hole accretion flows, relativistic
astrophysical jets and outflows, and relativistic explosions like gamma-ray bursts.

Key words: accretion, accretion disks — astrophysical jets — gamma-ray bursts — radiative transfer —
relativity

1. Relativistic Variable Eddington Factor

In the moment formalism of (relativistic) radiation hydro-
dynamics, in order to close the moment equations trun-
cated at a finite order, we need a closure relation, such
as the Eddington approximation or more complex expres-
sions. In non-relativistic static atmospheres (Chandrasekhar
1960; Mihalas 1970; Rybicki & Lightman 1979; Mihalas &
Mihalas 1984; Shu 1991; Peraiah 2002; Castor 2004), for
example, many researchers have used the Eddington approx-
imation and variable Eddington factors as closure relations
(Milne 1921; Eddington 1926; Kosirev 1934; Chandrasekhar
1934; Hummer & Rybicki 1971; Wilson et al. 1972; Tamazawa
et al. 1975; Unno & Kondo 1976; Masaki & Unno 1978).
As is well known, the standard Eddington approximation with
an Eddington factor of 1=3 is valid when the radiation field
is almost isotropic. In the spherically symmetric case, where
the radiation field becomes anisotropic towards the outer opti-
cally thin region, they often used the variable Eddington factor,
which depends on the optical depth (e.g., Tamazawa et al.
1975).

In relativistically moving flows (Mihalas et al. 1975, 1976a,
b; Thorne 1981; Thorne et al. 1981; Flammang 1982, 1984;
Mihalas & Mihalas 1984; Nobili et al. 1991, 1993; Kato
et al. 1998, 2008; Castor 2004; Mihalas & Auer 2001; Park
2001, 2006; Takahashi 2007), on the other hand, the standard
Eddington approximation is adopted in the comoving frame,
and is then transformed to the inertial frame, if necessary
(Castor 1972; Hsieh & Spiegel 1976; Fukue et al. 1985; Sen

& Wilson 1993; Baschek et al. 1995, 1997; Kato et al. 1998,
2008). Even for a comoving observer, however, the comoving
radiation field may become anisotropic due to various reasons,
as shown below. Instead of the standard Eddington approx-
imation in the comoving frame, for such a relativistic case,
several types of a variable Eddington factor, which depends
on the velocity and its gradient as well as the optical depth,
were proposed (Fukue 2006; Fukue & Akizuki 2006, 2007;
Akizuki & Fukue 2008; Fukue 2008a, b; Koizumi & Umemura
2008). However, the moment formalism of relativistic radia-
tion hydrodynamics is yet incomplete, in the sense that we do
not have a sufficiently adequate closure relation.

There are mainly three reasons that cause the anisotropy of
the comoving radiation field in the relativistically moving flow.
(1) The optical depth effect. In the outer region where the flow
becomes optically thin, similar to the non-relativistic case, the
comoving radiation field would be anisotropic. (2) The velocity
gradient effect. When the radiative flow is accelerated up to the
relativistic regime, and there is a strong velocity gradient in the
direction of the flow, the velocity fields as well as the density
distribution are no longer uniform, even in the comoving frame.
Then, the comoving radiation field also becomes non-uniform.
Furthermore, due to the relative speed between the observer
and the radiation field, the observed radiation field suffers from
the Doppler effect. As a result, the comoving radiation field
becomes anisotropic. (3) The effect of the relativistic speed
itself. Although we do not know the radiative intensity in the
inertial frame, in the highly relativistic regime, it is generally
affected by a strong aberration effect when it is converted to the
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comoving frame. As a result, except for some special cases, the
comoving radiative intensity generally has strong anisotropy.

Hence, the relativistic variable Eddington factor (RVEF)
generally depends on the optical depth, the flow velocity, and
the velocity gradient. In Fukue (2006) and Akizuki and Fukue
(2008), they proposed such variable Eddington factors from
physical viewpoints in the plane-parallel and spherical cases,
respectively. In Fukue (2008a, b), on the other hand, he
derived semi-analytically variable Eddington factors for the
plane-parallel flows in the vertical direction, and found that the
Eddington factor decreases as the velocity-gradient increases.
In these studies (Fukue 2008a, b), however, the treatments
were rather restrictive; e.g., the comoving radiation field was
assumed to be uniform. Thus, in the present paper we extend
the previous work under the similar procedure to examine the
above three reasons more extensively.

In the next section we describe the shape of the surface
(one-tau photo-oval), where the optical depth measured by the
comoving observer is unity, and derive an expression of the
one-tau photo-oval. In section 3, we discuss how we numeri-
cally calculated the comoving radiation field within the photo-
oval, and the relativistic variable Eddington factor for several
cases. The final section is devoted to concluding remarks.

2. One-Tau Photo-Oval and Photo-Vessel

Let us suppose a relativistic radiative flow, which is acceler-
ated in the vertical (z) direction, and a comoving observer, who
moves upward with the flow (figure 1).

Sufficiently deep inside the flow, where the optical depth is
very large, the mean free path of photons is very short. In
such a case, within the range of the mean free path, for the
comoving observer the flow is seen to be almost uniform; the
velocity gradient and the resultant density gradient are negli-
gible. Hence, the mean free path is the same in all directions,
and the shape of the surface where the optical depth measured
from the comoving observer is unity, is almost a sphere; we
call it a one-tau photo-sphere (a dashed circle in figure 1). As
a result, the comoving radiation field is nearly isotropic, and the
usual Eddington approximation in the comoving frame is valid.

On the other hand, if the velocity gradient becomes very
large, the behavior of the radiation field may be affected by
changes in the hydrodynamics of the flow, even on a length-
scale comparable to that of the photon mean free path. Hence,
the mean free path becomes longer in the downstream direc-
tion than in the upstream and other directions, and the shape
of the one-tau range elongates in the downstream direction; we
call it a one-tau photo-oval (a dashed oval in figure 1). As
a result, the comoving radiation field becomes anisotropic due
to various reasons, as described in the introduction, and we
should modify the usual Eddington approximation.

In addition, when the optical depth is sufficiently small
and/or the velocity gradient is suffiently large, the mean free
path of photons in the downstream direction become less than
unity. Hence, the shape of the one-tau range is open in
the downstream direction; we call it a one-tau photo-vessel
(a dashed hemi-circle in figure 1).

In order to obtain an appropriate form of the RVEF in these
regimes, we thus carefully treat and examine the radiation field

Fig. 1. Schematic picture of a relativistic radiative flow in the vertical
direction. The flow is accelerated in the vertical (z) direction, and
has a velocity gradient. The dashed curves are one-tau photo-ovals
observed by a comoving observer.

in a comoving frame.
In previous papers (Fukue 2008a, b), we have examined the

one-tau photo-oval, derived the variable Eddington factor semi-
analytically, and proved that the Eddington factor decreases
with the velocity gradient. In these studies, however, the
treatments were rather restricted, and in the present study
we thus examine the behavior of the RVEF for more general
cases, and seek an appropriate form of the Eddington factor,
f (�;u;du=d�), where � is the optical depth and u (= �ˇ) is
the four velocity, ˇ and � (= 1=

p
1 � ˇ2) being the normalized

velocity and the Lorentz factor, respectively.
We first derive the shape of the one-tau photo-oval using the

optical depth � , while in the previous papers we have used the
vertical coordinate z.

We define the one-tau photo-oval as the surface where the
optical depth measured by the comoving observer is unity. The
situation is schematically illustrated in figure 2. We assume
that the comoving observer in the vertical flow is located at
z = z0 or � = �0, where the flow four-speed is u = u0. In
the s-direction, which forms an angle � with the downstream
direction, the mean free path of photons is l0. The relation
among these quantities is

z � z0 = s cos�: (1)

The continuity equation for the stationary, one-dimensional
relativistic flow is

�cu = J .= const./; (2)

where � is the proper gas density, u the four-velocity, and J
the mass-flow rate per unit area. In addition, the optical depth
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Fig. 2. One-tau photo-oval around a comoving observer in the vertical
(z) one-dimensional radiative flow. The comoving observer is located
at � = �0, where the flow four speed is u = u0. In the s-direction, that
forms an angle � with the downstream direction, the mean free path is
set to be l0.

� is defined by

d� � ���dz = ���ds cos�; (3)

where � is the opacity, which is assumed to be constant in the
present analysis, and we used equation (1).

In this paper we use a linear approximation for the flow field;
that is to say, around the position of the comoving observer the
flow four speed is expanded as

u = u0 +
du

d�

ˇ̌̌
ˇ
0

.� � �0/; (4)

where du=d� j0 is assumed to be constant.
Using equation (3), the optical depth �s along the s-direction

is expressed as

�s =
Z l0

0

��ds = �
Z �

�0

d�

cos�
=

�0 � �

cos�
: (5)

Thus, the shape of the one-tau photo-oval, where �s = 1, is
finally determined by the condition

� = �0 � cos�: (6)

Obviously, for �0 > 1 the one-tau region is close to be a photo-
oval, whereas it is open towards a downstream direction to be
a photo-vessel for �0 < 1.

3. Comoving Radiation Field and the Relativistic
Variable Eddington Factor

We can now compute the radiation field received by the
comoving observer, and derive an expression for the Eddington
factor in the comoving frame (figure 3).

Fig. 3. Radiation field in the one-tau photo-oval around a comoving
observer in the vertical one-dimensional radiative flow. The radiation
field may become anisotropic, since in general the emitted intensity is
not uniform and isotropic, it is redshifted due to the velocity difference,
and there is aberration between the comoving and inertial frames.

In a static and optically thick atmosphere, the radiation field
is isotropic and uniform. In the present moving atmosphere, on
the other hand, there are three reasons for which the radiation
field is not uniform and isotropic, as described in the introduc-
tion: the optical depth effect, the velocity gradient effect, and
the effect of the relativistic speed itself.

First, the radiative intensity, I , in the comoving frame
emitted from the one-tau photo-oval walls is generally a func-
tion of � and �. In general the radiative intensity increases with
the optical depth, and therefore, the intensity from the upstream
direction is slightly larger than that from the downstream direc-
tion in the present one-dimensional vertical flow. This effect of
non-uniformity of intensity generally acts as a force to accel-
erate a comoving observer. This optical depth effect is promi-
nent for small optical depth, similar to the static atmosphere.

Second, although in the usual static atmosphere the �-
dependence is safely ignored for large optical depth, this is
not the present relativistic case. Namely, in the relativistic
flow there appear the aberration and Doppler effects between
the inertial and comoving frames. Hence, except for very
special cases, the comoving radiative intensity would have
strong anisotropy.

Thirdly, if there is a velocity gradient in the flow, the inten-
sity observed by the comoving observer is redshifted (Doppler
shifted) due to the velocity difference between the comoving
observer and the one-tau photo-oval walls. In an accelerating
flow, where the flow speed increases toward the downstream
direction, the relative velocity is generally positive (figure 3),
except for some special direction (� = �=2). Hence, the
Doppler shift of intensity also causes anisotropy of the radi-
ation field at the position of the comoving observer.
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Fig. 4. Behavior of the relativistic variable Eddington factor, f (u, �du=d� ), multiplied by 3 in the case of small u. (a) 3f are plotted as a function of
the four velocity u0 (x axis) and the four-velocity gradient �du=d� j0 (y axis). (b) 3f are plotted as a function of the four-velocity gradient �du=d� j0
for four fixed u0 (= 0.01, 0.05, 0.1; solid curves), and one fitting curve is also shown (dashed curve).

Neglecting the local emissivity, the frequency-integrated
intensity, Ico, observed in the comoving frame at the position �0

of the comoving observer is related to the frequency-integrated
intensity, I (� , �), emitted at the one-tau photo-oval and to the
redshift z by

Ico =
I.�;�/

.1 + z/4
: (7)

The relative speed Δˇ between the comoving observer and the
one-tau photo-oval walls is given by the relativistic summation
law as

Δˇ =
ˇ � ˇ0

1 � ˇˇ0

; (8)

where

ˇ =
up

1 + u2
; and (9)

ˇ0 =
u0q

1 + u2
0

: (10)

It should be noted that as long as the velocity gradient is posi-
tive (accelerating flow) the relative speed (8) is always posi-
tive (or zero), and the one-tau photo-oval is seen to expand
(figure 3).

Using the relative speed above, the redshift z is expressed as

1 + z =
1 + Δˇ cos�p

1 � .Δˇ/2
: (11)

Now, all the quantities are calculated for given �0, u0,
du=d� j0, and I (� , �). Once the observed intensity Ico is
obtained by equation (7), the radiation energy density Eco, the
radiative flux Fco, and the radiation pressure Pco measured by
the comoving observer are calculated respectively as

cEco �
Z

IcodΩco; (12)

Fco �
Z

Ico cos� dΩco; (13)

cPco �
Z

Ico cos2� dΩco: (14)

Finally, the relativistic variable Eddinton factor in the
comoving frame is given by

f � Pco

Eco
: (15)

In the following subsections, we consider in turn several
cases: the velocity gradient effect, the optical depth effect, and
the strong anisotropy of the radiative intensity.

3.1. Uniform Case with Photo-Vessel

We first consider the velocity gradient effect, similar to the
previous studies (Fukue 2008a, b), and also the photo-vessel
case, which was not considered in previous studies. To clarify
the velocity gradient effect, we here assume that the comoving
radiation field is uniform,

I.�;�/ = NI = const. (16)

The numerical results of this uniform case are shown in
figure 4 for small u0 and figure 5 for large u0. In figures 4a and
5a the relativistic variable Eddington factors f (u, �du=d�)
multiplied by 3 are plotted in the parameter space, whereas they
are plotted for several fixed u0 with fitting curves in figures 4b
and 5b.

The behavior of RVEF for small u0 is shown in figure 4
(cf. Fukue 2008a). In this case RVEF decreases, as the
velocity gradient becomes large, as analytically proved in
Fukue (2008a). In figure 4b for fixed u0 (= 0.01, 0.05, 0.1)
the values of 3f are plotted as a function of �du=d� j0 by
solid curves; all curves overlap each other. One fitting curve
is also plotted by a thick-dashed one, and the numerical results
are well fitted by

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/61/2/367/2898212 by guest on 21 August 2022



No. 2] Relativistic Variable Eddington Factor 371

Fig. 5. Behavior of the relativistic variable Eddington factor f (u, �du=d� ) multiplied by 3 in the case of large u. (a) 3f are plotted as a function
of the four velocity u0 (x axis) and the logarithmic four-velocity gradient �d lnu=d� j0 (a axis). (b) 3f are plotted as a function of the logarithmic
four-velocity gradient �d lnu=d� j0 for three fixed u0 (= 1, 5, 10; solid curves) from top to bottom, and one fitting curve is also shown (dashed one),
with an exponential curve (dotted curve).

3f �
�

1 +
16

15
y + 0:9y1:8

��1

; (17)

where

y = �du

d�

ˇ̌̌
ˇ
0

; (18)

within an error of a few percent. It should be noted that
we chose the coefficient, 16=15, so that the fitting equation
reduces to

3f = 1 � 16

15
y (19)

in the linear regime, as analytically proved in Fukue (2008a).
The behavior of RVEF for large u0 is shown in figure 5 (cf.

Fukue 2008b). In this case RVEF decreases, as the logarithmic
velocity gradient becomes large, as shown in Fukue (2008b).
In figure 5b for a fixed u0 (= 1, 5, 10) the values of 3f are
plotted as a function of �d lnu=d� j0 by solid curves; except
for the marginally case of u0 = 1, other curves overlap each
other. One fitting curve is also plotted by a thick dashed one,
and the numerical results are well fitted by

3f �
�

1 +
16

15
a + a1:5

��1

; (20)

where

a = �d lnu

d�

ˇ̌̌
ˇ
0

: (21)

Although in Fukue (2008b) we used an exponential fitting
curve (the dotted curve in figure 5b), the present power-law
type is well fitted at large a.

Mixing the small and large u0 cases, and considering several
other patterns, the relativistic variable Eddington factor in the
uniform field is well fitted by

3f �
"

1 +
16

15

�
� 1

�

du

d�

�
+

�
� 1

�

du

d�

�1:6�2
#�1

: (22)

We here assume that the comoving intensity is uniform, and
the above result is only due to the redshift effect, similar to the
previous studies (Fukue 2008a, b).

Here, we briefly examine the case of small optical depth,
a photo-vessel (figure 1). That is, as stated, the one-tau region
is open towards a downstream direction to be a photo-vessel
for �0 < 1 [equation (6)].

The behavior of RVEF for small � is shown in figure 6.
In figure 6a the values of 3f are plotted as a function of
�du=d� j0 for several values of �0 by dashed curves (�0 = 0.1,
0.2, 0.3, 0.4, 0.5 from bottom to top) and by solid curves
(�0 = 0.6, 0.7, 0.8, 0.9, 1.0 from bottom to top) for u0 = 0.1.
The tendencies are similar, but there exist weak deviations.

In figure 6b the value of 3f is plotted as a function of
�0 for u0 = 0.1 and �du=d� j0 = 0. Even if there is no
velocity gradient, the value of RVEF changes with the optical
depth. This is understood as follows. When the optical
depth �0 is larger than unity (photo-oval), f = 1=3 in the
uniform radiation field without the velocity gradient. When the
optical depth becomes smaller than unity (photo-vessel), the
Eddington factor also becomes smaller than 1=3, since the radi-
ation field is no longer isotropic; the radiation from the down-
stream direction vanishes. When the optical depth approaches
zero, however, the Eddington factor recovers to 1=3, since the
Eddington factor above the infinite plane is 1=3. The depen-
dence on the optical depth in figure 6b is well fitted by

f � 1

3

�
�2 � � + 1

�
; (23)

which is shown by a thick dashed curve in figure 6b, without
any significant error.

3.2. Weakly Non-Uniform Case

Next, we examine the optical depth effect, where the back-
ground radiation field is not uniform. We assume that the
comoving radiation field is the Milne-Eddington type,
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Fig. 6. Behavior of the relativistic variable Eddington factor, f (u, �du=d� ), multiplied by 3 for small � . (a) The dependence on the velocity gradient
is shown for several values of �0 (= 0.1, 0.2, 0.3, 0.4, 0.5 from bottom to top of the dashed curves) (= 0.6, 0.7, 0.8, 0.9, 1.0 from bottom to top of solid
curves) for u0 = 0.1. (b) The dependence on the optical depth is shown in the case of u0 = 0.1 and �du=d� j0 = 0. One fitting curve is also shown
(dashed curve),

Fig. 7. Behavior of the relativistic variable Eddington factor, f (u, �du=d� ), multiplied by 3. It is plotted as a function of the four velocity u0 (x axis)
and the four-velocity gradient �du=d� j0 (y axis) in (a) the uniform case and in (b) the Milne-Eddington case for �0 = 1.

I.�;�/ =
3

4
NI
�

� +
2

3
+ �

�
: (24)

Here, � is the optical depth, which is related to the observer’s
quantities by equation (6), and � is the direction cosine in
the comoving frame, which is related to the observer’s quan-
tities by

� = � cos� + Δˇ

1 + Δˇ cos�
; (25)

if we consider the aberration effect between the observer and
the radiation site on the photo-oval in the comoving frame.

Using this intensity distribution in the comoving frame, we
easily computed the radiation field and the Eddington factor.
The numerical results are shown in figure 7. In figures 7a and
7b the relativistic variable Eddington factors, f (u, �du=d�),

multiplied by 3 are plotted in the parameter space for the
uniform case (figure 7a) and for the Milne-Eddington case
(figure 7b).

As can be seen in figure 7, the distribution of RVEF of the
Milne-Eddington case is not so much different from that of
the uniform case. For larger u0 the difference becomes much
small. Hence, the weak non-uniformity or weak anisotropy
does not significantly affect the values of RVEF.

3.3. Strongly Anisotropic Case

Thirdly, we investigate the effect of the relativistic speed
itself. Although there may be various kinds of anisotropy, we
consider the simple limiting case; we assume that the radia-
tion field in the inertial frame is uniform. Then, the comoving
radiation field is expressed as

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/61/2/367/2898212 by guest on 21 August 2022



No. 2] Relativistic Variable Eddington Factor 373

0 2.0 4.0 6.0 8.0 10.0
1.0

2.0

3.0

u

3f

(b)

Fig. 8. Behavior of the relativistic variable Eddington factor f (u, �du=d� ) multiplied by 3 in the strongly anisotropic case. (a) 3f are plotted as
a function of the four velocity u0 (x axis) and the four-velocity gradient �du=d� j0 (y axis). (b) 3f are plotted as a function of the four velocity u0

for three fixed du=d� j0 (= 0, 0.5, 1.0; solid curves), and one fitting curve is also shown (dashed curve), with two comparisons (thin-dashed and dotted
curves).

I.�;�;ˇ/ =
1

Œ� .1 + ˇ�/	4
NI ; (26)

where ˇ is the flow speed in units of the speed of light, �
the Lorentz factor, and � the direction cosine in the comoving
frame given by equation (25). Thus, due to the aberration effect
the comoving radiation field becomes strongly anistropic.
Namely, when the radiative intensity in the comoving frame is
uniform, the intensity in the inertial frame becomes anisotropic
in the sense that the observer in the inertial frame receives the
strong radiation from the upstream direction. When the radia-
tive intensity in the inertial frame is uniform, on the other hand,
the intensity in the comoving frame becomes anisotropic in
the sense that the comoving observer receives strong radiation
from the downstream direction.

The numerical results of this anisotropic case are shown in
figure 8. In figure 8a the relativistic variable Eddington factor,
f (u, �du=d�), multiplied by 3 is plotted in the parameter
space, whereas it is plotted as a function of u0 with fitting
curves in figure 8b.

The behavior of RVEF shown in figure 8a is quite impres-
sive, since it seems that f does not depend on the velocity
gradient, but depends only on the velocity. Indeed, in figure 8b
the values of 3f are plotted as a function of u0 for several fixed
�du=d� j0 (= 0, 0.5, 1) by solid curves, and all curves overlap
each other. One fitting curve is also plotted by a thick dashed
one, and the numerical results are well fitted by

3f =
3.1 + 4u2/

3 + 4u2
=

3.1 + 3ˇ2/

3 + ˇ2
: (27)

As comparisons, RVEF proposed in Fukue (2006) are also
plotted by the thin dashed one (3f = 1 + 2ˇ2) and the thin
dotted one (3f = 1 + 2ˇ).

As can be seen in figure 8b, equation (27) reproduces the
numerical results very well. This is interpreted as follows.
When the radiation intensity in the inertial frame is uniform,

the radiation energy density Elab, the radiative flux Flab, and
the radiation pressure Plab in the inertial (laboratory) frame
become, respectively:

cElab = 4� NI ; (28)

Flab = 0; (29)

cPlab =
4

3
� NI ; (30)

for �0 > 1. Hence, from the Lorentz transformation the radia-
tion energy density Eco, the radiative flux Fco, and the radia-
tion pressure Pco in the comoving frame become, respectively:

cEco = �2
�
cElab � 2ˇFlab + ˇ2cPlab

�
= 4� NI�2

�
1 +

1

3
ˇ2

�
; (31)

Fco = �2
�
.1 + ˇ2/Flab � ˇ.cElab + cPlab/

�
= �4� NI 4

3
�2ˇ; (32)

cPco = �2
�
ˇ2cElab � 2ˇFlab + cPlab

�
= 4� NI�2

�
ˇ2 +

1

3

�
: (33)

Thus, the RVEF analytically becomes

f � Pco

Eco
=

1 + 3ˇ2

3 + ˇ2
: (34)

4. Concluding Remarks

In this paper, we have derived the relativistic variable
Eddington factor (RVEF) for a plane-parallel flow that is accel-
erating in the vertical direction; we have introduced the one-tau
photo-oval observed by the comoving observer, and then calcu-
lated the comoving radiation field and the Eddington factor for
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several situations, and found that the Eddington factor in the
relativistic regime generally depends on the optical depth, the
flow velocity, and the velocity gradient.

Of these, the dependence of RVEF on the optical depth
is weak, similar to the non-relativistic plane-parallel atmo-
sphere. As for the dependence on the velocity gradient, on the
other hand, RVEF generally decreases as the velocity gradient
increases. When the velocity gradient is small, RVEF linearly
decreases with the velocity gradient, as proved in Fukue
(2008a). When the velocity gradient becomes large, RVEF
decreases in the power-law manner of the logarithmic velocity
gradient (cf. Fukue 2008b). Finally, as for the dependence on
the relativistic speed, RVEF can increase to be on the order of
unity, if the comoving intensity is sufficiently anisotropic.

We have considered the case of plane-parallel vertical flow.
In spherical flow, on the other hand, there exists a geometrical
dilution effect, and the situation can be somewhat different,
since r2 terms appear (e.g., Peraiah 2002). The present
approach, however, can be extended to also treat the spherical

case, and we will examine it in future work.
The treatment of the relativistic Eddington factor presented

in this paper may turn out to be applicable in various aspects of
relativistic astrophysics with radiation transfer; i.e., black-hole
accretion flows with supercritical accretion rates, relativistic
jets and winds driven by luminous central objects, relativistic
explosions including gamma-ray bursts, neutrino transfers in
supernova explosions, and various events occured in the proto
universe (cf. Fukue 2008b). The treatment of the relativistic
Eddington factor presented in this paper will help to investigate
these types of astrophysical problems that involve the solution
of the fully relativistic radiation hydrodynamical equations.
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