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Relativity, spherical functions
and the hypergeometric equation

André UNTERBERGER

Mathematiques, University de Reims, URA 1870,
BP 347, 51062 Reims Cedex, France.

Ann. Henri Poincaré,

Vol. 62, n° 4, 1995, Physique theorique

ABSTRACT. - Besides its relevance to physics, special relativity contains
in germ a wealth of new mathematics. Starting from the Klein-Gordon
calculus, a relativistic substitute for the Weyl calculus, we show here how
to deform the theory of spherical functions on rank-one symmetric spaces
or, what amounts roughly to the same, that of hypergeometric functions.

Outre sa position centrale en physique, la relativite restreinte
ouvre la voie a des faits mathematiques nouveaux. Partant du calcul de
Klein-Gordon, un analogue relativiste du calcul de Weyl, on deforme ici la
theorie des fonctions spheriques sur un espace symetrique de rang un ou,
si Fen veut, celle des fonctions hypergeometriques.

0. INTRODUCTION

We wish here to convey the feeling that, once you have been trapped into
a genuinely relativistic mathematical area, there may not exist any turning
back, at least not before you have coped with a much broader task than what
you had in mind to start with: namely, in order that a given mathematical
theory retain its internal coherence after the relativistic deformation process
has taken place, it may be necessary to get involved simultaneously with
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104 A. UNTERBERGER

several branches of mathematics, like e.g. quantization theory, harmonic
analysis and special function theory.

Start from such a commonplace appliance as the one-dimensiond

harmonic oscillator L = ~r ( x2 + D2 )~ with D = (2z7r)~ 2014. This is

a self-adjoint operator on L2 ( 0~ ) , the Hilbert space of initial data for the
free Schrodinger equation

The harmonic oscillator is intimately linked with the Heisenbelg
representation (of which the operators x and D are the infinitesimal

generators) and with the Fourier transformation ~" characterized by

since Land JF commute. Also, there is a strong link between L and the Weyl
calculus of operators. Recall that this is the well-known rule f H 0 p ( f )
that assigns an operator (generally unbounded) on LZ (IR) to each function
f = f (x, p) on the phase space 1R2 (where p stands for the momentum
variable): f is also called the symbol of 0 p ( f ). As is well-known too,
functions of L in the spectral-theoretic sense are just the operators 
where f is any function of ~Z + p2. In particular, denoting as

the ground state of L, the Wigner function W cp), by which is meant the
symbol of the projection operator (u, cp) ~p, is the function ~ (x2 -~ p2 ),
with 03A6 (r) = 2e-203C0r. One may wish to link $ to 03C6 by the formula

where the Fourier transformation can of course be dispensed with,
and where the non-local operator on the right-hand side accounts for the
missing factor 21/2.
What can be left alive of the preceding facts after L has been replaced by

a suitable relativistic generalization? Everything ! Only the whole structure,
not just L, must bear the relativistic mark; also, things are considerably

Annales de l’Institut Henri Poincaré - Physique theorique



105RELATIVITY, SPHERICAL FUNCTIONS AND THE HYPERGEOMETRIC EQUATION

harder to prove. To proceed towards the relativistic deformation, first replace
(0.1) by its relativistic counterpart

which is the positive-frequency part of the Klein-Gordon equation for a free
particle of mass 1. As is well-known from the theory of the one-particle
space of free quantum field theory (cf e.g. [1], vol. 2, p. 402), the correct
space of initial data for (0.5) is no longer LZ (R), but H~~2 (R) characterized
as the space of u E LZ (R) satisfying

where we have set (p) == (1 + c-z pz)1~2; we also set (D) = (1 +
~-2~2~1/2 The Heisenberg representation is unsuitable for a description
of relativistic particles and must be replaced by the Bargmann-Wigner
representation of the orthochronous Poincare group in the Hilbert space
Nc (R). Now the infinitesimal generators of the B. W. representation are
(D), D and B = x (D), corresponding to time or space translations and to
boosts respectively. This yields a definition of the relativistic oscillator L:

There is a relativistic version ~ of the Fourier transformation: it is defined as

and does commute with L. This transformation, on the other hand,
retains it fundamental role as a connecting link between the position
and momentum space realizations since, looking at the positive-frequency
sheet .M of the mass-hyperboloid of equation E2 - c2 p2 + c4 and

setting (with a slight abuse of language) (9 u) (E, p) == (9 u) (p) for

p = (E, p) E .M, one gets the standard isometry from H~~2 (R) onto
L2 (.M) = LZ (A~; (p)-l dp). Even though this is not immediately obvious
from (0.7), the relativistic oscillator is a differential operator: under the
disguise induced by the isometry G just described, one may also write

2-1995.



106 A. UNTERBERGER

with

the Laplacian on M with respect to the Lorentz-invariant metric. All this
is described, in n variables rather than just one, in [ 17] .
Now the Weyl calculus is inoperant in this setting, since it is covariant

with respect to the Heisenberg, not the Bargmann-Wigner, representation. It
has to be replaced here by the Klein-Gordon analysis, a symbolic calculus
of operators on ~I~ ~2 (R) developed in full in our monograph [ 18] . Let us

just recall here from ([17], (3.5)) that in the one-dimensional case which we
have decided to consider in this introduction, the definition of the operator
0pKG ( f ) with Klein-Gordon symbol f == f (x, p) can be written as

Then the symbol of L itself is the function

with

Observe at once that r is much more complicated than ~2 + p2, its non-
relativistic analogue (and limit), since its level curves are curves of genus
one, not circles; also, the eigenfunctions of L (associated in what follows
to the eigenvalues arranged in increasing order, starting from 1~ == 0) are
no more elementary functions, but are related to Mathieu functions, as will
be recalled at the end of section 1. No explicit representation of by
means of series or integrals is known, but the functions do satisfy some
nice identities ([17], corollary 3.5) which it is one of the purposes of the
present paper to generalize.

Annales de l’Institut Henri Poincaré - Physique theorique



107RELATIVITY, SPHERICAL FUNCTIONS AND THE HYPERGEOMETRIC EQUATION

Finally, here is the relativistic generalization of (0.4) (which does not
depend on how we normalize ~). Again (but here, contrary to the non-
relativistic case, this is far from trivial), functions of r, as defined in (0.13),
are just the K.G. symbols of functions of L. In particular, the symbol of the
rank-one operator ~ ’2014~ (u, cp~ (of course, the scalar product is taken
in H~ ~2 (R)) is some function (x2 + p2 + c-2 x2p2 ) . As a consequence
of proposition 3.6 and of (3.14) in [17], one may write

where the square-root on the right-hand side makes sense since it applies
to a function which is the Laplace transform of some function supported in

some details will be provided at the end of section 3.
When c = oo, all results concerning the relativistic oscillator or the Klein-

Gordon calculus reduce to facts relative to the harmonic oscillator which

have been reported here and there (e.g. [ 19], where the Wigner function of
any two eigenstates of any two, possibly distinctly "squeezed", harmonic
oscillators is made explicit), with the possible exception of (0.14): indeed
it reduces to an identity equivalent, after some easy work, to the formula

connecting Hermite and Laguerre polynomials; we have not found it in the
special function literature, but it is easy to derive it in an elementary way
from the identities ([ 10], p. 252 and p~ 242)

and

Much of the story we have just told extends (in a sometimes non
trivial way) to the n-dimensional case [17]: starting from the n-dimensional
analogue of (0.9), one can view the relativistic oscillator L as a deformation
(one extra term) of the Laplace-Beltrami operator on the mass hyperboloid.
Since L commutes with the group of (spatial) rotations, one may consider
its radial part, which in some appropriate coordinate s E ]0, is just an

ordinary differential operator L (&#x3E;., v with A = n 2 2 and v = 1r c2.
Vol. 62, n ° 2-1995.



108 A. UNTERBERGER

The present work is devoted to studying and establishing various exact
formulas relative to the eigenfunctions of L(A, !/) or, rather, of some

larger three-parameter family L(A, ~): the preceding case would then

be that with  = _!. The full family of equations L (A, z/) t6 = 03C1  is

a generalization of the hypergeometric equation, which is the 03BD == 0 case.
We suggest to call it the chronogeometric equation, as it is related to the

Klein-Gordon equation, as explained above, when /~ = _!; it may be poor
physics, but it is sound mathematics, to allow for an m-dimensional time too,
from which general values of J-t come into the picture: section 4 will explain
how solving the chronogeometric equation permits to solve some initial-
value problem related to the bi-radial part of some (m, ~-dimensional
Klein-Gordon equation.
As the mass hyperboloid A~ is a (rank one) symmetric space, the study of

the radial eigenfunctions of its Laplace-Beltrami operator A~ is a chapter
of the theory of in a surprising way, part of it extends
to the case when A~ is replaced by the complete relativistic oscillator

(c/: (1.20)). As an example, consider the well-known identity

valid for Legendre functions: this is properly a result in the theory
of spherical functions on the two-dimensional mass hyperboloid. More

generally, one gets a related identity if one starts form Gegenbauer
functions, which are a subfamily (one parameter has to be kept frozen)
of that of hypergeometric functions. Section 5 gives a generalization of this

Gegenbauer function identity to the "relativistic" v ~ 0 case (  = -1 2
is the frozen parameter }.

In this kind of identities, the eigenfunctions under consideration are
normalized by their value at s = 0. In the hypergeometric case,

nothing exotic will happen if you substitute for this normalization some
normalization at infinity, since the two can be related. In the ("relativistic")
chronogeometric case, things are different, since L (A, ~u, v) has a regular
(Fuchs type) singularity at s = 0 or -1 but an irregular one at oo . It

turns out that, if one normalizes eigenfunctions 03C8 of L (a, , v) by some
relevant condition at oo, one gets a brand-new identity for 03C8~03C8 which,
this time, is valid without our having to freeze any of the parameters

Annales de l’Institut Henri Poincaré - Physique theorique



109RELATIVITY, SPHERICAL FUNCTIONS AND THE HYPERGEOMETRIC EQUATION

A, ~ v: it is described in section 3. Another topic discussed in this

section is the expression of the function introduced right before (0.14) as a
chronogeometric function, and a rephrasing of the identity (0.14) in terms
of chronogeometric functions. Replacing the mass hyperboloid by a sphere
of the same dimension amounts to changing the domain of L (A, ~, v), in
particular replacing ]0, 0[: this is discussed in section 6.

In all that precedes, the familiar case v == 0 (or c = 0 since v 
was in some sense the ultrarelativistic case. It is necessary, would it be

only in order to set up, in section 1, various spectral problems relative to
the operator L (A, ~c, v), to consider also its non-relativistic limit as c goes
to 00: as it turns out, this is when /~ = -1 2 and a = n 2 2 the radial part of
an n-dimensional harmonic oscillator or, more generally, the infinitesimal
generator eo corresponding to the subgroup 5’C (2) of some representation
in the discrete series of SL (2, Mostly for the technical reasons just
alluded to, we include, in section 2, a precise discussion of the differential
operator eo, and link L (A, ~c, v) to the representation under consideration.

TABLE OF CONTENTS

1. The chronogeometric equation.
2. The discrete series of SL (2, 
3. A few exact formulas.

4. The Klein-Gordon-Bessel equation.
5. An extension of the identity of spherical functions.
6. The operator ~c, v) on ] - 1, 0[.

1. THE CHRONOGEOMETRIC EQUATION

Consider the differential equation

When v = 0, it reduces to the hypergeometric equation for

2F1 ( a, /3, 1’; -8) provided we - 1,  = a + /3 - l’ and
p == Besides regular singular points (i. e. points of Fuchs type) at 0 and
-1, with pairs of exponents (0, 2014A) and (0, - ), it has when v ~ 0 an

Vol. 62, n ° 2-1995.



110 A. UNTERBERGER

irregular singularity at oo, and does not have in general any known solution
in terms of an explicit series or integral any more. An exception occurs
when 03BB = -1 and p = 0, -1 and p = - v2, since one can then
divide the whole equation by s or 1 + s : in the first case, for instance, a
solution of ( 1.1 ) is the function ( ( 1 + 8)1/2), where the (elementary)
function 1~,~, ~ is defined in (3.6).
We suggest to call ( 1.1 ) the chronogeometric equation to recall its

relativistic origin (the reader may find this word even more appropriate
in view of section 4 in this paper), at the same time recalling its link to the
hypergeometric equation. We shall treat p, in (1.1), as a spectral parameter,
and shall be interested, actually, in the operator

Assuming A, real, ~ 7~ 0 (say v &#x3E; 0) and A &#x3E; -1, ~c &#x3E; -1, we
shall consider, presently, the spectral problem for L ( a, v) on (0, (0):
observe, however, that changing s to -1 - s and exchanging A and ~c
would reduce to the preceding case the spectral problem on (201400, -1 )
in the case when v E 

From the theory of the relativistic oscillator as well as from the "Klein-
Gordon-Bessel equation" that will arise in section 4, it will be useful to

with the understanding that when  = -1 2’ one has h = 1 even when
A = 2014 _ too. The parameters A and  should be thought of as related to the

dimensions of space and time respectively (for ~-1 2, this is rather fancy
PhYSiCS!). c is indeed the velocity of light, and we shall not argue with the
reader whether h should be regarded as some kind of Planck’s constant or
not: it certainly plays a role akin to such in equations (1.18), (2.5), (4.2).

Then, the hypergeometric equation will appear as the ultrarelativistic

(i. e. c 2014~ 0) limit of the chronogeometric equation. To get an interesting
non-relativistic limit (c 2014~ oo), one must perform first the change of variable

Annales de Henri Poincaré - Physique theorique
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s = 2" that reduces L (a, /k, 1/) to the operator characterized by

The limit as c 2014~ 00 of the right-hand side is the Laguerre operator

a particular self-adjoint realization of which has a complete set of eigenstates

correspond ing to t e elgenval ues 
h (n + 2

THEOREM 1.1. - L (~, v) is formally self-adjoint on the Hilbert space
H~’~ ~‘ that consists of all functions n on (o, oo) satisfying

It is essentially self-adjoint if and only if a &#x3E; 1. When -1  ~  1, it has

two particular self-adjoint extensions, the domains of which are the spaces
of all u E H~‘ ~ ~‘ with L (..B, v) u E H~ ~ ~‘ in the distribution sense on

]0, satisfying the additional property that s~‘+1 u’ (s) vanishes at ,zero
for the first extension, and that (s) --I- ~ u (s) vanishes at zero for the
second one.

so that

Vol. 62, n ° 2-1995.
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The transformation ~ ~ ~ is called a Liouville transformation

(cf Dieudonne [2] or Nourrigat [ 13] or Gangolli-Varadarajan [4], p. 134).
It takes the operator L (A, ~, v) to the operator (of Schrodinger type)

as a rather tedious calculation, which we shall not reproduce here, shows:
as a hint, it is easier to check this if one starts from the operator in ( 1.7),

noting first that 2014 transfers to the operator

whose square is not that bad to compute. This shows in particular that

L(A, v ) is formally self-adjoint on 
At oo, the operator L (A, v) has an irregular singularity. The WKB

method (Dieudonne [2], p. 423 or Nourrigat [ 13], proposition 12.3) applies
more directly to the equation satisfied v = v (t) with

indeed, the equation for v reduces to v" - V v = 0 where, as t goes to oo,
V (t) - 1 admits an asymptotic expansion as a sum 03A3 ckt-2k with k &#x3E; 1;

thus, any eigenfunction of the operator in ( 1.7) is a linear combination of

two functions equivalent, as ç ---t oo, to ex p - ~ ~ 4 v ef)2). Only one of
them is in L2 near infinity: thus (cf. Reed-Simon ([15], vol. 2, p. 152), one

always is in the limit-point case at infinity. For future reference, note that
the eigenfunctions of L (A, v) which lie in near oo are equivalent
to a constant times

as shown by ( 1.5 ) .

l’Institut Henri Poincaré - Physique theorique
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At zero, the 
" 

operator in ( 1.7) has a regular singularity with the pair of

exponents 1 2±03BB since it reduces to

up to a zero-order term bounded near 0. Only one of the functions ç2:f:À
lies in L 2 near 0 if and only 1 (since 03BB &#x3E; -1). According to Weyl’s
limit point-limit circle theorem (Reed-Simon, loc. cit.), this is the exact
condition that will make ~c, v), initially defined on C~(]0, [00 [),
essentially self-adjoint on H~~ ~‘.
We postpone to next section the proof that, when -1  ~  1, each of

the two boundary conditions indicated in theorem 1.1 yields a self-adjoint
extension of /~ v). Meanwhile, let us note that

and that u = s-~ v implies ~~+~ u’ = ~ - ~ v: thus the isometry v ~ ~
from H-~~ ~ onto transforms the second boundary condition relative
to L(-A, ~c, v) into the first one relative to L(A, ~c, v). The two cases
in theorem 1.1 can thus be reduced to the first one.

Inverting ( 1.5) as

one may write

with

where c denotes some function continuous on [0, oo[, satisfying ~ (~) _
o (ç) as ç ~ 0. Choosing any indefinite integral b of E, one may solve
Vol. 62, n ° 2-1995.
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as

where C is some constant, which shows that the vanishing at zero of f (ç)
as defined in (1.15) does not depend on which function 6- appears on the
right-hand side. Finally, to finish the proof of theorem 1.1, we just have
to show that Ea , as defined on ( 0, 00) in ( 1.11 ), has some self-adjoint
extension for which the boundary condition at zero is

We shall wait until next section to do that. 0

Consider now, on the differential operator Ln defined by

When h = 1, this is just the relativistic oscillator in n variables introduced in
([ 17], (2.2)), another definition of which, as a sum of squares of infinitesimal
generators of the Bargmann-Wigner representation (loc. cit, definition 2.1),
is also possible, in a way that reduces to (0.7) when n = 1: in that

case, one may dispense with h through an obvious rescaling (changing c
at the same time); when ?~ ~ 1, the operators Ln are genuinely distinct
for distinct values of h. Coming back to the case when h == 1, one

may consider L~ as a deformation of the Laplace-Beltrami operator on a
rank-one symmetric space. Indeed, denoting (as in the introduction, this
time in n variables) as M the sheet of hyperboloid in of equation
E = ( c2 ~ p2 ~ -~- c4 ) 3 / 2 and identifying [the obvious generalization

l’Institut Henri Poincaré - Physique theorique
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of (0.6)] with LZ (.M) = LZ (.M, (p)-l dp) through the isometry G defined
by

one may write ([17], (2.3))

where

is the Laplace-Beltrami operator on M associated with the ds2 that is the
negative of c-2 Taking the radial part of Ln, we shall thus get
a "relativistic" deformation of the hypergeometric operator that corresponds
to the radial part of OM .

There is no need any more to assume that h = 1. Letting Ln, as defined
in ( 1.18), act on a radial function

we find

thus

with (A, v) as defined in (1.3).
In the case when n = 1, there is no loss of generality in assuming that

h == 1: then L1 is essentially self-adjoint both on the space ~I~ ~2 (I~) and
Vol. 62, n ° 2-1995.
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the space L2(R,(1+x2 2) 2014 . For the radial, or even, part, ( 1.24)
B B c2 c

applies and yields

One can also, in this case, transfer the odd part under the map

f (x) _ ~ u C L2 zB J , which then yields

Under these transfers, the even (odd) part of LZ ( 1 + x2 c2) 2014 )
becomes H-1/z, -1/2 (resp. ~1/2,-1/2~ with the notation of theorem 1.1.
Finally, it is the first self-adjoint extension of L (A, Ec, v) (as described
in theorem 1.1 by the condition that ?/ (s) should vanish at 0) which
we are interested in, since in terms of f = f (~) it expresses that f’ (~c)

(x) - f (~r)) vanishes at zero.
Observe that, in the coordinate ç such that x = c sh ~, one has

The search for eigenfunctions of the operator on the right-hand side is called
the modified Mathieu equation. Replacing the function sh by sin leads to the
Mathieu equation proper (6.11 )] : the usual spectral problem associated
with the Mathieu equation is the search for its 2 03C0-periodic eigenfunctions; it
will occur naturally in section 6. Both the Mathieu equation and the modified
Mathieu equation were introduced on the occasion of Mathieu’s discussion
[11] ] of the Dirichlet problem in an elliptic-shaped plane domain, as the
result of an appropriate separation of variables. No explicit series or integral
representation of Mathieu functions is known yet (to our knowledge), despite
the fact that several books, among which [21 ] and [22], (and many papers)
have been devoted in full or in part to this subject: see Jager [8], however,
for an interpretation of the Fourier coefficients of a Mathieu function in
terms of polynomials linked to the Klein-Gordon calculus.

That the Mathieu equation transfers, under some appropriate change of
variable, to some special case of the "chronogeometric" equation, was
already known to and used by Lindemann, as reported in ([22], p. 417).

Annales de l’Institut Henri Poincaré - Physique theorique
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2. THE DISCRETE SERIES OF SL (2, R)

It will be helpful in our understanding of L(A, ~c, v) . Only it is the
full projective series {7r.x; a &#x3E; 20141}, as considered in connection with the
universal covering group of 5’L (2, R) (Pukanszky [ 14]) that we need here:
when A is a non-negative integer, will be a genuine representation,
namely the one denoted as in Knapp ([9], p. 35). We use the real
type realization of the holomorphic discrete series of SL (2, R) which, for
various classes of groups, has been described by Gross-Kunze ([5], [6]) in
terms of Bessel kernels.

Recall, for instance from ([20], p. 89-90) that there exists a unique map
from SL ( 2, R) to the unitary group of satisfying the following

properties:

 0, = ei03C0(03BB+1)03C003BB(-g); if 03B3 = 0 and a  0,
= e2014(~)~(-~).

Then is a projective representation: more precisely, for all g,
gl E ~L(2, one has

for some number cv E exp (2 i03C003BB Z) depending on the pair (g, gl). One can
go to loc. cit. for a proof valid for A &#x3E; 0, then use analytic continuation.
A more self-contained method is along the following lines. Consider the
Hankel transformation ~-C defined (Magnus-Oberhettinger-Soni [10], p. 397)
on ( 0, (0) by

Setting s = 
03B303C32 

, t = and using H2 = I, one immediately sees that
the maps are isometries of H03BB,0. On the other hand, the set of

Vol. 62, n ° 2-1995.
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functions C, Im z &#x3E; 0), with (s) _ is total in As

a consequence of the formula for the Laplace transform of t ~‘ ~ 2 Ja 
([10], p. 446), one finds after an elementary calculation that, when 03B3 &#x3E; 0

(this was case (ii) on our list), one has

with the argument of 03B3z + 8 in ]0, 7r[. The property (iv) easily follows.
A particularly interesting unitary transformation of is the involutive

transformation

i.e.

Assume a = 
n 2 

for some integer n &#x3E; 1. Under the identification
2 

-

f (x) _ u ~ ~ ~ c 2 , introduced m (1.22), of with a space of radial

functions on Rn, and with v = 03C0c2 h, F03BB, v just corresponds to the radial

part of the Fourier transformation on defined as

This is a consequence of the classical formula (cf. e.g. Schwartz [ 16], vol. 2,
p. 115) for the Fourier transform of radial functions.

Choose

as a basis of the Lie algebra of SL (2, then

Annales de Henri Poincaré - Physique theorique
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so that, as a consequence of (2.2) (the calculation is detailed in ( [20],
proposition 2.1 ), but some interwining operator must take place since the
space denoted H~‘ there would be denoted as H-~~ ° here), the infinitesimal
operator

is given formally, on H~~ °, as

The other infinitesimal generators of the projective representation 7rÀ are
quite simple to compute: with obvious notations, they are given formally as

At least when now want a characterization of the
domain, in the sense of Stone’s theorem, of the self-adjoint extension of
eo that is the infinitesimal generator of the one-parameter unitary group
which coincides with 8 ~ for 0  9  27T. More precisely, we
are interested in the boundary condition at zero which characterizes this
domain. Now a complete orthonormal basis of H~‘ ~ ° consisting of
eigenstates of the extension of eo which we are interested in is given by

with the corresponding eigenvalues

Indeed, the orthogonality and normalization come from [ 10], p. 241. With
(s) == eivzs, Im z &#x3E; 0, it follows from ([10], p. 244) that

Vol. 62, n 2-1995.
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Thus, using (2.2), one gets for 0  9  2 7r that

from which the equation eo 03C6n = an03C6n follows in a true, not just formal,
sense. The completeness is standard ([10], p. 239).
As we have found no reference for this certainly known fact, we now

prove that the boundary condition at zero that characterizes the domain of
eo is s03BB+1 u’ ( s ) = 0. Assume that u = 2:: cn 03C6n lies in this domain, so that

Then, calling an the numerical coefficient on the right-hand side of (2.11 ),
and using the fact that the derivative of L~ ~ is - L ~ + 1 ~ , one may write,
for s &#x3E; 0,

Now, from ([ 10], p. 242), one has for 0  x  1 the identity

Using

and the Cauchy-Schwarz inequality to estimate each of the two terms on
the right-hand side of (2.16), one is left with proving that, with 8 = 0
or 1, the expression

Annales de l’Institut Henri Poincaré - Physique theorique
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goes to zero as s ~ 0, an elementary task for -1  03BB  1.

In the reverse direction, we still have to show that if u E ~’ ~ vanishes
near oo and satisfies s~+1 u’ (s) = 0 at 0, then, defining eo u on ]0, oo[ in
the distribution sense and assuming that e0u E H03BB,0, one may write

As

this requires two integrations by parts, where the vanishing of the boundary
terms at zero just requires the vanishing there of s ~+ 1 u (5) and s ~‘ ~ 1 u’ (8).
Finally, it is elementary that the second of these two conditions implies
the first one when A &#x3E; -1, which concludes our characterization near zero
of the domain of eo.

End of proof of theorem 1.1. - Set

so that == With ~=2~~, eo, as defined in (2.9), transfers to

which differs from (47r~)~EB, as defined in ( 1.11 ), only by a term of
order 0, bounded near zero. Moreover,

so that, looking back at what was said just before ( 1.17), we are done. 0

From now on, we shall always look at L (A, v) as realized as a self-
adj oint operator on under the boundary condition s ~‘+ 1 u’ ( s ) = 0
at zero in the case -1  À  1. One may observe that the difference
between the operator in ( 1.7) and 4 03C003BD eo (recall that these two operators are

, self-adjoint on L2 ((0, oo); ~): they are the transfers, under appropriate
isometries, of v) on and 403C003BDe0 on H03BB,0) is the
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multiplication by some smooth function on [0, 00[, bounded from below.
This, together with the WKB analysis at the beginning of the proof of
theorem 1.1, shows that the spectrum of L (&#x3E;.., v) is discrete, simple
and can be arranged as an increasing sequence going to infinity. From
( 1.10) we can give the following definition.

DEFINITION 2.1. - Let be the increasing sequence of eigenvalues
of L (&#x3E;.., v) . We shall denote as cp~ (&#x3E;.., v; s ) the eigenfunction
corresponding to the eigenvalue p~, normalized by the condition that

The operator L (A, v) lies in the enveloping algebra of the

representation 

THEOREM 2.2. - With eo, ~1, e2 defined in (2.9) and (2.10), one has
the identity

where the two sides are considered as operators on COO (~ 0, oo j) . When
extended as an operator on the space of C~ vectors of the representation
’7rÀ, L (a, v) commutes with

Proof - The first identity is just a trivial computation, based on (2.9)
and (2.10); of course, the right-hand side extends as an endomorphism of
the space of Coo vectors of 7r.x. On that space, one may write

where ~’a, v was defined in (2.3). The easiest way to prove this is to

observe that, for j = 1, 2, one has

up to some phase factor in the group which has to be 1 for

small t, and to take the derivative at t = 0.
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From this identity one immediately gets

and it is a routine matter to check that this is just the same as

(1 ~ s)~‘ ~ (~~ M, ~)(i+5)-~. D

3. A FEW EXACT FORMULAS

In this section, we exploit the fact that, on a symmetric space of rank one,
the differential equation that characterizes spherical functions is a particular
case of the hypergeometric equation: looking at the chronogeometric
equation as a relativistic deformation of the former one, we shall prove
for the function ( ~, M, v; s ) introduced in definition 2.1 an integral
identity similar to the one which characterizes spherical functions. This
identity is valid for the functions normalized at infinity in the way

indicated. In the case when = 2014-, we shall give in section 5 another
identity, valid for eigenfunctions normalized at zero. The latter one, as will
be seen there, is a striking generalization of the one familiar for Legendre
functions. As a reference for spherical functions, we use Helgason [7],
Faraut [3] and Gangolli-Varadarajan [4].

Consider a rank-one symmetric space G/K of the non-compact type and
set p = ma, q == here, a is a simple root and ma (resp. m2a) is the
dimension of the root space corresponding to Denote as x

the coordinate log a (it is usually denoted as t in harmonic analysis) arising
from the Iwasawa decomposition nak of an element of G. In terms of ~,
the differential equation for spherical functions expresses itself ([7], p. 317;
[3], p. 80; [4], p. 135) as the search of an eigenfunction for the operator

To get the hypergeometric equation for 2 ~1 ( a, /?? ’)’; - s ) one must set
s == sh2 x : note that a, as an argument in 2~1, has nothing to do with a root !
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Let us do this the other way round, transforming the operator L (A, v)
under this change of variable: we get the operator L (A, 1/) with

This is the same as (3.1 ), under the sole assumptions p + q &#x3E; -1, q &#x3E; - l,
except for the additional "relativistic" term -403BD2sh2x. Two special cases

should be singled out. When  = -1 2 and A = n 2 2 with n E 1B1*, ’ one

may identify (3.1 ) with a truncation of (3.2) if p = n - 1 and q = 0,
which are precisely the multiplicities ma and m2a that correspond to the
symmetric space 5’0o(l, ~)/90(~). Now this is not surprising since, as
shown in (1.23), v) corresponds in that case to the radial part
of the relativistic oscillator Ln on IRn with h = 1, and ( 1.20) actually
shows that 47r Ln itself, not just its radial part, is a deformation of the

Laplace-Beltrami operator on G/K. The case == 0 is of interest

too (see the end of this section): then p = 0 and q = 1, which is the

situation that arises from G == S U ( 1, 1 ) . Since the symmetric space then
obtained is the same as the one arising from G = SOo (1, 2), one gets
essentially the same equation (3.1) whether one chooses (p, q) _ (0, 1)
or ( 1, 0) : one gets the second one from the first one by setting x = .

However, it is not indifferent whether one has an extra term -4 v2sh2 x

or in the complete chronogeometric operator (3.2): actually, the

two cases correspond to h = 1 2 of h 
= 1 respectively, and the operators

are intrinsically different.

Recall the identity

a characterization of spherical functions ([7], p. 400 or [3], p. 4). In terms
of the coordinate x = log a, this can be written as

for some kernel f (x, ~/, z) that need not be made explicit at this point
but does not depend on which spherical function ~p we have in mind. We
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now proceed to build such a kernel in connection with the eigenfunctions
of L (~, ~c, v).

First note that under the change of variable s = the measure

~(1 + which defines the spaces H~‘~ ~‘ (on which L(A, 1/) is

self-adjoint) transfers to

We must now use the Bessel functions 7~ Ja, Ka as defined in the

book [ 10] by Magnus, Oberhettinger and Soni; also, as a shorthand, set

for t &#x3E; 0. It is then a routine matter to check that the differential equations

are valid. Observe that and are the restrictions to IRt of smooth
even functions on R.

DEFINITION 3 .1. - Given z &#x3E; 0, define Fz as the operator on H03BB,
such that

with

and ’ dm as defined in (3.5).

THEOREM 3 . 2. - For every z &#x3E; 0, ’ bounded operator from H~ ~ ~‘
to itself, and ’ sends into the domain of L (A, /1, v) . The operator Fz
commutes with L (A, /1, v) . As z goes to ’ oo, the operator

converges strongly to ’ the identity operator.
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Proof - First observe that the kernel f (z, x, y) is Coo on the closed

set{~&#x3E;0,~&#x3E;0,~/~0}. The first point amounts to proving that, on
L2 (0, oo; the operator with kernel (with respect to dy)

is bounded. Now this is a consequence of the estimates ( [ 10], p. 139)

together with

The estimates (3.9) also show that, given x &#x3E; 0 and y &#x3E; 0, one has

as z 2014~ +00, from which the last assertion of theorem 3.2 follows.

It is clear from the definition of f (z, x, y) that, for every u E H~~ ~‘,
the function x~(Fz u) (sh2 x) extends in a natural way as a even

function on (f8: thus, with s = sh2 x,

vanishes at s = ~ = 0 since A &#x3E; -1.

To complete the proof of theorem 3.2, it thus suffices to show that the

kernel f (z, x, ~/) satifies the identity

where the differential operator L (~, M, v), self-adjoint on L2 (0, oo; dm)
(whose precise domain is the image of that of M, v) under the
change of variable s = sh2 x), was made explicit in (3.2), and where the
extra letter x or y is to indicate that this differential operator is supposed
to act on f (z, x, ?/) considered as a function of x or ?/. To get rid of
useless burden, set
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with the convention that z~ ~ and its derivatives shall always be evaluated
at and its derivatives at Then

and, taking (3.7) into account,

Thus, from (3.2),

This, as well as fo, is a symmetric expression in (x, y), which concludes
the proof of theorem 3.2. D

Remark. - In ([17], section 4), we defined in a rather natural way a
family of operators in connection with the n-dimensional relativistic

oscillator; then, taking the radial part and transferring the result under

( 1.22), we got the present family (Fz) in the case when  = -1 2 and
03BB = n - 2 : it was guessed in general from an extrapolation of this case.
On the other hand, that Mathieu functions do satisfy certain integral

equations analogous to special cases of part (ii) in the theorem which follows
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(cf. the very last remark of the present paper) was reported by Whittaker
(Whittaker-Watson [22], p. 407) as early as 1904; related integral equations
hold in the theory of Lame functions ([22], p. 565). We think that the present
work puts this kind of integral identities into a more general perspective,
at the same time linking them to the theory of spherical functions.

THEOREM 3 . 3. - Set, for short,

to denote the function introduced in definition 2.1. Then:

(i) for all z &#x3E; 0, 

(ii) for all 2: 0, 

(iii) one has the expansion

Proof. - From theorem 3.2, Fz03C6k is an eigenfunction of L (A, v)
relative to the same eigenvalue p~ as (~: thus Fz = g (z, 1~) for some

g (z, 1~). As a function of z for fixed x, (Fz (sh2 x) lies in the domain
of v), of which it is an eigenfunction relative to the eigenvalue
Pk: this is a consequence of theorem 3.2, of (3.17) and of the symmetry
with respect to the pair (z, x) of f (z, x, y) as well as of the right-hand
side of (3.17). This proves (i), up to some constant factor depending only
on I~, which is taken care of by means of the last assertion in theorem 3.2,
in view of the normalization of ~p~ chosen in definition 2.1. Part (iii) is

an immediate consequence of (i) (Mercer’s theorem) and (ii) follows from
(iii): it has been singled out in view of its similarity with the identity for
spherical functions. D

Remark. - All this is equivalent to the operator identity

Going back to the relativistic oscillator on Rn with h = 1 this corresponds
to = -1 as described in (1.18)-(1.21), one should not believe that this
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kind of equation only holds for radial eigenfunctions of Ln . Indeed, assume
n = 2 and, with ~ as in ( 1.19) and setting p = ( E, p ) E .J1~I , ..., define

Fp by the formula

with

This time, we have a two-parameter family of operators that commute with
the given relativistic oscillator, and one can still show that

This is obtained by an expansion of the integral kernel of the conjugation
under ~ of each of the two sides, using the formula

proved in ([18], proposition 4.3), and valid for every q = (qo, q) E 1R3
with c2 qÕ - &#x3E; 0, qo &#x3E; 0.

It is our belief that the theory of the chronogeometric equation is full of
formulas yet to be discovered, of various depth. Here is a pair, based on
the concept of Wigner function as recalled in the introductory section.
THEOREM 3 .4. - Denote as p~ (A, v) the eigenvalue (1~ &#x3E; 0) of

L (A, v), denoted as 03C1k in definition 2.1. Then, for every k~N:

and
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and

where the non-local operator that appears on the right-hand sides makes
sense as it applies to a function which is the Laplace transform of a measure
supported in IR+.

Proof. - Let ( a~n ) n &#x3E; o denote the spectrum of the one dimensional
relativistic oscillator (0.7), and let (~pn ) be the corresponding sequence
of eigenfunctions, normalized by the condition ([ 17], theorem 3.4) that

(x) is associated with the relatistic oscillator, c~~ (A, v; s) with
L(A, v) : no confusion should arise). In ([ 18], ( 16.32)) we introduced
the "Mathieu-Laguerre" operator

on ] 0, 00[: setting v = 1r c2 and switching to the new variables s = 2 ,c

we get [from ( 1.2)]

The self-adjoint extension of M.L., on L2 (I~+, dr), we were interested
in was defined ([18], proposition 15.7) so that the eigenfunctions of

M.L. should be the restrictions to IR+ of Coo even functions on R: thus

(3.25) holds in a genuine, not only formal sense, and the result of ([18],
theorem 15.11 and statement just before ( 16.32)) is that the n-th eigenvalue
of M. L . is 03C3n + 20142014. As proved by Jager [8], the function n is even
or odd according to whether n is: from ( 1.25) and ( 1.26), which link the

even and odd parts of the relativistic oscillator to L(±1 2, -1 2, 03BD),
and from (3.25), we get the part (i) in theorem 3.4.

From ([18], theorem 15.11), an eigenfunction of M.L. corresponding to
the n-th eigenvalue is ~n (r) [with r as in (0.12)], the Wigner function
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(in the Klein-Gordon calculus) associated with According to ([ 17],
proposition 3.6 and corollary 3.5), one has

where K is some constant (the value of which, namely (-1)n (ic))-2,
led to (0.14)). What matters here is that, as a consequence of (3.23) and
of the stationary phase method applied to the integral (3.26) one has the
estimate [8]

Then, under the transform f f2014~ u, with

that led to ( 1.25) [resp. ( 1.26)], 03C62k(x) [resp. 03C62k+1(x) ] transfers to

resp. -03C6k(1 2, -1 2, v; s)], as follows from

a comparison between (3.23) and the normalization introduced in

definition 2.1. Finally, as shown by (3.27), ~n (r) transfers to

2~~~f~(0, 0, 2 v; s) under the change of variable r = c2 s, which
proves part (ii) of theorem 3.4. D

4. THE KLEIN-GORDON-BESSEL EQUATION

In his very first paper on the functions which bear his name, Mathieu [11] ]
introduced the change of variables defined by x = ch ç ch ~, y = sh ç sh ~
in order to separate the variables in the Helmholtz problem Ai6 + = 0

in such a way as to make a solution of the associated Dirichlet problem in an
elliptic-shaped plane domain possible; a related change of variables (Miller
[ 12] ) permits to separate variables in the 2-dimensional Klein-Gordon

equation (cf also [ 17], end of section 3, for the solution of the associated
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initial-value problem). In connection with chronogeometric functions, we
here do the same for the Klein-Gordon-Bessel equation

With t - T , s = 03C32, and setting v - h , we can put the K.G.B. equation
in the form

Now, on d2 d03C32 + d-1 03C3 d d03C3 represents 
the radial part of the Laplacian:

thus, when 2 A and 2  are integers, (4.2) may be thought of as the

bi-radial part of a fancy "Klein-Gordon"-like equation in any number

of time, or space, variables: this may be another justification for the

name "chronogeometric" which we have adopted. The ultrahyperbolic wave
equation was already considered by Asgeirsson (cf. Helgason [7], p. 318).

Here is, briefly stated, a solution of the initial-value problem for the
K.G.B. equation. Still and, in a way similar to
definition 3.1, consider for z &#x3E; 0 the operator Ez defined by

with

In terms of the s-coordinate, one may write

One should compare (4.5) to (2.4) and get in particular the relation
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with ~ (A, v) as defined in theorem 2.2. With the same proof as
that of theorem 3.2, one can show that when defined, say, on the space

oo[), Ez commutes with v) .
Finally, the standard method of separation of variables shows the

following. Given u E H~‘~ ° actually in D(eo + ei), the domain of the
infinitesimal operator of formally given by

the K.G.B. equation (4.1) admits exactly one solution satisfying the

following two conditions: (i) the (t, -) is a C1 function from
[0, oo[ to ~~; (ii) (0, s) = u (s). Moreover, the solution is given by

5. AN EXTENSION OF THE IDENTITY
OF SPHERICAL FUNCTIONS

Theorem 3.3 cannot have an interesting limit as v ( = goes to

zero, since it depends on a normalization at 00 of the eigenfunctions of
L (A, v) which is meaningless when v = 0. In the present section we
introduce, in the case when /~ = -1 = 1) and A &#x3E; -1 another
identity, fully satisfactory in this respect: it depends on a normalization

at zero, and applies to generalized eigenfunctions of L ( A, 2014-, v still
satisfying the condition s ~+ 1 (// ( s ) at s = 0 but without any restriction at
infinity. As the roots of the indicial equation at zero are 0 and -A, the

boundary condition just amounts, for an eigenfunction (~ofL~A, 2014-, ~), ,
to its being analytic (or C1 ) at zero. 

B " /

Vol. 62, n ° 2-1995.



134 A. UNTERBERGER

Set 03C8(chx) = cp(sh2 x,), (s) = 03C6(s2-1), so that (1.1) transforms to

THEOREM 5 .1. - Assume that ~ &#x3E; -1. an 

operator on the side of (5.1 ), analytic on [1, ~[ and such that
~ ( 1 ) = 1. For &#x3E; 0, z &#x3E; 0, one has

Remark. - When v = 0 or t = 0, one has

as a consequence of definition 3.6. Thus, when v = 0 and a == n 2 2 with
n &#x3E; 0, theorem 5.1 reduces [3]) to the identity for spherical functions
on 90o(l, ~)/~0(~). Also, for any value of v, the identity is trivially
true when x or z is zero.

Proof of theorem 5 .1. - Since j03BB-1 2,v is a even function on R, the

right-hand side R (x, z ) of the claimed identity is a smooth function on
[0, oo [ x [0, 00[. With the same proof as that of theorem 3.3 (i), it thus

suffices to show that if 03C8 satisfies (5.1), then so does z), for any
given z &#x3E; 0, as a function of s = ch x: also, it is sufficient to prove this

on the open set where x &#x3E; 0, x ~ z .

To this effect, introduce the function
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then the equation (5.1) transforms to L x = with

as is readily seen from (3.2); the operator L is formally self-adjoint on
(0, oo), with respect to the measure (sh x) 1-2~‘ dx, as seen from (3.5).

Besides the change of function from ~ to x, let us perform in the integral
on the right-hand side of the claimed identity the change of variable
defined by y &#x3E; 0,

Then y describes the interval (~2014~,:r+~); also

and

a function fully symmetric in (x, y, z) as can be seen at once.
Denoting as ga (ç) the (locally summable) function on R that vanishes

for ~  0, such that

for ç &#x3E; 0, one finally sees that, in terms of x, theorem 5.1 would express
itself as

For any fixed z, set
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On the open set defined by x &#x3E; 0, ~ 7~ z, g &#x3E; 0, z, the function

wa (x, ~/) = g~, (h (x, y)) is locally integrable since, as seen from (5.10),
h is a submersion at each point (x, y) G E = {(~, ~/) : h (x, y) = 0};
also, the two projections from ~, the singular support of w~, are proper
maps. Thus, in order to finish the proof of theorem 5.1, all that remains

to be done is to show that, with

wa satisfies the equation P w~, = 0, in the distribution sense, in the open
set ~(x, y) E &#x3E; 0, y &#x3E; 0, x ~ z, z~.
Now wa still makes sense, as a locally integrable function, for any

complex A with Re 03BB &#x3E; 2014-, and the map A w a is a holomorphic family
of distributions: so is then the map 03BB ~ P w03BB, and it suffices to prove that

= 0 for real A &#x3E; -, in which case 9a is a C2 function on R; formal
computations valid in the open set where h (x, y) &#x3E; 0 will do the work

in that case. With ç = h (x, y), one has

To compute we note that
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according to (5.10). Thus

Finall, as a consequence of (3.7), satisfies when 03BB &#x3E; 5 the differentialY q ~ ) 2
equation

which concludes the proof of theorem 5.1. D

Here is a rephrasing of theorem 5.1, meant only to harmonize notations
with the existing (v = 0) literature.

COROLLARY 5 ..2. - Given a e C with Re a &#x3E; 0, and A &#x3E; 2014-, denote as

the solution 03C8 of the equation

Vol. 62, nO 2-1995.



138 A. UNTERBERGER

which is analytic on [1, ~[and such that 03C8 (1) = 1. Then, for all x &#x3E; 0,
y 2: 0, one has

Proof and remark. - No proof is needed except for the fact that

a consequence of the duplication formula for the gamma function. D

The function just introduced generalizes Gegenbauer’s function since, in
accordance with the standard notation ( [ 10], p. 199), one has

In the case when v = 0 and a is an integer, the coefficient in front of
the left-hand side of the statement in corollary 5.2 may be checked against
( [21 ], p. 290).

Remark. - In contrast with the (standard) v == 0 case, there exist when
v &#x3E; 0 two genuinely distinct integral formulas (theorems 3 . 3 and 5.1 ) for
cp~ ® Actually there is some link between them, and our first derivation
of theorem 5.1 was based on theorem 3.3: however, such a (slightly simpler)

proof would work only for eigenfunctions of L ( A, 2014-, ~ ) decaying at
infinity, besides satisfying the relevant boundary condition at zero.

de l’Institut Henri Poincaré - Physique theorique



139RELATIVITY, SPHERICAL FUNCTIONS AND THE HYPERGEOMETRIC EQUATION

6. THE OPERATOR L(A, v ) ON ] - 1, 0[

Consider now the equation

(in contrast with (1.1), (1.2), note the minus sign) for u E L2 ((-1, 0);
(-~(1+~)~).

It is now preferable to use -s as a variable, so we set /~, x/) =
-L (A, E~, v) as expressed in the t == - 8 coordinate: thus

and we are interested in solving

with

It is a trivial computation, using only

to check that tc, 1/) is formally self-adjoint on whether 1/
is real or pure imaginary; also note that changing t to 1 - t changes

/~, 1/) to /~, + v2.
We still (the latter condition was not needed

in the analysis on ( 1, oo ) ) . From the proof of theorem 1.1 the condition
t~+1 u’ (t) = 0 (resp. (1 - (t) = 0) is a valid boundary condition
at zero (resp. 1); if, moreover, &#x3E;..  1  1), so is the boundary
condition ~’(~) - A u (t) = 0 at 0 (resp. (1 - t) u’ (t) - = 0 at

1 ) . In this way, we get four, two or one possible (particular except in
the essentially self-ad)oint case, i. e. when A &#x3E; 1 and tc &#x3E; 1 ) self-adjoint
extensions of M(A, /z, 1/). However, as in ( 1.12), we have
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and u = t-~‘ v implies t~‘+1 u’ = ~~ - A~: thus the isometry 
from onto transforms the second boundary condition at zero
relative to M(-A, tc, v), in the case when -1  ~  1, into the first

one relative to J-L, v); at the same time, it preserves any of the

two boundary conditions at t = 1 since the conditions v E C1 (]0, 1[),
v E L2 ((1 - t)~‘ dt) near t = 1 and (1 - t)~‘+1 v’ (t) = 0 at t = 1 imply
(1 - t)~‘+1 v (t) = 0 at t = 1.

In this way, the four self-adjoint boundary problems mentioned above
can be reduced to just one: from now on, J-l, v) shall denote

the self-adjoint extension of the formal operator M (A, tc, v) on 
characterized by the boundary conditions

Since the roots of the indicial equation at 0 (resp. 1) are (0, -a)
(resp. (0, -/~)) and eigenfunction of

/1, v) can be characterized as a function u analytic on [0, 1],
satisfying (6.3).

Then case when v = 0 is not excluded from the analysis. Up to the

multiplication by some constant, the only solution of M (A, /1, 0) u = p u
analytic on [0, 1[ [ is u (t) =2 Fl (a, (3, " t) 
~ + /1 -p 1 and a/3 = - p. Now this function is analytic at t = 1 if and

only if a or {3 is a non-positive integer: this is a consequence of the last
formula in ( [ 10], p. 47) in the case when /1 ~ 0, 1, ... ; of the second

formula on p. 49 in the remaining cases. This yields the spectrum of
M (A, /1, 0), which consists of the sequence m (a + /1 + 1 + m), where
m is a non-negative integer.

This time, the additional term v2 t is a bounded perturbation, and the

spectrum of M (a, /1, v) is still discrete, simple, and can be arranged as
a sequence going to infinity.

In Cartan’s duality of symmetric spaces, the dual of a mass hyperboloid
S00 (1, (n) is a sphere 6’0 (n + 1)/SO (n). Going from (1.18) (or,
rather, its momentum-space realization, which just asks for replacing x~
by p~ in view of the fact that Ln commutes with 9) to its analogue on
the sphere demands no more than a few sign changes. However, c has no

significance any longer, so rather than the sphere EZ + = cB we
use the standard unit sphere in = {(~ q) : qo E of
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equation q20 + = 1, by setting E = c2 qo, P = cq. Then the analogue
of (1.18) is defined in the q-coordinates as

7r C2
or, still setting v = ~ ,

Zonal functions on the sphere ("radial", though technically correct from
the point of view of harmonic analysis, would be somewhat misleading)
are those functions that depend only on qo . On each of the two hemispheres
qo &#x3E; 0, qo  0, such a function can be written as f (q) == for
some u = u (t) living on (0, 1 ) . As in ( 1.24), the zonal part of Ln can
then, in terms of u, be expressed as

with (A, ~c, v) as defined in (1.3). To describe the boundary conditions on
u that will characterize the zonal eigenfunctions of Ln, one must split the
space of functions on the sphere into its even and odd parts and associate
u = f (q) with, say, the restriction of the given function to the upper
hemisphere qo &#x3E; 0. It is clear that we get a function on the sphere smooth
near the poles if and only if the function t ~ u (t2 ) is C°° up to t = 0
in both cases; we get a function smooth near the equator if and only if
the function u (resp. t ~ (1 - t)-1~2 u (t)) is smooth up to t = 1 in the
even (resp. odd) case.

Let us assume from now on, until further warning, that  = - - 1
(i.e. h = 1): then the operator within brackets on the right-hand side of (6.9)
is just the Laplacian on the sphere. Also, the search for zonal eigenfunctions
of Ln on the sphere is fully equivalent with the search for eigenfunctions
of M ( A, , -. ~ ) on (0, 1 ), together with the boundary condition of the
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first type (~-~ i6~ (t) = 0) at 0, and the boundary condition of the first type

(1-t)1~z u’ (t) = 0 Cresp. of the second type (1 - t) u’ (t) -~ 2 ~ (t) = 0)
at 1 in the even (resp. odd) case.
The case when n = 1 needs further splitting. With t = sin2 x

(0  x  2 ) , equation (6.3) becomes

an ordinary Mathieu equation ([22], p. 405). The original Mathieu problem
calls for looking towards 27r-periodic solutions of (6.11 ): as is well-known,
solutions are classified into four types, according to whether u is even

or odd, 03C0-periodic or 03C0-antiperiodic (this is the origin of the standard
Mathieu functions ce2n, se2n+1). An equivalent classification
is according to whether u is even or odd, and whether it is even or odd
around 03C0 2 [i. e. u (03C0-t) == :I:U ( t ) ] : now this fits perfectly well with our four

types of boundary problems for M -1 2 &#x3E; -1 2 &#x3E; v on (0, 1), the boundary
condition at 0 (resp. 1 ) being of the first or second type there according

to whether u is even or odd around 0 resp. 2014 j.
Finally, the spherical functions identities: there is no need to rephrase

theorem 5.1, which extends analytically from ( 0, (0) to ( -1, (0) (in the
s-variable) since it only depends on a condition at 0. For the generalization
to come of theorem 3.3, , we do not assume that M = 2014_ any lon er.
However, let us assume that v is real &#x3E; 0 (if it were pure imaginary,
it would suffice to change t to 1 - t). As in the beginning of section 3,
we transfer, by means of the change of variable t = sin2 x, the operator

M, v) to M (~, ~c, v) with

and the measure that defines the space to
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Also, we note that for an eigenfunction of 1-", v) on ~ 0, 2014 J, the
boundary conditions that are the transfer, under the given change of variable,

of (6.7), just mean that this eigenfunction is Coo on [0, 03C0 2].

Any non-zero eigenfunction 03C6k of v) [under the boundary
conditions (6.7)] satisfies (0) / 0 and ( 1 ) / 1. Also,

since otherwise ~ would be orthogonal, in the space to all functions

of the kind [M (A, 1 with 7~ E 1B1, that is, as a consequence of

(6.2), to all polynomials. This gives a meaning to the following theorem,
whose proof (except for the normalization, checked by sheer inspection) is
identical to that of theorems 3.2 and 3.3.

THEOREM 6.1.- Consider, on [0, 03C0 2]3, the kernel

Given any eigenfunction # (A, v) [under the boundary conditions
(6.7)] satisfying j the normalization condition

one has the identity

When A = ~ ~ and /~ = ~ ~, we are actually dealing, as
explained in the present section, with a disguised version of some Mathieu
function: if, moreover, ~ or ~/ == 0, the identity above then reduces to the
one in ([22], p. 409).
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