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Abstract In this paper we introduce the concept of time-
space manifold. We study the affine connection, parallel
transport, curvature tensor, and Einstein equation, respec-
tively. In the case homogeneous, a time-space manifold with
such tangent spaces which have a certain fixed time-space
structure. We redefine the fundamental concepts of global
relativity theory with respect to this general situation.
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1 Introduction
In [4] we constructed a model on the basis of two types

of Minkowski spaces, the space with indefinite inner product
(Lorentzian-Minkowski space see e.g. [3], [14]) and the space
with a semi-inner product (finite-dimensional separable Ba-
nach space see in [2], [11], [12] and [13]). Among other
things, we introduced the concept of generalized Minkowski
space and especially the so-called generalized space-time
model, which is a generalization of the Minkowski-Lorentz
space-time. From differential geometric point of view, we
investigated the latter in [5]. This investigation led to a gen-
eralization of the spaces of constant curvature; the hyperbolic
(anti-de Sitter), de Sitter, and Euclidean spaces, respectively.
In its own right, in a generalized space-time there is a theory
of special relativity which was not developed in the above
mentioned theoretical papers. In [7] the concept of general-
ized space-time model was extracted to a model called gen-
eralized Minkowski space with changing shape (briefly time-
space). We gave two types of models, a non-deterministic
(random) variation and a deterministic one. We proved that
in a finite range of time the random model can be approx-
imated in an appropriate deterministic model. Thus, from
practical point of view the deterministic models are more im-
portant. We must mention here that the measure of a random
model is based on the following observation: on the space
of norms such a geometric measure can be defined in such a
way that its push-forward onto the line of the absolute-time
has normal distribution (see [6]).

A time-space can be given also via the help of the so-called
shape function. In Section 2 we give the fundamental for-

mulas of special relativity in a time-space (depending on the
given shape function). In Section 3 we embed some known
metrics of general relativity into a suitable time-space. This
shows that time-space is a good place to visualize some of
these. Of course, since time-space has a direct product char-
acter hence a lot of metrics holding the Einstein’s equation
have no natural embedding into it. In the last subsection of
Section 3 we define a generalization of the Lorentzian mani-
fold which we call time-space manifold. The tangent spaces
of a time-space manifold are time-spaces with linear shape-
functions. We introduce the concept of homogeneous time-
space manifold as such a time-space manifold whose tangent
spaces can be identified with the same time-space. In a ho-
mogeneous time-space manifold we define concepts of global
relativity theory: affine connection, parallel transport, curva-
ture tensor and Einstein equation.

The first paragraph contains those definitions, notations
and statements which are used in this paper.

Deterministic and random time-space models

We assume that there is an absolute coordinate system of
dimension n in which we are modeling the universe by a
time-space model. The origin is a generalized space-time
model (see in [4]) in which the time axis plays the role of
absolute time. Its points are unattainable and immeasurable
for me and the corresponding line is also in the exterior of
the modeled universe. (We note that in Minkowskian space-
time this assumption holds only for the axes determining
the space-coordinates.) This means that in our model, even
though the axis of time belongs to the double cone of time-
like points, its points do not belong to the modeled universe.
at a fixed moment of time (with respect to this absolute time)
the collection of the points of space can be regarded as an
open ball of the embedding normed space centered at the ori-
gin and does not contain the origin. The omitted point is
the origin of a coordinate system giving the space-like co-
ordinates of the world-points with respect to our time-space
system. Since the points of the axis of absolute-time are not
in our universe there is no reference system in our modeled
world which determines absolute time.

In our probabilistic model (based on a generalized space-
time model) the absolute coordinates of points are calculated
by a fixed basis of the embedding vector space. The vector
s(τ) means the collection of the space-components with re-
spect to the absolute time τ , the quantity τ has to be measured
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on a line T which is orthogonal to the linear subspace S of
the vectors s(τ). (The orthogonality was considered as the
Pythagorean orthogonality of the embedding normed space.)
Consider a fixed Euclidean vector space with unit ballBE on
S and use its usual functions e.g. volume, diameter, width,
thinness and Hausdorff distance, respectively. With respect to
the moment τ of the absolute time we have a unit ball K(τ)
in the corresponding normed space {S, ‖ · ‖τ}. The modeled
universe at τ is the ball τK(τ) ⊂ {S, ‖·‖τ}. The shape of the
model at the moment τ depends on the shape of the centrally
symmetric convex body K(τ). The center of the model is on
the axis of absolute time, it cannot be determined. For calcu-
lations on time-space we need further smoothness properties
on the function K(τ). These are

• K(τ) is a centrally symmetric, convex, compact, C2-
class body of volume vol(BE).

• For each pairs of points s′, s′′ the function

K : R+ ∪ {0} → K0 , τ 7→ K(τ)

holds the property that [s′, s′′]τ : τ 7→ [s′, s′′]τ is a C1-
function.

Definition 1 We say that a generalized space-time model en-
dowed with a function K(τ) holding the above properties is
a deterministic time-space model.

The main subset of a deterministic time-space model con-
tains the points of negative norm-square. This is the set of
time-like points and the upper connected sheet of the time-
like points is the modeled universe. The points of the uni-
verse have positive time-components. We denote this model
by (M,K(τ)) .

To define a random time-space model we should choose
the function K(τ) “randomly”. To this purpose we use Kol-
mogorov’s extension theorem (or theorem on consistency,
see [10]). This says that a suitably ”consistent” collection
of finite-dimensional distributions will define a probability
measure on the product space. The sample space here is
K0 with Hausdorff distance. It is a locally compact, sepa-
rable (second-countable) metric space. By Blaschke’s selec-
tion theorem K is a boundedly compact space so it is also
complete. It is easy to check that K0 is also a complete met-
ric space if we assume that the non-proper bodies (centrally
symmetric convex compact sets with empty interior) also be-
long to it. (In the remaining part we regard such a body as the
unit ball of a normed space of smaller dimension.) Finally,
let P be a probability measure. At every moment of absolute
time we consider the same probability space (K0, P ) and also
consider in each of the finite collections of moments the cor-
responding product spaces ((K0)r, P r) . The consistency as-
sumption of Kolmogorov’s theorem now automatically holds.
By the extension theorem we have a probability measure P̂
on the measure space of the functions on T to K0 with the
σ-algebra generated by the cylinder sets of the space. The
distribution of the projection of P̂ to the probability space of
a fix moment is the distribution of P .

Definition 2 Let (Kτ , τ ≥ 0) be a random function defined

as an element of the Kolmogorov’s extension
(

ΠK0, P̂
)

of

the probability space (K0, P ). We say that the generalized
space-time model with the random function

K̂τ := n

√
vol(BE)

vol(Kτ )
Kτ

is a random time-space model. Here α0(Kτ ) is a ran-
dom variable with truncated normal distribution and thus
(α0(Kτ ) , τ ≥ 0) is a stationary Gaussian process. We call
it the shape process of the random time-space model.

It is clear that a deterministic time-space model is a special
trajectory of the random time-space model. The following
theorem is essential.

Theorem 1 ([7]) For a trajectory L(τ) of the random time-
space model, for a finite set 0 ≤ τ1 ≤ · · · ≤ τs of moments
and for ε > 0 there is a deterministic time-space model de-
fined by the function K(τ) for which

sup
i
{ρH (L(τi),K(τi))} ≤ ε.

An important consequence of Theorem 1 is the following:
Without loss of generality we can assume that the time-space
model is deterministic.

Definition 3 For two vectors s1 + τ1 and s2 + τ2 of the de-
terministic time-space model we define their product with the
equality

[s1 + τ1, s2 + τ2]+,T := [s1, s2]τ2 + [τ1, τ2] =

= [s1, s2]τ2 − τ1τ2.

Here [s1, s2]τ2 means the s.i.p defined by the norm ‖ · ‖τ2 .
This product is not a Minkowski product, as there is no homo-
geneity property in the second variable. On the other hand,
the additivity and homogeneity properties of the first vari-
able, the properties on non-degeneracy of the product again
hold. Finally, the continuity and differentiability properties
of this product also remain the same as of a Minkowski prod-
uct. The calculations in a generalized space-time model ba-
sically depend on a rule on the differentiability of the second
variable of the Minkowski product. As a basic tool of inves-
tigations we proved in [7] that

Theorem 2 ([7]) If f1, f2 : S −→ V = S + T are two C2

maps and c : R −→ S is an arbitrary C2 curve then

([(f1 ◦ c)(t)), (f2 ◦ c)(t))]+,T )′ =

= [D(f1 ◦ c)(t), f2(c(t))]+,T+

+
(
[f1(c(t)), ·]+,T

)′
D(f2◦c)(t)

(f2(c(t)))+

+
∂[(f1)S(c(t)), (f2)S(c(t))]

τ

∂τ
((f2)T (c(t))) ·((f2)T ◦c)′(t).

The theory of generalized space-time model can be used
in a generalization of special relativity theory, if we change
some previous formulas using also the constant c. (c can
practically be considered as the speed of light in vacuum.)
The formula of the product in such a deterministic (random)
time-space was

[x′, x′′]+,T := [s′, s′′]τ
′′

+ c2 [τ ′, τ ′′] .

Parallel we used the assumption that the dimension n is equal
to 4. A particle is a random function x : Ix → S satisfying
two conditions:

• the set Ix ⊂ T+ is an interval

• [x(τ), x(τ)]τ < 0 if τ ∈ Ix.
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The particle lives on the interval Ix, born at the moment
inf Ix and dies at the moment sup Ix. Since all time-sections
of a time-space model is a normed space of dimension n the
Borel sets of the time-sections are independent from time.
This means that we could consider the physical properties of
a particle as a trajectory of a stochastic process. A particle is
“realistic” if it holds the “known laws of physics” and “ide-
alistic” otherwise. First we introduced an inner metric δK(τ)

on the space at the moment τ .

Definition 4 Let X(τ) : T → τK(τ) be a continu-
ously differentiable (by the time) trajectory of the ran-
dom function (x(τ) , τ ∈ Ix). We say that the particle
x(τ) is realistic in its position if for every τ ∈ Ix the
random variable δK(τ) (X(τ), x(τ)) has normal distribu-
tion on τK(τ). In other words, the stochastic process(
δK(τ) (X(τ), x(τ)) , τ ∈ Ix

)
is a stationary Gaussian pro-

cess with respect to a given continuously differentiable func-
tion X(τ). We call the function X(τ) the world-line of the
particle x(τ).

We note that the concept of ”is realistic in its position” is
independent of the choice of δK(τ). As a refinement of this
concept we defined another one, which can be considered as a
generalization of the principle on the maximality of the speed
of the light.

Definition 5 We say that a particle is realistic in its speed if it
is realistic in its position and the derivatives of its world-line
X(τ) are time-like vectors.

For such two particles x′, x′′ which are realistic in their posi-
tion we can define a momentary distance by the equality:

δ(x′(τ), x′′(τ)) = ‖X ′(τ)−X ′′(τ)‖τ =

=
√

[X ′(τ)−X ′′(τ), X ′(τ)−X ′′(τ)]+,T .

We could say that two particles x′ and x′′ agree if the ex-
pected value of their distances is equal to zero. Let I =
Ix′ ∩ Ix′′ be the common part of their domains. The required
equality is:

E(δK(τ)(x
′(τ), x′′(τ))) =

∫
I

δK(τ)(x
′(τ), x′′(τ))dτ =

=

∫
I

‖X ′(τ)−X ′′(τ)‖τdτ = 0.

In a deterministic time-space we have a function K(τ), and
we have more possibilities to define orthogonality at a mo-
ment τ . We fix a concept of orthogonality and consider it in
every normed space. In the case when the norm is induced
by the Euclidean inner product this method should give the
same result as the usual concept of orthogonality. The most
natural choice is the concept of Birkhoff orthogonality (see
in [4]). Using it, in every normed space we can consider an
Auerbach basis (see in [4]) which plays the role of a basic
coordinate frame. We can determine the coordinates of the
points with respect to this basis. We say that a frame is at
rest with respect to the absolute time if its origin (as a parti-
cle) is at rest with respect to the absolute time τ and the unit
vectors of its axes are at rest with respect to a fixed Euclidean
orthogonal basis of S. In S we fix a Euclidean orthonormal
basis and give the coordinates of a point (vector) of S with
respect to this basis. We get curves in S parameterized by the
time τ . We define the concept of a frame as follows.

Definition 6 The system {f1(τ), f2(τ), f3(τ), o(τ)} ∈
(S, ‖ · ‖+τ )× τK(τ) is a frame, if

• o(τ) is a particle realistic in its speed, with such a
world-line

O(τ) : T → τK(τ)

which does not intersect the absolute time axis T ,

• the functions

fi(τ) : T → ∪{(S, ‖ · ‖τ ) , τ ∈ T}

are continuously differentiable, for all fixed τ ,

• the system {f1(τ), f2(τ), f3(τ)} is an Auerbach basis
with origin O(τ) in the space (S, ‖ · ‖τ ).

Note, that for a good model we have to guarantee that Ein-
stein’s convention on the equivalence of inertial frames re-
mains valid for us. However at this time we have no possi-
bility to give the concepts of ”frame at rest” and the concept
of ”frame which moves at a constant velocity with respect to
another one”. The reason is that when we changed the norm
of the space by the function K(τ) we concentrated only on
the change of the shape of the unit ball and did not use any
correspondence between the points of the two unit balls. Ob-
viously, in a concrete computation we should proceed in the
opposite direction, first we should give a correspondence be-
tween the points of the old unit ball and the new one and
this implies the change of the norm. To this purpose we may
define a homotopic mapping K which describes the deforma-
tion of the norm.

Definition 7 Consider a homotopic mapping K (x, τ) :
(S, ‖ · ‖E)× T → (S, ‖ · ‖E) holding the assumptions:

• K (x, τ) is homogeneous in its first variable and contin-
uously differentiable in its second one,

• K ({e1, e2, e3}, τ) is an Auerbach basis of (S, ‖ · ‖τ )
for every τ ,

• K (BE , τ) = K(τ).

Then we say that the function K (x, τ) is the shape-function
of the time-space.

The mapping K (x, τ) determines the changes at all lev-
els. For example, we can consider a frame is “at rest” if
its change arises from this globally determined change, and
“moves with constant velocity” if its origin has this property
and the directions of its axes are “at rest”. Precisely, we say,
that

Definition 8 The frame {f1(τ), f2(τ), f3(τ), o(τ)} moves
at a constant velocity with respect to the time-space if for
every pairs τ , τ ′ in T+ we have

fi(τ) = K (fi(τ
′), τ) for all i with 1 ≤ i ≤ 3

and there are two vectors O = o1e1 + o2e2 + o3e3 ∈ S and
v = v1e1 + v2e2 + v3e3 ∈ S such that for all values of τ we
have

O(τ) = K(O, τ) + τK(v, τ).

A frame is at rest with respect to the time-space if the vector
v is the zero vector of S.
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Consider the derivative of the above equality by τ . We get
that

Ȯ(τ) =
∂K(O, τ)

∂τ
+ K(v, τ) + τ

∂K(v, τ)

∂τ
,

showing that for such a homotopic mapping, which is con-
stant in the time O(τ), is a line with direction vector v
through the origin of the time space. Similarly, in the case
when v is the zero vector it is a vertical (parallel to T ) line-
segment through O.

We can re-define the concept of time-axes, too.

Definition 9 The time-axis of the time-space model is the
world-line O(τ) of such a particle which moves at a con-
stant velocity with respect to the time-space and starts from
the origin. More precisely, for the world-line (O(τ), τ) we
have K(O, τ) = 0 and hence with a given vector v ∈ S,

O(τ) = τK(v, τ).

Remark 1 Note that if the shape-function is linear in its first
variable then all sections defined by τ = const. are Eu-
clidean spaces. This is the case when the shape-function is of
the form:

K(v, τ) = f(τ)A(s),

where f is a continuously differentiable function and A :
S −→ S is a linear mapping.

2 On the formulas of special relativity
theory

In this section we assume that the shape-function is a two-
times continuously differentiable function, so it is a C2-class
function. We need two further axioms to interpret in time-
space the usual axioms of special relativity theory. First we
assume that:

Axiom 1 The laws of physics are invariant under transfor-
mations between frames. The laws of physics will be the same
whether you are testing them in a frame ”at rest”, or a frame
moving with a constant velocity relative to the ”rest” frame.

Axiom 2 The speed of light in a vacuum is measured to be
the same by all observers in frames.

These axioms can be transformed into the language of the
time-space by the method of Minkowski [14]. For this we
use the imaginary sphere Hc of parameter c introduced in
the previous subsection and the group Gc as the set of those
isometries of the space which leave invariant this sphere of
parameter c. Such an isometry can be interpreted as a co-
ordinate transformation of the time-space which sends the
axis of the absolute time into another time-axis t′, and also
maps the intersection point of the absolute time-axis with the
imaginary sphere Hc into the intersection point of the new
time-axis and Hc. An isometry of the time-space is also a
homeomorphism thus it maps the subspace S into a topo-
logical hyperplane S′ of the embedding normed space. S′

is orthogonal to the new time-axis in the sense that its tan-
gent hyperplane at the origin is orthogonal to t′ with respect
to the product of the space. Of course the new space-axes
are continuously differentiable curves in S′ whose tangents
at the origin are orthogonal to each other. Since the absolute

time-axis is orthogonal to the imaginary sphere Hc the new
time-axis t′ must hold this property, too. Thus the investi-
gations in the previous section are essential from this point
of view. Assuming that the definition of the time-space im-
plies this property we can get some formulas similar to the
well-known formulas of special relativity. We note that the
function K(v, τ) holds the orthogonality property of vectors
of S and by the equality

[K(v, τ),K(v, τ)]τ = ‖v‖2E
we can see that the formulas on time-dilatation and length-
contraction are valid, too. Using the well-known notations

β =
‖v‖E
c

γ =
1√

1− β2

we get the connection between the time τ0 and τ of an event
measured by two observers, one at rest and the other one
moving at a constant velocity ‖v‖E with respect to the time-
space. It is

τ = γτ0.

Similarly, we can consider a moving rod whose points move
at a constant velocity with respect to the time space such that
it is always parallel to the velocity vector K(v, τ). Then we
have

‖v‖E =
L0

T
where T is the time calculated from the length L0 and the
velocity vector v by such an observer which moves with the
rod. Another observer can calculate the length L from the
measured time T0 and the velocity v by the formula

‖v‖E =
L

T0
.

Using the above formula of dilatation we get the known
Fitzgerald contraction of the rod:

L = L0

√
1− β2 =

L0

γ
.

2.1 Lorentz transformation

Lorentz transformation in time-space is also based on the
usual experiment in which we send a ray of light to a mirror
in the direction of the unit vector e with distance d from me.

2.1.1 Deduction of Lorentz transformation in time-
space

If we are at rest, we can determine in time space the re-
spective points A, C and B of departure, turn and arrival of
the ray of light. A and B are on the absolute time-axis at
heights τA, and τB , respectively. The position of C is

(τC − τA)K(ce, τC − τA) + τCe4 =

=
τB − τA

2
K

(
ce,

τB − τA
2

)
+
τB + τA

2
e4,

since we know that the light takes the road back and forth
over the same time. We observe that the norm of the space-
like component sC is

‖sC‖τC = c
τB − τA

2
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as in the usual case of space-time.
The moving observer synchronized its clock with the ob-

server at rest in the origin, and moves in the direction v with
velocity ‖v‖E . We assume that the moving observer also sees
the experiment, thus its time-axis corresponding to the vector
v meets the world-line of the light at two pointsA′ andB′ po-
sitioned on the respective curves AC and CB. This implies
that the respective space-like components of the world-line
of the light and the world-line of the axis are parallel to each
other in every minute. Hence we have:

‖v‖EK(e, τ) = K(v, τ).

From this, we get the equality

τA′K(v, τA′)+τA′e4 = (τA′−τA)K(ce, τA′−τA)+τA′e4.

This implies that

τA′
2‖v‖E2 − c2τA′

2 = (τA′ − τA)2c2 − c2τA′
2

and thus
τA′ =

c

c− ‖v‖E
τA.

The proper time (τA′)0 is

(τA′)0 =
√

1− β2
c

c− ‖v‖E
τA = τA

√
1 + β

1− β
.

Similarly we also get that

(τB′)0 = τB

√
1− β
1 + β

,

and we can determine the new time coordinate of the point C
with respect to the new coordinate system:

(τC)0 =
(τA′)0 + (τB′)0

2
=

=
1

2

(
τA

√
1 + β

1− β
+ τB

√
1− β
1 + β

)
.

Since the norm of the space-like component is

‖sC‖E = c
τB − τA

2
,

we get that

τA = τC −
‖sC‖E
c

and τB = τC +
‖sC‖E
c

and thus

(τC)0 =
1

2

((
τC −

‖sC‖E
c

)√
1 + β

1− β
+

+

(
τC +

‖sC‖E
c

)√
1− β
1 + β

)
=

=
τC − β‖sC‖E

c√
1− β2

=
τC − ‖v‖E‖sC‖Ec2√

1− ‖v‖
2
E

c2

=

=
τC − [K(sC ,τC),K(v,τC)]τC

c2√
1− ‖v‖

2
E

c2

.

On the other hand, we also have that the space-like com-
ponent ((sC)0)S of the transformed space-like vector (sC)0

arises also from a vector parallel to e, thus it is of the form

K(((sC)0)S , τ) = ‖((sC)0)S‖EK(e, τ).

For the norm of (sC)0 we know that

‖(sC)0‖+,T = c
(τB′)0 − (τA′)0

2
,

hence,

‖(sC)0‖+,T =
‖sC‖E − ‖v‖EτC√

1− ‖v‖
2
E

c2

.

If we consider the vector

(̂sC)0 = γ (K(sC , τC)−K(v, τC)τC) ∈ S,

we get a norm-preserving, bijective mapping L̂ from the
world-line of the light into S by the definition

L̂ : K((sC)0, (τC)0) 7→ γ (K(sC , τC)−K(v, τC)τC) .

The connection between the space-like coordinates of the
point with respect to the two frames now has a more familiar
form. Henceforth the Lorentz transformation means for us
the correspondence:

s 7→ K̂(s′, τ ′) = γ (K(s, τ)−K(v, τ)τ)

τ 7→ τ ′ = γ

(
τ − [K(s, τ),K(v, τ)]τ

c2

)
,

and the inverse Lorentz transformation the another one

K̂(s′, τ ′) 7→ K(s, τ) = γ (K(s′, τ ′) + K(v, τ ′)τ ′)

τ ′ 7→ τ = γ

(
τ ′ +

[K(s′, τ ′),K(v, τ ′)]τ
′

c2

)
.

2.1.2 Consequences of Lorentz transformation

First, note that we can determine the components of (sC)0

with respect to the absolute coordinate system, too. Since
(sC)0 and τK(v, τ) + τe4 are orthogonal to each other we
get that

[K(((sC)0)S , τC),K(v, τC)]τC = c2((sC)0)T ,

implying that

((sC)0)T =
‖((sC)0)S‖E‖v‖E

c2
.

Thus, we get the equality

‖((sC)0)S‖2E

(
1− c2

(
‖v‖E
c2

)2
)

=

=

‖sC‖E − ‖v‖EτC√
1− ‖v‖

2
E

c2

2

,

implying that

‖((sC)0)S‖E =
‖sC‖E − ‖v‖EτC(

1− ‖v‖
2
E

c2

) =
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= γ2 (‖sC‖E − ‖v‖EτC)

and

((sC)0)T =
‖((sC)0)S‖E‖v‖E

c2
=

=
‖v‖E‖sC‖E − ‖v‖2EτC

c2 − ‖v‖2E
.

We get that

(sC)0 = γ2 (‖sC‖E − ‖v‖EτC)

(
K(e, τC) +

‖v‖E
c2

e4

)
=

= γ2 (K(sC , τC)−K(v, τC)τC) +

+

(
γ

1− γ

)2

(‖sC‖E − ‖v‖EτC) e4.

We can determine the length of this vector in the new coordi-
nate system, too. Since

[(sC)0, (sC)0]+,T =
(
‖(sC)0‖+,T

)2
=

=
(‖sC‖τC − ‖v‖EτC)2

1− ‖v‖
2
E

c2

=

=
[sC , sC ]τC − 2‖sC‖τC‖v‖EτC + (‖v‖EτC)2

1− ‖v‖
2
E

c2

and

((τC)0)
2

=
(τC)2 − 2τC

‖v‖E‖sC‖τC
c2 + (‖v‖E‖sC‖τC )2

c4

1− ‖v‖
2
E

c2

,

hence the equality

[(sC)0, (sC)0]+,T − c2 ((τC)0)
2

= [sC , sC ]τC − c2 (τC)
2

shows that under the action of the Lorentz transformation the
”norm-squares” of the vectors of the time-space are invariant
as in the case of usual space-time.

Finally, we can determine those points of the space whose
new time-coordinates are zero and thus we get a mapping
from the subspace S into the time-space. Let s ∈ S arbitrary
and consider the corresponding point K(s, τ) + τe4 and as-
sume that

0 = τ0 = γτ − γ ‖v‖E
c2
‖K(s, τ)‖τ ,

hence

τ =
‖v‖E‖s‖E

c2
.

Then we get the image of the coordinate subspace S under
the action of that isometry which corresponds to the Lorentz
transformation sending the absolute time-axis into the time-
axis τK(v, τ) + τe4 in question. This set is:

S0 =

{
K

(
s,
‖v‖E‖s‖E

c2

)
+
‖v‖E‖s‖E

c2
e4 | s ∈ S

}
.

For a boost in an arbitrary direction with velocity v, it is
convenient to decompose the spatial vector s into compo-
nents perpendicular and parallel to v:

s = s1 + s2

so that

[K(s, τ),K(v, τ)]τ =

= [K(s1, τ),K(v, τ)]τ + [K(s2, τ),K(v, τ)]τ =

= [K(s2, τ),K(v, τ)]τ .

Then, only time and the component K(s2, τ) in the direc-
tion of K(v, τ);

τ ′ = γ

(
τ − [K(s, τ),K(v, τ)]τ

c2

)
K̂(s′, τ ′) = K(s1, τ) + γ(K(s2, τ)−K(v, τ)τ)

are ”distorted” by the Lorentz factor γ. The second equality
can be written also in the form:

ŝ′ = K(s, τ) +

(
γ − 1

‖v‖2E
[K(s, τ),K(v, τ)]τ − γτ

)
K(v, τ).

Remark 2 If we have two time-axes τK(v′, τ) + τe4 and
τK(v′′, τ) + τe4 then there are two subgroups of the cor-
responding Lorentz transformations mapping the absolute
time-axis onto another time-axes, respectively. These two
subgroups are also subgroups of Gc. Their elements can be
paired on the base of their action on S. The pairs of these
isometries define a new isometry of the space (and its inverse)
in a natural way, with the composition of one of them and the
inverse of the other. Omitting the absolute time-axis from the
space (as we suggest earlier) the invariance of the product on
the remaining space and also the physical axioms of special
relativity can remain in effect.

2.1.3 Addition of velocities

If K(u, τ) and K(v, τ ′) are two velocity vectors then using
the formula for inverse Lorentz transformation of the corre-
sponding differentials we get that

dτ = γ

(
dτ ′ +

[K(dŝ′,dτ ′),K(v, τ ′)]τ
′

c2

)
and

K(ds,dτ) = K(dŝ′,dτ ′)+

+

(
1− γ
‖v‖2E

[K(dŝ′,dτ ′),K(v, τ ′)]τ
′
+

+γdτ ′)K(v, τ ′).

Thus

K(u, τ) =
K(ds,dτ)

dτ
=

=
1

γ
(

dτ ′ + [K(dŝ′,dτ ′),K(v,τ ′)]τ′

c2

) (K(dŝ′,dτ ′)+

+

(
1− γ
‖v‖2E

[K(dŝ′,dτ ′),K(v, τ ′)]τ
′
+ γdτ ′

)
K(v, τ ′)

)
=

=
1

1 +

[
K(dŝ′,dτ′)

dτ′ ,K(v,τ ′)

]τ′
c2

(
K(v, τ ′) +

1

γ

K(dŝ′,dτ ′)

dτ ′
+

+
1 + γ

γc2

[
K(dŝ′,dτ ′)

dτ ′
,K(v, τ ′)

]τ ′

K(v, τ ′)

 =

=
1

1 + [K(u′,dτ ′),K(v,τ ′)]τ′

c2

(
K(v, τ ′) +

1

γ
K(u′,dτ ′)+

+
1 + γ

γc2
[K(u′,dτ ′),K(v, τ ′)]τ

′
K(v, τ ′)

)
.
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2.2 Acceleration, momentum and energy

Our starting point is the velocity vector (or four-velocity).
The absolute time coordinate is τ , this defines a world line of
form S(τ) = K(s(τ), τ) + τe4. Its proper time is τ0 = τ

γ =

τ

√
1− ‖v‖

2
E

c2 , where v is the velocity vector of the moving
frame. By definition

V (τ) :=
dS(τ)

dτ0
= γ

(
d(K(s(τ), τ))

dτ
+ e4

)
.

If the shape-function is a linear mapping then d(K(s(τ),τ))
dτ =

K(ṡ(τ), 1) := K(v(τ), 1) and we also have

[V (τ), V (τ)]+,T = γ2
(
[K(v(τ), 1),K(v(τ), 1)]1−

−c2
)

= −c2.

The acceleration is defined as the change in four-velocity
over the particle’s proper time. Hence now the velocity of
the particle is also a function of τ as without γ we have the
function γ(τ). The definition is:

A(τ) :=
dV

dτ0
= γ(τ)

dV

dτ
=

= γ2(τ)
d2K(s(τ), τ)

dτ2
+

+γ(τ)γ′(τ)
d(K(s(τ), τ))

dτ
+ γ(τ)γ′(τ)e4,

where with the notation a(τ) = v′(τ) = s′′(τ),

γ′(τ) =

 1√
1− ‖v(τ)‖2E

c2

′ =

=

 1√
1− [K(v(τ),1),K(v(τ),1)]1

c2

′ =

=

[
d(K(v(τ),1)

dτ ,K(v(τ), 1)
]1

c2
(

1− [K(v(τ),1),K(v(τ),1)]1

c2

) 3
2

=

=

[
d(K(v(τ),1)

dτ ,K(v(τ), 1)
]1

c2
γ3(τ),

In the case of a linear shape-function it has the form

A(τ) = γ2(τ)K(a(τ), 0)+

+γ(τ)γ′(τ)K(v(τ), 1)) + γ(τ)γ′(τ)e4.

Since in this case [V (τ), V (τ)]+,T = −c2, we have

[A(τ), V (τ)]T,+ = γ3(τ)
(

[K(a(τ), 0),K(v(τ), 1)]
1

+

+γ2(τ)
[K(a(τ), 0),K(v(τ), 1)]

1

c2
‖v(τ)‖2E−

−γ2(τ) [K(a(τ), 0),K(v(τ), 1)]
1
)

=

= γ3(τ)
(

[K(a(τ), 0),K(v(τ), 1)]
1−

− [K(a(τ), 0),K(v(τ), 1)]
1
)

= 0.

By Theorem 2 on the derivative of the product (correspond-
ing to smooth and strictly convex norms) we also get this
result, in fact we have

0 =
d[V (τ), V (τ)]+,T

dτ
=

= 2

[
dV

dτ
, V

]+,T

+
∂[V (τ), V (τ)]τ

∂τ
(1) · 0 =

=
2

γ
[A(τ), V (τ)]+,T .

Also in the case of a linear shape-function the momentum
is

P = m0V = γm0 (K(v(τ), τ) + e4)

where m0 is the invariant mass. We also have that

[P, P ]+,T = γ2m2
0(‖v‖2E − c2) = (m0c)

2.

Similarly the force is

F =
dP

dτ
= m0γ

2(τ)K(a(τ), τ)+

+γ(τ)γ′(τ)K(v(τ), τ)) + γ(τ)γ′(τ)e4,

and thus it holds that

[F, V ]+,T = 0.

3 General relativity theory
In time-space there is a way to describe and visualize cer-

tain spaces which are solutions of Einstein’s field equations
(briefly Einstein’s equation). The first method is when we
embed into an at least four-dimensional time-space a four-
dimensional manifold whose inner metric is a solution of Ein-
stein’s equation. Our basic references here are the books [1]
and [8].

3.1 Metrics embedded into a time-space

3.1.1 Minkowski-Lorentz metric

The simplest example of a Lorentz manifold is the flat-
space metric which can be given as R4 with coordinates
(t, x, y, z) and the metric function:

ds2 = −c2dt2 + dx2 + dy2 + dz2.

In the above coordinates, the matrix representation is

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


In spherical coordinates (t, r, θ, φ), the flat space metric takes
the form

ds2 = −c2dt2 + dr2 + r2dΩ2.

Here f(r) ≡ 0, g = id and τ = t implying that K (v, τ) = v
and the hypersurface is the light-cone defined by τ = ‖v‖E .
It can be considered also in a 5-dimensional time-space with
shape-function K (v, τ) = v as the metric of a 4-dimensional
subspace through the absolute time-axis. By the equiva-
lence of time axes in a usual space-time it can be consid-
ered as an arbitrary 4-dimensional subspace distinct to the
4-dimensional subspace of space-like vectors, too.
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3.1.2 The de Sitter and the anti-de Sitter metrics

The de Sitter space is the space defined on the de Sit-
ter sphere of a Minkowski space of one higher dimension.
Usually the metric can be considered as the restriction of the
Minkowski metric

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3 + dx2

4

to the sphere −x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = α2 = 3

Λ , where Λ
is the cosmological constant (see e.g. in [8]). Using also our
constant c this latter equation can be rewritten as

−ct2 + (x′1)2 + (x′2)2 + (x′3)2 + (x′4)2 = 1

where
x0 = t ,

1

α
= c and x′i =

1

α
xi.

This shows that in the 5-dimensional time-space with shape-
function K (v, τ) = v it is the hyperboloid with one sheet
with circular symmetry about the absolute time-axis.

The anti-de Sitter space is the hyperbolic analogue of the
elliptic de Sitter space. The Minkowski space of one higher
dimension can be restricted to the so called anti-de Sitter
sphere (also called in our terminology as imaginary sphere)
defined by the equality −x2

0 + x2
1 + x2

2 + x2
3 = −α2. The

shape function again is K (v, τ) = v and the corresponding
4-submanifold is the hyperboloid of two sheets with hyper-
plane symmetry with respect to the 4-subspace S of space-
time vectors.

3.1.3 Friedmann-Lemaı̂tre-Robertson-Walker metrics

A standard metric form of the Friedmann-Lemaı̂tre-
Robertson-Walker metrics (F-L-R-W) family of space-times
can be obtained by using suitable coordinate parameteriza-
tions of the 3-spaces of constant curvature. One of its forms
is

ds2 = −dt2 +
R2(t)

1 + 1
4k(x2 + y2 + z2)

(
dx2 + dy2 + dz2

)
where k ∈ {−1, 0, 1} is fixed. By the parametrization τ = t
this metric is the metric of a time-space with shape-function
K (v, τ). Observe that

‖v‖2E = [K (v, τ) ,K (v, τ)]
τ

=
R2(τ)

1 + 1
4k‖v‖

2
E

‖K (v, τ) ‖2E .

Note that we can choose the constant k also as a function
of the absolute time τ giving a deterministic time-space with
more generality. Hence the shape-function is

K (v, τ) =

√
1 + 1

4k(τ)‖v‖2E
R(τ)

v.

3.2 Three-dimensional visualization of a metric in a
four-time-space

The second method is when we consider a four-
dimensional time-space and a three-dimensional sub-
manifold in it with the property that the metric of the time-
space at the points of the sub-manifold corresponds to the
given one. This method gives a good visualization of the so-
lution in such a case when the examined metric has some

special property e.g. there is no dependence on time or (and)
the metric has a spherical symmetry. The examples of this
section are also semi-Riemannian manifolds. We consider
now such solutions which have the form:

ds2 = −(1− f(r))c2dt2 +
1

1− f(r)
dr2+

+r2(dθ2 + sin2 θdφ2)

where
dΩ2 := dθ2 + sin2 θdφ2

is the standard metric on the 2-sphere. Thus we have to
search a shape function K (v, τ) of the embedding space and
a sub-manifold of it on which the Minkowski-metric gives
the required one. If the metric is isotropic we have a chance
to give it by isotropic coordinates. We substitute the function
r = g(r?) into this in place of the parameter r, and solve the
differential equation:

f(g(r?)) = 1−
(
r?g′(r?)

g(r?)

)2

for the unknown function g(r?). Then we get the metric in
the isotropic form

ds2 = −
(
r?g′(r?)

g(r?)

)2

c2dt2+

+
g2(r?)

r?2

(
dr?2 + r?2(dθ2 + sin2 θdφ2)

)
.

For isotropic rectangular coordinates x = r? sin θ cosφ, y =
r? sin θ sinφ and z = r? cos θ, the metric becomes

ds2 = −
(
r?g′(r?)

g(r?)

)2

c2dt2 +
g2(r?)

r?2

(
dx2 + dy2 + dz2

)
,

where r? =
√
x2 + y2 + z2. From this, substituting ds2 =

0 and rearranging the equality, we get the velocity of light
which is equal to the quantity√

dx2

dt2
+

dy2

dt2
+

dz2

dt2
=
r?2g′(r?)

g2(r?)
c.

It is independent of the direction and varies with only the
radial distance r? (from the point mass at the origin of the
coordinates). At the points of the hypersurface t = r? =√
x2 + y2 + z2 a metric can be parameterized by time:

ds2 = −
(
tg′(t)

g(t)

)2

c2dt2 +
g2(t)

t2
(
dx2 + dy2 + dz2

)
,

and from the equation

tg′(t)

g(t)
dt = dτ

we can give a re-scale of time by the parametrization

τ :=

∫
t
g′(t)

g(t)
dt = t ln(g(t))−

∫
ln(g(t))dt.

From this equation we determine the inverse function ĝ for
which t = ĝ(τ). Since ĝ(τ) = t = r? =

√
x2 + y2 + z2,



Universal Journal of Physics and Application 10(4): 115-127, 2016 123

we also have that the examined set of points of space-time is
a hypersurface defined by the equality:

τ =

(
t ln(g(t))−

∫
ln(g(t))dt

)√
x2 + y2 + z2.

This implies a new form of the metric at the points of this
hypersurface:

ds2 = −c2dτ2 +
g2(ĝ(τ))

ĝ(τ)
2

(
dx2 + dy2 + dz2

)
.

The corresponding inner product has the matrix form:
−c2 0 0 0

0 g2(ĝ(τ))

ĝ(τ)2
0 0

0 0 g2(ĝ(τ))

ĝ(τ)2
0

0 0 0 g2(ĝ(τ))

ĝ(τ)2


and hence the Euclidean lengths of the vectors of the space
depend only on the absolute moment τ . Thus we can vi-
sualize the examined metric as a metric at the points of the
hypersurface

τ =

(
t ln(g(t))−

∫
ln(g(t))dt

)
‖v‖E

of certain time-space. We note that this is not the inner metric
of the examined surface of dimension 3 which can be con-
sidered as the metric of a three-dimensional space-time. To
determine the shape-function observe that

‖v‖2E = [K (v, τ) ,K (v, τ)]
τ

=
g2(ĝ(τ))

ĝ(τ)
2 ‖K (v, τ) ‖2E

from which we get that

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v.

We now give some examples.

3.2.1 Schwarzschild metric

Besides the flat space metric the most important metric in
general relativity is the Schwarzschild metric which can be
given in the set of local polar-coordinates (t, r, ϕ, θ) by

ds2 = −
(

1− 2GM

c2r

)
c2dt2+

+

(
1− 2GM

c2r

)−1

dr2 + r2dΩ2

where, again, dΩ2 is the standard metric on the 2-sphere.
HereG is the gravitational constant andM is a constant with
the dimension of mass. The function f is

f(r) =
2GM

c2r
:=

rs
r

with constant rs =
2GM

c2
.

The differential equation on g is

rs
g(r?)

= 1−
(
r?g′(r?)

g(r?)

)2

with the solution

g(r?) =
rs
4
c1r

?

(
1 +

1

c1r?

)2

,

and if we choose 4
rs

as the parameter c1 we get the known
(see in [1]) solution

g(r?) = r?
(

1 +
rs

4r?

)2

.

For isotropic rectangular coordinates the metric becomes

ds2 = −
(1− rs

4r? )2

(1 + rs
4r? )2

c2dt2+
(

1 +
rs

4r?

)4

(dx2+dy2+dz2).

The equation between τ and t is

τ =

∫
(1− rs

4t )

(1 + rs
4t )

dt =

∫
4t− rs
4t+ rs

dt =

= t− 2rs

∫
1

4t+ rs
dt = t− rs

2
ln
(
t+

rs
4

)
+ C.

Of course we can choose C = 0. Similarly to the known
tortoise-coordinates there is no explicit inverse function of
this parametrization which we denote by ĝ(τ) = t. The
shape-function of the corresponding time-space is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

(
1 +

rs
4ĝ(τ)

)−2

v.

3.2.2 Reissner-Nordström metric

In spherical coordinates (t, r, θ, φ), the line element for the
Reissner-Nordström metric is

ds2 = −

(
1− rS

r
+
r2
Q

r2

)
c2 dt2+

+
1

1− rS
r +

r2Q
r2

dr2 + r2 dθ2 + r2 sin2 θdφ2,

here again t is the time coordinate (measured by a stationary
clock at infinity), r is the radial coordinate, rS = 2GM/c2 is
the Schwarzschild radius of the body, and rQ is a character-
istic length scale given by

r2
Q =

Q2G

4πε0c4
.

Here 1/4πε0 is the Coulomb force constant. The function f
is

f(r) =
rs
r
−
r2
Q

r2

The differential equation on g is

rs
g(r?)

−
r2
Q

g2(r?)
= 1−

(
r?g′(r?)

g(r?)

)2

with the solution

g(r?) =

√
r2
s

4
− r2

Q

c1
2
r?
(

1 +
1

c1r?

)2

−
√
r2
s

4
− r2

Q +
rs
2
,

if we choose c1 := 2√
r2s
4 −r

2
Q

we get a more simple form:

g(r?) = r?

1 +

√
r2s
4 − r

2
Q

2r?

2

−
√
r2
s

4
− r2

Q +
rs
2

=
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= r?

1 +

r2s
4 − r

2
Q

4r?2

+
rs
2
.

For the isotropic rectangular coordinates we have:

ds2 = −

 r?
(

1−
r2s
4 −r

2
Q

4r?2

)
r?
(

1 +
r2s
4 −r

2
Q

4r?2

)
+ rs

2


2

c2dt2+

+

r
?

(
1 +

r2s
4 −r

2
Q

4r?2

)
+ rs

2

r?


2

(dx2 + dy2 + dz2).

Our process now leads to the new time parameter

τ = t−
(rs

4
− rQ

2

)
ln

((
t+

rs
4

)2

−
r2
Q

4

)
−

−rQ ln
(
t+

rs
4

+
rQ
2

)
+ C,

which, in the case of C = rQ = 0, gives back the
parametrization of Schwarzschild solution. The shape-
function of the searched time-space can be determined by the
corresponding inverse t = ĝ(τ), it is

K (v, τ) =
ĝ(τ)

g(ĝ(τ))
v =

=
ĝ(τ)

ĝ(τ)

(
1 +

r2s
4 −r

2
Q

4ĝ(τ)2

)
+ rs

2

v.

Analogously we can compute the time-space visualization
of the Schwarzschild-de Sitter solution which we now omit.

3.2.3 Bertotti-Robinson metric

The Bertotti-Robinson space-time is the only conformally
flat solution of the Einstein-Maxwell equalities for a non-null
source-free electromagnetic field. The metric is:

ds2 =
Q2

r2

(
−dt2 + dx2 + dy2 + dz2

)
,

and on the light-cone t = r it has the form

ds2 = −Q
2

t2
dt2 +

e2

t2
(
dx2 + dy2 + dz2

)
.

By the new time coordinate

τ = Q ln t or t = e
τ
Q

using orthogonal space coordinates we get the form

ds2 = −dτ2 +
Q2

e
2τ
Q

(
dx2 + dy2 + dz2

)
.

Thus it can be visualized on the hypersurface τ = e ln r of
the time-space with shape-function:

K (v, τ) :=
e
τ
Q

Q
v.

3.3 Einstein fields equations

As we saw in the previous section the direct embedding of
a solution of Einstein’s equation into a time-space requires
non-linear and very complicated shape-functions. It can be
seen also that there are such solutions for which there are no
embeddings into a time-space. This motivates the investiga-
tions of the present section. Our build-up follows the one of
the clear paper of Prof. Alan Heavens [9], we would like to
thank to him for his downloadable PDF.

3.3.1 Homogeneous time-space-manifolds and the
Equivalence Principle

We consider now such manifolds whose tangent spaces are
four-dimensional time-spaces with given shape-functions.
More precisely:

Definition 10 Let S be the set of linear mappings K(v, τ) :
E3 × R −→ E3 satisfying the properties of a linear shape-
function given in Definition 7. Giving to it the natural topol-
ogy we say that K is the space of shape-functions. If we have
a four-dimensional topological manifold M and a smooth
(C∞) mapping K : M −→ S with the property that at the
point P ∈ M the tangent space is the time-space defined by
KP (s, τ) ∈ S we say that this pair is a time-space-manifold.
The time-space manifold is homogeneous if the mappingK is
a constant function.

Note that a Lorentzian manifold is such a homogeneous time-
space manifold whose shape-function is independent of time
and it is the identity mapping on its space-like components,
namely KP (s, τ) = s for all P and for all τ . Its matrix-form
(using the column representation of vectors in time-space) is: 1 0 0 0

0 1 0 0
0 0 1 0


Our purpose is to build up the theory of global relativity in
homogeneous time-space-manifolds. We accept the so-called
Strong Equivalence Principle of Einstein in the following
form:

Axiom 3 (Equivalence Principle) At any point in a homoge-
neous time-space manifold it is possible to choose a locally-
inertial frame in which the laws of physics are the same as
the special relativity of the corresponding time-space.

According to this principle, there is a coordinate-system in
which a freely-moving particle moves at a constant velocity
with respect to the time-spaceK(P ) = KP (s, τ) = K(s, τ).
It is convenient to write the world line

S(τ) = K(s(τ), τ) + τe4

parametrically, as a function of the proper time τ0 = τ
γ(τ) .

In subsection 2.2 we determined the velocity using the time-
space parameter τ :

V (τ) = γ(τ)

(
d(K(s(τ), τ))

dτ
+ e4

)
=

= γ(τ) (K(v(τ), 1) + e4) .

Taking into consideration again that the shape-function is lin-
ear, the acceleration is :

A(τ) = γ2(τ)K(a(τ), 0)+
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+γ4(τ)
[K(a(τ), 0),K(v(τ), 1)]

τ

c2
K(v(τ), 1)+

+γ4(τ)
[K(a(τ), 0),K(v(τ), 1)]

τ

c2
e4,

giving the differential equation A(τ) = 0 for such a particle
which moves linearly with respect to this frame.

3.3.2 Affine connection and the metric on a homoge-
neous time-space-manifold

Consider any other coordinate system in which the particle
coordinates are S′(τ0). Using the chain rule, the defining
equation

0 = A(τ0) =
dV (τ0)

dτ0
=

d2S(τ0)

dτ2
0

becomes

0 =
d

dτ0

(
dS

dS′
dS′(τ0)

dτ0

)
=

=
dS

dS′
d2S′(τ0)

dτ2
0

+
d

dτ0

(
dS

dS′

)
dS′(τ0)

dτ0
=

=
dS

dS′
d2S′(τ0)

dτ2
0

+
d2S

dS′dS′
dS′(τ0)

dτ0

dS′(τ0)

dτ0
,

where dS
dS′ means the total derivatives of the mapping of the

time-space sending the path S′(τ0) into the specific path
S(τ0), and the trilinear function d2S

dS′dS′ is the second to-
tal derivatives of the same mapping. (If there is a general
smooth transformation between the coordinate-frames, the
corresponding derivatives exist.) From this equality we get
the tensor form of the so called geodesic equation of homo-
geneous time-space manifold, it is:

d2S′(τ0)

dτ2
0

+

(
dS′

dS

d2S

dS′dS′

)
dS′(τ0)

dτ0

dS′(τ0)

dτ0
=

=
d2S′(τ0)

dτ2
0

+ Γ(S′, S)
dS′(τ0)

dτ0

dS′(τ0)

dτ0
= 0.

Here we denote the inverse of the total derivatives dS
dS′ by

dS′

dS . The name of Γ(S′, S) is the affine connection.
For uniform labeling we denote by x4 the identity func-

tion. Since the shape function is a linear mapping we can
represent it as the multiplication on left by the 3 × 4 matrix
K = [kij ] = kij . In the rest of this paragraph we apply
all conventions of general relativity. The Greek alphabet is
used for space and time components, where indices take val-
ues 1,2,3,4 (frequently used letters are µ, ν, · · · ) and the Latin
alphabet is used for spatial components only, where indices
take values 1,2,3 (frequently used letters are i, j, ...) and ac-
cording to Einstein’s convention, when an index variable ap-
pears twice in a single term it implies summation of that term
over all the values of the index. The upper indices are indices
of coordinates, coefficients or basis vectors.

The mapping S : S′(τ0) −→ S(τ0) sends
K(x′

1
, x′

2
, x′

3
, x′

4
)T + x′

4
e4 into the vector

K(x1, x2, x3, x4)T + x4e4. Denote by K̃ the 4 × 4
matrix with coefficients:

k1
1 k1

2 k1
3 k1

4

k2
1 k2

2 k2
3 k2

4

k3
1 k3

2 k3
3 k3

4

0 0 0 1

 ,

then we get S : K̃(x′
1
, x′

2
, x′

3
, x′

4
)T 7→

K̃(x1, x2, x3, x4)T . If the shape-function K restricted
to the subspace S is a regular linear mapping then we also
have

K̃−1SK̃(x′
1
, x′

2
, x′

3
, x′

4
)T = (x1, x2, x3, x4)T

and we have that [
∂xα

∂x′µ

]
=

dK̃−1SK̃
dS′

=

= K̃−1 dS
dS′

K̃ and so
dS
dS′

= K̃

[
∂xα

∂x′µ

]
K̃−1.

Hence
dS′

dS
= K̃

[
∂xα

∂x′µ

]−1

K̃−1 =

= K̃

[
∂x′

µ

∂xα

]
K̃−1 and

[
d2S

dS′dS′

]α
=

= K̃

[
∂2xα

∂x′µ∂x′ν

]
K̃−1

implying that the affine connection is:

Γ(S′, S)λµν = K̃
∂x′

λ

∂xα
∂2xα

∂x′µ∂x′ν
K̃−1 =

= K̃ΓλµνK̃
−1 = K̃

{
λ
µν

}
K̃−1.

Since S′(τ0) = K̃(x′
1
, x′

2
, x′

3
, x′

4
)T thus we also get three

equalities, the first one is:

dS′(τ0)

dτ0
= K̃

(
dx′

1

dτ0
,

dx′
2

dτ0
,

dx′
3

dτ0
,

dx′
4

dτ0

)T
=

=

(
k1
α

dx′
α

dτ0
, k2

α
dx′

α

dτ0
, k3

α
dx′

α

dτ0
, k4

α
dx′

α

dτ0

)T
=

=

[
kλα

dx′
α

dτ0

]
.

The second equality is:

dS′(τ0)

dτ0

dS′(τ0)

dτ0
=

= K̃

(
dx′

1

dτ0
,

dx′
2

dτ0
,

dx′
3

dτ0
,

dx′
4

dτ0

)T
×

×

(
dx′

1

dτ0
,

dx′
2

dτ0
,

dx′
3

dτ0
,

dx′
4

dτ0

)
K̃T =

= K̃

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

and the third one is:

d2S′(τ0)

dτ2
0

= K̃

(
d2x′

1

dτ2
0

,
d2x′

2

dτ2
0

,
d2x′

3

dτ2
0

,
d2x′

4

dτ2
0

)T
=

=

[
kλα

d2x′
α

dτ2
0

]
.
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The geodesic equation now is:

0 = K̃

(
d2x′

1

dτ2
0

,
d2x′

2

dτ2
0

,
d2x′

3

dτ2
0

,
d2x′

4

dτ2
0

)T
+

+K̃ΓλµνK̃
−1K̃

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

or equivalently

0 =

(
d2x′

1

dτ2
0

,
d2x′

2

dτ2
0

,
d2x′

3

dτ2
0

,
d2x′

4

dτ2
0

)T
+

+Γλµν

[
dx′

µ

dτ0

dx′
ν

dτ0

]
K̃T ,

implying that

0 =
d2x′

λ

dτ2
0

+ Γλµν
dx′

µ

dτ0
kνζ

dx′
ζ

dτ0
.

Since for the proper time we have the equality

−c2dτ2
0 = dST

(
1 0
0 −c2

)
dS =

=

(
dS

dS′
dS′
)T

η
dS

dS′
dS′ = dS′T g(S′, S)dS′

hence

g(S′, S) =

(
dS

dS′

)T
η

dS

dS′
.

Let us denote by [j
ik] the transpose of the matrix [kij ], and

let Ki
j be the elements of the inverse of K̃. Then, since

g(S′, S) =
(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃T ηK̃

[
∂xα

∂x′µ

]
K̃−1,

we have

g(S′, S)ϕψ = ϕ
µK

∂xα

∂x′µ
α
δkηδ,εk

ε
β
∂xβ

∂x′ν
Kν

ψ.

This matrix is the metric tensor of the homogeneous time-
space manifold in question. If K̃ is the unit matrix, then µ =
ϕ, ν = ψ, α = δ and β = ε, implying the known formula

gµν =
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ .

Also note that if K̃ is an orthogonal transformation then we
get a simpler form of the metric:

g(S′, S) = K̃

[
∂xl

∂x′i

]T
η

[
∂xl

∂x′i

]
K̃T .

To determine the connection between the metric and the
affine connection, we determine the partial derivative of the
metric.

∂g(S′, S)

∂x′λ
=

=
(
K̃−1

)T [ ∂2xα

∂x′µ∂x′λ

]T
K̃T ηK̃

[
∂xβ

∂x′ν

]
K̃−1+

+
(
K̃−1

)T [ ∂xα
∂x′µ

]T
K̃T ηK̃

[
∂2xβ

∂x′ν∂x′λ

]
K̃−1,

and since

∂2xα

∂x′µ∂x′λ
=
∂xα

∂x′ρ
K̃−1Γ(S′, S)ρµλK̃

we have
∂g(S′, S)ϕψ

∂x′λ
=

= Γ(S′, S)ρϕλg(S′, S)ρψ + g(S′, S)ϕρΓ(S′, S)ρλψ

as in the classical case. Denote by g(S, S′)ϕρ the inverse of
the metric tensor. Then we get the connection:

Γ(S′, S)σλµ =
1

2
g(S, S′)νσ

{
∂g(S′, S)µ,ν

∂x′λ
+

+
∂g(S′, S)λ,ν

∂x′µ
− ∂g(S′, S)µ,λ

∂x′ν

}
.

3.3.3 Covariant derivative, parallel transport and the
curvature tensor

Since we determined the affine connection we can define
the covariant derivative of a vector field in the way:

V µ;λ =
∂V µ

∂x′λ
+ Γ(S′, S)µλρV

ρ =
∂V µ

∂x′λ
+ K̃ΓµλδK̃

−1V δ.

In fact, it converts vectors into tensors on the basis of the
following calculation:

K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1V ν ;ρ =

= K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+ K̃ΓνρδK̃

−1V δ
)

=

= K̃

[
∂x′

µ

∂xν

] [
∂xρ

∂x′λ

]
K̃−1

(
∂V ν

∂xρ
+

+K̃
∂x′

ν

∂xα
∂2xα

∂x′ρ∂x′δ
K̃−1V δ

)
=

=
∂V ′µ

∂x′λ
+ K̃

∂x′
µ

∂xα
∂2xα

∂x′λ∂x′δ
K̃−1V ′

δ
=

=
∂V ′

µ

∂x′λ
+ K̃ΓµλδK̃

−1V ′
δ

= V ′
µ

;λ.

Note that the covariant derivative of a co-vector is

Vµ;λ =
∂Vµ

∂x′λ
− Γ(S′, S)µλρV

ρ,

and the covariant derivative of a tensor has the rule that each
upper index adds a Γ term and each lower index subtracts
one. For this reason the covariant derivative of the metric
tensor (by our calculation above) vanishes.

Again from the definition of the covariant derivative we get
that the equation of parallel transport is now:

dV µ

dτ0
= −Γ(S′, S)µλν

dx′
λ

dτ0
V ν .

From this it follows that the parallel-transport along a side
δx′

β of a small closed parallelogram is

δV α = −Γ(S′, S)αβνV
νδx′

β
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and thus the total change around a small closed parallelogram
with sides δaµ, δbν is

δV α = (Γ(S′, S)αβν;ρV
ν+

+Γ(S′, S)αβνV
ν

;ρ − Γ(S′, S)αρν;βV
ν−

−Γ(S′, S)αρνV
ν

;β) δaβδbρ

implying that

δV α = R(S′, S)ασρβV
σδaβδbρ.

Here R(S′, S)ασρβ is the Riemann curvature tensor defined
by

R(S′, S)ασρβ := Γ(S′, S)αβσ;ρ − Γ(S′, S)αρσ;β+

+Γ(S′, S)αρνΓ(S′, S)νσβ−
−Γ(S′, S)αβνΓ(S′, S)νσρ.

The Ricci Tensor and the scalar curvature are defined by

R(S′, S)σβ := R(S′, S)ασαβ

and
R(S′, S) := R(S′, S)σσ,

respectively.

3.3.4 Einstein’s equation

As we saw in the previous paragraph all of the notions
of global relativity can be defined in a time-space-manifold,
thus all the equations between them are well-defined equa-
tions. On the other hand, Einstein’s equation takes into con-
sideration the facts of physics; hence it contains parameters
which can not be changed. Fortunately, we noted earlier that
the covariant derivative of our metric tensor vanishes, too.
Thus also does its inverse vanish, and hence we can write
Einstein’s equation with cosmological constant Λ, too. The
equation is formally the same as the original one, but it con-
tains a new (undetermined) parameter which is the matrix K̃
of the shape-function. It is:

R(S′, S)µν − 1

2
g(S′, S)µνR(S′, S)− Λg(S′, S)µν =

=
8πG

c4
Tµν ,

where the parameter G can be adjusted so that the active
and gravitational masses are equal and Tµν is the energy-
momentum tensor.
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and Applications, Birkhäuser, Basel-Boston-Berlin, 2005.
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