
MATHEMATICAL SYSTEMS THEORY 10, 19-32 (1976)

© 1976 by Springer-Verlag New York Inc.

Relativization of Questions

About Log Space Computabil ity

by

RICHARD E. LADNER*

Department of Computer Science

University of Washington

Seattle, Washington 98195

and

NANCY A. LYNCH**

Department of Mathematics

University of Southern California

Los Angeles, California 90007

ABSTRACT

A notion of log space Turing reducibility is introduced. It is used to define relative notions

of log space, ~A, and nondeterministic log space, Jg'£~ A. These classes are compared with

the classes ~a and JV'~ A which were originally defined by Baker, Gill, and Solovay [BGS].

It is shown that there exists a computable set A such that ~V'~ a ~ ~A. Furthermore, there

exists a computable set A such that jff~A d: ~a and ~a 4= .Ar~A. Also a notion of log

space truth table reducibility is defined and shown to be equivalent to the notion of log

space Turing reducibility.

Introduction. Reducibility in polynomial time has received wide attention, in

references [C2], [K], [Lal], [LLS], [BGS] and in many other places. There are

several considerations which support a similar examination of reducibility in lot

space. First, unlike polynomial time reducibility, log space reducibility allows a

meaningful classification of problems that are computable in polynomial time

Second, notions of space bounded reducibility allow us to state relativizations ol
open problems concerning both the relationship between deterministic and

nondeterministic log space computability and the relationship between log space

computability and polynomial time computability.

In Section 1 we generalize the definition of log space reducibility used in

references [JL] and [SM] to permit Turing-type reductions. We also generalize

reducibility to allow arbitrary space bounds and to allow nondeterminism.

*Research supported by NSF Grant No. GJ 43264.

**Research supported by NSF Grant No. DCR 92373.

20 RICHARD E. LADNER AND NANCY A. LYNCH

In Section 2 we relativize certain complexity classes inciuding 9 ~ (sets

computable in polynomial time) and ~ (sets computable in log space), ~k (sets

computable in log k space), and Y . ~ (sets computable in nondeterministic log

space). For various sets ,4 we compare . / ~ a and ~A. By an argument found in

referer~ce [BGS] there are computable sets A such that XL, e A = ~A. We show

that there is a computable set A with X S e A ~ ~A. On the other hand there is also

a computable set A with x L g A $ #A and #,A~: x~eA. This latter result is

somewhat surprising since it is well known that X ~ ____ ~ [C1].

In Section 3 we try to explain why certain results in complexity theory

uniformly relativize while others do not. Results that depend primarily on step-

by-step simulations like the space hierarchy theorem of Stearns, Hartmanis, and

Lewis [SHL] relativize uniformly. Results like X ~ ___ # [C1] and X.W ~ ~ 2

[Sa] do not relativize because they depend on indirect rather than step-by-step

simulations.

In Section 4 we introduce a notion of log space truth table reducibility which is

analogous to the notion of polynomial time truth table reducibility introduced by

Ladner, Lynch and Selman ILLS]. Using the result of Lynch [Lyl], which

establishes that a Boolean formula can be evaluated in log space, we argue that

our definition is reasonable. We show the equivalence of log space Turing

reducibility and log space truth table reducibility.

1. Preliminaries. We consider sets of words over the alphabet {0, l}. Let Ix[be

the length of a word x and let 2 represent the empty word.

Our models of computation are variations of Turing machines (see [HU2]). A

Turin# machine acceptor is a Turing machine with a two-way read only input tape

and a two-way read-write storage tape. A Turin# machine transducer is a Turing

machine with a two-way read only input, a two-way read-write storage tape and a

one-way write only output tape. An oracle Turin# machine is a Turing machine

with a two-way read only input, a two-way read-write storage tape, and a one-way

write only oracle tape. Each type of Turing machine may be deterministic or

nondeterministic. All machines are deterministic unless otherwise specified.

A nondeterministic Turing machine T runs in time t(n) if for all n and all x of

length n, each computation path of T on input x halts within t(n) moves. A

nondeterministic Turing machine T runs in space s(n) if for all n and all x of length
n, each computation path halts with the storage tape head having visited no more

than s(n) distinct tape cells. The tape cells visited on the input tape, output tape,

and oracle tape are not counted.
Turing machine acceptors have a special state ACC. A set A _~ {0, 1}* is

accepted by a nondeterministic acceptor T if for all x e {0, 1}*, x e A if and only if

there is some computation of T on input x which halts in the state ACC. Define

TIME(t(n)) and SPACE(s(n)) to be the class of sets which are accepted by Turing

machine acceptors which run respectively in time t(n) and space s(n). Define

N TIME(t(n)) andNSPACE(s(n)) to be corresponding classes for nondeterministic

Turing machine acceptors. Some special complexity classes we consider are

defined:

= U TIME(nk),
k > l

Relativization of Questions About Log Space Computability

~ / ~ = ~ NTIME(nk),
k.>_ 1

= SPACE(log n),

~r q~ = NSPACE(log n),

~k = SPACE(Iogk n).

21

A function f : {0, 1}* ~ {0, 1}* is computable in time t(n) (space s(n)) if there is a

Turing machine transducer T that runs in time t(n) (space s(n)) with the property

that for all x, T halts withf(x) written on the output tape. The most commonly

used notions of polynomial time and log space reducibility are defined in terms of

time and space bounded transducers.

We write A <_ ~B (A is polynomial time many-one reducible to B) if there is a

functionfcomputable in time n k for some k such that x ~ A if and only iff(x)eB.

We write A <_ ~B (A is log space many-one reducible to B) if there is a functionf

computable in space log n such that xEA if and only iff(x)~B.

Oracle Turing machines have special states, ACC, QUE, YES, and NO. The

state ACC is the accepting state while the state QUE is called the query state. In

each state except QUE the machine may write a symbol onto the oracle tape. In

state QUE the machine goes into state YES if the word written on the oracle tape

is a member of the oracle set, otherwise it enters state NO. In moving from state

QUE to YES or NO no other action is taken except to erase the oracle tape.

We write A <_ ~rB (A is polynomial time Turin# reducible to B) if there is an

oracle Turing machine M that runs in time n k for some k and M accepts A with

oracle B.

We write A < ~B (A is log space Turin# reducible to B) if there is an oracle

Turing machine M that runs in space log n and A¢ accepts A with oracle B.

It is straightforward to show that both < m ~' and < ff are transitive relations.

Several authors including Jones [J] and Stockmeyer and Meyer [SM] have noted

that _< m ~ is transitive. By a similar argument < ~ is also transitive [Lal] . Also by

a similar argument it can be shown that if A < ~B and B e f i g then A e ~k. It is

easy to see that A _< ~B implies A < "~B.

Two important classes of complete problems exist for log space reducibility. A

set S is log space complete in JV Z~' ifS e JVA a and for all A ~ JV ~fl, A < m S. A set S

is log space complete in ~ if S ~ ~ and for all A e ~ , A _< mS" The second definition

could be extended to log space Turing reducibility. It appears that the 'threadable

mazes' of Savitch is the first known example of a log space complete problem in

X A a [Sa]. The 'path systems' of Cook seem to be the first known example of a log

space complete problem in ~ [C3]. Other examples can be found in references
[J], [JL], [La2], and [Su].

These two classifications of problems are closely related to open problems in

automata theory by the following lernmas.

LEMMA 1.1. l f S is lo 0 space complete in ~C.~ then S e .~ if and only if .~
= X ~ .

LEMMA 1.2. I f S is log space complete in ~ then for all k, S ~ .~k if and only if
~c= ~k.

22 RICHARD E. LADNER AND NANCY A. LYNCH

These lemmas follow immediately from the facts in the preceding two

paragraphs. Proofs may be found in references [J] and [JL].

One might question introducing log space Turing reducibility when in

practice log space many-one reducibility is used. We do so because we believe that

Turing reducibility represents the most general form of effective reduction of one

problem to another. In particular, we believe that our definition of log space

Turing reducibility represents a very general form of effective reduction with a log

n space bound of one problem to another.

A more general notion is defined in terms of log space machines with multiple

oracle tapes [Ly2]. This paper represents an initial attempt to understand log

space Turing reducibility so that we shall restrict ourselves to Turing machines

with a single oracle tape.

We note that the log space reducibilities as we define them are much less

machine invariant than are the corresponding polynomial time reducibilities. For

instance, we could not restrict the input head to be one-way rather than two-way.
Certain variations are possible; for example, the class of log space computable

functions does not depend on the direction of motion of the output tape head. In

fact, we could even allow the output tape head to be two-way, with the ability to

write and rewrite (but not read) [M]. The loss of a certain degree of machine

invariance is a penalty extracted in exchange for a gain in fineness of

classification.

Oracle Turing machines are used to relativize problems. We do it in the

following way. Define TIMEa(t(n)) and SPACEA(s(n)) to be the class of sets which

are accepted by oracle Turing machines using the oracle A and running

respectively in time t(n) and space s(n). We may analogously defineNTIMEa(t(n))

and NSPACEA(s(n)). Special classes are

~A = ~ TIMEA(nk),
k>.l

jV'~ ~ = ~ NTIMEa(nk),
k > l

.~q~A = SPACEA(Iog n),

JI/'.~ A = NSPACEA(log n),

(~k)A = SPACEA(logk n).

We repeat for emphasis that our definition of a machine running in time t(n)

or space s(n) requires that all computation paths (for all inputs and oracle sets)
eventually converge. Weakening this requirement leads to reasonable alternative

definitions [Si]. All the above classes except N.~ A remain unchanged under the

weaker definitions; however, the weaker definition for N.~ A leads to a set of

results totally different from those in this paper.
At this point we define precisely several concepts concerning oracle Toring

machines that will be used later. Let T be a nondeterministic oracle Turing

machine which runs in space s(n), has state set Q and storage tape alphabet F. Let
x be an input. An instantaneous description (i.d.)for x and Thas the form (q, i,j, y)

where q e Q indicates the state, 1 < i < n indicates the input head position,

1 < j < s(n) + 1 indicates the storage head position, 7 E P(") indicates the contents

Relativization of Questions About Log Space Computability 23

of the storage tape. The initial i.d. is (qo, 1, 1, b~t"))where qo is the start state of T. A

query i.d. has the form (QUE, i,j, 7). A yes i.d. has the form (YES, i,j, y) and a no i.d.

has the form (NO, i,j, 7). An accepting i.d. has the form (ACC, i,j, 7). It is useful to

lump the initial, yes and no i.d. together and call them begin i.d.'s. We sometimes

say the query i.d. (QUE, i,j, 7) corresponds to the yes i.d. (YES, i,j, 7) and to the no

i.d. (NO, i, j, 7).

The i.d. graph for x and T is defined as follows. The nodes are all the i.d.'s.

There is a directed edge from i.d. I to i.d. J if either (i) I is not a query i.d. and J

follows in one move of T on input x from I or (ii) I = (QUE, i,j, 7) for some i,j, 7

andJ = (YES, i,j, 7) orJ = (NO, i,j, 7). A simplepath is a path which does not pass

through a query i.d. A complete simple path is a simple path from a begin i.d. to a

query i.d. To each simple path we associate the partial query generated by it, the

word written on the oracle tape during the sequence of moves indicated by the

simple path. If the simple path is complete, then the partial query is simply called

the query. Queries generated by complete simple paths in the i.d. graph ofx and T

are called the queries generated by T on input x.

Let A ~ {0, 1}* be any oracle set. The query graph for x, 7", and A is defined as

follows. Its nodes are all the begin i.d.'s together with all the accepting i.d.'s. There

is a directed edge from i.d. I to i.d.d if either (i)I is a begin i.d. a n d J is a yes or no

i.d., and there is a complete simple path from I to d' where J ' is the query i.d.

corresponding to J, and the query generated by this path is in A just in case J is a

yes i.d., or (ii) J is an accepting i.d. and there is a simple path from I to J. A word y

supports an edge (I, J) in the query graph if y is generated by a complete simple

path from I to the query i.d. corresponding toJ and either (i) y e A andJ is a yes i.d.

or (ii) y e A andJ is a no i.d. Queries that support edges in the query graph for x, T

and A are called queries generated by T on input x using oracle A.

It should be clear that x is accepted by T with oracle A if and only if there is a

path from the initial i.d. to an accepting i.d. in the query graph for x, 7", and A.

2. Relativizations of JV£¢ and ~ . It is well know that ~ ~ sVL¢ ~ ~ ___ sV~.

It is as yet unknown whether any of the reverse inclusions hold. In this section we

examine the possible relationships between the corresponding relativized classes,

in the hope of shedding some light on the nonrelativized problems. The approach

is similar to that used in the reference [-BGS].

To begin with, given any oracle A the following diagram holds.

~A

As we shall see, it is not always the case tha t ~CLP A ~ ~A (Theorem 2.3).

THEOREM 2.1. There is a computable set A ~_ {0, 1}* such that £¢A = s V ~ a
= ~ = s V ~ ~.

Proof. The construction in [BGS, Theorem 1] will suffice. Also, if A is log

24 RICHARD E. LADNER AND NANCY A. Lx/NCI-I

space complete in polynomial space then following [BGS, Theorem 2], A satisfies

the Theorem.

We outline the argument of Baker, Gill and Solovay [BGS, Theorem 2].

There exists a set A which is log space complete in polynomial space [SM] ; that is,

A is computable in polynomial space and every set B also computable in

polynomial space is log space many-one reducible to A.

Let B e J f f ~ A. Since A is computable in polynomial space then B is

computable in nondeterministic polynomial space. By appealing to Savitch's
Theorem [Sa] B is computable in polynomial space. Hence B _< ~A. Thus

BeZP A. []

T H E O R E M 2.2. There is a computable set A ~= {0, 1}* such that ~U ~ A ~ ~a.

Proof Let g be the fast growing function defined by g(0) = 1 and g(n+ 1)

= 2 °("). Define G = {0 °tk) : k _> 0}. In what is to follow we use G as a set of

diagonalization points. The set G has several nice properties including the

property that it can be decided in space'log n whether or not a string x ~ {0, 1}* is

in G.
We construct sets A and B satisfying:

(i) W ~ A =c ~A,

(ii) B ¢ yZpA,

(iii) B E ~a.

The sets A and B will have the following properties which imply (i) and (iii).

(a) B~=G,

(b) A = {O°(k'lx :Ix[_< g(k)&k >_ 0},

(c) if O'lxeA and y is a prefix of x then (PlyeA,

(d) if if ' lx and lYlyeA and [x I = [y[then x = y,

(e) OnCB if and only if either O'¢G or there is a y of length n such that

Onl yeA.

We show later how to construct A and B. Using properties (a)--(e) we show

(iii), how to compute B in polynomial time using the oracle A. The following

algorithm decides B.

begin (Algorithm for B)

read x ;

if x ¢ G then REJECT else

z ~ x l ;

while Izl < 2Ix I + 1 do

begin

if z l EA then z , , -z l else

if zO~A then z , -zO else

ACCEPT

end ;

REJECT;

Relativization of Questions About Log Space Computability 25

end (Algorithm for B)

We leave it to the reader to verify that the algorithm runs in polynomial time.

We now proceed to show (i), A / '~ A ___ ~A. Let M be a nondeterministic oracle

Turing machine that runs in space log n. There is a polynomial q depending on M

such that if Ixl -- n then the number of i.d.'s for x and M is no more than q(n).
Furthermore, on input x no query of length greater than or equal to q(n) is

generated. We show how to decide in polynomial time whether x is accepted byM

with oracle A by showing how to construct the query graph for x, M and ~1 in

polynomial time using the oracle A. Once the query graph is constructed then its

transitive closure can be computed in polynomial time. From the transitive

closure it can be decided immediately whether x is accepted by M with oracle A.

We proceed to construct the query graph in the following steps.

1. Us ing the oracle A compute the set Y = {yeA : [y[< q(n)}. This can be done

in polynomial time because A is so sparse and simple. The set Y has at most

2q(n) members.

2. Construct the sets Z and 3 defined by:

= {(I,J, 6) :1 is a begin i.d., J is an i.d., 6e {0, 1}*, there is a simple path in

the i.d. graph for x and M from I to J which generates the partial query tS,

and 6 is a prefix of a member of Y}

3 = {(I,J, 6a):I is a begin i.d., J is an i.d., fie{0, 1}*, ae{0, 1}, there is a

simple path from I to J which generates the partial query ha, 6 is a prefix

of a member of Y, and tSa is not a prefix of a member of Y}.

Since Y has at most 2q(n) members each of length at most q(n) and there are

at most q(n) i.d.'s then the cardinalities of Z and 3 are bounded by 2(q(n)) 4.

The sets Z and ~ may be constructed in polynomial time by the following

algorithm.

begin (Construction of Z and 3)
Z ~ - ~ ; ~ - Z ;

Z '~{(I , I, 2) :I is a begin i.d.} ;

while Z # Z' do

begin
Z ~ Z ' ;

for all (I, J, 3) e Z and all J ' which are not begin i.d.'s do

i f J ' follows from J in one move and generates ae {0, 1, 2}
then if 6a is a prefix of a member of Y

then Z'~-Z' ~ {(I, J', ~a)}

else ~ * - ~ w {(I, J', 6a)} ;
end

end (Construction of Z and 3)

3. Finally we can compute the query graph for A. There is a directed edge from I

to J i f / i s a begin'i.d., J' is the query i.d. corresponding to J i fJ is a yes or no

i.d., and one of the following holds:

(i) J is a yes i.d. and there is 6 e Y such that (I, J', 3) e Z,

(ii) J is a no i.dl, there is a fie {0, 1}* and an i.d.K such that (I,K, ,~)e 3 and

there is a simple path from K to J'.

(iii) J is an accepting i.d. and there is a simple path from ! to J.

26 RICHARD E. LADNER AND NANCY A. LYNCH

We now show how to construct A and B so that B ~ X A aA and A and B satisfy

(a)--(e). As we mentioned earlier, we will use members of G as diagonalization

points. That is, if T is an arbitrary nondeterministic oracle Turing machine that

runs in space log n then some member (P of G will have the property that On e B / f T

does not accept (P with oracle A and On ¢ B if T does accept (P with oracle A. Before

getting into the actual definition of A and B we need to prove a certain claim.

Let C be a finite set, let n > Iz[for all zeC, and let 2 n > c 2 where c = the

number of i.d.'s for On and T. Define:
!

C y = C u {(plx : Ix[< tyl and x is a prefix of y}
t! C y = C u {(Plx : x is a prefix of y}.

Claim. For some y of length n one of the following holds:

(1) (P is rejected by T with oracle C'r,

(2) (P is accepted by T with oracle C"y.

Proof of Claim. Assume (1) fails so that (P is accepted by Twith oracle C'r for
t t

each y oflength n. Let G'y be the query graph for (P, T, and C' r and let G y be the
it query graph for On, T, and C r. All such query graphs share the same nodes.

For each y of length n there is a path Py in G'y from the initial i.d. to an

accepting i.d. If for some y, Pr is also a path in G"y then (2) holds. So assume Py is

not a path in G"r for any y. Since _C"y is obtained from C'r by the addition of the

one word (ply then (Ply supports an edge e r in G'r which is not supported by any

other member of C'---~. Now, if Ix[= lY[= n a n d x # y thene x # er. For i fx # yand

e x = er then er is supported by at least two members of C'y, namely (Plx and (Ply,

which is impossible. But there are at most c 2 possible edges in any query graph for

(P and T and 2" words of the form (Ply where lyl = n. This is impossible because

2 n > c 2. Hence (2) holds if (1) fails.

Using the claim we now give the construction of A and B. We let T1,T 2 be an

effective enumeration of the nondeterministic oracle Turing machines that run in

space log n. There is a parameter t which indicates the 'stage' of construction.

begin (Construction of A and B)

A ~ ;

B~Z~ ;.

i l l ;

for s ~ 0 until t do

begin (stage s)

n~g(s) ;

c ~ t h e number of i.d.'s for On and T~ ;

if 2" _< C 2 then A ~ A u {OhiO i :0 _< i _< n} else

begin (diagonalization of Ti)

if On is rejected by T~ with oracle A'r for some y of length n then

begin

choose y of length n such that On is rejected by T~ with oracle A'y ;
{on} ;

A ,--A' r

end

else

begin

Relativization of Questions About Log Space Computability 27

choose y of length n such that On is accepted by T~ with oracle A" r ;

A ~ A "
Y

end ;

i . - - i+l

end (diagonalization of T~)

end (stage s)

end (Construction of A and B)

To decide whether x is a member of A or of B run the construction of A and B

with the parameter t where a(t) > Ixl On termination check the current values of

A and B to determine if x is in the appropriate set.

The construction succeeds if we can show that each T~ is successfully

diagonalized, that is, B is not accepted by T~ with oracle A. This can be shown by

induction on i. Assume this is true for allj < i o. There is a polynomial p such that

the number of i.d.'s for each x and T~ ° where N = n is at most p(n). By the

induction hypothesis there is a least number s o such that if the value of s is s o then

the value of i is i o. Since 2 n dominates p2(n) then there is an s 1 > s o when

diagonalization begins on T~ o. Let n = #(sl). By the claim and the fact that words

that are added to A after stage s 1 are of length greater than or equal to 2 ~, which is

in turn greater than the length of any query generated by T, ° on input 0 r, we can

conclude that 0" e B if and only if 0 n is rejected by T~ ° with oracle A. []

T H E O R E M 2.3. There is a computable set A ~ {0, 1}* such that JV'~ A f~ ~A

and ~A d: jff.oq ~A.

Proof. We omit the details of the proof. The basic idea is to interlace the

diagonalization of Theorem 2.2 with the following simple diagonalization (which

is used by [BGS] in showing there is an A such that ~A # jff~A).

We construct A and C satisfying

(i) C ¢ ~A, and

(ii) C E YLP A.

To accomplish (ii) we force A and C to have the property that x ~ C if and only

if x e G and there is a y e A of the same length as x.

To demonstrate a typical diagonalization let T be an arbitrary oracle Turing

machine that runs in time p(n) where p is a polynomial. Choose n and k such that

n = g(k) and 2 ~ > p(n). Choose y of length n such that y is not a query generated in

the computation of T on input On using the current oracle A. If T accepts On then

do not add anything to A or C. If T rejects On then add On to C and y to A. In either

case restrain all other words of length less than 2 ~ from entering A subsequently.

The interlaced diagonalization will construct sets A, B, and C where B e ~A,

B ¢ JC'L,e a, C e YZPa.and C ¢ ~A. The interlacing will be done by doing one kind of

diagonalization on points 0 gCk) where k is even and the other kind of

diagonalization on points 0 °¢k~ where k is odd.

We should note that we must certainly lose the fact that ~rLPA ~ ~A when we

combine the constructions. What happens is that we can no longer compute the

set Y = {yeA :[y[_< q(n)} in polynomial time using the oracle A. []

The reader may perhaps find it surprising that the easier half of Theorem 2.3 is

producing a set A with J t rS aa ~. ~ , in view of the fact that X.L~' __ ~ .

28 RICHARD E. LADNER AND NANCY A. LYNCH

One interesting problem that remains open is whether or not there is a set A
with #A ~ y.WA.

3. Relativizations of Other Problems. As we saw in Section 2 the fact that

JV.L~' ~ # does not relativize to arbitrary oracles. There are computable sets A

with YL,¢ A ~ ~a. Results that do relativize uniformly seem to be those ~hat

depend primarily on step-by-step simulations. An example of such a result is the

space hierarchy theorem of Stearns, Hartmanis, and Lewis [SHL].

THEOREM 3.1. Let A be any subset of {0, 1}* and let s and r be natural

number functions with s uniformly tape constructable, lim infn(s(n)/log n) > 0 and

lim infn(r(n)/s(n)) = O. Then SPACEA(s(n))-SPACEA(r(n)) ~ ;g.

(A function s is uniformly tape constructable if there is a Turing machine

acceptor Twith the property that for all n and all x of length n, on input x, T scans
exactly s(n) storage tape cells. This notion is a somewhat stronger notion of tape

constructability than was used by Stearns, Hartmanis and Lewis.)

Proof. We omit the details of the proof, since it is essentially the same as that in

[SHL] with some minor modifications outlined below.

A set B _ {0, 1}* is constructed with B~SPACEA(s(n))--SPACEA(r(n)). If

xe {0, 1}* then x codes up an oracle Turing machine description in the initial

nonzero portion of x; that is, if x = dl0 ~ then d describes an oracle Turing

machine.

To determine ifx = dl0 m is in B in space s(Ixl) using the oracle A, we simulate d

on the input x, always bounding the space used in the simulation to s<lxl) and the

time to 2 sllxll. The query generated by the simulation ofd is put onto the oracle tape

which acts as an oracle tape to d.

Should d accept the input in the allocated space and time, then x is rejected,

otherwise x is accepted.

It follows that B e SPACEA(s(n)) - SPACEA(r(n)). []

Other results that relativize uniformly include: (i) the characterization of Y #

by polynomial length bounded quantifiers over relations in # [C2]; and (ii)

equivalence of two-way multihead finite automata and Turing machines that run

in space log n [H] [HY]. The former fact was pointed out to us by A. Selman.

There are a wide variety of results in automata theory that depend on indirect

rather than step-by-step simulations. Among them are Y A ° c__ N [C1],

X£~_c ~ 2 [Sa], N is equal to the class of languages accepted by

nondeterministic log space bounded auxiliary pushdown store machines [C1],

and NSPACE(n 2) is equal to the class of languages accepted by nonerasing stack

automata [HU 1]. These kinds of results in general do not relativize uniformly. As

a paradigm we offer the following theorem.

THEOREM 3.2. Let p be any polynomial. There is a computable set A

{0, 1}* with the property that ~CZP A ~ SPACEA(p(n)).

Proof This is a diagonalization similar to that of Theorem 2.3. We outline the

proof. Let k = the degree of p(n). We construct A and B so that B s JI/'LP A

-SPACEA(p(n)). Define the fast growing function h by h(0)= 1 and h (n+ l)
= 2 ~h~n)) . Further define H = {O h(") : n > 0}. We use the set H as a set of

Relativization of Questions About Log Space Computability 29

diagonalization points. It should be noted that H can be decided in space log n.

We achieve B e ~ C ~ A by defining x e B if and only if x e H and there is a word of

length Ixl in A.

We diagonalize in the following way. Let T be an arbitrary oracle Turing

machine that runs in space ~+(n). Assume T has s states and t storage tape symbols.

Choose 0"el l such that 2" > snp(n)t plm so that 2 ~÷~ is greater than the total

number of i.d.'s for 0 ~ and T. Choose a y of length n k÷ ~ which is not a query

generated by T on input 0" using the current oracle A. Such a y exists because T
k + l . .

must make less than 2" moves on input 0". If0" is accepted by Tthen do nothing

to A and B. If0" is rejected by T then add 0" to B and y to A. In either case restrain

all other words of length less than 2 "~+ ~ from entering A subsequently. []

COROLLARY 3.3. There is a computable set A ~= {0, 1}* such that
X ~ ~ ffi (~) ~ .

4. Log Space Truth Table Reducibility. The motivation for studying log space

truth table reducibility comes from the investigation of polynomial time truth

table reducibility in [LLS]. The intuitive idea behind truth table reducibility is

the following. A set A is truth table reducible to a set B if given x we can generate

(independent of B) queries y 1, Y2 y,, and a Boolean function a such that x e A if

and onlyifa(B(yl) , . . . ,B(y,,)) = 1 (whereB(y) = 1 i f y eB andB(y) = OifyeB). In

ILLS] this notion is restricted to be polynomial time bounded, and it is shown

that polynomial time truth table reducibility and polynomial time Turing

reducibility are distinct notions.

Our definition of log space truth table reducibility is analogous to the

definition of polynomial time truth table reducibility in ILLS] with a slight

modification.

Let A = {a, b}. A tt-condition is a member of (A'c{0, 1}*c)*A*. A tt-eondition

generator is a computable function mapping {0, 1}* into the set of tt-conditions.

A tt-condition evaluator is a computable mapping of (A* {0, 1 })*A* into {0, 1 }. Let

e be a tt-condition evaluator; a tt-condition C t l C Y l C C t 2 e Y 2 e . . . C t k C Y l ~ e c t k ÷ 1 (with

a, eA* and yie{0, 1}*) is e-satisfied by B c_ {0, 1}* if e(alB(Yl)a2B(y2) . . .

~ (Y D ~ k + 1) = 1.
Define A < ~B (A is Io9 space truth table reducible to B) if there exist a log

space computable tt-condition generator 9 and a log space tt-condition evaluator

e such that x e A if and only if g(x) is e-satisfied by B. We may also define A < ~B

(A is polynomial time truth table reducible to B) if the generator and evaluator are

computable in polynomial time. This definition is equivalent to the definition of

_< ~ in ILLS].

If our abstract definition of < -~ is to be reasonable it should include as special
- - t t

cases some of the common representations of Boolean functions. We list the three

basic representations of Boolean functions in increasing order of efficiency of size:

(i) truth tables, (ii) Boolean formulas in all binary and unary operations, (iii)

Boolean circuits using all possible binary and unary gates. It turns out that truth

tables and Boolean formulas can be used as truth table conditions, while it seems

in general that Boolean circuits cannot. The trouble with Boolean circuits is that

30 RICHARD E. LADNER AND NANCY A. LYNCH

the problem of evaluating them is log space complete in ~ [La2]. Hence they can

be evaluated in log space if and only if ~ ~_ La.

At this point we give an example of a log space truth table reduction

procedure. Let A, B __q {0, 1}*. The sets A and B can be coded into one set A ~ B

= {xO:x~A} u {xl:xeB}. It can be shown using techniques of [LLS] that

there are computable sets A and B with A u B ~ ~A~B. On the other hand, it is

quite easy to show that A u B < ~A @B. Consider the following generator and

evaluator. Let:

g(x) = cxOc v c x l c

e(avz) = {01 i f a = z = 0
otherwise

(Technically the symbol v is coded in the alphabet A.)

Clearly, x EA u B if and only if g(x) is e-satisfied by A@B.

Define a general Boolean formula (gB]) inductively as either: (i) a member of

c{0, 1}*c or (ii) (P'Q) or (~p)where *~ { ̂ , v , @ } = all binary Boolean

operation symbols and P and Q are gBfs. Define a Boolean formula in the same

way as a gBfexcept replace the first condition with "a member of {0, 1}". I fP is a

Boolean formula then define v(P) to be the value of P in the usual way. If P is a

general Boolean formula and B ___ {0, 1 }* then we know what it means for P to be

v-satisfied by B. Define A <_ ~B (A is log space Boolean formula reducible to B) if

there is a log space computable general Boolean formula generator g such that

x ~ A if and only ifg(x) is v-satisfied by B. We could also analogously define what it

means for A to be polynomial time Boolean formula reducible to B.

THEOREM 4.1. For all A, B c= {0, 1}*, if A <_s~ffB then A <_ ~B.

Proof. The alphabet of Boolean formulas could be coded easily into a two

letter alphabet like A. By Lynch, Boolean formulas can be evaluated in space log n

[Lyl] . Hence the function v is computable in space log n. []

We do not know whether or not < ~ and < ff are equivalent notions.

Another closely related problem is whether or not <s~ and ___ ~ are equivalent.

Both problems are closely related to the problem of whether or not there is a

polynomial p such that given any Boolean circuit P there is an equivalent Boolean

formula Q such that SIZE(Q) < p(SIZE(P)).

We now show the equivalence of _< ff and _< ~r. Aswe mentioned earlier, this is

in contrast to the polynomial time analogue where < ~ is properly stronger than

--<~r.

THEOREM 4.2. For all A and B ~_ {0, 1}*, A <_~ B if and only if A <_ ~B.

Proof. Assume A _< ~B via a generator g and evaluator e. We outline the

action of an oracle Turing machine Tthat runs in space log n such that T accepts

A with B as its oracle. Let G and E be the log space transducers that compute g and

e respectively.

Let x be an input of length n and let g(x) = alCYlCa2¢Y2C... CakCYkCa k + 1 where
a i ~ A* and Yi e (0, 1}*. The Turing machine Ton input x will simulate E on input

Relativization of Questions About Log Space Computability 31

W = a tB(y 1)a2B(y2)0`3... akn(yk)a k + 1" Of course Tcannot write w in log space, but

because g is computable in space log n then the length of w is bounded by a

polynomial. So T simply keeps a count cE of where the read head on w is in the

simulation of E. Because the count cE is bounded by a polynomial the count ce can

be stored in log n storage tape cells.

To discover the ce-th letter of w, T simulates G on input x in the following way.

A count cG, which is initially equal to ce, is maintained. Each time an output

symbol in A is generated and each odd time a c is generated the count CG is

decremented by one. The count is not decremented when a member of {0, i, 2} is

generated as an output symbol. When c~ = 0 then stop. If the last symbol

generated is in A then that symbol is the cE-th letter ofw. If the last letter is a c then

a 'query' is about to be generated by E, so continue simulating E, entering the

output of E onto the oracle tape of T, until a c again is output. Now, T enters

the state QUE. Should T enter state Y E S then the ce-th letter of w is 1 and should

T enter state N O then the cE-th letter of w is 0. The details of T are left to the

reader.

Now, assume A < ~B. Let T accept A with oracle B in space log n. The

important thing to notice is that given x the only potential queries by T are

generated by complete simple paths in the i.d. graph for x and T. Because T is

deterministic the number of complete simple paths is less than or equal to the

number of begin i.d.'s for x and T.

The generator g is defined by g(x) = a l C y l c a 2 c . . . CakCYkC/3 where al, . •., O'k are

the begin i.d.'s that initialize the complete simple paths, yi is the query generated

by the complete simple path initialized by a~ and fl is a list of the begin i.d.'s that

lead by a simple path to accepting i.d.'s, followed by the input x itself. Of course

the a~'s and/3 are coded into the alphabet A. The function g can be computed in

space log n, by cycling through all the i.d.'s for x and T and making output as

required by the definition of g.

The evaluator e is a simulator of T. Let a typical input to e be (/.lOlO.2O2 . . .

0.k0"k/3' where a 1 ,0.k are begin i.d.'s,/3 is a list of begin i.d.'s followed by the input

x, and 0"1e {0, 1}.

The Turing machine that computes e behaves as follows.

begin

/<--the initial i.d. for x and T;

while I is in the list of i.d.'s a l , , 0̀ k do

begin

let I = a~ ;

simulate T from i.d. I until a query i.d. J is reached ;

if 0-i = 1 then/.--the yes i.d. corresponding to J

else/.--the no i.d. corresponding to J ;

end ;

if I is in the list of i.d.'s in/3 then write 1 else write 0

end

It should be fairly clear that e can be computed in space log n and that x eA if

and only if g(x) is e-satisfied by B. []

32 RICHARD E. LADNER AND NANCY A. L'rNCH

C O R O L L A R Y 4.3. The reducibility < "~ is properly stronger than the
- T

reducibility < ~.

Proof. It is clear tha t i fA < ~T B then A < ~B. In [L L S] it is shown tha t there

are sets A and B with A < ~B and A ;g ~B. These same two sets have the p rope r ty

tha t A < ~B and A ~: -~B. []

Two p rob lems rela ted to this Coro l l a ry remain open: (i) are _< ~ and <

dis t inct no t ions and (ii) are < ~e and < ~ dis t inct not ions . Both p rob l ems are
- - m - - n l

closely re la ted to the open quest ion, whether or not the class of funct ions

c o m p u t a b l e in po lynomia l t ime is different from the class of funct ions

c o m p u t a b l e in log space.

R E F E R E N C E S

[BGS] T. BAKER, J. GILL, and R. SOLOVAY, Relativizations of the ~ = Y ~ question. To appear in
SIAM Journal on Computing.

[C1] S.A. COOK, Characterizations of pushdown machines in terms of time-bounded computers,

Journal of the ACM, 18 (1971) 4-18.
[C2] S.A. COOK, The complexity of theorem proving procedures, Proc. Third Annual ACM

Symposium on Theory of Computing, 1971 pp. 151-158.
[C3] S.A. COOK, An observation on time-storage trade off, Proc.ofFifth Annual ,4 CM Symposium

on Theory of Computing, 1973 pp. 29-33.
[H] J. HARTMANIS, On nondeterminacy of simple computing devices, Acta lnformatica, 1 (1972)

336-344.
[HU1] J. E. HOPCROFT and J. D. ULLMAN, Nonerasing stack automata, Journal of Computer and

System Sciences, 1 (1967) 166-186.
[HU2] J. E. HOPCROFT and J. D. ULLMAN, Formal Languages and Their Relation to Automata,

Addison-Wesley, Reading, Ma. 1969.
[HY] P. HSIA and R. YEa, Finite automata with marks, in Automata, Languages and Programming,

M. Nivat, editor, American Elsevier, New York 1973.
[J] N . D . JONES, Space-bounded reducibility among combinatorial problems, Journal of

Computer and System Sciences, 11 (1975) 68-85.
[JL] N.D. JONES and W. T. LAASER, Complete problems for deterministic polynomial time, Proc.

of Sixth Annual ACM Symposium on Theory of Computing, pp. 40-46 1974.
[K] R .M. KARP, Reducibility among combinatorial problems, in Complexity of Computer

Computations, R. Miller and J. Thatcher, editors, Plenum Press, New York 1972.
[La 1] R.E. LADt,a/R, On the structure of polynomial time reducibility, Journal of the ACM, 22 (1975)

155-171.
[La2] R.E. LADNER, The circuit value problem is log space complete for ~, SIGACTNews, 7 (1975)

18-20.
[LLS] R. E. LADtqER, N. A. LYNCH, and A. L. SELMAN, A comparison of polynomial time

reducibilities. To appear in Theoretical Computer Science.
[Lyl] N. A. LYNCH, Log space recognition and translation of parenthesis languages, manuscript.
[Ly2] N. A. LYNCH, Log space machines with multiple oracle tapes, manuscript.

[M] A.R. MEYER, private communication.
[Sa] W.J. SAVITCH, Relationship between nondeterministic and deterministic tape complexities,

Journal of Computer and System Sciences, 4 (1970) 177-192.
[Si] SIMON, ISTVAN. Private communication (Ph.D. Thesis in preparation, Stanford).
[SHL] R. E. STEARNS, J. HARTMANIS, and P. M. LEWIS II, Hierarchies of memory limited

computations, IEEE Conf. Record on Switching Circuit Theory and Logical Design, (1965)

191-202
[SM] L. STOClf~tEYER and A. R. MEYER, Word problems requiring exponential time Proc. of Fifth

Annual ACM Symposium on Theory of,Computing, (1973) pp. 1-9.
[Sul I.H. SUDBOROU~rl, On tape-bounded complexity classes and multihead automata, Journal of

Computer and System Sciences, Vol, 10 (1975) 62-76.

(Received August 6, 1975 and in revised form February 10, 1976)

