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Abstract The  set covering  problem  (SCP) is ene  of  representative  combinaterial  optimization  problems,
which  has ma･ny  practical applications.  The  conttnueus  development  of  mathematical  programming  has

derived a  number  ol' impressive heuristic a]gorithms  as  well  as  exact  branch-and-bound  algorithms,  which

can  solve  huge SCP  instances of bus, railway  and  airline  crew  scheduling  problems.  We  survey  heuristic
algorithms  for SCP  focusing mainly  on  contributions  of  mathematical  programming  techniques  te  heuristics,

and  illustrate their  performance  through  experimental  analysis,

   Keywords:  Cembinaterial optSmizat,ion,  set･ covering  problem, linear pregramming,
   Lagrangian  relaxation,  subgradient  method,  heuristic algorithm

1. Introduction

The  set  coventng  problem  (SCP) is one  of  representative  combinatorial  optimization  prob-
lems, which  has many  practical applications,  e.g.,  bus, railway  and  airline crew  scheduling,

vehicle  routing,  facility location, political distrieting [5,23,32]. More  recent  applications  of

SCP  are  fbund in probe selection  in hybridization experiments  in DNA  sequencing  [16] and

feature selection  and  pattern  construction  in Iogical analysis  of  data [17].
   SCP  is formally defined as follews. We  are  given a  ground  set  of  m  elements  i E  M  =

{1,,..,m}, a  collection  ofn  subsets  S)- C- M  and  costs  cj for j' E Ar ={1,.,,,n},  where  we

assume  q)･ >  O and  Sil }l 1 without  loss of generality. We  sa"r that X  {l N  is a  cover  of

M  if UjEx Sb =  M  holds, and  X  is a  prime  cover  of  M  if X  is a  cover  of  M  without  any

redundant  subset.  The  goal of  SCP  is to find a  minimum  cost  cover  X  of  M.  SCP  can  be

formulated as a  0-1 integer programming  (IP) problem  as  follows:

(SCP) mmimize  z(x)=Ec2xj

                      jEN

      subject  to Ea,,m, }l 1 (ic A･f)
                jEN

                x,- E  {O, 1} (j' E IV),

(1.1)

where  aij- =  1 if i E  Si and  aij =  O otherwise;  i.e,, a  column  aj  =  (aij-, , , , 
,amj)T

 of  matrix

(aij) represents  the  corresponding  subset  Si by S)･ 
--

 {i E M  1 ai,･ =  1}. It is understood
that decisjon variable  xj- =  1 if a subset  S.i is selected  in the cover  X  and  xj･ -- O otherwise.

For notational  convenience,  for each  i E M,  let AiL =  {]' c N  1 aij  
--

 1} be the set  of  subsets

that contain  element  i. Since a  column  j' c N  and  a  row  i E M  correspond  to a  subset  S)･
and  an  element  i respeetively,  we  say  that a  ¢ olumn  o' covers  a  row  i if aij･ =  1 holds,

   SCP  is known  to be NP-hard  in the  strong  sense  [31], and  there is no  polynomial  time

approximation  scheme  (PTAS) unless  P  =  NP,  Furthermore, a  number  of  lower bounds  on
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approximation  ratio  for SCP  have been shown,  Feige [27] proved that, fbr any  E>  0, it is

impossible to a ¢ hieve a  polynomial time  (1 -  E) ln n  approximation  algorithm unless  NP  has

nO(iogiug")-time  deterministi¢  algorithms,  and  Trevisan [46] showed  that the  problem  is hard

to approximate  within  a  factor ln d-O(ln  ln d) unless  P  =  NP, where  d =  maxjEN  [S)･ I. How-
ever,  theoretical results  do not  necessarily  refiect  the experimental  performance  in practice;
e,g,, we  can  improve the performanee of  algorithms  for the  real-world  instances by utiliz-

ing their structural  property. The  continuous  development of  mathematical  programming
has much  improved  the performance of  exact  branch-and-bound algerithms  [3,4,7,12,30]
accompanying  with  advances  in computational  ma £ hinery. Recent exact  branch-and-bound

algorit-hms enable  us  to solve  large SCP  instances with  up  to 400 rows  and  4000 columns

exactly  [3].
   Heuristie algorithms  have also been studied  extensively  [2,8, 11, 18, 28], and  several  eM-

¢ ient meta:heuristic  algorithms  have been developed to  solve  huge  SCP  instances with  up  to

5000 rows  and  1,OOO,OOO colurnns  within  about  1%  of  the optimum  in a reasonable  comput-

ing time [20, 22,24, 50], Most of these impressive result･s were  achieved  by hybridizing meta-

heuristics and  mathematical  programming  approaches,  Fbr example,  Beasley [8] presented
a  mimber of  greedy algorithms  based on  a  Lagrangian relaxation  (called the  Lagrangian

heuristies), and  Caprara  et  al. [20] introduced variable  fixing and  pricing techniques  into a

Lagrangian heuristics.

   In this paper, we  present a  review  of  heuristic algorithms  and  related  mathematical  pro-
gramming  techniques  for SCP.  We  mainly  focus on  contributions  of mathematical  program-
ming  to heuristic algorithms  for SCP, and  illustrate their performance through  experimental

evaluation  for several  classes  of  benchmark  instances,

   We  tested these algorithms  on  an  IBM-compatible  personal eomputer  (Intel Xeon 2.8GHz,
2GB  memory),  and  used  two  well-known  sets  of  benchmark  instances. The  first set  of  bepch-
mark  instanees is Beasley's OR  Library  [9], which  contains  11 classes  of SCP  instances,

namely  4-6 and  A-H.  Each  of  classes  4 and  5 has 10 instances, and  each  of  classes  6 and
A-H  has 5 instances. In this paper, we  denote instances in class  4 as  4.1, 4,2, ,,., 4,10,
and  other  instances in classes  5, 6 and  A-H  similarly.  Another set  of  benchmark  instances

is called  RAIL  arising  from a  crew  pairing problem  in an  Italian railway  company  [20,24],
which  contains  seven  instances, namely  three small  size  instances with  up  to 600 rows  and

60,OOO columns  (RAIL507, 516 and  582), two  medium  size instances with  up  to  2600  rows

and  1,100,OOO columns  (RAIL2536 and  2586), and  two  large size  instances with  up  to 4900

rows  and  1,100,OOO eolumns  (RAIL4284 and  4872), The  data of these instances are  given
in Table 1, where  density is defined by £ iEM  £ jEN  aij/Mn･

   This paper  is organized  as  fo11ows. In Section 2, we  review  representative  relaxation  tech-

niques  for SCP  ealled  the  linear programming  (LP) rela)Cation,  the Lagrangian relaxation

and  the surrogate  relaxation.  In Section 3, we  explain  a well-known  approach  called  the

subgradient  method,  whieh  computes  good  lower bounds of  SCP  instances within  a  short

computing  time. We  also  illustrate several  techniques  for improving the  performance of  the

subgradient  method.  In Section 4, we  explain  a  pricing method  called  the  sifting  method

to solve  huge relaxation  problems of  SCP. In Section 5, we  illustrate problem  reduction

rules  that test feasibility and  reduce  the size  of  SCP  instances, In Sect･ion 6, we  review

heuristic algorithms  for SCP  ineluding construcLion  algorithms,  Lagrangian heuristics and

the stateofthe-art  algorithms  based on  hybridization of  metaheuristics  and  mathematieal

programming  approaches.



The Operations Research Society of Japan

NII-Electronic Library Service

The  OpeiationsReseaich  Society  of  Japan

352 S, U"etani &  M  lhgiura

Table 1: The  size,  density and  cost  raiige  of  benchmark  instances for SCP

InstanceRDws  Columns Density(%) Costrange
4.1-4.10
5.1-5.10

6.1-6.5A.1-A.5

B.1-B.5
C.1-C.5
D.1-D.5
E.1-E.5F.1-F.5G,1-G.5

H,1-H.5
RAIL507

RAIL516
RAIL582
RAIL2536
RAIL2586.
RAIL4284
RAIL4872

 200
 2eo
 200

 300
 300
 400
 400
 500

 50010001000

 507

 516
 5822536258642844872

1 081 841

1 092  610

  1000

  2000

  1000

  3000
  3000･
  4000

  4000

  5000

  5000

 10,OOO

 10,OOO

 63,O09

 47,311

 55,515

11920,683

Tl968,672

 2
 2

 5

 2
 5
 2
 51020

 2

 51.31.312O.4O.3O.2O.2

[1,100][1,100][1,100][1,100][1,100][1,100][1,100]p,leo][1,100][1,100][1,100]

 [1,2]
 [1,2]
 [1,2]
 [1,2]
 [1,2]
 [1,2]
 [1,2]

2. RelaxationProblems

The  relaxation  problems  give us  usefu1  information to solve  SCP.  We  can  directly obtain

good  lower bounds  from their solutions,  and  also good  upper  bounds  by  modifying  them.  In

this section,  we  review  three well-known  relaxation  problems  for SCP  called  the linear pro-
gramming  (LP) relaxation  problem,  the Lagramgian rela[xation  problem', and  the surrogate

relaxation  problem.
2.1. Linear  programming  relaxation

The  most  general technique  is the  linear program7ning (LP) relaxation,  which  is defined by
replacing  the  binary constraints  xj  E  {O, 1} vLTith  O f{ x,･ <- 1 for aJl j' E  IV, Since the upper
bound on  xo  is known  to be redundant,  we  can  obtain  the following LP  relaxation  problem:

(LP) minimize

     subject  to

zLp(x)  =  Z  ej xj

        jEN

Z   aij･xj･ >  1

jENxj
 >-0

(i E  M)

(j' E  N).

(2.1)

   Although general-purpose LP  solvers  give an  exact  solution  of  the LP  relaxation  problem,
it has been pointed  out  in the literatulre that  their computation  would  be  quite expensive

because these solvers  often  suffer  vamious  problems  caused  by the  degeneracy of  the  LP
relaxation  of  SCP  instances, However, in recent  years, the development of  mathematical

programming  softwares,  accompanied  with  advances  in computing  machinery,  enables  us

to solve  huge LP  instances [14]. We  accordingly  report  a computational  comparison  of  the
simplex  and  barrier (or interior-point) methods  with two  state-oftheart  general purpose
LP  solvers  eaJled  GLPK  4.8 (GNU Linear Programming  Kit) [52] and  CPLEX  9.1.3 [51] on

the benchmark  instances.

   Table 2 illustrates the optimal  value  z..  of  the LP  relaxation  problem  and  computation

time  in seconds  spent  by GLPK  and  CPLEX  with  the  modes  of  the  primal and  dual simplex

methods  and  the  barrier method,  where  we  set  the time  limit to be 3600 seconds  fbr each
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Table 2: Comparison of  the simplex  and  barrier methods

InstanceRDws  Columns:LP GLPK  4.8 CPLEX  9,1,3
PrimalDual  Barrier PrimalDual  Barrier

4.1-4.10
5.1-5.10
6.1-6.5A.1-A.5

B.1-B.5
C.1-C.5
D,1-D,5
E.1-E,5F,1-F.5G.1-G.5

H.1-H,5
RAIL507
RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200
 200
 200

 300
 300
 400
 4eo
 500
 50010001000

 5e7
 516
 5822536258642844872

1 081 841

1 092 610

  1000

  2000

  1000

  3000
  3000
  4000

  4000
  5000
  5000
 10,OOO

 10,OOO
 63,O09
 47,311

 55,515

1)920,683)1968,672

509.10256.38139,22237.73

 69.38219.34

 58,84
 21.38
 8.92149.48

 45,67172.15182.00209.71688,40935.921054.051509.64

 O.20
 O.40
 O.35

 1.50

 2.62
 3.81
 8.06
 28.92
 47.12276.54653.31

 53.00
 19.09
 59.09>3600>3600>3600>3600

O.OlO.OlO,02O.04O.06O.08O,11O.24O.31

 120
 1,3814.19

 2.816,23>3600>3600>3600>3600

 O.15
 O.25
 O.37

 1.08

 2.70
 3,OO
 6.7828.7157,6079.89145.4715.31

 13.7525.83>3600>3600>3600>3600

  O.02
  O.02
  O.07

  O.13
  O.36
  O.44
  1.11
  9.10
 23.74
 27,95
 90,65
  6.7S
  2,55
  7.612393.341450.06

 >36oe

 >3600

O.Ol
 O,Ol
 O,OlO.03O.05

 O,05O.06O,19

 O,40O.47O.8110.484.028.311673.131734.223517.553546.61

 O,02
 O.02
 O.04

 O.08
 O,13
 O.18
 O,26
 O.99
 5.41
 3.16

 4.80
 1.99
 1,44

 2.16146.06105,98298.70155.44

Note:  each  result  of  classes  4-6 and  A-H  reports  the average  for all  instances in the  class,

run.  In Table 2, computation  time  does not  include the time  for reading  inst･ance data, and
eaeh  result  of  classes  4-6  and  A-H  reports  the average  computation  time  for all instances

in the  class,  while  the results  for individual instances are  reported  for class  RAIL.  This is
t･he same  for all computational  results  in this paper.
   We  observe  that the  dual simplex  method  is faster than  the primal  simplex  method

and  the barrier method  for classes  4-6 and  A-H. On  the other  hand, the barrier method                                                         '

of  CPLEX  is faster than  the primal  and  dual simplex  methods  for RAIL  instances. These

general purpose LP  solvers  still  require  very  large computation  time  and  memory  space  to

solve  the LP  relaxation  of  huge  SCP  instances such  as  RAIL2536-4872.

2.2. Lagrangianrelaxation

Another  well-known  technique  is the Lagrangian relaxatton,  which  is defined by relancing

some  constrairits  while  introducing  penalty functions. A  t･ypical Lagrangian relaxation  prob-
lem for SCP  is defined as  foIIows:

          (LR(u)) mimm]ze  zLR(zt)  =  
jZtNcixJ+,EcMUz

 (i-jEtNazJXg)
                                   -  2c"j･(u)xj+2ui
                                      jEIN[ iEM

                  subject  to xj  E  {O,1} (j' E  IV),

where  u  =  (ui, . . . , u.)  c  RM  is a  veetor  called  the Lag7angian
set  of  non-negative  real  numbers),  and  cNj･(u) =  ci -  £ iGM  aij･ui is called  the

(or relative  cost)  assoeiated  with  a  column  j' E IV. R)r any  tt E RrP, zLR(u)  
'

bound on  the optimal  value  of  SCP  z(x'),  The  problem  to find a Lagrangian
vector  u  E RIP that maximizes  zL.(zt)  is called  the Lagrang･ian dual problem:

                       (LRD) max  {z,.(u) luE RrP}.

(2.2)

multiplier  vecto･r (R. is the
            7℃ duced cost

            gives a  lower

              multiplier

(2.3)
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For any  u  E  Rr, we  can  easily  obtain  an  optimal  solution  to LR(tt), denoted by di(u) =

(thi(u),･･･,thn(u)), by setting  Mj(u) -  1 if i,･(u) <  0 holds and  hi,･(u) -  O if a,･(u) >  o
holds, and  choosing  the value  of  jbj(u) from either  zero  or  one  if chj･(u) =  O holds. It is

known  that any  optimal  solution  to LR(tt) is also opt･imal  for its LP  relaxation  problem

(i.e., replacing  the binary constraint  mj  E {O,1} with  the linear relaxation  O s{ xj  s{ 1),

which  is called  the 
･integral21ty

 p7vperty. Hence, the optimal  value  of  the  Lagrangian dual

problem  is equal  to that of  the LP  relaocation  problem of  SCP  [33]. In other  words,  any

optimal  solution  a  to the dual of  the LP  rel'a)cation:

                   (LPD) maiximize  Zua
                                    iEM

                          subjectto  Zai,uigg (j'EN) (2.4)
                                    icM

                                    uir20  

'
 (iEM),

is also  optimal  to the Lagrangian dual problem  LRD.

   Note  that, even  if an  optimal  solution  di(u) ofthe  Lagrangian relaxation  problem LR(u)

is feasible for the  original  SCP,  it is not  necessarily  optimal  for the  original  SCP.  If all

constraints  are  satisfied  with  equality  (i.e,, Z)j,Na,jdiJ(zs) =  1 for all i c A4), then  th(u) is

optimal  for the original  SCP.

   We  can  define another  Lagrangian relaJcation  problem  by changing  the set  of  relaxed

constraints.  For example,  Balas and  Carrera [3] defined the fo11owing Lagrangian relaxation

                                                                       (2.5)
                                               M)

                                               N),

                                              O for all h,i E M,hf  i, and  u  is a

                     They  have compared  both Lagrangian relaxations  experiment  ally,

and  found that  their Lagrangian rela[xation  was  more  robust  a ¢ ross  difierent instance classes

and  converged  faster when  applying  t･he subgradient  optimization,  though  t･he difference were

not  drastic,
2.3. Surrogaterelaxation

The  surrzigate  relaxation  problem is defined by replacing  some  constraints  into a  surrogate

constraint.  The  standard  surrogate  relaxation  of  SCP  is defined as  follows:

                 (S(w)) minimize  zs(w)=ZcJXj

                                         jEN

                        SUbjeet  tO ,EEn4

 wz (o2tiv awxj)  }ii IlcllliM wz  
(2
 
6)

                                  x,- E  {O, 1} (]' E  N),

where  ui  =  (wi,...,w.) E  Rrp is a  given vector  called  the surrogate  multiplier  veetor.

Compared  to Lagrangian relaxation  problem, there have been less attempts  using  the sur-

rogate  relaxation  problem  fbr integer programming  (IP) problems  including SCP. Lorena
and  Lopes [45] proposed  a heuristic algorithm  for SCP  based on  a continuous  surrogate

relaxation.

problem:

                                   l
             (LR'(u)) minimize  Ztcj- 2  a,juz

                               1'cN  N ,EMXM

                     subject  to 2a,,xs }il 1 (iE 
-

                               j'CN

                               m,･ E {O, 1} (J' C

where  M  is a  maximal  subset  of  M  satisfying  Arh n ArL ==

vector  indexed by MXM.

co+  2  ui

    iEMXM
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3. Subgradieni]  Optimization

As discussed in Section 2.2, any  optimal  solution  a  to the dual of  the LP  relaxation

problem  is also  an  optimal  solution  te the  Lagrangian dual problem;  however, comput-

ing such  a  by general purpose  LP  solvers  is rather  expensive,  especially  for huge SCP
instances as  confirmed  in [[bble 2, A  common  approach  to compute  a  near  optimal  Lar

grangian multiplier  vector  u  is the  subgradient  method  [29,39]. It uses  the  subgradient

vector  s(u)  =:  (si(u), . . . , s.(u))  C Rrp, associated  with  a  given u,  defined by

                      si(u)  ==  1-2aij  thj (u) (iEA4). (3.1)
                                j'CN

This method  generates a  sequence  of  nonnegative  Lagrangian multiplier  vectors  u(O)  
,
 u(i)  

,
 . , ,,

where  u(O) is a given initial vector  and  u(i+i) is updated  from u(t) by the fo11owing formula:

            uS`'i) e  max  {uS`> +AX"il  
.-(.ZL(,R) 5ig,C`))s, (u(`)), O} (z E M), (3 2)

where  zuB  is an  upper  bound  on  z(c),  and  A }ll O is a parameter  called  t･he step  size.

   Vdrious implemelltations of  the subgradient  method  are  possible:, we  therefore start

with  the  following implementation  described in Beasley's tutorial  [10], and  describe several
variants  afterwards.  Let tt =  (ui, . . . , u.)  and  z,M.aX be the  incumbent  Lagrangian multiplier

vector  and  lower bound, respectively.  The  basic subgradient  method  is described as  follows:

Basic  subgradient  method  (BSM)
Step 1: Set z..  e  x(x)  fbr a  feasible solution  x  of  the  original  SCP, which  is obtained

    by a  greedy algorithm  (see Section 6.1). Set uiO)  e  min{c,･/ISji  o' E  AL} and

    ut  -  ui-O) for all i E M  and  2.M.ax e  xL.(u(O)).  Set Ae2  and  le  O.
Step  2: Compute  the  current  solution  th(zt(i)) and  the  lower bound  z.(u(t)).  If

    zLR(u(i))  >  i.M.aOC ho]ds, set  z.rn.a'` "--  zL.(u(t))  and  tti <--  uSi) fbr all i E  M.  If

    zuB  m< rz,M.a'C]･holds, output  u  and  z.M.aX and  halt (in this case,  z..  is optimal  for

    the original  SCP).

Step  3: Compute  the subgradient  vector  s(u(i))  for the current  solution  di(u(i)). If

    si(u(`))  =  e holds for aJl i E M,  output  u  and  z.M.a'C and  halt (in this case,

    di(u(i)) is an  optimal  solution  for the original  SCP)i otherwise  compute  a  new

    Lagrangian multiplier  vector  u(t+i) by (3.2),
Step  4: If z,M.a'[ has nbt  improved  in the last 30  iterations with  the  current  value  of

    A, then  set  A  -  O.5A. If A s{ O.O05 holds, output  iL and  z,M.aX a[nd  halt; otherwise

    let t e  l +  1 and  return  to Step 2.

The  basic subgradient  method  requires  O(q) time  for each  iteratioll, where  q =  EiEM
EjEN aij ･
   Beasley [10] reported  a  number  of  detailed observations.  For example,  the convergence

of  the subgradient  method  is relatively  insensitive to the  initial Lagrangian multiplier  vec-

tor uCO).  Another observation  is that it is helpful to set  s,(u(i>)  e  0 when  ul･i) =  O and

s,(u(i))  <  O hold, because si(u(i))2  factor reduces  the change  of  uff) (h l i).

   The  subgradient  method  converges  very  slowly  when  the current  Lagrangian multiplier

vector  zL(t) approaches  almost  opt･imal  (i,e., the gap zuB  -  zLR(u(t))  gets close  to zero),  To

over ¢ ome  this, Beasley proposed to replace  z..  in (3,2) with  1,05z.., Caprara et al. [20]
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proposed an  adaptive control  of the step  size  A. Their algorithm  starts  with  A -  O,1, For

every  20 iterations, it computes  the best and  worst  lower bounds  in the  last 20 iterations. If
the gap is more  than  19)a, it decreases the step  size  by setting  A -  e.5A. On  the  other  hand,

if the gap  is less than  0.1%, it increases the step  size  by setting  A e-  1.5A, Their algorithm
halts when  the  improvement  of  the  best lower bound  z.M.aX in the  1ast 300  iterations is less

than  O.196 and  1.0 in vaJue.  We  caJl  this rule  to update  A adaptively  rule  ASSC  (abbreviation
for adaptjve step  size  control),  and  use  it in our  eomputational  experiments  later.

   Caprara et  a[t. [20] also  dealt with  slow  eonvergence  due  to the degeneracy of  the  La-

grangian  relaxation  problem,  which  often  appears  for huge  SCP  instances with  relatively

uniform  costs.  In such  a  situation,  after  a  few subgradient  iterations, a  large number  of

columns  j' c  N  happens  to have reduced  costs  ij･(u(t)) to be very  close  to zero,  and  con-

sequently  the subgradient  vector  s(u(i))  highly oscillates  in the  subsequent  iterations. Tb

overcome  this, they  proposed  a  heuristic rule  to define a  veetor  s(u(t)) as follows:

- Heuristiccomputation  of  the  subgradient  vector  (HCSV)
StepStep

Step

Step

1: Set Ne  {j E N  1 6,(u{`)) (  O･OOI} and  M-  U,EN Sb･
 2: Let R  e-  {j C N  1 Uk,abx{,}Sk 

=

 M},  which  is the set of  redundant

columns,  Sort al1 columns  2' E R  in the descending order  of  their reduced  cost

a,-(2t(t)).

 3: For all .i E R, according  tothe  above  order,  set  N  -  NX{j'} if UkENx{,} Sk =

M  holds.                                                  '

 4: Set di,･ <-  1 for all ,7' E lgt and  set th,･ -  O for all j' ¢ N. Set si(u(i))  =

1 -  Z)j.N aij･ti}g･ for all i E A4.

This procedure requires  O(nlogn) time  for sorting  the redundant  columns,  plus O(q) time
for the remaining  computation.  Note that the vector  s(u(t))  obtained  by the above  heuristic
rule  is no  longer guaranteed to be a subgradient  vector.

   Balas and  Carrera [3] proposed  a  simple  procedure  that  transforms  the Lagrangian mul-

tiplier vector  u  into a  dual feasible solution  of  the LP  relaxation  problem  without  decreasing

(and possibly increasing) the associated  lower bound  zL.(u).  The  procedure  is shown  as

fo11ows.

[[bansformationof  the  Lagrangian  multiplier  vector  (TLMV)
Step

Step

Step

 1: If there exists  a  column  j' E  N  with  aj(u) <  O, select a  row  i C Si with

ui >  O. Otherwise go to Step 3.

 2: If ui  <  IEj(u) holds, set ui  -  O; otherwise  set  ui  -  ui  +  aj(u), Return  to

Step l,

 3: Set hi,･(u) e  l if 6j(u) =:  O holds and  Xj(u) -  O if bj(u) >  0 holds for

all 2' E  N.  If there exists  no  

'uncovered
 row  i c  M  by the current  solution

di(tt), output  u  and  halt. Otherwise select  an  uncovered  row  i c M  and  set

ui  tL  ui  +  minjEN,  6j(u), and  then return  to Step 3.

This procedure requires  O(q) time. It is not  hard t･o observe  that  z..(u)  never  decreases

whenever  u  is updated.  The  multiplier  vector  u  is feasible tQ LPD  when  the aJgorithm

proceeds from Step 1 to Step 3, and  remains  feasible during the  execut'ion  of  Step 3, This

method  can  be viewed  as  a  hybrid approach  of  multipl'ie7' acijustment  (Steps 1 and  2) and

dual ascent  (Step 3) methods,  whose  general ideas are  summarized  in [10].
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Table 3: Lower  bounds  obtained  by the subgradient  methods  BSM,  MSMI  and  MSM2

InstanceRows  ColumnsZLP Lower  bounds
BSMMSMIMSM2

4.1-4.10

5.1-5.10

6.1-6,5A.1-A.5

B.1-B.5

C.1-C.5
D.1-D.5

E.1-E.5F,1-F.5G,1-G.5

H,1-H.5
RAIL507
RAIL516

RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200

 200

 200
 300

 300

 400

 400

 500
 50010001000

 507
 516

 5822536258642844872
1 081 841

1

  1000

  2000

  1000
  3000

  3ooe

  4000

  4000

  5000
  5000
 10.000

 10,OOO
 63,O09
 47,311

 55.515
11920,683,092,61e968,672

509.10256.38139.22237.73

 69.38219.34

 s8.s4

 21.38

 8.92149.48

 45.67172.15182.00209.71688.40935.92

509.03256.32139.02237.55

 69,26219.15

 58.72
 21.26

 8,79149,13

 45.41171,41181.53209.40685.79933.19

508.79256.03137.00236.65

 65.92217.86

 53.76
 17.51
 7.03139.45

 38,Ol170.77180,58208,48682,30928,32

509.06256.34139.04237,58

 69.25219.20

 58.72
 21.27
 8.78149.17

 45,44171,68181,63209,49686.65934,05

1054,05 1051,70 1043.04 1052.57
1509.64 1505.86 1493.83 1507.71

   Ceria et al, [24] proposed a primal-dual subgradient  method,  which  generates a  pair of

Lagrangian multiplier  vectors  (x, u),  and  approaches  the optimal  value  of  the  LP  relaxation

problem  from both Iower and  upper  sides,  Tb  this end,  they  first defined a Lagrangian  relax-

ation  problem  to the  LP  dual problem  (2.4) by introducing a  Lagrangian multiplier  vector

x  =  (xi,,,,,x.). We  can  define a  Lagrangian dual problem  optimizing  the Lagrangian

multiplier  vector  x,  which  is equivalent  to the LP  relaxation  problem  for SCP.  Accordingly,
they  proposed a  subgradient  method,  which  updates  both  Lagrangian multiplier  veetors  m

and  u  simultaneously.

   We  tested the basic subgradient  method  (BSM) and  two  modified  subgradient  methods.

The  first modified  subgradient  method  (denoted MSMI)  uses  the rule  ASSC  to control  the

step  size  A and  the  heuristic algorithm  HCSV  to compute  the subgradient  vector  s(u).  To
be more  precise, rules  of  BSM  are  modified  as  fbllows: (i) The  rule  to initialize A in Step 1,
the rule  to update  A and  the  stopping  criterion  in Step 4 are  replaced  with  rule  ASSC;  (ii)
the vector  obtained  by algorithm  HCSV  is used  instead of  the  subgradient  vector  s(tt(i))

in Step 3. The second  modified  version  (MSM2) usee  the algorithm  TLMV  to improve the

lower bound  at  every  iteration, More  precisely, rules  of  BSM  are  modified  as  fbllows: Let u'
be the vector  obtained  by applying  algorithm  TLMV  to the current  multiplier  vector  u(i),

and  then  use  u'  instead of  u(t)  in Step 2, The  other  parts of  algorithm  MSA,Il and  MSM2
are  exactly  the same  as BSM.  It might  seem  more  natural  to use  this modified  multiplier

vector  u'  also  in Step 3 to compute  the next  multiplier  vector  u(i+i);  however, we  observed

through  preliminary  experiments  that  the lower bounds obtained  with  this option  is worse
than  those  of  BSM,

   Tables 3 and  4 show  the  lower bounds, the number  of  iterations (column 
t`iter,")

 and

the  ･eomputation  time in seconds  of  BSM,  MSMI  and  MSM2,  Frorn Tables 3 and  4, we  can

observe  that these subgradient  methods  obtain  near  optimal  lower bounds  quickly in spite
of  their simplicity.  We  can  also observe  that the lower bounds of  MSMI  are  worse  than BSM
for all  instances, and  those  of  MSM2  are  slightly,better  than  BSM,  though  MSM2  consumes
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Table 4: Number  of  iterations and  computation  time in seconds  of  the subgradient  methods

BSM,  MSMI  and  MSM2

InstanceRows  Columns BSM MSMI MSM2
Iter.Time Iter.Time Iter.Time

4.1-4.10
5.1-5.10
6.1-6.5A.1-A.5

B.1-B,5
C.1-C.5
D.1･-D.5
E,1-E,5El-F,5G,1-G,5

H.1-H.5
RAIL507
RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200
 200
 200
 3003eo400400

 500

 50010001000

 507
 516
 5822536258642844872

1 081 841

1

  1000
  2000
  1000
  3000
  3000
  4000
  4000

  5000

  5000

 10,OOO

 10,OOO

 63,O09

 47,311
 55,515

71920,683

,092,610968,672

536.3610.1831.2751.81022.8918.61048,41399,81430.21236.61478,2

  698
  780
 1009

 1034

  892

 1239

  964

O.03o.e6O,09O.15O.47O.32O.803.317,132.387,023.062.584.34111.4473.17135.5289.202231.81963.23382.82740.83104.43440.02519,22144.81714.64041.82404,2

  969
  798

  927

 2184

 1306

 1807

 1351

O.18O.26O.49O.69

 1.72

 1.472,416.5710.7410.2615,43

 5.283.234.95374.17152.95314.24182,86

 557.3
 596.1

 767.6
 762.4992.4939.21023,81297.21371.01188.21548,O

  867
  848
  802

  972
  845

 1190

 1145

O.07O.11O.15O.28O.70O.54

 1,23

 5.2711.883.8313,088.64

 7.209.27410.72238.36485,38351.91

more  computation  time  than  BSM,  To  see  their convergence  properties, we  illustrate their

behaMior in Figures 1 and  2, where  we  imposed  no  limit on  the  number  of  their iterations.
From  Figures 1 and  2, we  can  observe  that MSMI  and  MSM2  obtain  eomparable  lower
bounds  with  smaller  numbers  of  iterations than  BSM,

4. SiftingMethod
In order  to solve  huge LP  relaxation  problem, Bixby et al. [15] developed a  variant  of  the

column  generation method  called  the softing method  (or pricing method),  which  generates
successive  solutions  of  small  subproblems  by taking  a  small  subset  of  columns  C  c  N.

   The  sifting method  is based on  the observation  that  only  a  smal1  number  of  columns

2' C  N  with  negative  reduced  costs  ffj (u) <  O are  necessary  to compute  the current  objective

value  zLp  at  every  iteration ef  the  simplex  method.  It will  therefbre be advantageous to
solve  a number  of  subproblems  called  the core  problem consisting  of  a small  subset  C  of

columns  J' with  sma}1  reduced  costs  aj (u) and  update  the currellt  core  problem at  moderate

intervals.

   Caprara et  al. [20] developed a  sifting  procedure  on  the  subgradient  method  for SCP.
The  initial core  problem  C  is defined by taking  the columns  j' E AJle with  the  five smallest

values  of  reduced  costs  q(u) for each  row  i E  M,  and  the  current  core  problem C  is updated

every  T  subgradient  iterations. The  next  core  problem  C  is mainly  composed  of  columns

j' E N  with  smallest  reduced  costs  6j-(tt) fbr the  current  Lagrangian multiplier  vector  u.

The  rule  to update  the core  problem  C  is formally described as  follows.

Updating  core  problem
Step  1: Compute the reduced  cost  a,･(u) for all j' E  N,

Step  2: Set Ci <-  {p' E N  1 gj(u) <  O.1}. For each  i c M,  let C)b(i) be the

    columns  with  the five smallest  values  of  ej(u) among  those  in IVL. Then  set

    C> -  UiEM q(i)･

NII-Electionic  
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Step  3: If ICii >  5m  holds,
smallest  values  of  dy(u).letSetCi

 be the  set

CeClUC2,of
 columns  J' E  Ci haMing the 5m

   We  note  that the  optimaJ  value  fbr the ¢ ore  problem  z:.(u)

does not  necessarily  give a  lower bound  for the  original  SCP
lower bound  zL.(u)  by the following fbrmula:

=  Ejcc q' (u)dij (u)+Z)iEM ui

and  we  need  to eompute  the

ILR(lt)  =  Z:R(u)  +  E  6j(u)dij(u) =

)'cNXC

Zui+2
iEM  jENmin{a,･(u),O}.

(4.1)

   One  of  the most  important decisions in implementing the sifting  method  is how  to
control  the  updating  interval T. If the sifting  method  updates  the core  problem C  rarely,  the

objective  value  x:.(zt)  of  the core  problem  becomes  far from the  lower bound  z..(tt)  obtained

by the  original  Lagrangian relaxation  problem.  On  the  other  hand, if the sifting  method

updates  the core  problem  C  frequently, it consumes  much  computation  time for updating  the
core  problem a  and  computing  the lower bound  z,.(u)  of  the  original  Lagrangian relaxation

problem. They  propesed the fbllowing sophistieated  rule  to eontrol  the  updating  interval T.

   They  first set  T  -  10 and  compute  the relative  gap A  =::  (z:.(u) -  zLR(u))/zuB  after  each

updating,  where  z..  is the best upper  bound obtained  by then. If A  is small,  they  inerease
the updating  interval T. On  the  other  hand, if A  is Iarge, they  decrease the updating

interval T. More  precisely, they set

T-

10T5T2T10A<  lo-6

lo-6 <  A  <  O.02

o.o2 <  A  <  e.2

A  >  O.2.

(4.2)

   Table 5 shows  lower
where  one  sifting  metho

other  sifting  method  is

bounds  and  computation  time in se ¢ onds  of  two  sifting methods,

d is implemented  on  the basic subgradient  method  (BSM) and  the

a  comPonent  of  CPLEX  9.1.3 implemented  on  the dual simplex
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method,  From  Table 5, we  ean  see  that these sifting  methods  reduce  much  computation

time  without  sacrificing  the solution  quality. Note  that, if the si-fting method  of CPLEX
9.1.3 generates a  feasible solution  u  of LPD,  it can  be used  to compute  a  lower bound  of  the

original  SCP. We  observed  that the }ower bounds  obtained  in this way  was  very  good  even

with  small  number  of  iterations, though  the  time  to compute  an  exact  optimum  is more

expensive  than  BSM.  

'

5. ProblemReduction

There are  many  procedures in the literature that  test feasibility

SCP  instance by removing  redundant  rows  and  columns  [7,21,
for problem reduction  are  described as  follows:

 and  reduce  the size  of  an

30,32,43]. Common  rules

Rule  1: If 11Vl =  O holds for at  least one  row  ic  ptf, the instance is infeasible.

Rule  2: If IAJIr =  1 holds for some  rows  i E M,  for every  such  row  i, set  xj  -  1 for

    the unique  column  j' c NL, and  remove  all rows  kE  Si and  the column  i
Rule  3: If there exists  a  pair of  rows  h,i E  M  such  that Nh  g IVh holds, remove  the

    row  z.

Rule  4: If t･here exists  a  column  o' c N  and  a  set  of  columns  Ar' g NX  {j} such  that

    Si { (UkGN, Sk) and  qb' -> £ kEN,  ck hold, set  xj  -  O and  remove  the  column  p'.

   These rules  can  be applied  repeatedly  until  infeasibility is proven or  no  rule  becomes

applicable.  If naively  implemented, the  time  complexity  of  Rules 1-4 are  O(m), O(q),
O(m2n) and  O(qn2"-i), respectively,  Since a  naive  implementation  of these rules  is quite
time  consuming,  they  have to be implemented  in a  carefu1  way,  or  substituted  by  other

simple  rules.  R)r example,  Rule 4 is often  replaced  with  the following rule  [7, 21, 30]:

Rule  4': If there exists  a

    &1 >1  and  cj >-

    column  J'･

column  j' E N  such  that (i) cj

ZiEs, MinkEN,  ck  hold, then  set>xj-ZtES, eOminleEN,

 ch  or  (ii)
 and  reinove  the

NII-Electionic  
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Table 5: Computat･ional results  of  the sifting  methods

InstanceRDws  Columns BSM CPLEX9.1.3
ZLRTime ZLPTime

4.1-4.10

5.1-5.10
6.1-6.5A.1-A.5

B.1-B.5C.1-C,5

D.I-D.5

E,1-E.5F.1-F.5G.1-G,5

H.1-H.5
RAIL507
RAIL516

RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200

 200
 200
 300

 300
 400

 400

 500
 50010001000

 5e7
 516

 5822536258642844872
1 081 841

1 092 610

  1000
  2000
  1000

  3000
  3000
  4000
  4000

  5000

  5000

 10,OOO

 10,OOO

 63.009

 47,311

 55,515

1]920,683

Jl968,672

508.99256.07139.07237.64

 69.30219.22

 58.68

 21.12

 8.61149.11

 45.17171.53181.67209,35684.79923.101051.481506.90

O.07O.04e.2oO.13O.14O.14O.15O.27O.43O.40O.561,56O.951.4537.1418.0238.7326.66509.10256.38139,22237.73

 69.38219.34

 58.84

 21.38

  8.92149.48

 45.67172.15182.00209.71688,40935.921054.051509.64

 O.05
 O.05
 o.e7
 O.11

 O.15
 O.22
 O.27

 O,61

 O.90

 O.80

 O.74
 1.94

 O.66

 1.63149.1682.73610.80241,86

The  conditions  (i) and  (ii) are  designed so  that  they  do not  rdmove  those columns  o' that

attain  the minimum  for at least one  row  (i,e., ]i, cj =  minkEN,  ck); the strict inequality in

(i) and  the  condition  IEIil >  1 in (ii) are  necessary  for this purpose. The  time  complexity  of

this rule  is O(q) if appropriately  implemented.

   These  rules  ame  usually  used  for preprocessing, but can  be  applied  at  each  iteration

of  heuristic algorithms or  each  node  of  branch-and-bound  algorithms  after  some  variables

are  fixed to zero  or  one.  However, since  we  need  much  computational  effort  to reflect  the

removal  of  rows  and  columns  on  the matrix  (aij), most  algorithms  use  a  part of  the problem
reduction  rules  only  for preprocessing.
   We  tested the problem  reduction  rules  for the benchmark  instances. Since we  observed

that Rule 3 is not  very  effective  and  more  time  consuming  than  other  rules,  we  replaced

Rule 3 with  the fo11owing rule:

  Rule  3': If there exists  a  pair of  rows  h, i E M  such  that  Aih =  IVI holds, remove  the

       row  i.

The  time complexity  of  this  rule  is O(rnn) if appropriately  implemented.

   We  also  adopt  Rule 4' instead of  Rule4because it is very  expehsive  to check  Rule4
t-hroughly, Since we  observed  through  preliminary  experiments  that  the  conditions  (i) and

(ii) in Rule 4' gave almost  the same  results,  we  apply  both ef  them  in Rule 4', We  apply

Rules 1, 2, 3' and  4' repeatedly  until  no  rule  is applicable  or  the infeasibility of  the instance
is detected. fable 6 reports  the size of reduced  instances, frequency of  each  rule  (i.e., how

many  times  each  rule  transforms  the  instance) and  computation  time  in seconds  of  the

prob!em  reduction  procedure,

   We  firs,t obseive  that only  Rule 4' works  effectively,  However, we  also  observe  that

Rule 4' works  less effectively  for classes  E  and  H,  and  has very  little effect for classes  F  and

RAIL. [Iihis is because eaeh  column  j' E AI eovers  relatively  many  rows  i E M  in classes  E,

F and  H  and,  all costs  are  distributed in a  narrow  range  in RAIL  instances.
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Table 6: Computational results  of  the problem  reduction  procedure

Instance Original size Reduced  size Flvequency
m

Time

RDws  Columns RowsColumnsR2  R3R4
4,1-4.10

5,1-5.10
6.1-6.5A.1-A.5

B.1-B.5C.1-C.5

D.1-D.5
E.1-E.5F,1-F.5G.1-G.5

H.1-H.5
RAIL507
RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200

 200
 200300300

 400
 400
 500
 5001000leoo

 507
 516
 5822536258642844872

1 081 841

1 092 610

  1000

  2000
  1000
  3000
  3000
  4000
  4000
  5000
  5000

 lo,eoo

 10,000

 63,O09

 47,311

 55,515
Tl920,683

17968,672

 177.7177.5200.0300,O3oo.e400.0400.0500.0500.01000.01000.0

  482
  445
  566
 2486
 2467
 4176
 4663

1 081 822

1,092 191

  191.2
  192.6

  244.8
  372.4
  552.4
  544,4
  838.8
 2467.2

 4782.8
 2175.8

 4930.0

 62,991

 47,266

 55,404
7J920.196

968,397

5.55.1o.oo.oo.oo.oo.oo.oo.oo.oo.o

 824

 6
 5331451

o.oo.oo.eo.oo.oo.oo.oo.oo.oo.oo.o

 517

 318254932

 805.01801.6

 755.22627.62447.63455.63161,22532,8

 217.27824.25070.0

   9
   17

  105
   12
  445
  404
  210

O.01O,OlO,02O.OlO.02O,04O.02O.02O.OlO.06O,05O.02O.OlO.02O.28O.33O.30O.25

   From  these results,  it is effective  to app]y  the problem  reduction  procedure with  Rules

1, 2, 3' and  4' since  its computation  time  is short.  However, taking  account  of  the trade-
off  between  implementation elfort  and  eMciency,  it is worthwhile  to apply  the  reduction

procedure  only  with  Rule 4' only  if an  SCP  instance has low density and  widely  distributed
costs.

   Another  type  of problem reduction  rules  are  derived from the reduced  cost  a･(u) of the

Lagrangian relaxation  problem, We  are  given asolution  di(u) =  (Ti(ll),...,Xn(u)) of  the

Lagrangian relaxation  problem  LR(u). If we  impose  an  additional  constraint  xj  =  1 for a
pa[t'ticular column  J' c  N  with  thj･ (zt) =  O, then  we  obtain  a  better lower bound  zLR(u)+ij･(u).

Similarly, if we  impose  an  additional constraint  xj =  O for a particular column  J' E N  with

thj(u) =  1 then  we  obtain  a  better lower bound  zm(u)  
-

 eq(u) (recall that tej(u) takes one

when  ij-(u) is negative).  Accordingly, we  can  describe the following problem  reduction  rules:

Rule  5: If tej･(u) =  O and  z,.(u)  +  aj･(tt) >  z..  hold, set  mj･ <-  O and  remove  the

    celumn  j' .

Rule 6: If thj･(zt) =  1 and  zLR(u)  -  lj-(u) >  zuB  hold, set xj  -  1, and  remove  all rows

    iE  Sb and  the column  i

These  techniques  have often  been used  in branch-and-bound algorithms  and  are  called  the

variable  fixing (or pegging test).

   Balas and  Carrera [3] proposed  an  improved variable  fixing technique. They  first define
a  new  Lagrangian relaxation  problem  by the  removal  of  the  covered  rowsic  Sj according

to fixing a  variable  xj  to one  for a  particular column  j' E  N.  This is done  by setting  ui  e  O
for alliE  Si on  the  original  Lagrangian relaxation  problem, Then,  they  recompute  the

reduced  costs  cny,-(u) for all columns  J' E  N  and  apply  Rule 5,

   We  note  that  these variable  fixing techniques for a  variable  xj  never  work  when  the gap
between the upper  bound  z.B  and  the lower bound  z..Cu)  is larger than  q･. We  also  note

that  it is often  comp]icated  or  quite time  consuming  to change  the  data structure  of  the
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Table 7: Computational  results  of  the  variable  fixing

Instance Original size Reduced size FlirequencyTime
RDws Colurnns RowsCelumns R5R6

4.1-4.10
5.1-5.10
6.1-6.5A.1-A.5

B.1-B,5
C.1-C.5

D.1-D.5

E.1-E.5F.1-F.5G,1-G.5

H.1-H.5
RAIL507

RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

200200200300300400400

 500
 50010001000

 507

 516
 5822536258642844872

1 081 841

1 092 610

  1000
  2000
  1000

  3000
  3000
  4000

  4000

  5000
  5000
 10,OOO
 10,OOO
 63,O09

 47,311

 55,515
7;920.683

17968,672

199.2198.1200.0300.0300.0400.0400.0500.0500.0looo.e1000.0

  507

  516
  582
 2536

 2586

 4284

 4872

 293.8
 381.9
 251,8
 606.0
 357.4
 772.0

 567.8

 573,2

 428.43186.82304.663,O0947,31155,515

1,081,841

 920,683

1,092,610

 968,672

 706.11617.7

 748.22394.02642.63228.03432.24426,84571.66813.27695.4

   o

   o
   o
   o

   o

   o
   o

O.1O.4o.oo.oo.oo.oo.oo,oo.oo.oo.ooooooooO.05O.09O.15O.23O.59O.481,164,098.973.199.446.063.706.33160.24117.89223.16160.17

SCP  instance when  some  reduction  rules  are  successfully  applied.  Beasley [10] repdrted  that

it is computationally  worthwhile  to refiect  the removall  of  rows  and  columns  on  the  matrix

(atD when  a significant  amount  of  reduction  have been achieved,  e,g., 10%  of vaJriables  are

fixed to zero  or  one.

   Table 7 shows  the size  of  reduced  instances, frequency of  each  rule  and  eomputatien

time  in seconds  ef  the basic subgradient  method  (BSM) including the  time  for cheeking

Rules 5 and  6, which  are  applied  at  every  iteration. From  Table  7, we  observe  that  Rule 5
fixes many  variables  with  little cemputat･ional  effort  fbr classes  4-6 and  A-H  while  fixing no

variable  for RAIL  instances, From  this, it is worth  applying  Rule 5 if an  SCP  instance has

widely  distributed eosts.  We  also  illustrate the number  of  fixed variables  at  every  iteration

in Figure 3. We  can  observe  that  BSM  with  Rules 5 and  6 fixes many  variables  with  a  small

number  of  iterations; the number  of  fixed variables  reaches  5000 very  quickly, and  becomes

mQre  than  7000 after  a  few hundred  iterations.

6. Heuri$ticAlgorithms

6.1. Constructionalgorithms

Several construction  algorithms  with  performance guarantee have been developed for SCP.
These  construction  algorithms  are  not  only  interesting in t･heoretical aspect  but contribute
to develop eMeient  heuristic algorithms  in practical applications.  In this section,  we  explain

five representative  construction  algorithms  and  compare  their experimental  performance.

   One of  the  most  representative  construction  algorithms  for SCP  is the  g7eedy algontthm,
which  iteratively selects  the most  cost  effective  column  )' E  N  until  a]1 rows  i E  M  are

covered,

Greedy  algorithm

Step 1: Set M' -e  and  mj  <--  0 fbr all a' E Ar.

Step  2: If M'  =  M  holds, go to Step 3. 0therwise, find a  column  j' c N  with  the
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               Iteration

Figure  3: Number  of  fixed variables  at  every  iteration on  instance H.1

       minimum  cost  effectiveness  g･/ISIi X M'1 among  those  with  xj  
--

 O, set  xj  e  1

       and  M'  -  M'  U  S)･, and  return  to Step 2.

   Step  3: Ifthere exists  a  redundant  column  p' E N  (i.e., xj  
=

 1 and  Zj,ENx{o} aij,mjt  
=

       1 for all i c M), set xj  <-  O and  return  to Step 3; otherwise  output  x  and  halt.

   In the above  algorithm,  redundant  columns  are  usually  removed  in the reverse  order  of

selecting  columns,  which  is called  the  reverse  detete step. The  greedy algorithm  is kllown to

be aJi  H},-approximation algorithm [25], where  H}, is called  the Harmonic  series  defined as

fo11ows
                                   11  1

                          
H;,-i+i+g+'''+E'

and  is roughly  estimated  by O(logn). Ho  [40] showed  that  al1 variants  of  the greedy  algo-

rithm  on  the cost  effectiveness  functions

     q  g  c,･ c,- c,- (g)i!2
C"

 ISi X M'  
'log2

 ISj X M'  
:iS,

 X M'1log2 l:lf N M'1' Sj X M'i ln Sli X M'1;ISi X M'I2'ISi X M'1
haMe the same  worst  case  behavior, Balas and  Ho  [4] and  VdSko and  Wilson [47] showed

experimental  performanee of  the  greedy algorithm  with  various  cost  effectiveness  functions.

   Although a  naive  implementation of  the greedy  algorithm  requires  O(Tnn) time, Caprara
et  al. [20] developed O(rn  +  q) time  implernentation  of  the  greedy algorithm by devising

an  efficient  procedure  to update  eost  effectiveness,  where  r  ==  EaEN xj･. Since the term  rn,

which  is the total time  for finding the most  cost  effective  column,  is typically much  larger

than  q for SCP  instances of  low density, they  also  developed an  eMcient  implementation to
reduce  the  practical comput･ation  time  of,this  pamt substantial}y  (though its worst  case  time

complexity  is the same).

   Another natural  algorithm  is obtained  by rouriding  an  optimal  solution  f  =  (Xi, ･ ･ ･ 
,
 nin)

of  the LP  relaxation  problem  into an  integer solution  m  =  (xi, , , . ,x.),  We  first define f ==

maxiEM  IVLI, which  is the frequency of  the mest  frequent eolumn.  The  rounding  algonthm

fbr SCP  gives an  integer solution  x  =  (xi, . . . , x.)  as  follows:

                            xj "n  (g :
-

[,i,k(g, (6 i)

2

NII-Electionic  
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The  so]ution  x  is feasible for the original  SCP  (i.e., Ej･,Na,,xj -> 1 for all i E M)  since

E,.NaijX, ) 1 for each  i E M  and  hence at least one  j' E Ni must  satisfy  x, )  1/11VL1 )  1/f.
The  rounding  algorithm  requires  O(n) time  in addition  to the computation  time  for solving
the LP  relaxation  problem, and  is known to be an  f-approximation algorithm [48], Note
that, since  we  have lAill =  2 for all rows  i c M  in the  vertex  eover  problem (VCP), any

f-approximation algorithm  for SCP  is a  2-approximation algorithm  for VCP.

   The  prMal-duat rrzethod  is one  of  the  most  representative  approaches  for designing  ap-

proximation  algorithms.  It is based on  the fo11owing characterization  of  optimal  solutions

(tn, a) to a  pair of  primal  and  dual LP  problems,  called  the  primal  and  dual cornplementa7y
slackness  conditions,  respectively:

where  (6.2) isalso w

xj >o

ai >o

ritten  as  tuti >

=>  2a,ja,=g
   iEM

=>  2  ai) xj -- i

   jEN

o #  aj (tt) =  o.

(p' E IV),

(i E M),

(6.2)

(6.3)

   Hochbaum  [41] proposed a  simple  primal-dual  algorithm.  It･ first finds an  optimal  solution

a  of the dual LP  relaxation  problem, and  set xj  e  1 for all j' E N  satisfying  :i,M aiju"i =:  (;j

and  xj･ e  O for the others.  
'Ib

 see  x  is feasible to the  original  SCP, observe  that, if there

exists  a  row  i' that satisfies  2iEn4 aijai  <  c7 for all 2' E IVL,, then we  can  increase ai, slightly

without  violating  the  dual feasibility, which  contradicts  with  the optimality  of  a. The
running  time  of  this algorithm  is O(n) in addition  to the  computation  time  for solving  the

LP  relaxation  problem.  Since the  solution  x  obtained  by this algorithm  satisfies  the primal
complementary  slackness  condition,  we  observe  that

2cjxj =

j'EN ,E,.(2

 a,jiEMa,) x, =

   / x

E  CIE aijxJj  tiz S \l,fai IN[Eai s f･ xLp･
iEMN)'EN  /  iEM

(6,4)

Hence, this algorithm  is an  f-approximation algorithm.

   A  typical primal-dual algorithm  starts  from a  pair of  primal infeasible solution  m  and

dual feasible solution  u.  It iteratively modifies  the  current  solution  (m,u) to improve primal
feasibility and  dual optimality  while  satisfying  the primal  complementary  slackness  condition

(6.2) until  a  primal  feasible solution  is obtained,  During  the  iterations, the  primal solution  x

is always  modified  integrally, so  that  eventually  we  obtain  an  integer solution,  We  deseribe
a  basic primal-dual algorithm  fbr SCP  by Bar-Yehuda  and  Even  [6].

Basicprimal-dualalgorithm

StepStep

Step

 1: Set xj  -O  for all j' E IV and  ui  +-  O

 2: If there exists  no  uncovered  row  i E

uncovered  row  i E  M  and  set

Then, set  xj  <--  1

Step 2,
 3: If there exists

otherwise  out･put

ui  <-  mln
    jENi

for a  column  j

for all i E  M,
M,  go to Step 3. 0therwise seleet  an

( Cj ' hclllltl,hf, ahjuh  1
E AJL satisfying  £ hcMahj･uh  =  qj and  return  to

 a  redundant  column  j' C
x  and  halt,

N,  set  xj  e  O and  return  to Step 3;
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   Note  that we  do'not need  to solve  LP  relaxation  problems though  the  algorithm  is

based on  the properties of  LP  relaxation.  The  basic primal-dual  algorithm  can  be easily

irnplemented with  O(q) time. Since the above  analysis  on  the performance  guarantee (6.4)
is also  applicable  te the  basic primal-dual algorithm  by replacing  a  with  the u  obtained  by

the algorithm, it 'is also  an  f-approximation algorithm.

   Agrawal et al. [1] developed an  improved  primal-dual algorit･hm for network  design prob-
lems, which  increases simultaneously  and  at  the  same  speed  al1 the dual variables  that can  be
increased without  violating  the  dual feasibility, They  also  showed  the primal-dual algorithms

with  such  uniform  increase rule  have better perforrpanee  guarantees  for several  network  de-
sign  problems than  the  basic primal-dual algorithms  [1,34]. Goemans  and  Williamson [35]
applied  this method  to SCP  and  showed  detailed analysis  of its performance guarantee,
   Let M'  be the set  of  covered  rows  i E 

'M
 and  A  be the  increase of  the  dual variables  ui

for uncovered  rows  i E  MX  Of' at  each  iteration. When  dual variables  ui  for all i E MX  rvI'
are  increased by  A, the redueed  eost  ij(u) for each  J' E  N  decreases ISIi XM'IA. Fhrom this,
A  at  eaeh  iteration is computed  by the  fo11owing formula:

                           Ae,,.Mi ,l" ¢ ,,,, EsllS("M) ,1 (6 s)

Primal-dual  algorithm  with  uniform  increase rule

StepStep

Step

 1: Set M'  e  en, xj  -O  for all j' EN  and  ui  -O  for all i E  M.

 2: If M'  =  M  holds, go to Step 3. 0therwise compute  A  by  (6.5) and  set

ui  +--  ui  +A  for al1 i E  MX  M'. Set xj  e  1 and  M'  -  M'  U  S)･ for all columns

j ( iV satisfying  £ iEM  aijui  =  cj, and  then  return  to Step 2.

 3: If there  exists  a  redundant  column  1' E Ai, set  mj  -  0 and  return  to St･ep 3;

othervLdse  output  T  and  halt.

   Since the  improved  primal-dual  algorithm  selects  columns  o' E Ai with  the  minimum  score

a,-(u)/[qX M'  at each  iteration, we  can  regard  the primal-dual  algorithm as  a  variant  of  the

greedy  algorithm.  Although the running  time of  a  naive  implementatio.n of  the primal-dual
algorithm is O(rnn), it can  be improved  in the  same  way  as  the  greedy  algorithm,

   There have  been a  few computational  studies  of construction  algorithms,  Grossman  and

Wool  [37] conducted  a  comparative  study  of  nine  construction  algorithms for unweighted

SCP  (i,e., all columns  have a  uniform  cost).  Gomes  et  al. [36] investigated empirical  perfor-
mance  of  seven  construction  algorithms for VCP  and  SCP.

   We  now  compare  five construction  algorithms: (i) the  greedy algorithm (denoted GR),

(ii) the basic primal-dual algorithm  (denoted BPD), (iii) the primal-dual algorithm  with

uniform  increase rule  (denoted PD-UI), (iv) the primal-dual  algorithm  using  a dual optimal
solution  a  of  the  LP  relaxation  problem (denoted PD-LP)  and  (v) the rounding  algorithm

(denoted RND).  We  note  that PD-LP  and  RND  use  primal  and  dual optimal  solutions  (tn, a)

of  the  LP  relaxation  problem  obtained  by CPLEX  9.1.3. We  a[Eso note  that GR,  BPD  and

PD-UI  remove  redundant  columns  by the  reverse  delete step  and  PD-LP  and  RND  remove

redundant  columns  in the ascending  order  of  values  of  the optimal  solution  X  of  the  LP

relaxation  problem. Tables 8 and  9 show  upper  bounds  and  computation  time  in seconds
respectively,  where  computation  time  of  PD-LP  and  RND  does not  include time  fbr solving

the LP  relaxation  problem.
   From  Tables 8 and  9, we  ean  observe  that BPD  is quite fast but much  worse  than  the

other  algorithms. This is because the dual feasible solution  u  obtained  by BPD  is mueh
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Table 8: Computational  results  of  the  construction  algorithms

InstanceRows  CelumnsGRBPD  PD-UI  PD-LP  RND
4.1-4.10
5.1-5,10
6.1-6.5A.1-A,5

B.1-B.5
C.1-C.5
D.1-D.5
E.1-E.5F.1-F.5G.1-G.5

H.1-H.5
RAIL507
RAIL516
enIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 2oe
 200
 200

 300
 300
 400
 400
 500

 50010001000

 507

 516
 5822536258642844872

1 081  841

1 092  610

  1000
  2000
  1000

  3000
  3000
  4000
  4000
  sooe
  5000

 10,OOO

 10,OOO

 63.009

 47.311

 55,51577920,683

11968,672

528,3270.4156,4253.2

 78.2234.8

 70.4

 31.0

 16.2178.8

 66.6

 210

 202

 247

 882115713581868

602.2292.5176.4302.8

 89.4278,4

 71.8
 38,4

 18.8212.0

 82.8

 355
 368
 4321412175520952853

534.0271.2155.0254.4

 82.2238.e69.6

 32.0

 17.2177,4

 66.8

 222

 230
 285

 987129014532015

521.0277.6161.2255.6

 85,O244.4

 71,4
 31.8

 17.0187.2

 69.0

 201

 185

 247

 750105711851685

518.6265.7156.6261.0

 84.6249.8

 72.8
 34.8

 17.4192.6

 73.0

 198

 185

 225

 748105711861685

worse  than that obtained  by solving  the LP  relaxation  problem  such  as  PD-LP  and  RND,
We  also  observe  that  GR  is most  effective  fbr its computational  effort  because PD-LP  and

RND  need  much  computational  efibrt  for so}ving  the LP  relaxation  problem,  On  the other

hand, PD-LP  and  RND  give better upper  bounds than those of  GR  for RAIL  instances,
This is because many  candidates  have the  same  eost  effectiveness  fbr RAIL  instances.

6.2. Lagrangian  heuristics

Solutions of  the Lagrangian relaxation  problem  can  be used  to construct  feasible solutions

to  the original  SCP, which  is ca[Lled  the Lag7ungian heuristics. The  Lagrangian  heuristics

starts  with  an  optimal  solution  of  the  Lagrangian relaxation  problem  te(u) and  tries to

convert  it into a feasible solution  x  to the original  SCP, where  the greedy algorithm  and

the primal-dual algorithm  are  often  used  for t･his purpose,
   Beas!ey [8] and  Haddadi  [38] proposed a Lagrangian heuristic algorithm, which  generates
a  feasible solution  for the original  SCP. at  every  iteration of  the  subgradient  method.  We
describe the basic procedure  to generate a  feasible solution  x  =  (xi, , , , , =.)  fbr the original
SCP  from an  optimal  solution  th(u) =  (Xi(u),...,X.(u)) of  the Lagrangian relaxation

problem.

BasicLagrangian  heuristic algorithm

StepStep

Step

 1: set xj  e  dio(u) fbr all j' C  N  and  M'  +n  U,EN, z,(u)[=i  Si'
 2: If M'  =  M  holds, go to Step 3, Otherwise, select  an  uncovered  row  i E
MXM',  set  xj  -  l and  M'  -  A･f'USS･ for the column  ]' E  IVI with  the minimum
cost  cj and  return  to Step 2.

 3: If there exists  a  redundant  column  j' E  N,  set xj -  O and  return  to Step 3;
otherwise  output  x  and  halt.

   A  number  of  computational  studies  have shown  that a}most  equivalent  near  optimal  La-

grangian  mult･iplier  vectors  can  produce  upper  bounds  ofsubstantially  different quality. It ･is

therefbre worthwhile  applying  the Lagrangian heuristics for several  near  optimal  Lagrangian
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Table 9: Computation time  in seconds  of  the construction  algorithms

InstanceRows  ColumnsGRBPD  PD-UI  PD-LPt  RNDt
4,1-4.10
5,1-5.10

6,1-6.5A.1-A.5

B.1-B.5
C.1-C.5
D.1-D.5
E.1-E.5

El-F.5G.1-G.5

H.1-H.5

RAIL507
RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 2oe

 200

 200

 300
 300

 4oe

 400

 500

 50010001000

 507
 516
 5822536258642844872

 1000

 2000

 leoo

 3000
 3000

 4000

 4000

 5000

 5000lo,eoo10.000

 '63.e0947.31155,515

1.081.841920.683

1,092,610

 968.672

<O.Ol<O.Ol<O.Ol<O.Ol

 O.Ol

 O.Ol<O.Ol

 O.Ol

 O.Ol<O.OlO.OlO.02O.02O.02O.92O.831.11O.83

<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol

 O.09

 O.08
 O.08

 O.09

<O,Ol<O,Ol<O.Ol<O.Ol<O,Ol<O.Ol<O,Ol<O,Ol

 O,Ol
 O,Ol
 O,Ol
 O.02
 O.02
 O.02

 O.88

 O.63

 1.00

 e.67

<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O,Ol･<O,Ol<O,Ol<O,Ol

 O.02
 O.02
 O,02

 O.36

 O.30

 O,38

 O.34

<O,Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol<O.Ol

 O.34

 O.27

 O.38

 O.30

tNote: The  computation  time  of  PD-LP  and  RND  does not  include the
time  for solving  the LP  re]axation  problem.

multiplier  vectors.  As  in the  case  of  the greedy algorithm,  the Lagrangian heuristics also  has

many  criteria  to select  the next  column;  e.g.,  the  reduced  cost  4･(u) is often  used  instead

of the original  cost  ej. This is based on  the observation  that the reduced  cost  E)(tt) gives
a  reliable  information on  the attractiveness  of  letting xj･ "-  1, because each  column  o' E N
with  x;  =  1 in an  optimal  solution  x'  of  the  original  SCP  tends  to have a  small  reduced

cost  gj(tt).

   Balas and  Carrera [3] proposed another  Lagrangian heuristic algorithm,  which  first trans-

fbrms the Lagrangian multiplier  vector  u  into a  dual feasible solution  of  the LP  relaxation

problem  and  then  applies  the  basic primal-dual  algorithm.

   Tables 10 and  11 show  upper  bounds  and  computation  time in seconds  of  fbur variants  of

Lagrangian heuristic algorithms:  (i) the greedy  algorithm  using  original  eost  qi (denoted LH-
OC), (ii) the  greedy algorithm  using  redueed  cost  E,･(u) (denoted LH-RC),  (iii) the  greedy
algorithm  using  cost  effectiveness  Q･11S)･ X M'  (denoted LH-CE)  Emd  (iv) the  basic primaJ-
dual algorithm  (denoted LH-PD),  where  each  Lagr.angian heuristic algorithm  is applied  at

every  iteration and  removes  redundant  columns  by  the reverse  delete step.  From  Tables 10

and  11, we  observe  that LH-RC,  LH-CE  and  LH-PD  are  more  promising  than  LH-OC  for
RAIL  instances, while  only  LH-CE  is more  promising than  LH-OC  for classes  4-6 and  A-

H, although  computing  the cost  effectiveness  is expensive.  We  note  that  these Lagrangian
heuristie algorithms  are  not  ne ¢ essarily  applied  at  every  iterat･ion in the  subgradient  method

sinee  it is quite time  consuming  for huge SCP  instances.

   We  also  note  that the Lagrangian heuristics is helpful to fix variables  xj- t･o zero  or

one  because it often  improves the  best upper  bound  zuB,  and  our  computational  results

show  that we  can  increase the number  of  fixed variables  by 9,5% on  the aMerage  using  the

Lagrangian heuristics,
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Table 10: Computational  results  of  the Lagrangian heuristic algorithms

InstanceRows  Columns  LH-OC  LH-RC  LH-CE  LH-PD
4.IA,10
5,1-5.10

6.1-6.5A.1-A,5

B.1-B,5C.1-C.5

D.1-D,5
E,1-E.5F.1-F.5G.1-G.5

H.1-H.5

RAIL507
RAIL516
RAIL582

RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200
 200
 200

 300
 300
 400

 400
 500

 5001000leoo

 507
 516
 5822536258642844872

 1000
 2000
 1000

 3000
 3000
 4000
 4000
 5000

 500010,OOO10,OOO63,O0947,31155,515

1,081,841

 920,683
1,092,610

 968,672

510.2257.3145.8243.2

 75.6227.6

 65,O

 29.4

 15.0174.8

 63.6
 198
 2e2

 236

 838111712431779

510.2257,6145.6243.0

 76.0227.665,2

 29.4

 15,O175.0

 63,8
 191
 194

 222

 768104711671672

510.2257,4145,O243.0

 75.6227.064.8

 29.0

 14.2173,862.6

 191
 193

 226

 791108012181719

510.5258.2148.0245.4

 77.0230.0

 66,4

 29,6

 15.0178,4

 64.8
 188
 197

 221

 766104111691673

6.3. The  stateofithe-art  heuristic algorithms

In this section,  we  review  the  most  effeetive  heuristic algorithms for SCP. Many  of  them  are

based on  the Lagrangian relaxation,  Since a  better Lagrangian multiplier  vector  u  does not
necessarily  derive a  better upper  bound  g(T),  many  heuristic algorithms  explore  both good
Lagrangian multiplier  vectors  u  and  feasible solutions  m  of  t･he original  SCP  simultaneously.

   Ceria et al, [24] proposed a  Lagrangian heuristic algorithm  based on  the primal-dual
subgradient  method  as  deseribed in Seetion 3, To  deal with  huge  SCP  instances, their
algorithm  first defines a  good  core  problem  C  c  N  based on  a  neam  optimal  Lagrangian

multiplier  vector  tt obtained  by the  primal-dual subgradient  method.  Differently from the

sifting  method  in Section 4, their algorithm  determines the  core  problem  C  in a  carefu1

way  and  never  changes  it afterwards.  Their Lagrangian heuristic aJgorithm  applies  the

primal-dual subgradient  method,  fixes a  variable  xj  to one  which  is selected  by its reduced

cost  aj(u) and  primal  Lagrangian multiplier,  and  applies  a  greedy algorithm  for remaining
columns  to generate  a  feasible solution  x  of  the original  SCP. This procedure  is repeated

with  different parameters  for the variable  selection  and  the greedy algorithm.

   Caprara  et  al. [201 proposed a  three phase heuristic algorithm.  The  first one  is called  the

subgradient  phase  shown  in Seetion 3. The  second  one  is called  the heuristic phase, which

generates a  sequenee  of  near  optimal  Lagrangian multiplier  vectors  u  and  applies  a greedy
algorithm using  reduced  costs  4(u). The  third one  is called  the column  fixing phase, which
fixes the  first k columns  selected  by the  greedy algorithm  in order  to reduce  the size  of  rows

and  columns  to be explored  by the  three phase  heuristic algorithm.  The above  three phases
are  repeated  until t･he incumbent  solution  x  cannot  be improved  further. The  three phase
heuristic algorithm  works  on  a  core  problem  C  c  Ar defined by a  smal1  subset  of  columns,

which  is periodically redefined  as  described in Section 4.

   Wedelin [49] proposed another  type  of  Lagrangian heuristies for a  special  type  of  O-1
integer programming  problem,  which  is a  generalization of  the set covering  and  partitioning

problems. Difrerently from the subgradient  method,  he used  the  coord･inate  aseent  method  (or
nonltnear  Gauss-Seidel methodi  [13] to solve  the Lagrangian dual problem,  which  iteratively
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Table 11: Computation  time  of  the Lagrangian heuristic a[Lgorithms

InstanceRows  Columns  LH-OC  LH-RC  LH-CE  LH-PD
4.1-4.10
5.1-5.10

6,1-6.5A,1-A.5

B.1-B.5
C.1-C,5
D.1-D.5
E,1-E,5F,1-F.5G.1-G.5

H.1-H.5
RAIL5e7

RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 200
 200
 200

 300
 300
 400
 400
 500
 50010001000

 507

 516
 5822536258642844872

1 e81 841

l.e92  610

  1000
  2000
  1000

  3000
  3000
  4000
  4000
  5000

  5000

 lo,oeo

 10,OOO

 63,O09

 47,311

 55,515

11920,683

,1968,672

 O.05
 O.09
 O.18
 O.31
 O.69
 O.56
 1.27
 4.78
 9.33

 3.64
 10.03

 8.09

 4.91
 8,81212,81165,34269.98229.42

 O.05
 O.09
 O.18
 O.30
 O.68
 e.53
 1,27
 4.38
 9.49
 3.44
 10.26

 7.00

 4.69
 7.73225.25144.19292.02233.86

 O,13
 O.32
 O.48

 1,25
 1.92
 2.34
 3.54
 9.6513.6216.3326.4867.9153.4259.335689.814889.3e9796.348656.24

 O.06
 O.10
 O.19
 O.33
 O.69
 O.58
 1.46
 5.67
 13.37

 3.87
 12.92

 11.11

 7.24
 11,61430.67296.48535.92336.61

maximizes  the objective  value  z..(u)  with  respect  to a number  of  fixed directions called  the

coordinate  vectors,  More  precisely, his algorithm  modifies  only  one  Lagrangian multiplier

ui at each  iteration. Let  q,(u) and  aj,(u) be the  first and  second  smallest  reduced  costs

6j(u) among  all j' E NI. The  new  multiplier  ui  is computed  by ui  -  ui  +(a,･,(u) +  eq,(u))!2,
which  mal(es  exactly  one  column  p' E AJle to have negative  reduced  cost,  It iterative]y applies

the  above  operation  to obtain  sufficiently  good  lower and  upper  bounds. Since it is often
the case  that  more  than  one  variables  harve the smallest  reduced  cost,  he also  developed an

improved  algorithm that distorts the  reduced  costs  to eliminate  ties. Byun  [19] reported

computational  results  of  the coordinate  ascent  method  for the set partitioning problem.

   Another approach  to obtain  good  upper  bounds  is metaheuristics,  which  combines  basic

heuristie algorithms  sueh  as  greedy and  loeal search  algorithms  with  sophisticated  strategies.

Those  metaheuristic  algorithms  for SCP  inc]ude probabilistic greedy  [28], simulated  anneal-

ing [18,44], genetic algorithm  [2,11] and  so  on.  In recent  years, metaheuristic  algorithms

incorporated with  mathematical  programming  techniques  have been proposed  [22, 50],

   Yagiura et  al. [50] proposed  a  local search  algorithm  with  a  large neighborhood  called

the  3-flip neighborhood.  As  the size  6f 3-flip neighborhood  is O(n3), the neighborhood

search  becomes  expensive  if implemented  naively.  To  overcome  this, they  proposed an

eficient  implementation that redu ¢ es the  number  of  candidates  in the  neighborhood  without

sacrificing  the solution  quality. They  also  incorporated a  strategic  os ¢ illation mechanism,

to guide the search  between feasible and  infeasible regions  alternately.  In addition,  in order

to handle huge instances, they  introduce a  heuristic variable  fixing technique  based on  the

Lagrangian relaxation.

   Caserta [22] proposed a  tabu  search  algorithm  with  a  strategic  oscillation  mechanism.

The  algorithm  ean  be regarded  as  a  variant  of  primal-dual  heuristics. It is based  on  a

procedure  that  can  construct  a  dual feasible solution  u  of  the LP  relaxation  problem  from
any  feasible solution  x  of  the  original  SCP, The  algorithm alternately applies  the tabu

search  algorithm and  the 6ubgradient  method  to explore  better lower and  upper  bounds

respectively.
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Table 12: Computational results  of  the state-ofthe-amt  heuristicalgorithms

InstanceRDws  Columns2LpCNS  CF[I] YKICACPLEX
E.1-E.5F.1-F.5G.1-G.5

H.1-H.5
RAIL507
RAIL516
RAIL582
RAIL2536
RAIL2586
RAIL4284
RAIL4872

 500
 50010001000

 507
 516
 5822536258642844872

1 081 841

1

  5000
  5000
 10,OOO

 10,OOO
 63,O09
 47,311

 55,515

71920,683

,092,610968,672

 21.38
 8.92149.48

 45.67172.15182.002e9.71688.40935.921054.051509,64
167.460,4

 174
 182
 211
 692
 95110701534

28.4

 14,O166.459.6

 175
 182
 211
 691
 94810651534

 28.4
 14.0166.4

 59.6
 174
 182
 211
 691
 94510641528

17418221169194810631532

28.6
 14.2168.661.8

 175*182t211*689

 97910891570

   Table 12 shows  upper  bounds  of  the  state-ofthe-art  heuristic algorithms for SCP: (i) the

Lagrangian relaxation  based heurjstic algorithrn  by Ceria et  al. [24] (denoted CNS), (ii) the

Lagrangian rela,cation  based heuristic algorithm  by Caprara et al. [20] (dented CF[E]), (iii)
the  3-fiip neighborheod  local search  by Yagiura et al. [50] (denoted by  YKI)  and  (iv) the

tabu search  with  a  primal-dual  heuristic algorithm  by Caserta [221 (denoted CA). We  note

that al1 of  these results  are  taken  from the literature and  these algorithms  have been run

on  different computers.  Time  limits (or computation  time) and  eomputers  used  for these
algorithms are  given as  fo11ows.

CNS:  1000 seconds  for al1 instances in classes  G  and  H  and  RAIL507 and  582, and                                                                 '

    le,OOO seeonds  fbr RAIL2586  and  4872 on  an  IBM  RS/6000  375 (32MB memory).
    3000 seconds  for RAIL516 on  a  PC486/66  (16MB memory).  10,OOO seconds  fbr

    RAIL2536  and  4284 on  an  HP735 (125MHz, 256MB  memory).

CFT:  5eOO seconds  fbr'all instances in classes  E-H  on  a  DEC  station  5000/240. 3000

    seconds  for RAIL507-582 on  a  PC486/33  (4MB merpory).  10,OOO seconds  for

    RAIL2536-4872  on  an  HP735  (125MHz, 256MB  memory).

YKI:  180  seconds  for all instances in classes  E-H,  600 seconds  for RAIL507  and  516,

    30 seconds  for RAIL582,  and  18,OOO seconds  for RAIL2536-4872  on  a  Sun  Ultra 2

    Model  2300 with  two Ultra SPARC  II processors (300MHz, IGB  memory).  We
    notethat  we  show  the  best results  of  ten  runs  fbr each  instance in Table 12.

CA:  139 seconds  for RAIL507, 217 seconds  for RAIL516,  131 seconds  for RAIL582,

    338 seconds  for RAIL2536, 399 seconds  fbr RAIL2586, 1022  seconds  for RAIL4284
    and  1166 seconds  fbr RAIL4872 on  a  Linux workstation  with  Intel Pentium 4

    (1.IGHz, 256MB  memory),

Comparisons,of the performance  of different computers  are  found in Dongarra  [26] and

SPEC  (Standard Performance Evaluation Corporation) [53], In addition,  we  also  show

upPer  bounds obtained  by a  general purpose  MIP  (mixed integer programming)  solver

called  CPLEX  9,1,3 [511, where  we  set  the  time  limit for each  run  to be 180 seconds  fbr all
instances in classes  E-H,  600 seconds  for RAIL507-582  and  18,OOO seconds  for RAIL2536-
4872, respectively.  Optimal values  are  mamked  with  asterisks.

   From  Table 12, we  observe  that  CPLEX  obtained  optimal  solutions  for RAIL516,  582

and  2536  with  4.38, 63.70 and  9630.66 seconds,  respectively.  However, the state-ofthe-art

heuristic algorithms  achieve  comparable  upper  bounds  for classes  E-H  and  RAIL507-582,
and  better upper  bounds  for RAIL2586-4872.
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7. Conclusion

In this paper, we  reviewed  a  number  of  heuristic algorithms to obtain  good  lower and  upper

bounds  for SCP,  including the  ,linear programming,  the  subgradient  method,  construction

algorithms,  metaheuristics  and  their combinations,  In particular, we  focus oll contributions
of  mathematical  programming  techniques, which  provide good  lower bounds  and  can  also

help to obtain  good upper  bounds  when  incerporated with  heuristic algorithms  such  as

greedy methods,  local search  and  metaheuristic  algorithms.

   We  expect  that  the  hybridization of  metaheuristics  and  mathematical  programming  ap-

proaches will  be helpful to handle large-scale instances of  other  combinatorial  optimization

problems  such  as  the  O-1 integer programming  problem.

   The  survey  in this paper is by no  means  comprehensive,  but we  hope  this article gives
useful  information for people  who  are  interested in devising eMcient  algorithms  for this basic

problem, which  is of  practical as  well  as t･heoretical importance, We  refer  the  interested
reader  te introductions to the  set  covering  and  related  problems  by Balas and  Padberg  [5],
Ceria et al. [23], Hochbaum  [42] and  Caprama et al. [21].
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