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Abstract  The set covering problem (SCP) is one of representative combinatorial optimization problems,
which has many practical applications. The continuous development of mathematical programming has
derived a number of impressive heuristic algorithms as well as exact branch-and-bound algorithms, which
can solve huge SCP instances of bus, railway and airline crew scheduling problems. We survey heuristic
algorithms for SCP focusing mainly on contributions of mathematical programming techniques to heuristics,
and illustrate their performance through experimental analysis.
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1. Introduction

The set covering problem (SCP) is one of representative combinatorial optimization prob-
lems, which has many practical applications, e.g., bus, railway and airline crew scheduling,
vehicle routing, facility location, political districting [5, 23, 32]. More recent applications of
SCP are found in probe selection in hybridization experiments in DNA sequencing [16] and
feature selection and pattern construction in logical analysis of data [17].

SCP is formally defined as follows. We are given a ground set of m elements i € M =
{1,...,m}, a collection of n subsets S; C M and costs ¢; for j € N = {1,...,n}, where we
assume ¢; > 0 and |S;| > 1 without loss of generality. We say that X C N is a cover of
M if UjE x S5 = M holds, and X is a prime cover of M if X is a cover of M without any
redundant subset. The goal of SCP is to find a minimum cost cover X of M. SCP can be
formulated as a 0-1 integer programming (IP) problem as follows:

(SCP) minimize z(x)= z Cix;

jEN
subject to Zaijxj >1 (ie M) (1.1)
jEN
z; € {0,1} (€ N),
where a;; = 1if ¢ € S; and a;; = 0 otherwise; i.e., a column a; = (a1, ..., am;)T of matrix

(a;j) represents the corresponding subset S; by S; = {i € M | a;; = 1}. It is understood
that decision variable z; = 1 if a subset S; is selected in the cover X and z; = 0 otherwise.
For notational convenience, for each i € M, let N; = {j € N | a;; = 1} be the set of subsets
that contain element . Since a column j € N and a row ¢ € M correspond to a subset S
and an element ¢ respectively, we say that a column j covers a row ¢ if a;; = 1 holds.

SCP is known to be NP-hard in the strong sense [31], and there is no polynomial time
approximation scheme (PTAS) unless P = NP. Furthermore, a number of lower bounds on
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approximation ratio for SCP have been shown. Feige [27] proved that, for any € > 0, it is
impossible to achieve a polynomial time (1 — €) In n approximation algorithm unless NP has
nOloglogn)_time deterministic algorithms, and Trevisan [46] showed that the problem is hard
to approximate within a factor In d—O(Inln d) unless P = NP, where d = max;ex |S;|. How-
ever, theoretical results do not necessarily reflect the experimental performance in practice;
e.g., we can improve the performance of algorithms for the real-world instances by utiliz-
ing their structural property. The continuous development of mathematical programming
has much improved the performance of exact branch-and-bound algorithms [3,4,7,12, 30]
accompanying with advances in computational machinery. Recent exact branch-and-bound
algorithms enable us to solve large SCP instances with up to 400 rows and 4000 columns
exactly [3].

Heuristic algorithms have also been studied extensively [2,8, 11,18, 28], and several effi-
cient metaheuristic algorithms have been developed to solve huge SCP instances with up to
5000 rows and 1,000,000 columns within about 1% of the optimum in a reasonable comput-
ing time [20, 22,24, 50]. Most of these impressive results were achieved by hybridizing meta-
heuristics and mathematical programming approaches. For example, Beasley [8] presented
a number of greedy algorithms based on a Lagrangian relaxation (called the Lagrangian
heuristics), and Caprara et al. [20] introduced variable fixing and pricing techniques into a
Lagrangian heuristics.

In this paper, we present a review of heuristic algorithms and related mathematical pro-
gramming techniques for SCP. We mainly focus on contributions of mathematical program-
ming to heuristic algorithms for SCP, and illustrate their performance through experimental
evaluation for several classes of benchmark instances.

We tested these algorithms on an IBM-compatible personal computer (Intel Xeon 2.8GHz,
2GB memory), and used two well-known sets of benchmark instances. The first set of bench-
mark instances is Beasley’s OR Library [9], which contains 11 classes of SCP instances,
namely 4-6 and A-H. Each of classes 4 and 5 has 10 instances, and each of classes 6 and
A-H has 5 instances. In this paper, we denote instances in class 4 as 4.1, 4.2, ..., 4.10,
and other instances in classes 5, 6 and A—H similarly. Another set of benchmark instances
is called RAIL arising from a crew pairing problem in an Italian railway company [20, 24],
which contains seven instances, namely three small size instances with up to 600 rows and
60,000 columns (RAIL507, 516 and 582), two medium size instances with up to 2600 rows
and 1,100,000 columns (RAIL2536 and 2586), and two large size instances with up to 4900
rows and 1,100,000 columns (RAIL4284 and 4872). The data of these instances are given

in Table 1, where density is defined by >, 5, > ey aij/mn.

This paper is organized as follows. In Section 2, we review representative relaxation tech-
niques for SCP called the linear programming (LP) relaxation, the Lagrangian relaxation
and the surrogate relaxation. In Section 3, we explain a well-known approach called the
subgradient method, which computes good lower bounds of SCP instances within a short
computing time. We also illustrate several techniques for improving the performance of the
subgradient method. In Section 4, we explain a pricing method called the sifting method
to solve huge relaxation problems of SCP. In Section 5, we illustrate problem reduction
rules that test feasibility and reduce the size of SCP instances. In Section 6, we review
heuristic algorithms for SCP including construction algorithms, Lagrangian heuristics and
the state-of-the-art algorithms based on hybridization of metaheuristics and mathematical
programming approaches.
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Table 1: The size, density and cost range of benchmark instances for SCP

Instance Rows Columns Density(%) Cost range

41-4.10 200 1000 2 [T,100]
5.1-5.10 200 2000 2 [1,100]
6.1-6.5 200 1000 5 [1,100]
A1-AS5 300 3000 2 [1,100]
B.1-B.5 300 3000 5 [1,100]
C.1-C.5 400 4000 2 [1,100]
D.1-D5 400 4000 5 [1,100]
E.1-E5 500 5000 10 [1,100]
F.1-F5 500 5000 20 [1,100]
G.1-G.5 1000 10,000 2 [1,100]
H.1-H5 1000 10,000 5 [1,100]
RAIL507 507 63,009 13 [1,2]
RAIL516 516 47,311 1.3 [1,2]
RAIL582 582 55,515 1.2 [1,2]
RAIL2536 2536 1,081,841 0.4 [1,2]
RAIL2586 2586 920,683 0.3 1,2]
RAIL4284 4284 1,092,610 0.2 [1,2]
RAIL4872 4872 968,672 0.2 1,2]

2. Relaxation Problems

The relaxation problems give us useful information to solve SCP. We can directly obtain
good lower bounds from their solutions, and also good upper bounds by modifying them. In
this section, we review three well-known relaxation problems for SCP called the linear pro-
gramming (LP) relaxation problem, the Lagrangian relaxation problem, and the surrogate
relaxation problem.

2.1. Linear programming relaxation

The most general technique is the linear programming (LP) relaxation, which is defined by
replacing the binary constraints z; € {0,1} with 0 < z; < 1 for all 7 € N. Since the upper
bound on z; is known to be redundant, we can obtain the following LP relaxation problem:

(LP) minimize zp(x) = cha:j

jEN
subject to Zaijxj >1 (i e M) (2.1)
JEN
z; >0 (j € N).

Although general-purpose LP solvers give an exact solution of the LP relaxation problem,
it has been pointed out in the literature that their computation would be quite expensive
because these solvers often suffer various problems caused by the degeneracy of the LP
relaxation of SCP instances. However, in recent years, the development of mathematical
programming softwares, accompanied with advances in computing machinery, enables us
to solve huge LP instances [14]. We accordingly report a computational comparison of the
simplex and barrier (or interior-point) methods with two state-of-the-art general purpose
LP solvers called GLPK 4.8 (GNU Linear Programming Kit) [52] and CPLEX 9.1.3 [51] on
the benchmark instances.

Table 2 illustrates the optimal value z.p of the LP relaxation problem and computation
time in seconds spent by GLPK and CPLEX with the modes of the primal and dual simplex
methods and the barrier method, where we set the time limit to be 3600 seconds for each
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Table 2: Comparison of the simplex and barrier methods

Instance  Rows Columns ZLP GLPK 4.8 CPLEX 9.1.3

Primal Dual Barrier Primal Dual Barrier
4.1-4.10 200 1000 509.10 0.20 0.01 0.15 0.02 0.01 0.02
5.1-5.10 200 2000 256.38 0.40 0.01 0.25 0.02 0.01 0.02
6.1-6.5 200 1000 139.22 0.35 0.02 0.37 0.07 0.01 0.04
A.1-A.5 300 3000 237.73 1.50 0.04 1.08 0.13 0.03 0.08
B.1-B.5 300 3000 69.38 2.62 0.06 2.70 0.36 0.05 0.13
C.1-C.5 400 4000 219.34 3.81 0.08 3.00 0.44 0.05 0.18
D.1-D.5 © 400 4000 58.84 8.06 0.11 6.78 1.11 0.06 0.26
E.1-E.5 500 5000 21.38 28.92 0.24 28.71 9.10 0.19 0.99
F.1-F.5 500 5000 8.92 47.12 0.31 57.60 23.74 0.40 5.41
G.1-G.5 1000 10,000 149.48 276.54 1.20 79.89 27.95 0.47 3.16
H.1-H.5 1000 10,000 45.67 653.31 1.38 14547 90.65 0.81 4.80
RAIL507 507 63,009 172.15 53.00 14.19 15.31 6.78 10.48 1.99
RAIL516 516 47,311 182.00 19.09 2.81 13.75 2.55 4.02 1.44
RAIL582 582 55,515 209.71 59.09 6.23 25.83 7.61 8.31 2.16

RAIL2536 2536 1,081,841 688.40 >3600 >3600 >3600 2393.34 1673.13 146.06
RAIL2586 2586 920,683  935.92 >3600 >3600 >3600 1450.06 1734.22  105.98
RAIL4284 4284 1,092,610 1054.05 >3600 >3600 >3600 >3600 3517.55 298.70
RAIL4872 4872 968,672 1509.64 >3600 >3600 >3600 >3600 3546.61 155.44
Note: each result of classes 4-6 and A-H reports the average for all instances in the class.

run. In Table 2, computation time does not include the time for reading instance data, and
each result of classes 4-6 and A-H reports the average computation time for all instances
in the class, while the results for individual instances are reported for class RAIL. This is
the same for all computational results in this paper.

We observe that the dual simplex method is faster than the primal simplex method
and the barrier method for classes 46 and A-H. On the other hand, the barrier method
of CPLEX is faster than the primal and dual simplex methods for RAIL instances. These
general purpose LP solvers still require very large computation time and memory space to
solve the LP relaxation of huge SCP instances such as RAIL2536-4872.

2.2. Lagrangian relaxation

Another well-known technique is the Lagrangian relazation, which is defined by relaxing
some constraints while introducing penalty functions. A typical Lagrangian relaxation prob-
lem for SCP is defined as follows:

(LR(w)) minimize zz(u) = Z ¢z + Z u; (1 - Z aijxj)

JEN ieM JEN
= S G+ Y u (22)
JEN ieM

subject to z; € {0,1} (j € N),

where w = (uq, ..., u,) € R7 is a vector called the Lagrangian multiplier vector (R, is the
set of non-negative real numbers), and ¢;(u) = ¢; — Y, ai;u; is called the reduced cost
(or relative cost) associated with a column j € N. For any u € R, zx(u) gives a lower
bound on the optimal value of SCP z(x*). The problem to find a Lagrangian multiplier
vector u € R7 that maximizes z.r(u) is called the Lagrangian dual problem:

(LRD):  max {zs(u) |u e R}}. (2.3)
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For any u € R, we can easily obtain an optimal solution to LR(u), denoted by x(u) =
(Z1(w),...,Z,(u)), by setting Z;(u) « 1 if é;(u) < 0 holds and Z;(u) «— 0 if ¢j(u) > 0
holds, and choosing the value of Z;(u) from either zero or one if ¢;(u) = 0 holds. It is
known that any optimal solution to LR(w) is also optimal for its LP relaxation problem
(i.e., replacing the binary constraint z; € {0,1} with the linear relaxation 0 < z; < 1),
which is called the integrality property. Hence, the optimal value of the Lagrangian dual
problem is equal to that of the LP relaxation problem of SCP [33]. In other words, any
optimal solution @ to the dual of the LP relaxation:

(LPD) maximize Zuz-

ieM

subject to Zaijui <¢; (j€N) (2.4)
i€M _
TLi'zf 0 (i € ]hf),

is also optimal to the Lagrangian dual problem LRD.

Note that, even if an optimal solution &(u) of the Lagrangian relaxation problem LR (u)
is feasible for the original SCP, it is not necessarily optimal for the original SCP. If all
constraints are satisfied with equality (i.e., > ..y ai;Z;(w) = 1 for all ¢ € M), then x(u) is
optimal for the original SCP.

We can define another Lagrangian relaxation problem by changing the set of relaxed
constraints. For example, Balas and Carrera [3] defined the following Lagrangian relaxation
problem: :

JEN

(LR'(w)) minimize Z cj — Z QUi | T+ Z U

jeN i€ M\M iEeM\M (2.5)
subject to Z ai;jz; > 1 (i€ M) .
jEN

:CjE{O,l} (jGN),

where M is a maximal subset of M satisfying Ny,NN; = 0 for all h,i € M,h # i, and u is a
vector indexed by M\ M. They have compared both Lagrangian relaxations experimentally,
and found that their Lagrangian relaxation was more robust across different instance classes
and converged faster when applying the subgradient optimization, though the difference were
not drastic.

2.3. Surrogate relaxation

The surrogate relazation problem is defined by replacing some constraints into a surrogate
constraint. The standard surrogate relaxation of SCP is defined as follows:

(S(w)) minimize zs('w)=ch:cj

jeN
. (2.6)
subject to Z w; Z ai;T; | = Z w;
ieM jEN ieM

xje{oal} (jEN),

where w = (wy,...,w,) € RT is a given vector called the surrogate multiplier vector.
Compared to Lagrangian relaxation problem, there have been less attempts using the sur-
rogate relaxation problem for integer programming (IP) problems including SCP. Lorena
and Lopes [45] proposed a heuristic algorithm for SCP based on a continuous surrogate
relaxation.
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3. Subgradient Optimization

As discussed in Section 2.2, any optimal solution w to the dual of the LP relaxation
problem is also an optimal solution to the Lagrangian dual problem; however, comput-
ing such @ by general purpose LP solvers is rather expensive, especially for huge SCP
instances as confirmed in Table 2. A common approach to compute a near optimal La-
grangian multiplier vector w is the subgradient method [29,39]. It uses the subgradient

vector s(u) = (s1(u),. .., sm(u)) € R, associated with a given wu, defined by
siw) =1-Y ayi;(w) (i€ M), (3.1)
JEN

This method generates a sequence of nonnegative Lagrangian multiplier vectors «(®, w® .. |
where u(? is a given initial vector and u(*Y is updated from u® by the following formula:

_ O]
u§l+1) - max{uz(-l) n )\zuﬂs(ZI{;gﬁg )Si(u(l)),o} (ie M), (3.2)

where zyg is an upper bound on z(x), and A > 0 is a parameter called the step size.
Various implementations of the subgradient method are possible; we therefore start
with the following implementation described in Beasley’s tutorial [10], and describe several
variants afterwards. Let w = (us,. .., Uy,) and 273* be the incumbent Lagrangian multiplier
vector and lower bound, respectively. The basic subgradient method is described as follows:

Basic subgradient method (BSM)

Step 1: Set zys «— z(x) for a feasible solution x of the original SCP, which is obtained
by a greedy algorithm (see Section 6.1). Set uz(o) — min{c;/|S;| | 7 € N;} and
u; — w” for all i € M and 2™ — 2. (u(®). Set A« 2 and [« 0.

Step 2: Compute the current solution Z(u®) and the lower bound zx(u®). If
zin(u®) > 2™ holds, set 2™ «— z(u®) and u; — u for all i € M. If
zus <[220 holds, output v and z{%™ and halt (in this case, zyg is optimal for
the original SCP). .

Step 3: Compute the subgradient vector s(u®) for the current solution &(u®). If

A s;(u®) = 0 holds for all i € M, output w and 2™> and halt (in this case,
Z(uW) is an optimal solution for the original SCP); otherwise compute a new
Lagrangian multiplier vector u{*% by (3.2). :

Step 4: If 22® has not improved in the last 30 iterations with the current value of
A, then set A «— 0.5A. If A < 0.005 holds, output » and 2%** and halt; otherwise
let [ « [+ 1 and return to Step 2.

The basic subgradient method requires O(g) time for each iteration, where ¢ = >
> jeN Gij-

Beasley [10] reported a number of detailed observations. For example, the convergence
of the subgradient method is relatively insensitive to the initial Lagrangian multiplier vec-
tor u®. Another observation is that it is helpful to set s;(u®) « 0 when ugl) = 0 and
s;(u®) < 0 hold, because s;(u)? factor reduces the change of ul’ (h # 7).

The subgradient method converges very slowly when the current Lagrangian multiplier
vector u¥) approaches almost optimal (i.e., the gap zus — 2z (u®) gets close to zero). To
overcome this, Beasley proposed to replace zyg in (3.2) with 1.052y5. Caprara et al. [20]

ieM
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proposed an adaptive control of the step size A. Their algorithm starts with A « 0.1. For
every 20 iterations, it computes the best and worst lower bounds in the last 20 iterations. If
the gap is more than 1%, it decreases the step size by setting A « 0.5A. On the other hand,
if the gap is less than 0.1%, it increases the step size by setting A < 1.5\. Their algorithm
halts when the improvement of the best lower bound 273 in the last 300 iterations is less
than 0.1% and 1.0 in value. We call this rule to update A adaptively rule ASSC (abbreviation
for adaptive step size control), and use it in our computational experiments later.

Caprara et al. [20] also dealt with slow convergence due to the degeneracy of the La-
grangian relaxation problem, which often appears for huge SCP instances with relatively
uniform costs. In such a situation, after a few subgradient iterations, a large number of
columns j € N happens to have reduced costs ¢;(uY) to be very close to zero, and con-
sequently the subgradient vector s(u®) highly oscillates in the subsequent iterations. To
overcome this, they proposed a heuristic rule to define a vector s(u®) as follows:

- Heuristic computation of the subgradient vector (HCSV)

Step 1: Set N — {j € N | &(u) <0.001} and M «— ;.5 S;-

Step 2: Let R < {j € N | Uemjy Sc = M}, which is the set of redundant
(EOlllI(Ill)l;S. Sort all columns j € R in the descending order of their reduced cost
¢i(uM).

Step ?3( For all j € R, according to the above order, set N «— N\ {5} if Ukern gy Sk =
M holds. ) )

Step 4: Set 2; «+ 1 for all j € N and set 2; « 0 for all j & N. Set s;(u®) =
1-— Z]EN a;;Z; for all i € M.

This procedure requires O(nlogn) time for sorting the redundant columns, plus O(gq) time
for the remaining computation. Note that the vector s(u) obtained by the above heuristic
rule is no longer guaranteed to be a subgradient vector.

Balas and Carrera [3] proposed a simple procedure that transforms the Lagrangian mul-
tiplier vector w into a dual feasible solution of the LP relaxation problem without decreasing
(and possibly increasing) the associated lower bound z.z(u). The procedure is shown as
follows.

Transformation of the Lagrangian multiplier vector (TLMV)

Step 1: If there exists a column j € N with é;(u) < 0, select a row ¢ € S; with
u; > 0. Otherwise go to Step 3.

Step 2: If u; < |¢;(u)| holds, set u; < 0; otherwise set u; « u; + ¢;(u). Return to
Step 1.

Step 3: Set Z;j(u) < 1 if ¢j(u) = 0 holds and Z;(u) < 0 if é;(u) > 0 holds for
all j € N. If there exists no uncovered row ¢ € M by the current solution
Z(u), output w and halt. Otherwise select an uncovered row i € M and set
u; < u; + minjep, ¢;(u), and then return to Step 3.

This procedure requires O(g) time. It is not hard to observe that z.z(u) never decreases
whenever u is updated. The multiplier vector w is feasible to LPD when the algorithm
proceeds from Step 1 to Step 3, and remains feasible during the execution of Step 3. This
method can be viewed as a hybrid approach of multiplier adjustment (Steps 1 and 2) and
dual ascent (Step 3) methods, whose general ideas are summarized in [10].
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Table 3: Lower bounds obtained by the subgradient methods BSM, MSM1 and MSM2

Instance  Rows Columns ZLp Lower bounds

BSM MSM1 MSM2
4.1-4.10 200 1000  509.10 509.03 508.79 509.06
5.1-5.10 200 2000  256.38 256.32 256.03 256.34
6.1-6.5 . 200 1000  139.22 139.02 137.00 139.04
Al1-A5 300 3000 237.73 237.55  236.65 237.58
B.1-B.5 300 3000 69.38 69.26 65.92 69.25
C.1-C.5 400 4000 219.34  219.15 217.86 219.20
D.1-D.5 400 4000 58.84 58.72 53.76 58.72
E.1-E.5 500 5000 21.38 21.26 17.51 21.27
F.1-F.5 500 5000 8.92 8.79 7.03 8.78

G.1-G.5 1000 10,000 | 149.48 149.13 139.45  149.17
H.1-H.5 1000 10,000 45.67 45.41 38.01 45.44
RAIL507 507 63,009 172.15 171.41 170.77  171.68
RAIL516 516 47,311 182.00 181.53 180.58 181.63
RAIL582 582 55,615  209.71 209.40  208.48  209.49
RAIL2536 2536 1,081,841 688.40 685.79 68230 686.65
RAIL2586 2586 920,683 93592  933.19 928.32  934.05
RAIL4284 4284 1,092,610 1054.05 1051.70 1043.04 1052.57
RAIL4872 4872 968,672 1509.64 1505.86 1493.83 1507.71

Ceria et al. [24] proposed a primal-dual subgradient method, which generates a pair of
Lagrangian multiplier vectors (x, u), and approaches the optimal value of the LP relaxation
problem from both lower and upper sides. To this end, they first defined a Lagrangian relax-
ation problem to the LP dual problem (2.4) by introducing a Lagrangian multiplier vector
x = (z1,...,%,). We can define a Lagrangian dual problem optimizing the Lagrangian
multiplier vector &, which is equivalent to the LP relaxation problem for SCP. Accordingly,
they proposed a subgradient method, which updates both Lagrangian multiplier vectors x
and u simultaneously.

We tested the basic subgradient method (BSM) and two modified subgradient methods.
The first modified subgradient method (denoted MSM1) uses the rule ASSC to control the
step size A and the heuristic algorithm HCSV to compute the subgradient vector s(w). To
be more precise, rules of BSM are modified as follows: (i) The rule to initialize A in Step 1,
the rule to update A and the stopping criterion in Step 4 are replaced with rule ASSC; (ii)
the vector obtained by algorithm HCSV is used instead of the subgradient vector s(u®)
in Step 3. The second modified version (MSM2) uses the algorithm TLMV to improve the
lower bound at every iteration. More precisely, rules of BSM are modified as follows: Let u’
be the vector obtained by applying algorithm TLMV to the current multiplier vector u®,
and then use v/ instead of u® in Step 2. The other parts of algorithm MSM1 and MSM2
are exactly the same as BSM. It might seem more natural to use this modified multiplier
vector w4’ also in Step 3 to compute the next multiplier vector w{*+1); however, we observed
through preliminary experiments that the lower bounds obtained with this option is worse
than those of BSM. ' .

Tables 3 and 4 show the lower bounds, the number of iterations (column “iter.”) and
the computation time in seconds of BSM, MSM1 and MSM2. From Tables 3 and 4, we can
observe that these subgradient methods obtain near optimal lower bounds quickly in spite
of their simplicity. We can also observe that the lower bounds of MSM1 are worse than BSM
for all instances, and those of MSM2 are slightly better than BSM, though MSM2 consumes
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Table 4: Number of iterations and computation time in seconds of the subgradient methods
BSM, MSM1 and MSM2 '

Instance  Rows Columns BSM MSM1 MSM2

' Tter. Time Tter. Time Tter. Time
4.1-4.10 200 1000 536.3 0.03 2231.8 0.18 557.3 0.07
5.1-5.10 200 2000 610.1 0.06 1963.2 0.26 596.1 0.11
6.1-6.5 200 1000 831.2 0.09 3382.8 0.49 767.6 0.15
A1-A5 300 3000 751.8 0.15 2740.8 0.69 762.4 0.28
B.1-B.5 300 3000 1022.8 0.47 3104.4 1.72 992.4 0.70
C.1-C5 400 4000 918.6 0.32 3440.0 1.47 939.2 0.54
D.1-D.5 400 4000 1048.4 0.80 2519.2 2.41 1023.8 1.23
E.1-E.5 500 5000 1399.8 3.31 2144.8 6.57 1297.2 5.27
F.1-F.5 500 5000 1430.2 7.13 1714.6 10.74 1371.0 11.88

G.1-G.5 1000 10,000 1236.6 2.38 4041.8 10.26 1188.2 3.83
H.1-H.5 1000 10,000 1478.2 7.02 2404.2 15.43 1548.0 13.08

RAIL507 507 63,009 698 3.06 969 5.28 867 8.64
RAIL516 516 47,311 780 2.58 798 3.23 848 7.20
RAIL582 582 55,515 1009 4.34 927 4.95 802 9.27
RAIL2536 2536 1,081,841 1034 111.44 2184 374.17 972 410.72
RAIL2586 2586 920,683 892  73.17 1306 152.95 845 238.36
RAIL4284 4284 1,092,610 1239 135.52 1807 314.24 1190 485.38
RAIL4872 4872 968,672 964  89.20 1351 182.86 1145 351.91

more computation time than BSM. To see their convergence properties, we illustrate their
behavior in Figures 1 and 2, where we imposed no limit on the number of their iterations.
From Figures 1 and 2, we can observe that MSM1 and MSM2 obtain comparable lower
bounds with smaller numbers of iterations than BSM.

4. Sifting Method

In order to solve huge LP relaxation problem, Bixby et al. [15] developed a variant of the
column generation method called the sifting method (or pricing method), which generates
successive solutions of small subproblems by taking a small subset of columns C' C N.

The sifting method is based on the observation that only a small number of columns
Jj € N with negative reduced costs ¢;(u) < 0 are necessary to compute the current objective
value z.p at every iteration of the simplex method. It will therefore be advantageous to
solve a number of subproblems called the core problem consisting of a small subset C of
columns j with small reduced costs é;(u) and update the current core problem at moderate
intervals.

Caprara et al. [20] developed a sifting procedure on the subgradient method for SCP.
The initial core problem C is defined by taking the columns j € N; with the five smallest
values of reduced costs ¢;(u) for each row i € M, and the current core problem C is updated
every T subgradient iterations. The next core problem C'is mainly composed of columns
J € N with smallest reduced costs ¢;(u) for the current Lagrangian multiplier vector w.
The rule to update the core problem C' is formally described as follows.

Updating core problem

Step 1: Compute the reduced cost ¢;(u) for all j € N.

Step 2: Set C; «— {j € N | é(u) < 0.1}. For each i € M, let Cy(i) be the
columns with the five smallest values of ¢;(u) among those in N;. Then set

C2 = Uien C2(9)-
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Figure 1: Comparison of the subgradient methods BSM, MSM1 and MSM2 on instance
RAIL516

Step 3: If |Cy| > 5m holds, let Cy be the set of columns j € C; having the 5m
smallest values of ¢;(u). Set C «+ C; U Ch.

We note that the optimal value for the core problem 2fp (u) = o G (w)Z;(w)+D e pr Us
does not necessarily give a lower bound for the original SCP and we need to compute the
lower bound z z(u) by the following formula:

zir(u) = 25, (uw) + Z éi(u)z;(u Z u; + ZIIHII{C](’U, (4.1)

JEN\C iEM JEN

One of the most important decisions in implementing the sifting method is how to
control the updating interval T'. If the sifting method updates the core problem C rarely, the
objective value z&, (u) of the core problem becomes far from the lower bound 2z (u) obtained
by the original Lagrangian relaxation problem. On the other hand, if the sifting method
updates the core problem C frequently, it consumes much computation time for updating the
core problem C and computing the lower bound 2z (w) of the original Lagrangian relaxation
problem. They proposed the following sophisticated rule to control the updating interval T'.

They first set T« 10 and compute the relative gap A = (z{z (u) — zLr(u))/zus after each
updating, where zyp is the best upper bound obtained by then. If A is small, they increase
the updating interval T. On the other hand, if A is large, they decrease the updating
interval T'. More prec1sely, they set

10T A <106
T 1078 < A < 0.02
7% 07 <A=00 (4.2)
oT 0.02<A<0.2
10 A>0.2.

Table 5 shows lower bounds and computation time in seconds of two sifting methods,
where one sifting method is implemented on the basic subgradient method (BSM) and the
other sifting method is a component of CPLEX 9.1.3 implemented on the dual simplex
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Figure 2: Comparison of the subgradient methods BSM, MSM1 and MSM2 on instance H.1

method. From Table 5, we can see that these sifting methods reduce much computation
time without sacrificing the solution quality. Note that, if the sifting method of CPLEX
9.1.3 generates a feasible solution u of LPD, it can be used to compute a lower bound of the
original SCP. We observed that the lower bounds obtained in this way was very good even
with small number of iterations, though the time to compute an exact optimum is more

expensive than BSM.

5. Problem Reduction

There are many procedures in the literature that test feasibility and reduce the size of an
SCP instance by removing redundant rows and columns [7,21,30,32,43]. Common rules
for problem reduction are described as follows:

Rule 1: If | N;| = 0 holds for at least one row i € M, the instance is infeasible.

Rule 2: If |[N;| = 1 holds for some rows ¢ € M, for every such row 4, set z; « 1 for
the unique column j € N;, and remove all rows k € S; and the column j.

Rule 3: If there exists a pair of rows h,7 € M such that N, C N; holds, remove the

TOW 1.

Rule 4: If there exists a column j € N and a set of columns N’ C N\ {j} such that
S; € (Uken Sk) and ¢; > >, v ¢k hold, set z; + 0 and remove the column j.

These rules can be applied repeatedly until infeasibility is proven or no rule becomes
applicable. If naively implemented, the time complexity of Rules 1-4 are O(m), O(g),
O(m?n) and O(gn2"~1), respectively. Since a naive implementation of these rules is quite
time consuming, they have to be implemented in a careful way, or substituted by other
simple rules. For example, Rule 4 is often replaced with the following rule (7,21, 30]:

Rule 4’: If there exists a column j € N such that (i) ¢; > Zz’eSj mingen, Cx O (ii)
|S;] > 1 and ¢; > Ziesj mingen, ¢, hold, then set z; «— 0 and remove the

column j.
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Table 5: Computational results of the sifting methods

Instance  Rows Columns BSM CPLEX9.1.3
ZLR Time 2Lp Time
4.1-4.10 200 1000 508.99 0.07 509.10 0.05
5.1-5.10 200 2000 256.07 0.04 256.38 0.05
6.1-6.5 200 1000 139.07  0.20 139.22 0.07
Al1-A5 300 3000 237.64 0.13 237.73 0.11
B.1-B.5 300 3000 69.30 0.14 69.38 0.15
C.1-C5 400 4000 219.22 0.14 219.34 0.22
D.1-D.5 400 4000 58.68 0.15 58.84 0.27
E.1-E.5 500 5000 21.12 0.27 21.38 0.61
F.1-F.5 500 5000 8.61 0.43 8.92 0.90
G.1-G.5 1000 10,000 149.11 0.40 149.48 0.80
H.1-H.5 1000 10,000 45.17  0.56 45.67 0.74
RAIL507 507 63,009 171.53 1.56 172.15 1.94
RAIL516 516 47,311 181.67 0.95 182.00 0.66
RAIL582 582 55,515 209.35 1.45 209.71 1.63
RAIL2536 2536 1,081,841 684.79 37.14 688.40 149.16
RAIL2586 2586 920,683 923.10 18.02 935.92 82.73

RAIL4284 4284 1,092,610 1051.48 38.73 1054.05 610.80
RAIL4872 4872 968,672 1506.90 26.66 1509.64 241.86

The conditions (i) and (ii) are designed so that they do not remove those columns j that
attain the minimum for at least one row (i.e., 34, ¢; = mingey, cx); the strict inequality in
(i) and the condition |S;| > 1 in (ii) are necessary for this purpose. The time complexity of
this rule is O(q) if appropriately implemented.

These rules are usually used for preprocessing, but can be applied at each iteration
of heuristic algorithms or each node of branch-and-bound algorithms after some variables
are fixed to zero or one. However, since we need much computational effort to reflect the
removal of rows and columns on the matrix (a;;), most algorithms use a part of the problem
reduction rules only for preprocessing.

We tested the problem reduction rules for the benchmark instances. Since we observed
that Rule 3 is not very effective and more time consuming than other rules, we replaced

Rule 3 with the following rule:

Rule 3': If there exists a pair of rows A,7 € M such that N, = N; holds, remove the
oW ¢.

The time complexity of this rule is O(mn) if appropriately implemented.

We also adopt Rule 4’ instead of Rule 4 because it is very expensive to check Rule 4
throughly. Since we observed through preliminary experiments that the conditions (i) and
(i) in Rule 4’ gave almost the same results, we apply both of them in Rule 4. We apply
Rules 1, 2, 3’ and 4’ repeatedly until no rule is applicable or the infeasibility of the instance
is detected. Table 6 reports the size of reduced instances, frequency of each rule (i.e., how
many times each rule transforms the instance) and computation time in seconds of the
problem reduction procedure.

We first observe that only Rule 4’ works effectively. However, we also observe that
Rule 4’ works less effectively for classes E and H, and has very little effect for classes F and
RAIL. This is because each column j € N covers relatively many rows ¢ € M in classes E,
F and H and all costs are distributed in a narrow range in RAIL instances.
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Table 6: Computational results of the problem reduction procedure

Instance Original size Reduced size Frequency Time
Rows Columns Rows  Columns R2 R3 R4’

4.1-4.10 200 1000 177.7 191.2 5.5 0.0 805.0 0.01
5.1-5.10 200 2000 177.5 192.6 51 00 18016 0.01
6.1-6.5 200 1000 200.0 244.8 0.0 0.0 755.2 0.02
Al1-A5 300 3000 300.0 372.4 0.0 0.0 26276 0.01
B.1-B.5 300 3000 300.0 552.4 0.0 0.0 24476 0.02
C.1-C5 400 4000 400.0 544.4 0.0 0.0 3455.6 0.04
D.1-D.5 400 4000 400.0 838.8 0.0 0.0 3161.2 0.02
E.1-E.5 500 5000 500.0 2467.2 0.0 0.0 25328 0.02
F.1-F.5 500 5000 500.0 4782.8 00 0.0 2172 0.01

G.1-G.5 1000 10,000 1000.0 2175.8 0.0 0.0 78242 0.06
H.1-H.5 1000 10,000 1000.0 4930.0 0.0 0.0 50700 0.05

RAIL507 507 63,009 482 62,991 8 ) 9 0.02
RAIL516 516 47,311 445 47,266 24 17 17 0.01
RAIL582 582 55,515 566 55,404 6 3 105  0.02
RAIL2536 2536 1,081,841 2486 1,081,822 5 18 12 0.28
RAIL2586 2586 920,683 2467 920,196 33 25 445  0.33
RAIL4284 4284 1,092,610 4176 1,092,191 14 49 404  0.30
RAIL4872 4872 968,672 4663 968,397 51 32 210 0.25

From these results, it is effective to apply the problem reduction procedure with Rules
1, 2, 3’ and 4’ since its computation time is short. However, taking account of the trade-
off between implementation effort and efficiency, it is worthwhile to apply the reduction
procedure only with Rule 4’ only if an SCP instance has low density and widely distributed

costs.
Another type of problem reduction rules are derived from the reduced cost ¢;(u) of the
Lagrangian relaxation problem. We are given a solution &(u) = (Z1(u),...,Zn(u)) of the

Lagrangian relaxation problem LR(w). If we impose an additional constraint z; = 1 for a
particular column j € N with Z;(u) = 0, then we obtain a better lower bound 2, (w)+¢;(u).
Similarly, if we impose an additional constraint z; = 0 for a particular column j € N with
Zj(u) = 1 then we obtain a better lower bound z z(u) — é;(u) (recall that Z;(u) takes one
when ¢;(u) is negative). Accordingly, we can describe the following problem reduction rules:

Rule 5: If z;(u) = 0 and zix(u) + é;(u) > zys hold, set z; < 0 and remove the
column j. .

Rule 6: If Z,;(u) = 1 and 2z (uw) — &;(uw) > zyp hold, set z; < 1, and remove all rows
¢ € S; and the column j.

These techniques have often been used in branch-and-bound algorithms and are called the
variable fixing (or pegging test).

Balas and Carrera [3] proposed an improved variable fixing technique. They first define
a new Lagrangian relaxation problem by the removal of the covered rows i € S; according
to fixing a variable z; to one for a particular column j € N. This is done by setting u; < 0
for all 7+ € S; on the original Lagrangian relaxation problem. Then, they recompute the
reduced costs ¢;(u) for all columns j € N; and apply Rule 5.

We note that these variable fixing techniques for a variable z; never work when the gap
between the upper bound zys and the lower bound zx(u) is larger than ¢;. We also note
that it is often complicated or quite time consuming to change the data structure of the
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Table 7: Computational results of the variable fixing

Instance Original size Reduced size Frequency Time
Rows Columns Rows  Columns R5 R6

4.1-4.10 200 1000 199.2 293.8 706.1 0.1 0.05
5.1-5.10 200 2000 198.1 381.9 1617.7 0.4 0.09
6.1-6.5 200 1000 200.0 251.8 748.2 0.0 0.15
Al1-A5 300 3000 300.0 606.0 © 23940 0.0 0.23
B.1-B.5 300 3000 300.0 357.4 26426 0.0 0.59
C.1-C.5 400 4000 400.0 772.0 3228.0 0.0 0.48
D.1-D.5 400 4000 400.0 567.8 3432.2 0.0 1.16
E.1-E.5 500 5000 500.0 573.2 4426.8 0.0 4.09
F.1-F.5 500 5000 500.0 428.4 4571.6 0.0 8.97

G.1-G.5 1000 10,000 1000.0 3186.8 6813.2 0.0 3.19
H.1-H.5 1000 10,000 1000.0 2304.6 76954 0.0 9.44

RAILS507 507 63,009 507 63,009 0 0 6.06
RAIL516 516 47,311 516 47,311 0 0 3.70
RAIL582 582 55,515 582 55,515 0 0 6.33
RAIL2536 2536 1,081,841 2536 1,081,841 0 0 160.24
RAIL2586 2586 920,683 2586 920,683 0 0 117.89
RAIL4284 4284 1,092,610 4284 1,092,610 0 0 22316
RAIL4872 4872 968,672 4872 968,672 0 0 160.17

SCP instance when some reduction rules are successfully applied. Beasley [10] reported that
it is computationally worthwhile to reflect the removal of rows and columns on the matrix
(a;;) when a significant amount of reduction have been achieved, e.g., 10% of variables are
fixed to zero or one.

Table 7 shows the size of reduced instances, frequency of each rule and computation
time in seconds of the basic subgradient method (BSM) including the time for checking
Rules 5 and 6, which are applied at every iteration. From Table 7, we observe that Rule 5
fixes many variables with little computational effort for classes 4-6 and A-H while fixing no
variable for RAIL instances. From this, it is worth applying Rule 5 if an SCP instance has
widely distributed costs. We also illustrate the number of fixed variables at every iteration
in Figure 3. We can observe that BSM with Rules 5 and 6 fixes many variables with a small
number of iterations; the number of fixed variables reaches 5000 very quickly, and becomes
more than 7000 after a few hundred iterations.

6. Heuristic Algorithms
6.1. Construction algorithms

Several construction algorithms with performance guarantee have been developed for SCP.
These construction algorithms are not only interesting in theoretical aspect but contribute
to develop efficient heuristic algorithms in practical applications. In this section, we explain
five representative construction algorithms and compare their experimental performance.

One of the most representative construction algorithms for SCP is the greedy algorithm,
which iteratively selects the most cost effective column j € N until all rows i € M are
covered.

Greedy algorithm
Step 1: Set M’ — 0 and z; «— 0 for all j € N.
Step 2: If M’ = M holds, go to Step 3. Otherwise, find a column j € N with the
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Figure 3: Number of fixed variables at every iteration on instance H.1

minimum cost effectiveness ¢;/|S; \ M’| among those with z; = 0, set z; « 1
and M’ «— M'U S}, and return to Step 2.

Step 3: If there exists a redundant column j € N (i.e., z; = 1 and Zj,eN\{j} Qij1 Ty =
1 for all i € M), set z; «+ 0 and return to Step 3; otherwise output « and halt.

In the above algorithm, redundant columns are usually removed in the reverse order of
selecting columns, which is called the reverse delete step. The greedy algorithm is known to
be an H,-approximation algorithm [25], where H,, is called the Harmonic series defined as
follows v

11 1
H =1+-4+-4+...40 =
n=l4gtoto

and is roughly estimated by O(logn). Ho [40] showed that all variants of the greedy algo-
rithm on the cost effectiveness functions

¢ ¢ ¢ ¢ ¢ (c)'?
|55\ M| "log, |55\ M'|"[S; \ M'|log, |S; \ M'|"[S; \ M'|In | S5 \ M/|"[S; \ M'|?"|S; \ M'[?
have the same worst case behavior. Balas and Ho [4] and Vasko and Wilson [47] showed
experimental performance of the greedy algorithm with various cost effectiveness functions.

Although a naive implementation of the greedy algorithm requires O(mn) time, Caprara
et al. [20] developed O(rn + ¢) time implementation of the greedy algorithm by devising
an efficient procedure to update cost effectiveness, where r = jen Tj- Since the term rn,
which is the total time for finding the most cost effective column, is typically much larger
than ¢ for SCP instances of low density, they also developed an efficient implementation to
reduce the practical computation time of this part substantially (though its worst case time
complexity is the same).

Cj,

Another natural algorithm is obtained by rounding an optimal solution & = (Z1,...,Z,)
of the LP relaxation problem into an integer solution « = (z1,...,%,). We first define f =
max;eps | V|, which is the frequency of the most frequent column. The rounding algorithm
for SCP gives an integer solution & = (z1,...,z,) as follows:

mﬁ{l 72 1/ (6.)
0 otherwise.
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The solution @ is feasible for the original SCP (i.e., > ;. yaijz; > 1 for all i € M) since
> jen @i5Z; > 1for each i € M and hence at least one j € N; must satisfy z; > 1/|N;| > 1/f.
The rounding algorithm requires O(n) time in addition to the computation time for solving
the LP relaxation problem, and is known to be an f-approximation algorithm [48]. Note
that, since we have |N;| = 2 for all rows ¢ € M in the vertex cover problem (VCP), any
f-approximation algorithm for SCP is a 2-approximation algorithm for VCP.

The primal-dual method is one of the most representative approaches for designing ap-
proximation algorithms. It is based on the following characterization of optimal solutions
(Z,u) to a pair of primal and dual LP problems, called the primal and dual complementary
slackness conditions, respectively:

z; > 0 = Zaijﬂi =Cj (] € N), (62)
ieM

u >0 = Zaijszl (ZEM), (63)
JEN

where (6.2) is also written as z; > 0 = ¢;(u) = 0.

Hochbaum [41] proposed a simple primal-dual algorithm. It first finds an optimal solution
@ of the dual LP relaxation problem, and set z; «— 1 for all j € N satisfying ) ;. ,, a:;U; = ¢;
and x; < 0 for the others. To see x is feasible to the original SCP, observe that, if there
exists a row ¢’ that satisfies D ,_,, a;;; < ¢; for all j € N/, then we can increase @ slightly
without violating the dual feasibility, which contradicts with the optimality of @. The
running time of this algorithm is O(n) in addition to the computation time for solving the
LP relaxation problem. Since the solution  obtained by this algorithm satisfies the primal
complementary slackness condition, we observe that

ZCJ'.T,J' = Z <Z aijm) Iy = Z Zaijxj) 1_1,2' S 1;%%;(|Nzl Z’(—Li S f *ZLp- (64)

JEN JEN \ieM €M jEN €M

Hence, this algorithm is an f-approximation algorithm.

A typical primal-dual algorithm starts from a pair of primal infeasible solution x and
dual feasible solution w. It iteratively modifies the current solution (&, u) to improve primal
feasibility and dual optimality while satisfying the primal complementary slackness condition
(6.2) until a primal feasible solution is obtained. During the iterations, the primal solution x
is always modified integrally, so that eventually we obtain an integer solution. We describe
a basic primal-dual algorithm for SCP by Bar-Yehuda and Even [6].

Basic primal-dual algorithm

Step 1: Set z; < 0 for all j € N and u; « 0 for all 1 € M.

Step 2: If there exists no uncovered row ¢ € M, go to Step 3. Otherwise select an
uncovered row ¢ € M and set

U; <— min < ¢; — apiUp ¢ -
i jeNi{ J E , J

he M, hti

Then, set ; < 1 for a column j € N; satisfying >, ,, anjur = ¢; and return to
Step 2.

Step 3: If there exists a redundant column j € N, set z; «+— 0 and return to Step 3;
otherwise output @ and halt.
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Note that we do not need to solve LP relaxation problems though the algorithm is
based on the properties of LP relaxation. The basic primal-dual algorithm can be easily
implemented with O(q) time. Since the above analysis on the performance guarantee (6.4)
is also applicable to the basic primal-dual algorithm by replacing @ with the u obtained by
the algorithm, it is also an f-approximation algorithm.

Agrawal et al. [1] developed an improved primal-dual algorithm for network design prob-
lems, which increases simultaneously and at the same speed all the dual variables that can be
increased without violating the dual feasibility. They also showed the primal-dual algorithms
with such uniform increase rule have better performance guarantees for several network de-
sign problems than the basic primal-dual algorithms [1,34]. Goemans and Williamson [35]
applied this method to SCP and showed detailed analysis of its performance guarantee.

Let M’ be the set of covered rows ¢ € M and A be the increase of the dual variables u;
for uncovered rows ¢ € M \ M’ at each iteration. When dual variables u; for all ¢ € M \ M’
are increased by A, the reduced cost ¢;(u) for each j € N decreases |\S; \ M'|A. From this,
A at each iteration is computed by the following formula:

_Gu) (6.5)

A +— min
JEN AgM' IS] \ M|

Primal-dual algorithm with uniform increase rule

Step 1: Set M’ «— 0, z; — O for all j € N and u; < 0 for all i € M.

Step 2: If M’ = M holds, go to Step 3. Otherwise compute A by (6.5) and set
u —u;+Aforallie M\ M. Set z; — 1 and M’ < M'U S; for all columns
J € N satisfying > ., a;;u; = c;, and then return to Step 2.

Step 3: If there exists a redundant column j € N, set z; « 0 and return to Step 3;
otherwise output @ and halt.

Since the improved primal-dual algorithm selects columns j € N with the minimum score
¢;(uw)/|S;\ M'| at each iteration, we can regard the primal-dual algorithm as a variant of the
greedy algorithm. Although the running time of a naive implementation of the primal-dual
algorithm is O(mn), it can be improved in the same way as the greedy algorithm.

There have been a few computational studies of construction algorithms. Grossman and
Wool [37] conducted a comparative study of nine construction algorithms for unweighted
SCP (i.e., all columns have a uniform cost). Gomes et al. [36] investigated empirical perfor-
mance of seven construction algorithms for VCP and SCP.

We now compare five construction algorithms: (i) the greedy algorithm (denoted GR),
(ii) the basic primal-dual algorithm (denoted BPD), (iii) the primal-dual algorithm with
uniform increase rule (denoted PD-UI), (iv) the primal-dual algorithm using a dual optimal
solution @ of the LP relaxation problem (denoted PD-LP) and (v) the rounding algorithm
(denoted RND). We note that PD-LP and RND use primal and dual optimal solutions (Z, @)
of the LP relaxation problem obtained by CPLEX 9.1.3. We also note that GR, BPD and
PD-UI remove redundant columns by the reverse delete step and PD-LP and RND remove
redundant columns in the ascending order of values of the optimal solution & of the LP
relaxation problem. Tables 8 and 9 show upper bounds and computation time in seconds
respectively, where computation time of PD-LP and RND does not include time for solving
the LP relaxation problem.

From Tables 8 and 9, we can observe that BPD is quite fast but much worse than the
other algorithms. This is because the dual feasible solution w obtained by BPD is much
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Table 8: Computational results of the construction algorithms
Instance Rows Columns GR  BPD PD-UI PD-LP RND

4.1-4.10 200 1000 528.3 602.2 534.0 521.0 518.6
5.1-5.10 200 2000 270.4 292.5 271.2 2776 265.7
6.1-6.5 200 1000 156.4 176.4 155.0 161.2 156.6
A1-A5 300 3000 253.2 302.8 254.4 255.6 261.0
B.1-B.5 300 3000 782 894 82.2 850 84.6
C.1-C5 400 4000 2348 278.4 238.0 244.4 2498
D.1-D.5 400 4000 704 71.8 69.6 714 728
E.1-E.5 500 5000 31.0 384 32.0 31.8 348
F.1-F.5 500 5000 16.2 188 17.2 17.0 17.4

G.1-G.5 1000 10,000 17v8.8 212.0 177.4 187.2 192.6
H.1-H.5 1000 10,000 66.6  82.8 66.8 - 69.0 73.0

RAIL507 507 63,009 210 355 222 201 198
RAIL516 516 47,311 202 368 230 185 185
RAIL582 582 55,515 247 432 285 247 225
RAIL2536 2536 1,081,841 882 1412 987 750 748

RAIL2586 2586 920,683 1157 1755 1290 1057 1057
RAIL4284 4284 1,092,610 1358 2095 1453 1185 1186
RAIL4872 4872 968,672 1868 2853 2015 1685 1685

worse than that obtained by solving the LP relaxation problem such as PD-LP and RND.
We also observe that GR is most effective for its computational effort because PD-LP and
RND need much computational effort for solving the LP relaxation problem. On the other
hand, PD-LP and RND give better upper bounds than those of GR for RAIL instances.
This is because many candidates have the same cost effectiveness for RAIL instances.
6.2. Lagrangian heuristics
Solutions of the Lagrangian relaxation problem can be used to construct feasible solutions
to the original SCP, which is called the Lagrangian heuristics. The Lagrangian heuristics
starts with an optimal solution of the Lagrangian relaxation problem &(w) and tries to
convert it into a feasible solution @ to the original SCP, where the greedy algorithm and
the primal-dual algorithm are often used for this purpose.

Beasley [8] and Haddadi [38] proposed a Lagrangian heuristic algorithm, which generates
a feasible solution for the original SCP. at every iteration of the subgradient method. We

describe the basic procedure to generate a feasible solution @ = (zy,...,,) for the original
SCP from an optimal solution &(u) = (Z;(u),...,Z,(u)) of the Lagrangian relaxation
problem.

Basic Lagrangian heuristic algorithm

Step 1: Set z; — Z;(u) for all j € N and M’ U;cn z,u)=1 -

Step 2: If M’ = M holds, go to Step 3. Otherwise, select an uncovered row i €
M\ M, set z; — 1 and M’ «— M’'US; for the column 5 € N; with the minimum
cost ¢; and return to Step 2.

Step 3: If there exists a redundant column j € N, set z; « 0 and return to Step 3;
otherwise output « and halt. '

A number of computational studies have shown that almost equivalent near optimal La-
grangian multiplier vectors can produce upper bounds of substantially different quality. It is
therefore worthwhile applying the Lagrangian heuristics for several near optimal Lagrangian
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Table 9: Computation time in seconds of the construction algorithms
Instance  Rows Columns GR BPD PD-UI PD-LPtf RNDft

4.1-4.10 200 1000 <0.01 <0.01 <0.01 <0.01 <0.01
5.1-5.10 200 2000 <0.01 <0.01 <0.01 <0.01 <0.01
6.1-6.5 200 1000 <0.01 <0.01 <0.01 <0.01 <«0.01
A1-A5 300 3000 <0.01 <0.01 <0.01 <0.01 <0.01
B.1-B.5 300 3000 0.01 <0.01 <0.01 <0.01 <0.01
C.1-C.5 400 4000 0.01 <0.01 <0.01 <0.01 <o0.01
D.1-D.5 400 4000 <0.01 <0.01 <0.01 <0.01 <0.01
E.1-E.5 500 5000 0.01 <0.01 <0.01 <0.01° <0.01
F.1-F.5 500 5000 0.01 <0.01 0.01 <0.01 <0.01

G.1-G.5 1000 10,000 <0.01 <0.01 0.01 <0.01 <0.01
H.1-H.5 1000 10,000 0.01 <0.01 0.01 <0.01 <0.01

RAIL507 507 63,009 0.02 <0.01 0.02 0.02 <0.01
RAIL516 516 47,311 0.02 <0.01 0.02 0.02 <0.01
RAIL582 582 55,515 0.02 <0.01 0.02 0.02 <0.01
RAIL2536 2536 1,081,841 0.92 0.09 0.88 0.36 0.34
RAIL2586 2586 920,683 0.83 0.08 0.63 0.30 0.27
RAIL4284 4284 1,092,610 1.11 0.08 1.00 0.38 0.38
RAIL4872 4872 968,672 0.83 0.09 0.67 0.34 0.30

tNote: The computation time of PD-LP and RND does not include the
time for solving the LP relaxation problem.

multiplier vectors. As in the case of the greedy algorithm, the Lagrangian heuristics also has
many criteria to select the next column; e.g., the reduced cost &;(u) is often used instead
of the original cost c¢;. This is based on the observation that the reduced cost &;(u) gives
a reliable information on the attractiveness of letting z; < 1, because each column j € N
with z7 = 1 in an optimal solution x* of the original SCP tends to have a small reduced
cost ¢;(u). ‘

Balas and Carrera [3] proposed another Lagrangian heuristic algorithm, which first trans-
forms the Lagrangian multiplier vector u into a dual feasible solution of the LP relaxation
problem and then applies the basic primal-dual algorithm.

Tables 10 and 11 show upper bounds and computation time in seconds of four variants of
Lagrangian heuristic algorithms: (i) the greedy algorithm using original cost ¢; (denoted LH-
OC), (ii) the greedy algorithm using reduced cost ¢;(u) (denoted LH-RC), (iii) the greedy
algorithm using cost effectiveness ¢;/|S; \ M’| (denoted LH-CE) and (iv) the basic primal-
dual algorithm (denoted LH-PD), where each Lagrangian heuristic algorithm is applied at
every iteration and removes redundant columns by the reverse delete step. From Tables 10
and 11, we observe that LH-RC, LH-CE and LH-PD are more promising than LH-OC for
RAIL instances, while only LH-CE is more promising than LH-OC for classes 4-6 and A-
H, although computing the cost effectiveness is expensive. We note that these Lagrangian
heuristic algorithms are not necessarily applied at every iteration in the subgradient method
since it is quite time consuming for huge SCP instances.

We also note that the Lagrangian heuristics is helpful to fix variables z; to zero or
one because it often improves the best upper bound zys, and our computational results
show that we can increase the number of fixed variables by 9.5% on the average using the
Lagrangian heuristics.
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Table 10: Computational results of the Lagrangian heuristic algorithms
Instance Rows Columns LH-OC LH-RC LH-CE LH-PD

4.1-4.10 200 1000 510.2 510.2 510.2 510.5
5.1-5.10 200 2000 257.3 257.6 2574 258.2
6.1-6.5 200 1000 145.8 145.6 145.0 148.0
A1-A5 300 3000 243.2 243.0 243.0 245.4
B.1-B.5 300 3000 75.6 76.0 75.6 77.0
C.1-C.5 400 4000 227.6 227.6 227.0 230.0
D.1-D.5 400 4000 65.0 65.2 64.8 66.4
E.1-E5 500 5000 294 294 29.0 29.6
F.1-F.5 500 5000 15.0 15.0 14.2 15.0

G.1-G.5 1000 10,000 174.8 175.0 173.8 178.4
H.1-H.5 1000 10,000 63.6 63.8 62.6 64.8

RAIL507 507 63,009 198 191 191 188
RAIL516 516 47,311 202 194 193 197
RAIL582 582 55,515 236 222 226 221
RAIL2536 2536 1,081,841 838 768 791 766

RAIL2586 2586 920,683 1117 1047 1080 1041
RAIL4284 4284 1,092,610 1243 1167 1218 1169
RATL4872 4872 968,672 1779 1672 1719 1673

6.3. The state-of-the-art heuristic algorithms

In this section, we review the most effective heuristic algorithms for SCP. Many of them are
based on the Lagrangian relaxation. Since a better Lagrangian multiplier vector u does not
necessarily derive a better upper bound z(x), many heuristic algorithms explore both good
Lagrangian multiplier vectors u« and feasible solutions x of the original SCP simultaneously.

Ceria et al. [24] proposed a Lagrangian heuristic algorithm based on the primal-dual
subgradient method as described in Section 3. To deal with huge SCP instances, their
algorithm first defines a good core problem C' C N based on a near optimal Lagrangian
multiplier vector u obtained by the primal-dual subgradient method. Differently from the
sifting method in Section 4, their algorithm determines the core problem C in a careful
way and never changes it afterwards. Their Lagrangian heuristic algorithm applies the
primal-dual subgradient method, fixes a variable x; to one which is selected by its reduced
cost ¢;(u) and primal Lagrangian multiplier, and applies a greedy algorithm for remaining
columns to generate a feasible solution x of the original SCP. This procedure is repeated
with different parameters for the variable selection and the greedy algorithm.

Caprara et al. [20] proposed a three phase heuristic algorithm. The first one is called the
subgradient phase shown in Section 3. The second one is called the heuristic phase, which
generates a sequence of near optimal Lagrangian multiplier vectors u and applies a greedy
algorithm using reduced costs ¢;(u). The third one is called the column fixing phase, which
fixes the first k columns selected by the greedy algorithm in order to reduce the size of rows
and columns to be explored by the three phase heuristic algorithm. The above three phases
are repeated until the incumbent solution x cannot be improved further. The three phase
heuristic algorithm works on a core problem C' C N defined by a small subset of columns,
which is periodically redefined as described in Section 4.

Wedelin [49] proposed another type of Lagrangian heuristics for a special type of 0-1
integer programming problem, which is a generalization of the set covering and partitioning
problems. Differently from the subgradient method, he used the coordinate ascent method (or
nonlinear Gauss-Seidel method) [13] to solve the Lagrangian dual problem, which iteratively
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Table 11: Computation time of the Lagrangian heuristic algorithms
Instance Rows Columns LH-OC LH-RC LH-CE LH-PD

4.1-4.10 200 1000 0.05 0.05 0.13 0.06
5.1-5.10 200 2000 0.09 0.09 0.32 0.10
6.1-6.5 200 1000 0.18 0.18 0.48 0.19
A1-A5 300 3000 0.31 0.30 1.25 0.33
B.1-B.5 300 3000 0.69 0.68 1.92 0.69
C.1-C.b 400 4000 0.56 0.53 2.34 0.58
D.1-D.5 400 4000 1.27 1.27 3.54 1.46
E.1-E.5 500 5000 4.78 4.38 9.65 5.67
F.1-F.5 500 5000 9.33 9.49 13.62 13.37

G.1-G.5 1000 10,000 3.64 3.44 16.33 3.87
H.1-H.5 1000 10,000 10.03 10.26 26.48 12.92
RAIL507 507 63,009 8.09 7.00 67.91 11.11
RAIL516 516 47,311 4.91 4.69 53.42 7.24
RATL582 582 55,515 8.81 7.73 59.33 11.61
RAIL2536 2536 1,081,841  212.81 225.25 5689.81  430.67
RAIL2586 2586 920,683 165.34 144.19 4889.30 296.48
RAIL4284 4284 1,092,610 269.98 292.02 9796.34 535.92
RAIL4872 4872 968,672 22942 233.86 8656.24 336.61

maximizes the objective value z (1) with respect to a number of fixed directions called the
coordinate vectors. More precisely, his algorithm modifies only one Lagrangian multiplier
u; at each iteration. Let &, (u) and ¢;,(u) be the first and second smallest reduced costs
¢;(u) among all j € N;. The new multiplier u; is computed by w; « u; + (&, (uw) + &, (u))/2,
which makes exactly one column j € N; to have negative reduced cost. It iteratively applies
the above operation to obtain sufficiently good lower and upper bounds. Since it is often
the case that more than one variables have the smallest reduced cost, he also developed an
improved algorithm that distorts the reduced costs to eliminate ties. Byun [19] reported
computational results of the coordinate ascent method for the set partitioning problem.

Another approach to obtain good upper bounds is metaheuristics, which combines basic
heuristic algorithms such as greedy and local search algorithms with sophisticated strategies.
Those metaheuristic algorithms for SCP include probabilistic greedy [28], simulated anneal-
ing [18,44], genetic algorithm [2,11] and so on. In recent years, metaheuristic algorithms
incorporated with mathematical programming techniques have been proposed [22, 50].

Yagiura et al. [50] proposed a local search algorithm with a large neighborhood called
the 3-flip neighborhood. As the size of 3-flip neighborhood is O(n?), the neighborhood
search becomes expensive if implemented naively. To overcome this, they proposed an
efficient implementation that reduces the number of candidates in the neighborhood without
sacrificing the solution quality. They also incorporated a strategic oscillation mechanism,
to guide the search between feasible and infeasible regions alternately. In addition, in order
to handle huge instances, they introduce a heuristic variable fixing technique based on the
Lagrangian relaxation. ‘

Caserta [22] proposed a tabu search algorithm with a strategic oscillation mechanism.
The algorithm can be regarded as a variant of primal-dual heuristics. It is based on a
procedure that can construct a dual feasible solution u of the LP relaxation problem from
any feasible solution x of the original SCP. The algorithm alternately applies the tabu
search algorithm and the subgradient method to explore better lower and upper bounds
respectively.
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Table 12: Computational results of the state-of-the-art heuristic algorithms
Instance Rows Columns ZLp CNS CFT YKI CA CPLEX

E.1-E.5 500 ‘5000 21.38 - 284 284 - 28.6
F.1-F.5 500 5000 8.92 - 140 14.0 - 14.2
G.1-G.5 1000 10,000  149.48 1674 166.4 166.4 - 168.6
H.1-H.5 1000 10,000 45.67 604 59.6  59.6 - 61.8
RAIL507 507 63,009  172.15 174 175 174 174 175
RAIL516 516 47,311 182.00 182 182 182 182 *182
RAIL582 582 55,515  209.71 211 211 211 211 *211
RAIL2536 2536 1,081,841  688.40 692 691 691 691 *689
RAIL2586 2586 920,683  935.92 951 948 945 948 979
RAIL4284 4284 1,092,610 1054.05 1070 1065 1064 1063 1089
RAIL4872 4872 968,672 1509.64 1534 1534 1528 1532 1570

Table 12 shows upper bounds of the state-of-the-art heuristic algorithms for SCP: (i) the
Lagrangian relaxation based heuristic algorithm by Ceria et al. [24] (denoted CNS), (ii) the
Lagrangian relaxation based heuristic algorithm by Caprara et al. [20] (dented CFT), (iii)
the 3-flip neighborhood local search by Yagiura et al. [50] (denoted by YKI) and (iv) the
tabu search with a primal-dual heuristic algorithm by Caserta [22] (denoted CA). We note
that all of these results are taken from the literature and these algorithms have been run
on different computers. Time limits (or computation time) and computers used for these
algorithms are given as follows.

CNS: 1000 seconds for all instances in classes G and H and RAIL507 and 582, and
10,000 seconds for RAIL2586 and 4872 on an IBM RS/6000 375 (32MB memory).
3000 seconds for RAIL516 on a PC486/66 (16MB memory). 10,000 seconds for
RAIL2536 and 4284 on an HP735 (125MHz, 256 MB memory).

CFT: 5000 seconds for all instances in classes E-H on a DEC station 5000/240. 3000
seconds for RAIL507-582 on a PC486/33 (4MB memory). 10,000 seconds for
RAIL2536-4872 on an HP735 (125MHz, 256 MB memory).

YKI: 180 seconds for all instances in classes E-H, 600 seconds for RAIL507 and 516,
30 seconds for RAIL582, and 18,000 seconds for RAIL2536—4872 on a Sun Ultra 2
Model 2300 with two Ultra SPARC II processors (300MHz, 1GB memory). We
note that we show the best results of ten runs for each instance in Table 12.

CA: 139 seconds for RAIL507, 217 seconds for RAIL516, 131 seconds for RAIL582,
338 seconds for RAIL2536, 399 seconds for RAIL2586, 1022 seconds for RAIL4284
and 1166 seconds for RAIL4872 on a Linux workstation with Intel Pentium 4
(1.1GHz, 256MB memory).

Comparisons of the performance of different computers are found in Dongarra [26] and
SPEC (Standard Performance Evaluation Corporation) [53]. In addition, we also show
upper bounds obtained by a general purpose MIP (mixed integer programming) solver
called CPLEX 9.1.3 [51], where we set the time limit for each run to be 180 seconds for all
instances in classes E-H, 600 seconds for RAIL507-582 and 18,000 seconds for RAIL2536—
4872, respectively. Optimal values are marked with asterisks.

From Table 12, we observe that CPLEX obtained optimal solutions for RAIL516, 582
and 2536 with 4.38, 63.70 and 9630.66 seconds, respectively. However, the state-of-the-art
heuristic algorithms achieve comparable upper bounds for classes E-H and RAIL507-582,
and better upper bounds for RAIL2586-4872.
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7. Conclusion

In this paper, we reviewed a number of heuristic algorithms to obtain good lower and upper
bounds for SCP, including the linear programming, the subgradient method, construction
algorithms, metaheuristics and their combinations. In particular, we focus on contributions
of mathematical programming techniques, which provide good lower bounds and can also
help to obtain good upper bounds when incorporated with heuristic algorithms such as
greedy methods, local search and metaheuristic algorithms.

We expect that the hybridization of metaheuristics and mathematical programming ap-
proaches will be helpful to handle large-scale instances of other combinatorial optimization
problems such as the 0-1 integer programming problem.

The survey in this paper is by no means comprehensive, but we hope this article gives
useful information for people who are interested in devising efficient algorithms for this basic
problem, which is of practical as well as theoretical importance. We refer the interested
reader to introductions to the set covering and related problems by Balas and Padberg [5],
Ceria et al. [23], Hochbaum [42] and Caprara et al. [21].
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